
LightVeriFL: Lightweight and Verifiable Secure
Federated Learning

Baturalp Buyukates
University of Southern California

buyukate@usc.edu

Jinhyun So
University of Southern California

jinhyuns@usc.edu

Hessam Mahdavifar
University of Michigan
hessam@umich.edu

Salman Avestimehr
University of Southern California

avestime@usc.edu

Abstract

Secure aggregation protocols are implemented in federated learning to protect
the local models of the participating users so that the server does not obtain any
information beyond the aggregate model at each iteration. However, existing secure
aggregation schemes fail to protect the integrity, i.e., correctness, of the aggregate
model in the possible presence of a malicious server forging the aggregation result,
which motivates the need for verifiable aggregation in federated learning. Existing
verifiable aggregation schemes either have a complexity that linearly grows with the
model size or require time-consuming reconstruction at the server, that is quadratic
in the number of users, in case of likely user dropouts. To overcome these limita-
tions, we propose LightVeriFL, a lightweight and communication-efficient secure
verifiable aggregation protocol, that provides the same guarantees for verifiability
against a malicious server, data privacy, and dropout-resilience as the state-of-
the-art protocols without incurring substantial communication and computation
overheads. The proposed LightVeriFL protocol utilizes homomorphic hash and
commitment functions of constant length, that are independent of the model size, to
enable verification at the users. In case of dropouts, LightVeriFL uses a one-shot
aggregate hash recovery of the dropped users, instead of a one-by-one recovery
based on secret sharing, making the verification process significantly faster than the
existing approaches. We evaluate LightVeriFL through experiments and show
that it significantly lowers the total verification time in practical settings.

1 Introduction

Federated learning (FL) is a distributed learning paradigm proposed to address the growing concerns
about user data privacy in distributed learning systems [1]. In FL, a group of users jointly train a
global model without sending their local data to a central server (see Fig. 1(a)). Even though user
datasets stay private, local models sent by the users can potentially cause data leakage from the users
[2, 3, 4, 5]. Secure aggregation frameworks have been implemented to protect the users’ individual
local models as well as tolerate likely dropouts in FL [6, 7, 8, 9, 10]. Secure aggregation schemes
hide individual local models from the server, which only learns the aggregate model. Despite their
benefits in protecting the user models, none of these secure aggregation schemes enable the users to
verify the correctness of the aggregate model received from the server at each iteration.

The typical FL framework, even in the presence of secure aggregation schemes, is prone to a malicious
server forging the aggregation results for its own benefit or a lazy server sending incorrect results

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.



Users

Server

1. Local model training

2. Sending model

updates

3. Model
aggregation

4. Sending updated

model to users

(a)
Users

Server

1. Local model training

2. Sending model

updates

3. Incorrect

aggregation

4. Sending forged

model to users

model

(b)

Figure 1: (a) Typical federated learning framework, (b) a malicious server can forge the aggregation
results as the users cannot verify the integrity of the incoming aggregation result.

to reduce its computation cost (see Fig. 1(b)). Since the users are oblivious to the aggregation
procedure, such incorrect computations at the server can potentially alter the learning procedure.
From a trustworthiness standpoint, without verifiable aggregation, users cannot make sure whether
their contributions are included in the global model, also motivating the study of verifiability in FL.

Related Works. In [11], the server generates a proof for the aggregation computation to enable
verification at the users. The proof utilized in [11] has a communication overhead that is linear
in the model size, which makes it impractical in modern FL systems with hundreds of thousands
of parameters. Authors in [12] propose a communication-efficient verifiable aggregation scheme,
which utilizes hashes of the local model updates of the users for verification at the expense of huge
computation overhead in the presence of dropouts (see Appendix A for further discussion). In this
work, we propose a lightweight verifiable aggregation scheme that provides the same guarantees
for input privacy, dropout resilience and verifiability in the presence of a malicious server as the
state-of-the-art protocols without incurring substantial computation and communication overheads.

Contributions. The main bottleneck in [12] is that the server recovers the hashes of the dropped
users one-by-one in the verification stage (see Appendix C for details). These hashes are later utilized
by the users to check the integrity of the aggregate model. In large systems with frequent dropouts,
this one-by-one reconstruction incurs a significant quadratic burden on the verification time. In this
work, inspired by the design of LightSecAgg [8], we propose a verifiable aggregation scheme named
LightVeriFL for faster verification in the presence of dropouts in FL systems.

The proposed LightVeriFL scheme utilizes linearly homomorphic hashes of the local models of
the users for verification. As shown in Fig. 2, after the local training, each user generates a hash,
which is protected by a random mask generated by the respective user. These masks are encoded
carefully such that once received sufficient responses from the users, the server is able to generate the
aggregate hash of all participating users in one-shot (as opposed to one-by-one reconstruction of [12]).
That is, even if certain number of users drop in the verification stage, the server is able to recover
the aggregate hash of all users that have sent model updates in that iteration. Finally, enabled by the
linear homomorphism of the hashes, each surviving user verifies the integrity of the aggregation. Key
features of the proposed LightVeriFL protocol are listed as follows:

(1) Verifiability and trustworthiness. With LightVeriFL users make sure that i) their contributions
are reflected in the global model and ii) the aggregation result provided by the server is exact.

(2) Compatibility with the existing secure aggregation schemes. LightVeriFL is compatible with
federated averaging-based secure aggregation schemes, e.g., SecAgg [6], LightSecAgg [8].

(3) Input privacy and dropout resilience. LightVeriFL does not leak any private information
of the users and is resilient to dropouts during the verification procedure. Combined with a secure
aggregation scheme, LightVeriFL forms a secure verifiable aggregation scheme and guarantees
input privacy and dropout resilience both in model aggregation and aggregate model verification.

(4) One-shot aggregate hash recovery at the server. In LightVeriFL, the server is able to recover
the aggregate hash of the participating users (whose models are included in the aggregation) in
one-shot even in the presence of dropouts thanks to the employed mask encoding strategy.
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Figure 2: Illustration of the proposed LightVeriFL protocol. (1) Users first encode and share their
local masks among themselves. (2) Each user generates hash of its local model and uploads the
masked hash to the server. (3) In the verification stage, the surviving users upload the aggregate
encoded masks to the server, which then recovers the desired aggregate mask. By cancelling out
the aggregate mask, the server recovers the aggregate hash, which is used by the users to verify the
integrity of the aggregation.

(5) Reduced overheads and faster verification. With the one-shot aggregate hash recovery, com-
putation overhead at the server drastically decreases in case of dropouts compared to [12], which
results in much faster verification, also confirmed by our empirical results for realistic model sizes,
particularly in systems with large number of users. Our experiments indicate that the primary source
of this gain is the complexity reduction at the server.

(6) A novel encoding scheme. Existing encoding strategies for secure aggregation aim at recovering
the sum of the individual models. In the case of linear homomorphic hashes, one needs the product of
the hashes of the users for verification. Inspired by the encoding strategy in [8], we propose a novel
encoding strategy that utilizes elliptic curves to recover the “aggregate" product of the user hashes.

Notation. Zp denotes the ring of integers modulo p. We use Z∗
p to denote all invertible elements of

Zp, i.e., Z∗
p = Zp\{0}. G denotes a cyclic group of order q. We have [N ] ≜ {1, 2, . . . , N}.

2 Preliminaries

Linear homomorphic hash. Following [12, 13], we let G be a cyclic group with prime order q and
generator g. Given d distinct elements g1, g2, . . . , gd, the hash of a model x ∈ Fd

q is given by

h(x)←−
d∏

j=1

g
x[j]
j ∈ G, (1)

where x[j] denotes the jth element of the model vector x. The hash construction in (1) has collision
resistance [13] such that it is computationally infeasible to find two distinct vectors x1,x2 ∈ Fd

q that
satisfy h(x1) = h(x2). The resulting hash in (1) is of constant length independent of d and satisfies
an additivity (in exponent) property for x1,x2 ∈ Fd

q such that h(x1 + x2) = h(x1)h(x2).

Commitment. A commitment scheme COM, takes an input message h and uniform random-
ness r to produce a commitment string c such that c = COM.Commit(h, r). When it is time to
decommit, i.e., reveal the hidden committed value, the committer sends the claimed committed
message h′ and the claimed committed randomness r′ to the interested party, which then checks
c = COM.Commit(h′, r′). If this holds, the interested party accepts the committed value h.

A well-known commitment scheme is the Pedersen commitment scheme [14]. Given a subgroup G of
Z∗
p of order q, with p = 2q + 1, in the Pedersen commitment scheme, the committer sends c = ghtr,

where g is the generator of the subgroup and t is selected such that t = ga with a unknown to the
receiver. Here, r ∈ Z∗

p is randomly selected and called the blinding factor. Pedersen commitment
schemes are perfectly hiding and computationally binding [14] and are additively homomorphic such
that for commitment pairs (h1, r1) and (h2, r2), we have c(h1 + h2, r1 + r2) = c(h1, r1)c(h2, r2).

In LightVeriFL, we use a variation of the original Pedersen commitment scheme (see Appendix D)
and utilize its homomorphic property to verify the integrity of the hashes reconstructed by the server.

Elliptic curve (EC). An EC over Fp, denoted by E(Fp), consists of points P = (x, y), x, y ∈ Fp

that satisfy y2 = x3 + ax+ b, together with the point at infinity O [15]. p > 3 is an odd prime and
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a, b ∈ Fp satisfy 4a3 + 27b2 ̸= 0. Two operations are defined on ECs: point addition and scalar
multiplication. Given an integer k, the scalar multiplication kP corresponds to adding point P to
itself k times and is analogous to the exponentiation operation in multiplicative groups. ECs are
well-suited for resource constrained environments such as FL since significantly smaller parameters
are required to achieve the same level of security, compared to the classical public-key schemes [15].

3 Problem Setting

3.1 Federated Learning

FL is a distributed learning framework, in which a global model x of dimension d is jointly trained
by a group of users on their own privately held datasets Di. The FL framework aims to minimize the
global loss function L(x) = 1

N

∑N
i=1 Li(x), where Li(x) denotes the local loss function of the ith

user and without loss of generality, |Di| = n for all i ∈ [N ]. Training in FL is an iterative process. At
each iteration, the server sends out the current global model x(t) to the participating users. Each user
i updates its local model xi(t) and sends it to the server. We let Ua(t) denote the surviving users at
iteration t during aggregation. The server aggregates the results with x(t+1) = 1

|Ua(t)|
∑

i∈Ua(t)
xi(t)

and pushes the updated global model, x(t+ 1) back to the users for the next iteration.

3.2 Threat Model and Privacy & Verifiability Guarantees

All users and the server are honest but curious. Up to T of the users can collude with each other as
well as the server to obtain information on the inputs of the honest users. Corrupted parties follow
the protocol and report their local models honestly but they may try to infer the local models of the
honest users. Additionally, we allow a corrupted server to forge the aggregation results arbitrarily
in an effort to convince the users of a wrong aggregation result. Thus, the goal is to protect the
confidentiality of the user inputs as well as give each user the capability of verifying the integrity of
the server aggregation.

3.3 Dropout Resilience

In FL, users may sometimes drop from the protocol execution due to communication/connection
issues, battery problems etc. The proposed secure verifiable aggregation protocol should be resilient
to these random dropouts. We assume that at most D users drop during the verification protocol
such that we have at least N − D surviving users that want to verify the aggregation. Since the
existing secure aggregation schemes [6, 7, 8] provide resilience for dropouts occurring during model
aggregation, in this work, we focus on the dropouts occurring during the verification of the aggregate
model. Thus, we want the proposed protocol to tolerate D dropouts such that the remaining N −D
clients can correctly verify the integrity of the aggregation that includes local models of N users.

Goal. We want to design a lightweight and communication-efficient verifiable aggregation protocol
that simultaneously provides input privacy against T = N

2 colluding users and resilience to D = N
2 −1

dropouts as well as a verifiability guarantee in the presence of a malicious server spoofing the
aggregation results. The proposed verifiable aggregation protocol should be compatible with the
existing secure aggregation protocols to protect the confidentiality of the users’ local models.

4 Overview of the LightVeriFL Protocol

Our protocol utilizes certain cryptographic primitives as in [6, 8, 11, 12] so that all the operations
are performed over a finite field. In order to implement LightVeriFL, users perform the following
additional operations during an FL iteration (for the detailed description, complexity analysis, and
the pseudo code of LightVeriFL see Appendices D, G, and E, respectively).1

During the aggregation phase. Each user i i) generates a mask zi, encodes it according to (8) and
shares the encoded mask with the other users, ii) generates its hash hi based on its local model xi

according to (1), iii) commits its hash hi and exchanges its commitment ci with the other users, iv)

1As in VeriFL, we implement LightVeriFL together with SecAgg [6] by default according to Appendix B.
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sends its masked hash h̃i = hi + zi to the server. At the end of the aggregation phase, the server
recovers the aggregate model y and sends it back to the users.

After the aggregation phase. Upon the aggregation phase, some users may drop and the verification
is performed by the surviving users. Each of the surviving users sends the encoded masks it has
received from the other users (surviving and dropped) to the server for reconstruction. Server
reconstructs the aggregate mask and recovers the aggregate hashes of the surviving and dropped
users (decommitting round). Then, each surviving user i) verifies the correctness of the recovered
hashes coming from the server using the commitments it has received from every other user during
the aggregation phase, ii) verifies the integrity of the aggregate model y by computing its hash and
comparing it against the aggregate of the individual hashes of the users, reconstructed by the server
and accepted by the user in step i) (batch checking round). If a user encounters an incorrect result
either in step i) or ii) during the verification phase, it regards the result as forged and rejects the
aggregation result y computed by the server in that iteration.

Improved LightVeriFL with amortized verification: In LightVeriFL, the most time-consuming
operation is the two hash computations over a model of dimension d. First, in the aggregation
phase, each user computes the hash of its local model. Then, in the batch checking round, each user
computes the hash of the aggregate model. The former hash computation is necessary, however, the
latter one can be amortized in order to cut down the computational overhead of the entire scheme. For
this, we implement the amortized verification technique [12] with batch size L such that users verify
aggregations of the past L iterations all at once by performing a single hash computation using (13).

5 Theoretical Guarantees

In this section, we show the correctness of the verification along with input privacy guarantee and
dropout resilience in LightVeriFL. Proofs are deferred to Appendix F.
Theorem 1. [Correctness of Verification] Under the LightVeriFL scheme, users accept the aggre-
gation results y(ℓ), ℓ ∈ [L] if and only if these results are correctly aggregated by the server with
probability (almost) 1.
Theorem 2. [Input Privacy Guarantee] The proposed LightVeriFL protocol provides input privacy
against up to T colluding users.
Theorem 3. [Dropout Resilience in Verification] The proposed LightVeriFL scheme guarantees
dropout resilience up to any D dropped users during the verification phase such that N ≥ T +D+1.
Theorem 4. The proposed LightVeriFL scheme guarantees successful aggregation integrity verifi-
cation in the presence of any D user dropouts during the verification phase without sacrificing input
privacy against up to any T colluding users for T +D < N . When LightVeriFL is implemented
together with a secure aggregation scheme, a secure verifiable aggregation scheme is obtained.

6 Experimental Results

6.1 Experimental Setup

Implementation. We implement the linearly homomorphic hash as well as the commitments using
the NIST P-256 elliptic curve [16]. This curve has a 256-bit subgroup order n. We fix q to 231 − 1
such that all user models lie in Fd

q . As in [12], we simulate the clients and the server on our in-house
64-bit Ubuntu 20.04.2 LTS machine equipped with AMD EPYC 7502 CPU.

Baseline. We use the VeriFL [12] scheme described in Appendix C as our baseline. We do not
consider other aggregation verification methods such as [11] and [17] as baselines since these works
are not communication-efficient, i.e., the required communication scales with the model size d, and/or
do not support user dropouts. In the experiments, we implement both VeriFL and LightVeriFL on
top of SecAgg and utilize amortized verification in both schemes with L = 10.

Number of users and dropout rate. We have up to N = 200 users in our experiments. For the
dropped users, we consider a worst-case scenario for verification, in which we assume all N users
successfully participated in the model aggregation and some pN portion of these users drop in the
verification phase. For this, we artificially drop pN users at each iteration. Following the observations
made in [8] and [18], we take p = 0.1, p = 0.3, and p = 0.5. In all these cases, we take T = N

2 .

5



(a) (b)

Figure 3: (a) Total running time and (b) the verification phase time comparison of VeriFL and the
proposed LightVeriFL for varying N and dropout rates for L = 10. Both schemes are implemented
on top of SecAgg. LightVeriFL specifically targets improving the verification time as it enables
one-shot recovery of the user hashes as opposed to one-by-one recovery in VeriFL.

Table 1: Breakdowns of the verification time of LightVeriFL and VeriFL for varying dropout rates
with N = 200 users, d = 100K, and L = 10. All times are in seconds.

Phase 10% dropout 30% dropout 50% dropout

VeriFL
Round V.0 Decommitting 11.25 30.56 52.51

Round V.1 Batch Checking 6.53 6.03 5.77
Verification Phase - Total 17.78 ± 0.14 36.59 ± 0.25 58.28 ± 0.60

LightVeriFL
Round V.0 Decommitting 0.76 0.67 0.67

Round V.1 Batch Checking 6.46 5.94 5.54
Verification Phase - Total 7.22 ± 0.07 6.61 ± 0.06 6.21 ± 0.02

Gain 2.46× 5.54× 9.38×

Model size. By default, we use d = 100K as our model size in the experiments as in [12] (see
Appendix H for experiment results with varying d).

6.2 Performance Analysis

We consider a single training round and measure the total running time of LightVeriFL and VeriFL.
We do not include model training in the results shown in this section.

In Fig. 3 we increase the number of users to N = 200 for varying dropout rates with d = 100K
and L = 10. In Fig. 3(a), we see that, unlike LightVeriFL, the total running time of the VeriFL
scheme is affected by larger dropouts as its reconstruction complexity increases quadratically with
N . To better observe this, in Fig. 3(b), we present the running times of the verification phases of
the two schemes. Verification phase in both schemes involves the decommitting and batch checking.
In Fig. 3(b), we observe that while the verification time in the proposed LightVeriFL scheme
is largely unaffected by the increasing dropout rates, the verification time in VeriFL significantly
increases as N gets larger and as the dropout rate increases. This is due to the fact that VeriFL
performs one-by-one reconstruction of the dropped user hashes whereas in LightVeriFL the server
reconstructs the aggregate hash of all users all at once, independent of the dropout rate.

Next, we present the verification time breakdown of the two schemes for different dropout rates with
N = 200, d = 100K, and L = 10 in Table 1 as LightVeriFL specifically targets improving the
verification time. In Table 1, we observe that the proposed LightVeriFL protocol achieves up to
9.38× improvement in the verification time (see Appendix H for further discussion).

7 Conclusion and Future Directions

Unlike the existing verifiable aggregation schemes which suffer from large communication and
computation overheads, the proposed LightVeriFL scheme is lightweight and communication-
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efficient, which are enabled by the use of constant-length hashes for aggregation verification and
one-shot aggregate hash recovery at the server instead of one-by-one recovery of the dropped user
hashes. LightVeriFL achieves significantly faster aggregate model integrity verification at the users
in the presence of a malicious server forging the aggregation results while guaranteeing the same
input privacy and dropout-resilience as the state-of-the-art protocols. Despite its benefits, limitations
still exist. We plan to improve LightVeriFL in the following aspects: 1) performing end-to-end
experiments by also considering model training to investigate the gain achieved by LightVeriFL
over baselines, 2) extending LightVeriFL to asynchronous FL, 3) considering the verification of
user data and models as well as design of a Byzantine-robust secure verifiable aggregation scheme.
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Appendix

A Other Related Works

Besides [11] and [12], there are other works in verifiable federated learning focusing on verifying
the computations of the server and/or the local information and model updates of the users (see
the survey in [19]). Among these, a related work is [17], which uses Lagrange interpolation and
the Chinese Remainder Theorem to encrypt the model updates of the users. The server aggregates
the encrypted models, which are then verified by the users. A major disadvantage of this scheme
is that it cannot support user dropouts, which is one of our main considerations in this work. The
aggregate model verification problem that we consider in this work can be cast as a secure multiparty
computation in the presence of malicious parties. The existing techniques in the secure multiparty
computation domain utilize garbled circuit-based approaches through Cut-and-Choose [20, 21] and
Commit-and-Prove [22, 23] techniques, which incur significant communication overheads and thus
are not suitable for the FL setting. Secret sharing-based solutions as in [24] require secret sharing the
inputs, which again induces a huge communication complexity that depends linearly on the model
size.

In the privacy-preserving machine learning literature the main focus is on the input privacy of the
users. Aside from the secure aggregation techniques [6, 7, 8, 9, 10, 25], another privacy-preserving
approach is differential privacy [26]. In FL, employing DP usually entails adding artificial noises
to the local models of the users before sending them out for aggregation [27, 28, 29, 30]. None
of these works in the DP literature enable computation verification at the users beyond achieving
input privacy. We note that clients can still implement local DP in the proposed LightVeriFL
scheme. In LightVeriFL the focus is on the verifiability of the server computations. Even though
LightVeriFL provides secure verifiable aggregation, it does not verify the integrity of the user
inputs. That is, LightVeriFL cannot detect the malicious inputs of Byzantine users. In this sense,
Byzantine-robust aggregation literature [31, 32, 33, 34] complements the proposed secure verifiable
aggregation scheme. It is a great open problem to design a verifiable Byzantine-robust aggregation
mechanism, considering various different aggregation rules other than federated averaging.

B Overview of Secure Aggregation

In the original FL framework described in Section 3.1, local models of the participating users are
received in plain by the server at each iteration. However, these local models carry significant
information about the respective users’ datasets and using certain attacks, e.g., model inversion,
private local data-points of the users can be recovered from their models [2, 3, 4, 5]. To remedy this,
authors in [6] propose a secure aggregation scheme, named SecAgg, in which the server recovers
the aggregate model y(t) =

∑
i∈Ua(t)

xi(t) at each iteration t without obtaining any information
about the individual local models xi(t) ∈ Ua(t). In SecAgg, the users protect their local models with
two separate masks. The first mask is a pairwise mask that is agreed upon between each pair (i, j)
of users, i, j ∈ [N ]. For this, before the training starts user pair (i, j) agrees on a random seed ai,j ,
where ai,j = Key.Agree(ski, pkj) = Key.Agree(skj , pki). Here, ski and pki denote the private and
public keys of user i, respectively. Each user i generates another mask based on a private random
seed bi. With these, each user i masks its local model xi and sends the masked version x̃i to the
server, where2

x̃i = xi + PRG(bi) +
∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i). (2)

where, PRG stands for a pseudo-random generator. We note that, in (2), the pairwise random masks
protect the confidentiality of each user’s local model and cancel out at the server upon aggregation.
When a user i’s local model is only delayed, but not dropped, in order to prevent privacy breaches
during this cancellation, the additional mask based on the private seed bi is used. Each user i secret
shares its private seed bi and private key ski with the other users via Shamir’s secret sharing [35]. In
the aggregation step, the server collects the shares of the dropped users’ private keys as well as the
shares of the private seeds of the surviving users to reconstruct the pairwise seeds of each dropped

2Here, we omit the iteration index t for ease of exposition.
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user and the private seed of each surviving user, respectively. The server then performs the following
to obtain the aggregate model y, which is equal to

∑
i∈Ua

xi =
∑
i∈Ua

(x̃i − PRG(bi)) +
∑
i∈Da

∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i)

 , (3)

where Ua andDa represent the set of surviving and dropped users at the aggregation stage, respectively.
The SecAgg scheme guarantees local model privacy as long as the number of dropped users at
aggregation Da and the number of colluding users T satisfy N −Da > T .

A major performance bottleneck of the SecAgg scheme is the fact that it requires the server to
reconstruct the seeds one by one (the private seeds of the surviving users as well as the pairwise
seeds of the dropped users), which incurs a computation overhead of O(N2). To remedy this,
more efficient secure aggregation schemes have been proposed [7, 8]. In [8], authors propose
LightSecAgg, in which the server recovers the aggregate mask of the surviving users in one-shot,
thus overcoming the aforementioned O(N2) bottleneck. In LightSecAgg, users still protect their
models with local masks but these masks are encoded and shared with the other users such that once
the server receives sufficiently many responses from the users, it can reconstruct the aggregate mask
of these surviving users and hence recover the aggregate model. The approach in LightSecAgg
constitutes the basis of our approach in designing a lightweight and verifiable aggregation protocol.

Limitations of the secure aggregation schemes. With secure aggregation alone, users cannot verify
whether i) the aggregation result provided by the server is correct and ii) their individual models are
accounted for in the aggregation. Thus, without a verifiable aggregation scheme, users are vulnerable
to a malicious/lazy server forging the aggregation result and/or not incorporating local models of all
users.

C Overview of the Baseline Protocol: VeriFL

In this section, we give an overview of the existing verifiable aggregation protocols for FL. The
first work on verifiable aggregation is [11]. In that work, authors propose VerifyNet that utilizes a
zero knowledge proof technique such that upon aggregation, the server sends a proof to the users
indicating the correctness of the aggregation. Users may accept or reject this proof. The major
bottleneck in this system is the fact that the size of this proof increases linearly with d, the dimension
of the model. Thus, the time required for verification using the zero knowledge proof increases
linearly with d, making the VerifyNet scheme impractical for real-life learning models with large
number of parameters.

Reference, [12] proposes a verifiable aggregation scheme named VeriFL, which is the baseline
scheme we consider in this work. The VeriFL scheme utilizes homomorphic hash functions of the
local models as well as commitments to design a communication-efficient verification scheme. In
VeriFL, the communication overhead is independent of d, thus making the VeriFL scheme more
efficient than VerifyNet. Below we give a brief overview of the VeriFL scheme.

In VeriFL, training iterations are performed as described in Section 3.1. The VeriFL scheme starts
with a preparation stage. Before sending out its updated local model, each participating user i
generates a linearly homomorphic hash hi of its local model xi. Based on this hash hi, user i then
generates a commitment ci using a commitment scheme COM such that ci = COM.Commit(hi, ri),
where ri is a uniformly random string privately sampled by user i. Next, each user i forwards its
commitment string ci to all the other participating users. Once this step is completed for all user pairs,
each user sends its local model to the server. In VeriFL, in sending the local models to the server for
aggregation, users follow the SecAgg protocol described in Appendix B. Once the server recovers the
aggregate model y and pushes it to the users, the verification stage of the VeriFL scheme commences
with the decommitment step, in which each user i receives the decommitment strings (hj , rj) from
all the other users j ∈ [N ] to check if cj received in the preparation step satisfies

cj = COM.Commit(hj , rj). (4)

If (4) is not satisfied for at least one other user j, user i terminates the process and regards the
aggregation y as forged. If no issue is detected at this step for any of the users, user i proceeds and
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checks the equality of the hashes. For this, user i first computes the hash of the aggregate model, hagg
and then check if the following holds

hagg =

N∏
i=1

hi. (5)

If (5) does not hold, user i raises a flag and regards the aggregate result as forged, otherwise user i
accepts the result and starts generating its updated local model for the next iteration.

We note that thanks to SecAgg, the above VeriFL scheme can tolerate dropouts during aggregation.
However, dropouts occurring during the verification step need to be handled to successfully verify
the integrity of the aggregation. For this, each user i secret shares its decommitment string (hi, ri)
with the other users in the preparation step. In the verification step, after decommitting, surviving
users send the shares they have received from the dropped users to the server, which recovers the
decommitment strings (hj , rj) of the dropped users and sends them back to the surviving users.
Equipped with these, along with the decommitment strings of the other surviving users, each surviving
user i performs (4) and (5).

Limitations of the VeriFL scheme in [12]. i) As in the original SecAgg scheme, the VeriFL scheme
suffers from the one-by-one reconstruction of the dropped users’ decommitment strings (hj , rj),
which are then used by the surviving users in performing the verification through (4) and (5). This
one-by-one reconstruction at the server incurs an O(N2) computation bottleneck and significantly
slows down the system for large N . For example, when N = 500 and d = 100K, when the dropout
rate is %30, while the actual verification steps in (4) and (5) take around 5 seconds (majority of which
is the hash computation of the aggregate model), the reconstruction of the dropped decommitment
strings takes approximately 150 seconds, incurring a significant burden on the verification procedure.
ii) In VeriFL, the homomorphic hashes of the honest users are revealed in the verification phase (in
decommitment for surviving users and during the reconstruction at the server for the dropped users).
Since the homomorphic hash of a model vector is a deterministic function of the inputs, an adversary
may use the revealed hash result to guess the local model of an honest user. Thus, in VeriFL, the
local model confidentiality of the honest users may be broken, particularly when the gradient vector
has only a few non zero entries [36].

Motivated by these limitations, in this work, we propose LightVeriFL, which forgoes one-by-one
reconstruction of the dropped users’ decommitment strings (hj , rj). Instead, in LightVeriFL, the
server performs a one-shot reconstruction of the aggregate decommitment strings of the dropped
and surviving users. By this way, not only we avoid the major O(N2) computation bottleneck in
reconstruction, thus making the verification significantly faster but also avoid revealing the individual
hashes of any of the users (dropped or surviving) to any of the parties (users and the server),
circumventing the aforementioned privacy breach.

D Detailed Description of LightVeriFL

In this section, we describe the LightVeriFL scheme in detail. We require the elements of the local
models of the users and the aggregate model to lie in Fd

q , q is a prime number.3 4 The key feature of
the LightVeriFL scheme is that the server is able to reconstruct the aggregate hashes of the dropped
users in one-shot as opposed to VeriFL [12], which has the server reconstructing the dropped hashes
one-by-one. In LightVeriFL, the server additionally recovers the aggregate hash of the surviving
users so that these surviving users never reveal their hashes in plain to other users.

The proposed LightVeriFL scheme has two phases: aggregation phase and verification phase. In the
aggregation phase, additional operations are performed on top of SecAgg to enable verification later
on. The verification phase happens after the users receive the aggregate model from the server. In order
to protect the privacy of the local models, in LightVeriFL, users mask their hashes before sending
them to the server. Then, in the verification phase, they make use of the additive homomorphism of
the constructed hashes described in Section 2 to verify the integrity of the aggregation. That is, after

3We select a large q such that the field Fd
q is large enough to avoid any wrap-around during aggregation.

4We assume that each user i converts its model xi from real domain to finite field Fq through quantization
at each iteration before invoking LightVeriFL. There exists quantization schemes in the literature that ensure
convergence of the global model [8].
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receiving the aggregation, each user needs to be able to check whether the following holds:

h(y) =
∏
i∈U

hi(xi)
∏
j∈D

hj(xj), (6)

where y is the aggregate model obtained from the server and U and D show the set of surviving
and dropped users during verification, respectively. As mentioned earlier, in LightVeriFL, unlike
VeriFL [12], we do not want the server to reconstruct the hashes one-by-one. Then, in order for
users to perform (6), the server needs to reconstruct the product of the hashes of the surviving and
dropped users as in LightVeriFL no user sees another user’s hash in plain. This is when elliptic
curves comes into play, which have the following property.
Property 1. The order of a point P on the EC is the smallest integer n such that nP = O. Given
E(Fp), one can find a base point P that generates a cyclic subgroup of order n, where n < p is a
prime number. That is, if k and ℓ are integers kP = ℓP if and only if k ≡ l in modulo n [15].

By utilizing this cyclic subgroup property, we perform all encoding and decoding operations in
LightVeriFL on ECs with modulus n. When the linearly homomorphic hash described in (1) is
implemented using an EC5, the condition in (6) becomes

h(y) =
∑
i∈U

hi(xi) +
∑
j∈D

hj(xj), (7)

using the EC analogues of the operations in multiplicative groups. That is, in this case the server
needs to recover the aggregate hashes of the users analogous to the secure aggregation problem [6, 8].
Thus, when the hashes are constructed over the EC, surviving users need the aggregation of the
hashes of all users to perform the verification step in (7). In this case, existing secure aggregation
tools become applicable to the problem at hand. We note that we implement a variant of the Pedersen
commitment scheme on the EC such that c = αh + βr, where h is hash of a user, denoted by a
point on the EC, whereas r is a randomly chosen point on the curve. Here, α and β are integer
coefficients agreed upon by the users before the start of the protocol. Once the commitments are
implemented over the EC, the additive homomorphic property described in Section 2 becomes
c(h1 + h2, r1 + r2) = c(h1, r1) + c(h2, r2).

Formally, the LightVeriFL scheme assumes that out of the N users, at most T of them colludes
with each other while D users drops during the verification phase of the LightVeriFL scheme.6
Here, we have 0 ≤ T ≤ N − 1 and 0 ≤ D ≤ N − 1. We let U denote the targeted number of
surviving users during the verification step where N −D ≥ U = T + 1. We detail the two phases
of the LightVeriFL scheme next. The pseudo code of LightVeriFL is given in Algorithm 1 in
Appendix E.

1. The Aggregation Phase: In order to verify the aggregation computed by the server, users perform
the following additional operations during the aggregation phase in addition to the implemented
secure aggregation protocol, i.e., SecAgg.

Round A.0: Advertising Keys. LightVeriFL starts with the setup operations of the linearly
homomorphic hash and commitment schemes, e.g., fixing an EC with generator g and subgroup order
n, setting up d distinct points on the EC for the hash computation in (1), and so on. The operations in
this round do not depend on the local models of the users. For the SecAgg protocol, during this phase
users agree on pairwise masks as well as described in Appendix B.

Round A.1: Offline Encoding and Sharing Local Masks. This step is inspired by the LightSecAgg
scheme in [8] except that all the masks are sampled from an EC, i.e., masks are points on the curve.
First each user i ∈ [N ], generates a mask zi, which is a point on the EC. Next, user i randomly
samples jointly uniform points [ni]k from the EC for k ∈ {2, . . . U}. Using these randomly picked
[ni]k, user i encodes the mask zi as follows

[z̃i]j = (zi, [ni]2, . . . , [ni]U ) ·Wj . (8)

5When the hash is implemented over an EC, hash of each user becomes a point on that EC.
6We assume that there is no dropout in the aggregation stage as in the verification problem the critical dropouts

happen when users whose results were aggregated in the model update drop at the time of the verification. We
note that existing secure aggregation schemes take care of the dropouts occurring during the aggregation phase
and the proposed LightVeriFL scheme can be implemented on top of these secure aggregation schemes to
tolerate dropouts both in aggregation and verification phases.
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Here, Wj is the jth column of the T -private MDS matrix W ∈ FU×N
n , where n is the order of the

subgroup on EC. The use of matrix W in encoding protects the generated masks from any subset
of colluding T users. We can always generate such T -private MDS matrix for a given U , N , and T
[35, 37, 8]. After the encoding, each user i ∈ [N ], sends its encoded mask [z̃i]j to user j ∈ [N ]\{i}
so that in the end of this step, each user i ∈ [N ] has [z̃j ]i from all users j ∈ [N ].

Round A.2: Hash Generation and Uploading Masked Hashes. In this step, each user i ∈ [N ]
updates its local model xi and then based on this model computes its hash hi

7 according to (1). Next,
each user computes its commitment ci based on its hash according to the aforementioned variant
of the Pedersen commitment. In generation of the commitment, each user uniformly samples a
point ri on the EC to be used in decommitting. Each user i ∈ [N ] sends its commitment ci to users
j ∈ [N ]\{i} such that at the end of this step, each user has commitments of every other user. Once
the commitment exchange is completed, each user i ∈ [N ] uploads its masked hash h̃i = hi + zi and
masked randomness r̃i = ri + zi to the server along with its masked local model that is generated
according to the employed secure aggregation scheme.

Round A.3: Aggregate Model Recovery. The server recovers the aggregate model y and sends it
back to the users.

This concludes the LightVeriFL operations during the aggregation phase.

2. Verification Phase: Having received the aggregate model y at the end of the aggregation phase,
users perform the verification phase to check the integrity of the aggregation.

Round V.0: Aggregate Decommitting. In this step, the server performs one-shot recovery of the
aggregate decommitment strings (hi, ri) of the dropped and surviving users. As mentioned earlier,
we let U and D denote the set of surviving and dropped users in the verification stage, respectively.
In order to recover the aggregate mask of the surviving users,

∑
i∈U zi, each surviving user i is

notified to send the aggregate encoded mask it has received from other surviving users,
∑

j∈U [z̃j ]i.
Upon receiving U such messages, the server is able to decode the aggregate mask of the surviving
users

∑
i∈U zi due to the MDS property of the encoding in (8). Next, a similar one-shot decoding is

repeated for the aggregate mask of the dropped users and the server reconstructs
∑

k∈D zk. Finally,
the server is able to recover the aggregate decommitment strings of the surviving and users with∑

i∈U
hi =

∑
i∈U

h̃i −
∑
i∈U

zi (9)∑
i∈U

ri =
∑
i∈U

r̃i −
∑
i∈U

zi. (10)

The same one-shot recovery steps in (9)-(10) are performed for the decommitment strings of the
dropped users in D as well.8 The server sends these decommitment strings back to the surviving
users. The next step of the users is to verify the integrity of the reconstructions performed by the
server. For this, we utilize the homomorphic additive property of the described commitment scheme
such that each user checks

c

(
N∑
i=1

hi,

N∑
i=1

ri

)
=

N∑
i=1

ci, (11)

using the commitments received from the users in Round A.1 during the aggregation phase. In (11)
we have

∑N
i=1 hi =

∑
i∈U hi +

∑
k∈D hk. If (11) does not hold for a user, then that user raises a

flag and rejects the aggregate hash recovery performed by the server. Otherwise, users proceed with
the next round.

Round V.1: Batch Checking. Having accepted the reconstructed hash results received from the
server, in this round users verify the correctness of the aggregation result y. First, each user computes

7Here, we denote user i’s hash simply with hi instead of hi(xi) and leave the dependence on xi implicit.
8In secure aggregation schemes, the server performs key/mask reconstructions either for the dropped users

[6] or for the surviving users [8]. In our verification problem, the server reconstructs the aggregate masks of all
users (surviving and dropped) in order to avoid decommitment string exchange among the surviving users in
the verification stage so that no individual user observes the decommitment string of another user to protect the
input privacy of the users.
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the hash of the aggregate model y, denoted by hagg , using the construction in (1) over the EC. Next,
each user checks if the following condition is satisfied:

hagg =

N∑
i=1

hi. (12)

If the condition in (12) is satisfied, then users accept the aggregated model and proceed with the next
iteration of training. Otherwise, they regard the aggregate model computed by the server as forged
and reject the result.

Improved LightVeriFL with Amortized Verification: In the amortized verification, Round V.0 of
the verification phase stays the same. On the other hand, Round V.1 of the verification phase is only
performed at every L iterations, where L is the predetermined batch size of the verification protocol.
That is, during iterations ℓ ∈ [L], each user samples a random coefficient αℓ and stores the sum of
the hashes of the users reconstructed by the server as hℓ =

∑N
i=1 h

ℓ
i as well as the aggregate model

in the ℓth iteration y(ℓ). Then, in the Lth iteration, it checks if the following relationship holds:

h

∑
ℓ∈[L]

αℓy(ℓ)

 =
∑
ℓ∈[L]

αℓh
ℓ. (13)

If (13) holds for a user, then that user verifies the aggregations of the past L iterations all at once by
performing only one hash computation in verification as opposed to performing L expensive hash
computations during verification, one for each of the L iterations.

E Pseudo Code of LightVeriFL

The pseudo code of LightVeriFL is given in Algorithm 1.

F Proofs of Theoretical Guarantees

Theorem 1. [Correctness of Verification] Under the LightVeriFL scheme, users accept the aggre-
gation results y(ℓ), ℓ ∈ [L] if and only if these results are correctly aggregated by the server with
probability (almost) 1.

Proof. In the final amortized verification step, as described earlier, each user finds the hash of
the weighted sum of the aggregate models from last L iterations, i.e.,

∑
ℓ∈[L] αℓy(ℓ). During the

verification, the server acts alone without colluding with the users. During the entire execution of
LightVeriFL, users receive two computation results from the server. The first one is the aggregate
hash reconstruction of the surviving and dropped users. If the server sends incorrectly reconstructed
aggregate hashes in this step, during the aggregate commitment check step in (11) users detect the
error in the aggregate hash reconstruction and regard the result as forged.

Assuming that the reconstructed hashes are accepted by the users, the second computation to be
verified by the users is the aggregate models y(ℓ), ℓ ∈ [L]. Let us assume, as in [12], that the server
successfully spoofs the aggregation result in K iterations, K ⊆ [L] and sends ȳ(k) instead of y(k),
with y(k) ̸= ȳ(k) for k ∈ K. Then, for the users to accept the incorrectly aggregated results, for the
following needs to be satisfied

d∑
i=1

∑
k∈K

αky(k)[i]gi =

d∑
i=1

∑
k∈K

αkȳ(k)[i]gi, (14)

where y(k)[i] denotes the ithe element of the aggregated model, i ∈ [d]. We note that αks are
uniformly selected numbers by each user from elliptic curve subgroup of order n such that the
following condition holds ∑

k∈K

αky(k)[i] =
∑
k∈K

αkȳ(k)[i], (15)

with probability 1
n , even when y(k) ̸= ȳ(k) for k ∈ K, i ∈ [d]. Here, since the elliptic curves

are designed to have a large subgroup order n, this event is negligible.9 With that in mind, the
9In the NIST P-256 curve we use in our implementation, the subgroup order n is a 256-bit number [16].
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Algorithm 1 The LightVeriFL protocol
Input: T (privacy guarantee), D (dropout-resiliency guarantee), U = T + 1 (target number of sur-
viving users during the verification), Round A.0: Advertising Keys takes place before the protocol
starts.
1: Server Executes:
2: // Aggregation Phase
3: // Round A.1: Offline Encoding and Sharing Local Masks
4: for each user i = 1, 2, . . . , N in parallel do
5: zi ← randomly selected point from an elliptic curve (EC) of subgroup order n
6: [ni]2, . . . , [ni]U ← randomly selected points from the same EC of subgroup order n
7: {[z̃i]j}j∈[N ] ← obtained by encoding zi and [ni]k’s as in (8)
8: sends encoded mask [z̃i]j to user j ∈ [N ]\{i}
9: receives encoded mask [z̃j ]i from user j ∈ [N ]\{i}

10: end for
11: // Round A.2: Hash Generation and Uploading Masked Hashes
12: for each user i = 1, 2, . . . , N in parallel do
13: // user i obtains xi after the local training
14: generates hash hi based on xi according to (1) on the same EC
15: ri ← randomly selected point from the same EC of subgroup order n
16: generates commitment ci = COM.Commit(hi, ri), the COM scheme is described in Appendix D
17: sends commitment ci to user j ∈ [N ]\{i}
18: receives commitment cj from user j ∈ [N ]\{i}
19: h̃i ← hi + zi and r̃i ← ri + zi // masks its hash and randomness
20: uploads masked hash and randomness h̃i, r̃i to the server
21: end for
22: // Round A.3: Aggregate Model Recovery
23: recovers the aggregate model y and sends it to the users
24: for each user i = 1, 2, . . . , N in parallel do
25: receives the aggregate model y from the server
26: end for
27: // Verification Phase
28: identifies set of surviving users U ⊆ [N ] in the verification phase
29: // Round V.0: Aggregate Decommitting
30: for each user i ∈ U in parallel do
31: computes aggregated encoded masks

∑
j∈[N ][z̃j ]i

32: uploads aggregated encoded masks
∑

j∈[N ][z̃j ]i to the server
33: end for
34: collects U messages of aggregated encoded masks

∑
j∈[N ][z̃j ]i from user i ∈ U

35: // recovers the aggregate mask
36:

∑
i∈[N ] zi ← obtained by decoding the received U messages

37: // recovers the aggregate hash and randomness of the users
38:

∑
i∈[N ] hi ←

∑
i∈[N ] h̃i −

∑
i∈[N ] zi and

∑
i∈[N ] ri ←

∑
i∈[N ] r̃i −

∑
i∈[N ] zi

39: sends
∑

i∈[N ] hi and
∑

i∈[N ] ri to U
40: for each user i ∈ U in parallel do
41: receives

∑
i∈[N ] hi and

∑
i∈[N ] ri from the server

42: // verifies the integrity of
∑

i∈[N ] hi and
∑

i∈[N ] ri

43: checks COM.Commit
(∑

i∈[N ] hi,
∑

i∈[N ] ri
)

?
=

∑
i∈[N ] ci

44: if above is true, accepts the aggregate hash and randomness recovered by the server and moves to the
next round

45: otherwise, regards the result as forged
46: end for
47: // Round V.1: Batch Checking
48: for each user i ∈ U in parallel do
49: computes the hash of the aggregate model y denoted by hagg using (1) on the same EC
50: // verifies the integrity of the aggregation
51: checks hagg

?
=

∑
i∈[N ] hi

52: if above is true, accepts the aggregate model and performs local training for the next training round
53: otherwise, regards the aggregation result as forged
54: end for
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condition in (14) does not hold due to the collision resistance property of the linearly homomorphic
hashes we use as described in (1). That is, no two different vectors produce the same hash with
overwhelming probability such that the aggregate hash verification step in (12) detects any spoofing
attempts launched by the server.

Thus, given the server acts independently to forge the aggregation results, the aggregate commitment
check in (11) along with the collision property of the hash guarantees verification of the aggregation
results provided by the server.

Theorem 2. [Input Privacy Guarantee] The proposed LightVeriFL protocol provides input privacy
against up to T colluding users.

Proof. The use of a secure aggregation scheme such as SecAgg [6] or LightSecAgg [8] takes
care of the input privacy in the aggregation protocol. Additionally, we need show that hashes and
commitments used in the LightVeriFL protocol do not violate input privacy of the users.

As discussed in [36], if revealed, the linearly homomorphic hashes used in verification schemes can
help an adversary guess the input vector of a user, particularly if the input vector has a few non-zero
elements. That is, when the hash of a user is revealed, the distinguisher can tell the difference between
the simulated case and the actual case. Thus, in our scheme, no party (including the server and up to T
colluding users) has access to the hash of an honest user. More formally, the proposed LightVeriFL
protocol guarantees the following mutual information condition given in (16) for an arbitrary set T

I

{hi}i∈[N ]; {hi + zi}i∈[N ], {
∑
j∈[N ]

[z̃j ]i}i∈U

∣∣∣∣∣∣
∑
i∈[N ]

hi, {hi}i∈T , {zi}i∈T , {[z̃j ]i}j∈[N ],i∈T

 = 0,

(16)

of T colluding users and a surviving user set U such that U ⊆ [N ], |U| ≥ U , U = T + 1. In order to
show (16) we use similar steps as in [8, Proof of Theorem 1].

In addition to the hashes, we need to consider the commitments exchanged during the execution of
LightVeriFL in the Round A.2 of the aggregation phase as described in Appendix D. During this
round, each user receives the commitments of all the other users. The commitment scheme we use is
perfectly hiding. That is even though an adversarial user, given that it has enough compute resources,
can find multiple decommitment pairs leading to the same commitment, that adversarial user has no
way of determining the actual hash of another user from the received commitment, beyond random
guessing. Thus, exchanging commitments does not violate the input privacy of users.

Theorem 3. [Dropout Resilience in Verification] The proposed LightVeriFL scheme guarantees
dropout resilience up to any D dropped users during the verification phase such that N ≥ T +D+1.

Proof. In LightVeriFL, each user i encodes its mask zi using the same T−private MDS matrix such
that the aggregate encoded mask that a surviving user j sends to the server in aggregate decommitting
satisfies ∑

i∈D
[z̃i]j =

(∑
i∈D

zi,
∑
i∈D

[ni]2, . . . ,
∑
i∈D

[ni]U

)
·Wj , (17)

where Wj is the jth column of the MDS matrix W . From (17), we see that
∑

i∈D[z̃i]j is the encoded
version of the desired aggregate mask (of the dropped users)

∑
i∈D zi. By construction, we have

N − D ≥ U so that the server receives
∑

i∈D[z̃i]j from at least U users. Thus, through MDS
decoding, the server successfully recovers the aggregate mask of the dropped users

∑
i∈D zi and

performs
∑

i∈D hi =
∑

i∈D(hi + zi)−
∑

i∈D zi. A similar encoding/decoding strategy holds for
the aggregate mask of the surviving users

∑
i∈U [z̃i]j . Thus, the server is able to reconstruct the

aggregate hashes of the users when up to D users drop where N − D ≥ U = T + 1. Using the
aggregate hash of the users, the surviving users perform the verification operation even in the presence
of dropouts.
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Theorem 4. The proposed LightVeriFL scheme guarantees successful aggregation integrity verifi-
cation in the presence of any D user dropouts during the verification phase without sacrificing input
privacy against up to any T colluding users for T +D < N . When LightVeriFL is implemented
together with a secure aggregation scheme, such as SecAgg [6] and LightSecAgg [8], a secure
verifiable aggregation scheme is obtained.

Theorem 4 simply follows from Theorems 1-3.We note that in LightVeriFL, as in the secure
aggregation schemes, the guarantee in Theorem 4 is for a single FL iteration only. Since all the
randomness in LightVeriFL is generated independently across all iterations, this guarantee can be
extended to the entire FL protocol by invoking the proposed LightVeriFL scheme at each iteration.

G Complexity Analysis

In this section, we provide the complexity analysis of the LightVeriFL scheme for N −D ≥ U =
T + 1 as in [8]. We do not include the complexity of the SecAgg scheme as our LightVeriFL can
be implemented in a standalone manner without any secure aggregation protocol. We note that the
hashes and commitments have constant lengths that are independent of the model size d and N .

Offline storage cost. In LightVeriFL, each user generates a random mask zi (a point on the EC)
of constant length and stores coded masks of all the other users as well as their constant-length
commitments. In addition, in the amortized verification, each user stores the past L aggregate models.
Thus, the total storage cost of LightVeriFL at each user is O(N + Ld).

Offline communication and computation loads. In LightVeriFL, each user computes its coded
masks in offline manner before the local model is computed. To compute the coded mask, each
user performs an (N,U) MDS coding, where the size of each data block is constant (since zi and
[ni]k, k = {2, . . . , U} are all points on the EC). Thus, the offline computation load at each user at
each iteration is O(N logN). Then, still in the offline mode, each user shares each of the N coded
segments with the other users, which induces a communication load of O(N).

Online communication load. Each user sends its masked hash to the server as well as the correspond-
ing commitment to the other users during the aggregation phase. Since either hash and commitment
has a constant length, the total communication load for the users during the aggregation phase is
O(N). In addition, in the verification phase, each surviving user sends the aggregate coded masks it
has received from the other users (which has a constant length) to the server. Thus, the total online
communication load for a user is O(N). Correspondingly, the online communication load at the
server is O(N + U) since it receives the masked hashes from N users in the aggregation phase as
well as the coded masks from the surviving U users in the verification phase.

Online computation load. After computing its local model, each user computes its hash, which
is the most expensive operation in LightVeriFL at the users and introduces an O(d) computation
load, d is the model size. Then, in the amortized verification each surviving user computes the
hash of the aggregate model at every L iterations, where L is the batch size, inducing another O( d

L )

computation load, making the total online computation load O(L+1
L d) at each user The server, on

the other hand, performs the reconstruction from the coded masks it has received from U surviving
users to recover

∑
i∈U zi and

∑
i∈D zi, which is the most time-consuming operation performed

at the server in LightVeriFL. For this reconstruction, the server decodes a U dimensional MDS
code using U coded messages it has received from the surviving users. Since each message is of a
constant length, the total computation complexity here is O(U logU) operations in Fn, where n is
the subgroup order of the EC.

Next, we compare the complexity of the proposed LightVeriFL with the baseline VeriFL [12] in
Table 2. We consider a scenario, where T = N

2 , U = T + 1, and D = pN , where 0 ≤ p < 1
2 .

From Table 2, we see that in the proposed LightVeriFL scheme, the recovery complexity at the
server is almost linear in the number of users N , whereas in the VeriFL scheme reconstruction has
quadratic complexity in N , as in VeriFL the server reconstructs each of the dropped users’ hashes
one-by-one. Thus, LightVeriFL significantly improves the computation time at the server, thereby
speeding up the entire verification process especially when the number of users N grows. Further,
in LightVeriFL, the masks that are used to hide the hashes are prepared in advance in an offline
manner as these masks are independent of the local models as well as the hashes. In VeriFL, however,
to tolerate dropouts, generated hashes are secret shared among the users, which can be performed in
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Table 2: Per iteration complexity comparison of the standalone implementations of VeriFL [12] and
the proposed LightVeriFL. Here, N is the number of users, d is the model size. In this table, we
use S to denote the server and U to denote a user.

VeriFL LightVeriFL
offline comm. (U) − O(N)
offline comp. (U) − O(N logN)
online comm. (U) O(N) O(N)
online comm. (S) O(N2) O(N)
online comp. (U) O(N2 + L+1

L d) O(L+1
L d)

reconstruction (S) O(N2) O(N logN)

Table 3: Per iteration complexity comparison of SecAgg [6] and the proposed LightVeriFL. Here,
we do not include a secure aggregation scheme in LightVeriFL (only verification-related operations
are considered) and N is the number of users, d is the model size, s is the length of the secret keys in
SecAgg, s << d. In this table, we use S to denote the server and U to denote a user.

SecAgg LightVeriFL
offline comm. (U) O(sN) O(N)
offline comp. (U) O(dN + sN2) O(N logN)
online comm. (U) O(d+ sN) O(N)
online comm. (S) O(dN + sN2) O(N)
online comp. (U) O(d) O(L+1

L d)
reconstruction (S) O(dN2) O(N logN)

an online manner after the local training is completed. Thus, the online computation complexity at the
users and the online communication complexity at the server is higher than those of LightVeriFL,
which does not require secret sharing among the users and one-by-one reconstruction at the server.

We compare the complexities of standalone implementations of SecAgg [6] and our proposed
LightVeriFL scheme in Table 3. We observe from Table 3 that the complexity of standalone imple-
mentation of LightVeriFL is not significant compared to the SecAgg scheme, as in LightVeriFL,
hashes and commitments are of constant length independent of d. That is, when the LightVeriFL
protocol is implemented on top of SecAgg [6], the complexity of the overall scheme is no more than
SecAgg alone. Thus, achieving a secure verifiable aggregation scheme through LightVeriFL is not
infeasible in practical scenarios, where SecAgg is implemented. A similar argument applies to more
efficient secure aggregation schemes such as SecAgg+ [7] and LightSecAgg [8].

H Experimental Details and Additional Experiment Results

In our implementation, we use the open-source fastecdsa Python library for fast elliptic curve
cryptography [38]. The implementation of the proposed LightVeriFL scheme can be found in
https://github.com/bbuyukates/LightVeriFL-fast.

In Tables 1 and 4, we use L = 10 for the batch size of the amortization and report the average
of 5 independent runs along with the standard error. In Table 1, we observe that in LightVeriFL
decommitting round is not affected in all three dropout scenarios, since the server reconstructs the
aggregate hash of all N = 200 users in one-shot whereas in the VeriFL scheme the time needed for
decommitting increases as more and more users drop the protocol. The batch checking round in both
of the schemes is not affected by varying dropout rates aside from a minor straggler effect. That is, as
the dropout rate decreases, more number of users stay in the system for verification, which in turn
increases the completion time of the verification phase due to the straggler effect.

To report the performance results for realistic FL settings we show the performance of LightVeriFL
for varying d as well. For this, we use d = 10K (similar to a logistic regression model on MNIST
[39] which requires d = 7, 850) and d = 1M (similar to training a CNN [1] on FEMNIST [40],
which requires d = 1, 206, 590).
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Table 4: Breakdowns of the verification time of LightVeriFL and VeriFL for model size d with
N = 200 users, 30% dropout rate, and L = 10. All times are in seconds.

Phase d=10K d=100K d=1M

VeriFL
Round V.0 Decommitting 29.72 30.56 35.44

Round V.1 Batch Checking 0.62 6.03 60.27
Verification Phase - Total 30.34 ± 0.40 36.59 ± 0.25 95.71 ± 0.52

LightVeriFL
Round V.0 Decommitting 0.70 0.67 0.77

Round V.1 Batch Checking 0.60 5.94 61.41
Verification Phase - Total 1.30 ± 0.02 6.61 ± 0.06 62.18 ± 0.49

Gain 23.34× 5.54× 1.54×

In Table 4, we investigate the affect of the model size on the proposed verification algorithm.
Considering practical FL systems, we take d = 10K, d = 100K, and d = 1M for N = 200 users,
30% dropout rate, and L = 10. In this case, decommitting time stays (almost) the same for both of
the schemes across all three d values since hashes are of constant length independent of d in either
of the schemes. In both of the schemes, the batch checking time, which requires the computation
of the hash of the aggregate model, increases linearly with d. In Table 4, we see that for smaller d
values the verification time is dominated by the decommitting step in VeriFL. In these cases, the
proposed LightVeriFL scheme achieves the biggest gain. In fact, we observe around 23.34× gain
when d = 10K.

From Tables 1 and 4 we deduce that the gain achieved by the proposed LightVeriFL scheme over
the VeriFL scheme is more prominent when the verification time is dominated by the decommitting
step. This happens when the model size is smaller for moderate number of users, e.g., d = 10K and
N = 200 or d = 100K and N = 200. Such a large gain is expected when the number of users gets
larger in more complex models with larger model sizes.
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