
Published as a conference paper at ICLR 2025

ADAPTIVE PRUNING OF PRETRAINED TRANSFORMER
VIA DIFFERENTIAL INCLUSIONS

Yizhuo Ding, Ke Fan, Yikai WangQ, Xinwei SunQ, Yanwei Fu
School of Data Science, Fudan University
{yzding22,kfan21}@m.fudan.edu.cn; yi-kai.wang@outlook.com;
{sunxinwei,yanweifu}@fudan.edu.cn

ABSTRACT

Large transformers have demonstrated remarkable success, making it necessary
to compress these models to reduce inference costs while preserving their perfor-
mance. Current compression algorithms prune transformers at fixed compression
ratios, requiring a unique pruning process for each ratio, which results in high com-
putational costs. In contrast, we propose pruning of pretrained transformers at any
desired ratio within a single pruning stage, based on a differential inclusion for a
mask parameter. This dynamic can generate the whole regularization solution path
of the mask parameter, whose support set identifies the network structure. There-
fore, the solution path identifies a Transformer weight family with various sparsity
levels, offering greater flexibility and customization. In this paper, we introduce
such an effective pruning method, termed SPP (Solution Path Pruning). To achieve
effective pruning, we segment the transformers into paired modules, including
query-key pairs, value-projection pairs, and sequential linear layers, and apply low-
rank compression to these pairs, maintaining the output structure while enabling
structural compression within the inner states. Extensive experiments conducted
on various well-known transformer backbones have demonstrated the efficacy of
SPP. Our code is available at https://github.com/yizhuoDi/Solution-Path-Pruning.

1 INTRODUCTION

Transformers have succeeded in various tasks due to their scalability, parallel processing abilities,
and capacity to learn complex data patterns. Pretrained transformers, in particular, perform well on
downstream tasks by leveraging large datasets during training. These models are highly effective
for transfer learning, allowing fine-tuning for different tasks and delivering strong performance in
many natural language processing applications. However, their large size, often with billions of
parameters, makes them difficult to deploy on low-cost hardware. Despite their widespread use
and impressive performance (Radford et al., 2021; Touvron et al., 2021a), running transformers on
lightweight devices like phones and laptops remains challenging due to computational constraints.
Therefore, compressing transformers to run efficiently on affordable hardware is crucial.

Various techniques have been developed to compress transformers while preserving their performance.
These include weight sharing (Lan et al., 2019), low-rank factorization (Yu et al., 2017), quantization
(Gong et al., 2014; Polino et al., 2018; Tao et al., 2022), knowledge distillation (Hinton et al., 2015;
Yuan et al., 2019; Touvron et al., 2020; Liu et al., 2020), and pruning (Yu & Xiang, 2023; Yang
et al., 2023; Shi et al., 2023; Yin et al., 2023). Pruning methods typically involve structured pruning,
wherein entire neurons or attention heads are removed based on importance, followed by fine-tuning to
regain accuracy. Despite the array of pruning methods developed for transformers, current algorithms
face a fundamental challenge: they are tailored to achieve a predefined pruning ratio by the end of the
pruning phase.

Typically, when targeting a new degree of sparsity, the entire pruning process is restarted to meet the
new target. Restarting such an entire pruning process for each level of sparsity introduces high costs
for model compression. For over-parameterized models, the training cost can be substantial.

QCorresponding authors. Prof. Yanwei Fu is also with Fudan ISTBI–ZJNU Algorithm Centre for Brain-
inspired Intelligence, Zhejiang Normal University, Jinhua, China.

1

Published as a conference paper at ICLR 2025

Finetune Stage

Finetune Stage
U

pdate Stage

Prune Stage

𝑊!

𝛤! 𝛤" 𝛤# 𝛤$𝛤$%# 𝛤$%"

(a) Our method (b) Lasso method

Figure 1: Comparison of SPP and lasso method. (a) SPP can obtain sparse models of all sparsity after
search stage , which includes update stage and prune stage. (b) Lasso method can only obtain one
sparse model in a single search stage.

To address this challenge, we propose an adaptive compression strategy through a differential inclusion
for mask-based pruning of pretrained transformer, named SPP (Solution Path Pruning). The dynamics
efficiently generates a whole regularization solution path of masks,where each mask’s support set
captures the important weights. As is shown in Figure1, along this solution trajectory, the sparsity
of the projected target model incrementally increases, with important weights learned earlier in the
dynamics until convergent to the fully dense network. Besides, this dynamics has a simple iterative
form to implement. Therefore, after running a whole iteration, we can obtain a transformer weight
family with different compression ratios. Note that Fu et al. (2020) used a similar pruning method
for structured sparsity in neural networks trained from scratch. They also used differential inclusions
with inverse scale spaces to train the network. Our focus, however, is on pre-trained transformers,
which are much harder to prune while maintaining performance. Unlike common pruning methods,
SPP does not require restarting the search stage, rendering it a cost-effective pruning technique
requiring just one search stage to derive a transformer weight family with diverse sparsity levels from
the uncompressed model.

Our exploration of transformer structures adopts a novel and efficient approach, automatically learning
compression structures throughout training, thus enjoying greater flexibility and customization.
Currently, no other algorithm can theoretically guarantee optimization convergence while producing
sparse models with different levels of sparsity during training. For example, the Upop (Shi et al.,
2023) algorithm only makes the model structure sparse at the final step, with the mask becoming
zero only at that point. The OFA (Cai et al., 2019) method lacks a convergence guarantee and simply
fixes the mask updates during training to achieve a sparse network. SPP addresses this by using
the solution path to obtain sparse structures without affecting convergence, providing a stronger
theoretical foundation. Notably, our method can be extended to prune large language models (LLMs)
with one-shot post training.

In this paper, we applied SPP to the classification task dataset ImageNet (Deng et al., 2009) using the
DeiT (Touvron et al., 2021a) backbone. Furthermore, we also extended the method to image and text
retrieval datasets, using CLIP models (Radford et al., 2021). Our contributions are summarized as
follows:

• We develop a differential inclusion-based method for adaptive compression of pretrained trans-
former, enabling the acquisition of sparse models with different sparsity within a single search
stage, significantly reducing the cost of model pruning.

• We introduce the novel concept of the Transformer Weight Family, obtained through a simple
iterative algorithm following the discretization of the differential inclusion.

• We also prove the global convergence of the method in such a non-convex optimization based on
the Kurdyka-Łojasiewicz framework, demonstrating that the entire iterative sequence converges to
a critical point of the empirical loss function from arbitrary initializations.

• We demonstrate the effectiveness of our framework across various backbones and datasets. Results
show that we can significantly reduce the computational costs while preserving the prediction
accuracy.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

Transformer pruning. In the expanding field of Transformer-based model research, the concept
of pruning Transformer has garnered considerable interest for its potential to streamline model
architectures.

Over recent years, various structured pruning methods have been developed. ViT-Slim (Chavan
et al., 2022) employs a single-shot training approach to search for optimal sub-structures in vision
transformers. SAViT (Chen et al., 2021) collaboratively prunes all components of Vision Trans-
formers, integrating structure-aware interactions and using a Taylor-based optimization function for
joint importance. UP-ViTs (Yu & Wu, 2023) introduces a unified pruning framework for vision
transformers, focusing on comprehensive pruning of all components of ViT models and their variants.

The process of pruning a Transformer model is twofold: first targeting the MLP and then the
Attention mechanism. Approaches such as WDpruning (Yu et al., 2022) employ a mask-based
technique. Specifically, a mask M is defined to correspond to each column of the MLP’s weight
matrix, and pruning is conducted by considering the gradient magnitudes of this mask. However, due
to the complicated structure of the Attention mechanism, such strategies may fail.

WDpruning (Yu et al., 2022) extends its paradigm by incorporating head-level pruning within the
multi-head attention framework. Concurrently, methodologies like SAVIT and Upop advocate for the
pruning of the input projection matrices, retaining the structural integrity of the query, key, and value
matrices. Those approaches, however, lack flexibility and expandability. Because the matrices for the
query, key, and value play distinct roles during the forward pass of the attention process.

Our methodology introduces an innovative approach to pruning within the attention paradigm. It
enables an asymmetric dimensionality between the query, key, and value matrices after pruning,
allowing for a more nuanced and efficient pruning process. This novel technique does not necessitate
the uniform dimensionality across these matrices, thereby enhancing the pruning mechanism’s
flexibility and applicability to diverse Transformer-based architectures.

Mirror Descent Algorithm and Bregman Inverse Scale Space. Mirror Descent Algorithm (MDA)
was first proposed by Nemirovskij & Yudin (1983) to solve constrained convex optimization, and can
be seen as a generalized projected gradient descent (Beck & Teboulle, 2003) using Bregman distance
BΩ(u, v) := Ω(u)− Ω(v)− ⟨∇Ω(v), u− v⟩ induced by a convex and differentiable function Ω(.).

Convergence analysis for convex loss has been extended to stochastic versions (Ghadimi & Lan,
2013) and Nesterov acceleration (Krichene et al., 2015; Su et al., 2016). For non-convex loss in deep
learning, convergence to global optima for overparameterized networks has been established (Azizan
et al., 2019). For non-differentiable penalties, such as ℓ1 penalty for sparse recovery, Osher et al.
(2016a); So et al. (2008) proposed Linearized Bregman Iteration (LBI), follows a discretized solution
path of differential inclusions called Bregman Inverse Scale Space (ISS). These solution paths enjoy
the inverse scale space property, which means important features such as the signal, will be learned
earlier than non-important ones such as noise.

Mask-based pruning for pretrained CNN.Fu et al. (2020; 2022); Bungert et al. (2022) applied LBI
to forwardly train a network from scratch, based on the lottery ticket hypothesis. By incorporating
several training techniques tailored to the network architecture, the sparse network achieved com-
parable results to the fully dense network. In contrast, we propose a new differential inclusion for
mask-based pruning, which can adaptively prune a pre-trained transformer. This method generates an
iterative solution path that uncovers key sparse architectures early during training. Our method can
perform consistently well across various backbones and datasets. Unlike ADMM (Wahlberg et al.,
2012; Boyd et al., 2011), which focuses on convergence, our differential inclusion dynamics aim at
generating a whole solution path with various compression ratios.

3 METHOD

Problem setup. Given the model weights W , inputs X , and the objective L, the target of pruning is
minimizing the size of model and keeping the performance of the model. i.e.

min
W

L (X,W) s.t. ρ(W) < ρ, (1)

3

Published as a conference paper at ICLR 2025

where ρ(W) is the sparsity level of model, ρ ∈ (0, 1] is the desired degree of sparsity. Straightforward
unstructured pruning simply discards unimportant weights in the architecture, but this approach often
fails to meet the requirements for accelerating computation or reducing memory costs. In contrast,
structural pruning reduces the complexity and computational cost of neural networks by removing
entire structural units, making it more suitable for hardware acceleration and practical deployment.
In this paper, we focus on the problem of structural pruning.

Transformer weight family. Our goal is to efficiently obtain a family of neural networks with
different sparsity levels. To achieve this, we propose a dynamic approach based on differential
inclusion induced by ℓ1 penalty. This dynamic can generate a whole regularization solution path
from sparse to dense, with important weights learned earlier. Besides, it enjoys a simple iterative
form to implement, which identifies a weight family with different sparsity levels. Such a weight
family can be obtained from a single search stage, eliminating the need to restart the search process.
This method is cost-effective compared to previous pruning methods.

3.1 MASK-BASED PRUNING

Structural weight importance mask. Without loss of generality, suppose the weight matrix is
W ∈ Rm×d where d is the feature dimension we want to prune. We introduce the mask matrix
M = (mask1, . . . ,maskd) ∈ [0, 1]1×d for every weight matrix of the transformer models with the
same matrix size, where maski indicates the importance of corresponding column. This column-
wise design naturally achieves structural pruning by discarding columns of the weight matrices.
Subsequently, the masked network is defined by:

L̄(W,M) = L(W ⊙M), (2)

where ⊙ denotes the Hadamard product. Our target for the mask-based structural pruning task is to
learn the M to identify the important columns while discarding the others.

Pair-wise shared mask. In transformers, adjacent layers are typically coupled in the feature
dimensions. When considering them separately, manual efforts like padding are required to avoid
dimension mismatch issues. To address this, many pruning approaches use a shared mask for an
entire module, such as attention layers. While this ensures dimensional consistency within the same
layer, it is conservative and lacks the potential for more fine-grained pruning.

To achieve both dimension matching and pruning flexibility, we propose pruning at the smallest pair-
wise level. This approach maximizes flexibility without causing dimension mismatches. Specifically,
transformers are primarily based on multi-head self-attention (MHSA) layers and feed-forward MLPs.
We suggest dividing MHSA into query-key and value-output pairs while considering the adjacent
linear layers in MLPs. Given the standard MHSA as,

Ai = softmax
(
XWQ,i (XWK,i)

T
/
√
d
)
, Vi = Ai(XWV,i), OMHSA =

∑
ViWproj,i, (3)

where i is the i-th head, WK,i ∈ Rm×d, WQ,i ∈ Rm×d, WV,i ∈ Rm×d1 , Wproj,i ∈ Rd1×m are
weight matrices of the Query, Key, Value and output projection, respectively. The m and d denotes
the dimension of the input features and the hidden feature, respectively.

Our proposed pair-wise shared mask introduces the weight importance mask via,

WQ,i,WK,i → WQ,i ⊙MQK ,WK,i ⊙MQK , (4a)

WV,i,Wproj,i → WV,i ⊙MV ,→ MT
V ⊙Wproj,i (4b)

where MQK ∈ [0, 1]1×d,MV ∈ [0, 1]1×d1 and ∥MQK∥0 ≪ d, ∥MV ∥0 ≪ d1. The same mask
matrix are shared in the query-key pair and in value-output pair. Similarly, for the feedforward
module,

FFN(X) = ϕ (XWinput)Woutput, Winput ∈ Rn×d,Woutput ∈ Rd×n, ϕ is activate function, (5)

we assign a shared mask MMLP ∈ R1×d to prune Winput and Woutput:

Winput,Woutput → Winput ⊙MMLP,M
T
MLP ⊙Woutput (6)

Sparse optimization of masks. To minimize information loss in the pruned model, a common
objective is to ensure that the weights being pruned gradually approach zero during the search phase.

4

Published as a conference paper at ICLR 2025

Algorithm 1 Transformer Weight Family
Perform searching
Input: Pretrained weight W0 and a step size α, iteration steps in the update stage Ts and prune
stage Tp
Initialize sub-gradient V0 = 0, mask M0 = 1, sparse mask Γ0 = 0.
for k = 0 to Ts do
Calculate the loss
L̂ = L(W0 ⊙Mk) +

1
2ν

∥Mk − Γk∥22
update Vk and mask Mk according to sub-gradient
Mk+1 = Mk − καk∇Mk L̂

Vk+1 = Vk − αk∇Γk L̂
update Γk as the proximal operator with penalty h(Γ) = λ ∥Γ∥1 + I[0,1](Γ)

Γk+1 = Proxh (Vk+1), where Prox(V) = argminΓ

{
∥V − Γ∥22 /2 + h(Γ)

}
end for
Perform pruning
for k = 0 to Tp do
Update masks with a reverse turn of Γ being non-zero in searching
Mk+1 = Γk̂, k̂ = int(Ts − (k + 1) Ts

Tp
)

Update and save the sparse model weights
W̄k+1 = Wk+1 ⊙Mk+1

#Save the checkpoint of W̄k+1 as the pruned model
end for
Return Weight Family for the model
Output: Transformer Weight Family:{W̄i|i ∈ [0, Tp]}

To achieve this, it is essential to add a regularization term, specifically, the L1 loss of the mask, to the
loss function in the optimization algorithm. The updated loss function can be formulated below:

L̄(W,M) = L(W ⊙M) + λ ∥M∥1 + I[0,1](M), (7)

where the indicator function of interval [0, 1] restrict the mask to a meaningful range. And we
initialize M with all-one values. However, the Lasso optimization method is insufficient for adaptive
compression. This limitation arises because the solution path of Lasso only exists when the optimiza-
tion function is linear. As a result, Lasso can only produce a model with a certain level of sparsity,
dependent on the hyperparameters. Therefore, we need to find an alternative method to effectively
address the sparsification problem.

3.2 DIFFERENTIAL INCLUSION FOR REGULARIZATION WEIGHT FAMILY

Given pre-trained weights W0, we aim to obtain a weight family with different sparsity. To effectively
achieve this, we consider the following dynamics:

Ṁt

κ
= −∇MLρ(Mt,Γt), (8a)

V̇t = −∇ΓLρ(Mt,Γt), (8b)
Vt ∈ ∂Ω(Γt), (8c)

where V is a sub-gradient of Ω(Γ) := ∥Γ∥1 + 1[0,1](Γ) +
1
2κ∥Γ∥

2; and κ is a damping factor to
ensure the right continuity of the solution path. Since M cannot be initialized to zeros, we introduce
an augmented parameter Γ and enforce it to be sparse. To learn important weights, we also enforce Γ
to be close to M through an ℓ2 penalty in the following appended loss:

Lρ(M,Γ) = L(W0 ⊙M) +
ρ

2
∥M − Γ∥2F , (ρ > 0). (9)

Remark 1. Eq. 8 is a special form of a mirror descent flow with Ω(Γ). Unlike previous works for
mirror descent primarily concerned with convergence analysis, our main objective is to obtain a
regularization solution path, where each solution along this solution corresponds to a sparse mask
that defines the network’s sparse structure.

The differential inclusion in Eq. 8 generates a solution path for (Mt,Γt), where Mt follows a gradient
descent flow to learn the activation values for the pre-trained weights W0, while Γt is updated via

5

Published as a conference paper at ICLR 2025

a mirror descent flow with the penalty Ω(Γ) to explore the sparse structure. During the updating
process of Γt, important weights are learned earlier than non-important ones. Essentially, this is
known as the inverse scale space property in inverse problems (Burger et al., 2006; Osher et al.,
2016b).

Similarly, starting from Γ0 = 0, Γt identifies a family of network structures, where important weights
will be learned in earlier epochs. Specifically, note that for each element i, |V (i)| ≤ 1, if Γ(i) = 0,
and is equal to 1 when it becomes non-zeros. Therefore, driven by the gradient descent in Eq. 8b
that gives a dense solution limt→∞(Mt,Γt) = argminM,Γ Lρ(M,Γ), Vt that begins from V0 = 0,
will have more of its elements reaching the boundary of 1, making corresponding elements in Γt

becoming non-zeros. Compared to directly solving Eq. 7, our dynamics is more efficient in generating
a network family with various sparsity levels and, hence is more flexible for deployment.
Remark 2. The differential inclusion has been previously explored to forwardly train a sparse
network from scratch (Fu et al., 2020; 2022; Bungert et al., 2022), incorporating several deep learning
techniques tailored to the multilayer perceptron and the convolutional neural network. However, these
techniques may not be applicable to the Transformer, and thus may lead to suboptimal performance.
In contrast, our dynamics involves backward pruning of a pre-trained network. Furthermore, instead
of weight-based pruning, we employ mask-based pruning, which is significantly easier to train.

To implement, we consider the following iteration, beginning from V0 = Γ0 = 0, and M0 = 1:

Mk+1 = Mk − καk · ∇MLρ(Mk,Γk), (10a)
Vk+1 = Vk − αk · ∇ΓLρ(Mk,Γk), (10b)
Γk+1 = κ · ProxΩ(Vk+1), (10c)

where α is the step size and should be small enough to well approximate the original dynamics in
Eq. 8. In Eq. 10b, the proximal operator ProxΩ(·) is defined as:

ProxΩ(V) = argmin
Γ

{
1

2
∥Γ− V ∥2 +Ω(Γ)

}
, (11)

which gives Γ(i) = 1 if V (i) > 2, = V (i) − 1 if 1 < V ≤ 2, = 0 otherwise. Running Eq. 10
will obtain a solution path of Γk with increasing levels, that define a family of weights dubbed as
Transformer weight family:

Wk = W0 ⊙ Γk. (12)

4 CONVERGENCE

We present a theorem that guarantees the global convergence of our method, i.e. from any initializa-
tion, the sequence converges to a critical point of L̄. Our treatment extends the Block Coordinate
Descent (BCD) studied in Zeng et al. (2019), with a crucial difference being the mirror descent
involved in our method. Instead of the splitting loss in BCD, a new Lyapunov function is developed
here to meet the Kurdyka-Łojasiewicz property (Łojasiewicz, 1963). Let P := (M,Γ). Following
Huang & Yao (2018), our method algorithm can be rewritten as the following standard linearized
Bregman iteration,

Pk+1 = argmin
P

{
⟨P − Pk, α∇L̄(Pk)⟩+Bpk

Ψ (P, Pk)
}

(13)

where
Ψ(P) = Ωλ(Γ) +

1

2κ
∥P∥22 = Ωλ(Γ) +

1

2κ
∥W∥22 +

1

2κ
∥Γ∥22,

pk ∈ ∂Ψ(Pk), and Bq
Ψ is the Bregman divergence associated with convex function Ψ, defined by

Bq
Ψ(P,Q) := Ψ(P)−Ψ(Q)− ⟨q, P −Q⟩. (14)

for some q ∈ ∂Ψ(Q). Without loss of generality, consider λ = 1 in the sequel. One can establish the
global convergence of our method under the following conditions.
Condition 1. Suppose that: (a) L(W) = 1

n

∑n
i=1 ℓ(yi,ΦW (xi)) is continuous differentiable and

∇L is Lipschitz continuous with a positive constant Lip; (b)L(W) has bounded level sets; (c) L(W)
is lower bounded (without loss of generality, we assume that the lower bound is 0); (d) Ω is a proper

6

Published as a conference paper at ICLR 2025

lower semi-continuous convex function and has locally bounded subgradients, that is, for every
compact set S ⊂ Rn, there exists a constant C > 0 such that for all Γ ∈ S and all g ∈ ∂Ω(Γ), there
holds ∥g∥ ≤ C; and (e) the Lyapunov function

F (P, g̃) := αL̄(M,Γ) +Bg̃
Ω(Γ, Γ̃), (15)

is a Kurdyka-Łojasiewicz function on any bounded set, where Bg̃
Ω(Γ, Γ̃) := Ω(Γ)−Ω(Γ̃)−⟨g̃,Γ− Γ̃⟩,

Γ̃ ∈ ∂Ω∗(g̃), and Ω∗ is the conjugate of Ω defined as

Ω∗(g) := sup
U∈Rn

{⟨U, g⟩ − Ω(U)}.

Now we are ready to present the main theorem.

Theorem 1. [Global Convergence of SPP] Suppose that Assumption 1 holds. Let (Wk,Γk) be the
sequence generated by Our method (Eq. (10)) with a finite initialization. If

0 < αk = α <
2

κ(Lip ∗ C + ν−1)
, (16)

where C = max |W0| is a max value of the pretrained model then (Mk,Γk) converges to a critical
point of L̄ defined in Eq. (10), and {Mk} converges to a critical point of L(W).

5 EXPERIMENTS

In this section, we evaluated our method on three transformer models. These models were trained on
two classical datasets, ImageNet-1k, COCO and a smaller dataset, CIFAR-10. We also conducted
ablation studies to highlight the importance of introducing the mask parameters and gamma buffer.
Additionally, we extended our method to large language models (LLMs) such as Llama2-7b and
OPT-6.7b. More experimental details are provided in Table 6 and Table 8.

Experimental setting. Our method begins with a pretrained model, keeping all parameters unchanged
except for the mask parameters. The search stage is performed only once for all degrees of sparsity.
From the solution path, we derive a sparse transformer weight family by applying early stopping and
saving the model checkpoint when the desired sparsity is achieved. As described in Algorithm 1,
each model produces a transformer weight family with a sparse architecture.

5.1 MAIN RESULTS

We reported our results pruning DeiT, Swin and CLIP model with various degrees of sparsity.

Transformer weight family results of DeiT. Table 1 shows our transformer weight family results of
DeiT on ImageNet-1k. The results show that our proposed method performed well on DeiT. For DeiT-
Small, our method maintained accuracy at 80.2% while reducing 29.5% of the parameters. Compared
to the other methods, WDpruning only achieved 78.6% accuracy with a 29.6% compression ratio.
Only UPop (Shi et al., 2023) achieved comparable results to ours. This indicates that our method of
solution path is highly effective, preserving more parameter information even at higher compression
ratio.

Our method performed well on DeiT-Base. At almost the same compression ratio, our accuracy
surpassed SCOP (Tang et al., 2020) and PoWER (Goyal et al., 2020), and we achieved a better com-
pression ratio than IA-RED (Pan et al., 2021), the smallest model among the compared algorithms.

Transformer weight family results of CLIP. Apart from the classification task, we applied our
method to image and text retrieval tasks. Using the CLIP backbone, we compress the transformer
module to different sparsity levels, as shown in Table 3. Our method is robust, maintaining high
recall under different compression ratios. Notably, our method excels in Image-to-Text retrieval, with
only a 1% performance drop while using around 60% of the FLOPs of the full models.

SPP also demonstrates its capability for low-cost pruning. In the CLIP case, after a 6-epoch search
stage, we obtained 5 sparse model architectures with different sparsity levels. Each sparse model
only needs to be retrained for 5 epochs to achieve good performance.

7

Published as a conference paper at ICLR 2025

Table 1: The results of DeiT(Touvron et al., 2021b) models.We compared the results with the other
advanced methods.The reduce is the reduce of parameters.

Model Method Top-1(%) Top-5(%) FLOPS(B) Params(M)

DeiT-Small

Uncompressed 79.8 95.0 4.6100% 22.1100%
S2 ViTE-Small 79.2 - - 14.666.1%
GOHSP 80.0 - 3.065.2% 14.465.2%
PS-ViT-S 79.4 - 2.758.7% 22.099.5%
ViTAS - E 77.4 93.8 2.758.7% 12.657.0%
Upop 79.6 94.8 2.860.9% 13.561.1%
Upop 80.2 95.1 3.269.6% 15.771.0%
ViT-Slim 80.0 95.1 3.371.7% 15.771.0%
WDPruning 78.6 94.4 3.167.4% 15.067.9%
WDPruning 78.4 94.1 2.656.5% 13.360.2%
X-Pruner 78.9 94.2 2.452.2% -
OPTIN 79.2 - 3.268.4% -

SPP 80.2 95.1 3.473.9% 15.670.6%
SPP 78.9 94.6 2.656.5% 12.657.0%
SPP 77.7 94.0 1.941.3% 10.447.1%

DeiT-Tiny

Uncompressed 72.2 91.1 1.3 5.7
GOHSP 70.2 - 0.969.2% 4.070.2%
S2ViTE 70.1 - 1.076.9% 4.273.7%
WDPruning 70.3 89.8 0.753.8% -
PoWER 69.4 89.2 0.861.5% -
UPDP 70.3 - 0.970.3% 3.866.7%
MCF 71.5 - 0.753.8% 3.968.4%
OPTIN 71.3 - 0.970.3% -

SPP 72.3 91.1 0.861.5% 4.070.2%

DeiT-Base

Uncompressed 81.8 95.6 17.5100% 86.6100%
ViT-B/16 77.9 95.3 17.5100% 86.6100%
SCOP 79.7 94.5 10.258.3% 58.367.3%
IA-RED 80.3 - 11.867.4% 67.077.4%
PoWER 80.1 94.6 10.459.4% -
X-Pruner 81.02 95.38 8.548.6% -

SPP 81.9 95.7 9.856.0% 48.155.5%
SPP 81.2 95.4 6.939.4% 34.239.5%
SPP 78.1 93.8 4.425.1% 22.025.4%

Table 2: Results of Swin-Tiny and DeiT-Tiny on Imagenet-1k, together with result of evaluating
DeiT-Small on Cifar10.

Model Method T-1(%) T-5(%) FLOPS(B) Pa. (M)

Swin-Tiny
Uncompressed 81.2 95.5 4.5 28.0
ViT-Slim 80.7 95.4 3.475.6% 19.469.3%
SPP 80.6 95.2 3.475.6% 18.566.1%

DeiT-Tiny

Uncompressed 72.2 91.1 1.3 5.7
GOHSP(Yin et al., 2023) 70.2 - 0.969.2% 4.070.2%
S2ViTE(Chen et al., 2021) 70.1 - 1.076.9% 4.273.7%
WDPruning(Yu et al., 2022) 70.3 89.8 0.753.8% -
PoWER(Goyal et al., 2020) 69.4 89.2 0.861.5% -
SPP 72.3 91.1 0.861.5% 4.070.2%

DeiT-Small

Uncompressed 98.5 - 4.6 22.1
ViT-Slim(Chavan et al., 2022) 98.7 - 3.371.7% 15.670.6%
WDPruning(Yu et al., 2022) 98.1 - 2.860.9% 14.967.4%
SPP 98.8 - 3.371.7% 15.469.7%

8

Published as a conference paper at ICLR 2025

Table 3: Ablation: The results of CLIP-large and CLIP-base.

Model Method Image->Text Text->Image Params(M) FLOPS(B)
R@1 R@5 R@10 R@1 R@5 R@10

CLIP-Large

Uncompressed 71.5 90.8 95.4 56.8 80.7 87.6 856.0100% 395.7100%

SPP

73.7 92.5 96.2 55.6 79.1 85.7 80794.3% 376.895.2%
71.9 91.6 95.6 55.5 79.3 86.3 75788.4% 353.389.3%
70.4 90.7 95.3 55.5 80.6 87.8 69981.7% 324.882.1%
70.8 90.9 95.5 54.6 80.1 87.4 65075.9% 299.375.6%
70.3 90.5 95.3 52.5 78.8 86.4 53262.1% 245.161.9%

CLIP-Base

Uncompressed 52.5 76.4 84.2 33.0 57.9 68.7 299100% 41.2100%

SPP

69.0 89.6 94.8 84.5 78.5 86.7 27893.0% 38.593.4%
65.9 88.6 94.1 50.0 77.3 86.1 25786.0% 35.586.2%
61.9 86.4 93.1 47.0 75.6 84.9 23478.3% 31.977.4%
49.8 78.5 87.3 35.4 65.5 77.2 18160.5% 22.955.6%
31.4 61.3 73.7 21.2 49.1 62.5 13043.5% 13.633.0%

Table 4: Comparisons with training from scratch method on pruning DeiT models.
Model Method Top-1(%) Top-5(%) FLOPS(B) Params(M)

DeiT-Small
Uncompressed 79.8 95.0 4.6100% 22.1100%
DessiLBI 78.9 94.2 3.269.6% 15.268.8%
SPP 80.2 95.1 3.473.9% 15.670.6%

DeiT-Tiny
Uncompressed 72.2 91.1 1.3100% 5.7100%
DessiLBI 71.8 90.8 1.076.9% 4.070.2%
SPP 72.3 91.1 0.861.5% 4.070.2%

Swin-Tiny
Uncompressed 81.2 95.5 4.5100% 28100%
DessiLBI 80.4 95.2 3.475.6% 18.365.4%
SPP 80.6 95.2 3.475.6% 18.566.1%

Results of tiny models and datasets. We also extended our method to the Tiny models like Swin-Tiny
and DeiT-Tiny model. Table 2 presents a comparison between our approach and the other method,
ViT-Slim (Chavan et al., 2022). Notably, our method achieves only a 0.8% reduction in accuracy
while compressing 5% more than ViT-Slim (Chavan et al., 2022). The success of our method with
the Swin-T model, which demonstrates its adaptability across various transformer models.

For DeiT-Tiny, at almost the same compression ratio, our accuracy surpassed SSP (Chen et al., 2021)
and S2ViTE (Chen et al., 2021) by around 2% points, and we achieved a better compression ratio
than GOHSP (Yin et al., 2023), the smallest model among the compared algorithms.

On CIFAR-10 dataset, as shown in Table 2, our method maintained a reasonably good accuracy
even at higher compression ratio, achieving better accuracy with a smaller model than ViT-Slim,
demonstrating its effectiveness across various datasets.

5.2 ABLATION STUDIES

Ablation of training from scratch method. To highlight the improvements of our method over
training from scratch, we conducted experiments using the DessiLBI method, as shown in Table
4. Both two methods finetuned from the same pretrained model. While the DessiLBI method can
be applied to transformers, there was still a noticeable performance gap compared to our approach.
This clearly demonstrated that our method significantly enhances the differential inclusion pruning
technique.

5.3 FURTHER STUDIES

The consistency among family. We plotted the solution path of Γ as shown in Figure 2. The Γ
parameters do not return to zero during training, which shows that the weights within the same family

9

Published as a conference paper at ICLR 2025

Table 5: Results of pruning LLMs. We pruned the Llama2-7B and OPT-6.7B model with 50%
sparsity, then evaluated the pruned model on 6 datasets.

Model Method Calib data ARC-c(%) ARC-e(%) BoolQ(%) RTE(%) SST(%)

Llama2-7B

Uncompressed - 43.52 76.26 77.71 62.82 51.95
RIA C4 38.40 71.59 75.60 54.51 49.77
RIA Wikitext2 37.97 71.68 75.17 55.96 50.57
Wanda C4 37.03 69.70 74.01 55.23 53.10
Wanda Wikitext2 37.29 69.65 74.28 57.04 51.72
SPP C4 38.57 71.80 75.96 55.96 49.66
SPP Wikitext2 37.88 71.59 74.28 54.51 50.11

OPT-6.7B

Uncompressed - 30.46 65.57 66.06 55.23 76.61
RIA C4 29.27 63.68 66.82 53.07 61.81
RIA Wikitext2 29.18 64.10 63.55 52.71 76.49
Wanda C4 27.39 57.45 63.88 50.90 78.21
Wanda Wikitext2 26.11 56.40 62.20 53.43 62.96
SPP C4 28.75 63.76 63.15 52.71 74.66
SPP Wikitext2 28.67 63.80 63.18 52.71 75.34

0 200 400 600 800 1000
Step

0

2

4

6

8

10

L1
 N

or
m

ATTN Gamma Parameter

blocks.0.attn
blocks.1.attn
blocks.2.attn
blocks.3.attn
blocks.4.attn
blocks.5.attn
blocks.6.attn
blocks.7.attn
blocks.8.attn
blocks.9.attn
blocks.10.attn
blocks.11.attn

0 200 400 600 800 1000
Step

0

2

4

6

8

10

12

L1
 N

or
m

MLP Gamma Parameter

blocks.0.mlp
blocks.1.mlp
blocks.2.mlp
blocks.3.mlp
blocks.4.mlp
blocks.5.mlp
blocks.6.mlp
blocks.7.mlp
blocks.8.mlp
blocks.9.mlp
blocks.10.mlp
blocks.11.mlp

Figure 2: Visualization of solution path of DeiT-small. We show the changes of the L1-norm of
projected weight value Γ during the search stage. The x-axis is the iteration number during training,
the y-axis is the L1-norm of the Γ parameters per layer.

remain consistent. Such consistency among weights allow us to effectively analyze the performance
of sparse models.

Extentions to LLMs. We extended our method to large language models (LLMs) with post-training.
We applied our solution path method during the LLM pruning search stage, combining it with the
RIA (Zhang et al., 2024) pruning metric. The detailed algorithm is shown in Algorithm 2 .

We applied our method on Llama2-7B and OPT-6.7b. The calibration datasets C4 and Wikitext2 were
used to generate activations during the forward pass, which, along with weight magnitude, served as
the pruning metric. The results were reported on 5 datasets. As shown in Table 5, the accuracy after
pruning with 50% sparsity is comparable to the advanced method RIA and Wanda (Sun et al., 2023),
indicating the potential our method in pruning LLMs.

6 CONCLUSION

We proposed a dynamic approach based on differential inclusion, which can adaptively prune any pre-
trained transformers with various compression ratios. Along this path, a series of models, named the
Transformer Weight Family, was derived from the masks in the solution path. With just a single run of
iteration, we can achieve all sparsity levels of the original pre-trained model. We have demonstrated
the stability and consistency of the Transformer Weight Family, showing that the solution path method
is robust. We also demonstrated the potential of our method for pruning large language models
(LLMs). In future work, we will explore this direction with a more tailored design suited to the
architecture and post-training processes of LLMs.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported by the Science and Technology Commission of Shanghai Municipality(No.
24511103100).

REFERENCES

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized
gauss-seidel methods. Mathematical Programming, 137:91–129, 2013.

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic mirror descent on overparameterized
nonlinear models: Convergence, implicit regularization, and generalization. arXiv preprint
arXiv:1906.03830, 2019.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Martin Benning, Marta M. Betcke, Matthias J. Ehrhardt, and Carola-Bibiane SchönlieB. Choose your
path wisely: gradient descent in a bregman distance framework. arXiv preprint arXiv:1712.04045,
2017.

Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real algebraic geometry, volume 3. Ergeb.
Math. Grenzgeb. Springer-Verlag, Berlin, 1998.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Łojasiewicz inequality for nonsmooth subana-
lytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization,
17:1205–1223, 2007a.

Jérôme Bolte, Aris Daniilidis, Adrian Lewis, and Masahiro Shiota. Clark subgradients of stratifiable
functions. SIAM Journal on Optimization, 18:556–572, 2007b.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. In Foundations and
Trends® in Machine Learning, volume 3, pp. 1–122. Now Publishers, Inc., 2011.

Leon Bungert, Tim Roith, Daniel Tenbrinck, and Martin Burger. A bregman learning framework for
sparse neural networks. Journal of Machine Learning Research, 23(192):1–43, 2022.

Martin Burger, Guy Gilboa, Stanley Osher, and Jinjun Xu. Nonlinear inverse scale space methods.
2006.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and Eric P Xing.
Vision transformer slimming: Multi-dimension searching in continuous optimization space. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4931–4941, 2022.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974–19988, 2021.

M. Coste. An introduction to o-minimal geometry. RAAG Notes, 81 pages, Institut de Recherche
Mathematiques de Rennes, 1999.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Yanwei Fu, Chen Liu, Donghao Li, Xinwei Sun, Jinshan Zeng, and Yuan Yao. Dessilbi: Exploring
structural sparsity of deep networks via differential inclusion paths. In International Conference
on Machine Learning, pp. 3315–3326. PMLR, 2020.

11

Published as a conference paper at ICLR 2025

Yanwei Fu, Chen Liu, Donghao Li, Zuyuan Zhong, Xinwei Sun, Jinshan Zeng, and Yuan Yao.
Exploring structural sparsity of deep networks via inverse scale spaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(2):1749–1765, 2022.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23:2341–2368, 2013.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sab-
harwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector
elimination. In International Conference on Machine Learning, pp. 3690–3699. PMLR, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Chendi Huang and Yuan Yao. A unified dynamic approach to sparse model selection. In The 21st
International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Spain,
2018.

Steven Krantz and Harold R. Parks. A primer of real analytic functions. Birkhäuser, second edition,
2002.

Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in continuous
and discrete time. In Advances in neural information processing systems, pp. 2845–2853, 2015.

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. Annales de l’institut
Fourier, 48:769–783, 1998.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Metadistiller: Network self-
boosting via meta-learned top-down distillation. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pp. 694–709. Springer,
2020.

Stanisław Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In: Les
Équations aux dérivées partielles. Éditions du centre National de la Recherche Scientifique, Paris,
pp. 87–89, 1963.

Stanisław Łojasiewicz. Ensembles semi-analytiques. Institut des Hautes Etudes Scientifiques, 1965.

Stanisław Łojasiewicz. Sur la geometrie semi-et sous-analytique. Annales de l’institut Fourier, 43:
1575–1595, 1993.

Boris S. Mordukhovich. Variational analysis and generalized differentiation I: Basic Theory. Springer,
2006.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Stanley Osher, Feng Ruan, Jiechao Xiong, Yuan Yao, and Wotao Yin. Sparse recovery via differential
inclusions. Applied and Computational Harmonic Analysis, 41(2):436–469, 2016a. arXiv:
1406.7728.

Stanley Osher, Feng Ruan, Jiechao Xiong, Yuan Yao, and Wotao Yin. Sparse recovery via differential
inclusions. Applied and Computational Harmonic Analysis, 41(2):436–469, 2016b.

Bowen Pan, Rameswar Panda, Yifan Jiang, Zhangyang Wang, Rogerio Feris, and Aude Oliva.
ia − red2: Interpretability-aware redundancy reduction for vision transformers. Advances in
Neural Information Processing Systems, 34:24898–24911, 2021.

12

arXiv:1406.7728
arXiv:1406.7728

Published as a conference paper at ICLR 2025

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-
tion. arXiv preprint arXiv:1802.05668, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

R. Tyrrell Rockafellar and Roger J-B Wets. Variational analysis. Grundlehren Math. Wiss. 317,
Springer-Verlag, New York, 1998.

Dachuan Shi, Chaofan Tao, Ying Jin, Zhendong Yang, Chun Yuan, and Jiaqi Wang. Upop: Uni-
fied and progressive pruning for compressing vision-language transformers. arXiv preprint
arXiv:2301.13741, 2023.

Masahiro Shiota. Geometry of subanalytic and semialgebraic sets, volume 150 of Progress in
Mathematics. Birkhäuser, Boston, 1997.

Anthony Man-Cho So, Yinyu Ye, and Jiawei Zhang. A unified theorem on sdp rank reduction.
Mathematics of Operations Research, 33(4):910–920, 2008.

Weijie Su, Stephen Boyd, and Emmanuel J Candes. A differential equation for modeling nesterov’s
accelerated gradient method: theory and insights. The Journal of Machine Learning Research, 17
(1):5312–5354, 2016.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop:
Scientific control for reliable neural network pruning. Advances in Neural Information Processing
Systems, 33:10936–10947, 2020.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai
Wong. Compression of generative pre-trained language models via quantization. arXiv preprint
arXiv:2203.10705, 2022.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, and Hervé Jégou. Training
data-efficient image transformers & distillation through attention, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, volume 139, pp. 10347–10357, July 2021a.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021b.

L. van den Dries. A generalization of the tarski-seidenberg theorem and some nondefinability results.
Bull. Amer. Math. Soc. (N.S.), 15:189–193, 1986.

L. van den Dries and C. Miller. Geometric categories and o-minimal structures. Duke Mathematical
Journal, 84:497–540, 1996.

Bo Wahlberg, Stephen Boyd, Mariette Annergren, and Yang Wang. An admm algorithm for a class of
total variation regularized estimation problems. IFAC Proceedings Volumes, 45(16):83–88, 2012.

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth
optimization. Journal of Scientific Computing, 78(1):29–63, 2019.

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
transformer pruning with hessian-aware saliency. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18547–18557, 2023.

13

Published as a conference paper at ICLR 2025

Miao Yin, Burak Uzkent, Yilin Shen, Hongxia Jin, and Bo Yuan. Gohsp: A unified framework of
graph and optimization-based heterogeneous structured pruning for vision transformer. arXiv
preprint arXiv:2301.05345, 2023.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 3143–3151, 2022.

Hao Yu and Jianxin Wu. A unified pruning framework for vision transformers. Science China
Information Sciences, 66(7):1–2, 2023.

Lu Yu and Wei Xiang. X-pruner: explainable pruning for vision transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24355–24363, 2023.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7370–7379, 2017.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisit knowledge distillation: a
teacher-free framework. 2019.

Jinshan Zeng, Tim Tsz-Kit Lau, Shao-Bo Lin, and Yuan Yao. Global convergence of block coordinate
descent in deep learning. In Proceedings of the 36th International Conference on Machine Learning,
Long Beach, California, 2019.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations, 2024.

14

Published as a conference paper at ICLR 2025

APPENDIX

A EXPERIMENTS DETAILS AND VISUALIZATION

Experiments details

As shown in Algorithm 2, instead of directly using our algorithm, we combined it with the RIA Zhang
et al. (2024) pruning method. This is because post-training tasks are quite different from fine-tuning
tasks. To maintain the generalization performance of LLMs, we need to take the size of the weight
parameters and activations into account.

We used 4 A100 GPU with memory size of 80GB for those experiments. The search stage contain an
update stage and prune stage, both just need to run once for one model. All the finetune stage used
AdamW as the optimizer and consine scheduler as the learning rate scheduler. The hyperparameters
are listed in Table. 6 and Table. 8.

Model Datasets Updating Epochs Pruning Epochs Finetuning Epochs Batch Size LR

DeiT-Base Imagenet-1k 5 20 300 1024 8e-4
DeiT-Small Imagenet-1k 10 30 300 512 8e-4
DeiT-Tiny Imagenet-1k 10 30 300 256 8e-4
Swin-Tiny Imagenet-1k 5 20 300 256 8e-4
CLip-Large COCO 1 5 5 32 1e-5
CLip-Base COCO 3 5 5 32 1e-5

Table 6: The hyperparameters of experiments mentioned above.

Algorithm 2 Extention to LLMs
Perform searching
Input: Pretrained weight W0 and a step size α, iteration steps in the update stage Ts and prune
stage Tp

Initialize sub-gradient V0 = 0, mask M0 = 1, sparse mask Γ0 = 0.
Set λ = λ0

(
|Wij |∑
|W∗j | +

|Wij |∑
|Wi∗|

)
× (∥Xi∥2),which is the pruning metric of RIA Zhang et al.

(2024)
for k = 0 to Ts do
Calculate the loss
L̂ = L(W0 ⊙Mk) +

1
2ν ∥Mk − Γk∥22

update Vk and mask Mk according to sub-gradient
Mk+1 = Mk − καk∇Mk

L̂

Vk+1 = Vk − αk∇Γk
L̂

update Γk as the proximal operator
h(Γ) = λ ∥Γ∥1 + I[0,1](Γ)

Γk+1 = Proxh (Vk+1), where Prox(V) = argminΓ

{
∥V − Γ∥22 /2 + h(Γ)

}
end for
Perform pruning
for k = 0 to Tp do
Update masks with a reverse turn of Γ being non-zero in
searching
Mk+1 = Γk̂, k̂ = int(Ts − (k + 1)Ts

Tp
)

Update and save the sparse model weights
W̄k+1 = Wk+1 ⊙Mk+1

#Save the checkpoint of W̄k+1 as the pruned model
end for
Return Weight Family for the model
Output: LLM Weight Family:{W̄i|i ∈ [0, Tp]}

15

Published as a conference paper at ICLR 2025

Model Method Latency Time Params FLOPS(B)

CLip-Base

Uncompressed 9.273s 299100% 41.2100%

SPP

8.675s 27893.0% 38.593.4%
7.859s 25786.0% 35.586.2%
7.341s 23478.3% 31.977.4%
6.490s 18160.5% 22.955.6%
5.461s 13043.5% 13.633.0%

Table 7: The latency results of pruned model.

Visualization of compressed model

0 1 2 3 4 5 6 7 8 9 10 11
Transformer Layer Index

0

20

40

60

80

R
em

ai
ne

d
R

at
io

(%
)

70%

MHA-Weight of Q and K pairs
MHA-Weight of V and Proj pairs
MLP

Figure 3: Visualization of the proportion of parameters on DeiT-Small. The three kind of color
indicate three pairs of weight.

In Fig. 3 and Fig 4, we visualized the proportion of parameters retained in each layer of the DeiT-
Small model at a set compression ratio of 0.3. Notably, since the query, key, and value, as well as
the output projection, form two pairs with equivalent parameter quantities, we treated them as a unit.
It’s observed that in the shallower layer 1 and deeper layer 10, the proportion of saved parameters
in the QK pair is significantly higher than that in the V and Project pair. This indicates that our
low-rank pruning method is effective. It skillfully segregates parameters, allowing those with closer
relationships to be pruned together.

A.1 GROUP LASSO

Our algorithm 1 enhances structural sparsity within transformer layers, aligning under a group lasso
penalty framework, Ω1(Γ) =

∑
g ∥Γg∥2, where

∥Γg∥2 =

√√√√|Γg|∑
i=1

(Γg
i)

2 (17)

Model κ λ Epochs LR

DeiT-Base 1 15 5 8e-4
DeiT-Small 1 15 10 8e-4
DeiT-Tiny 1 15 10 1.6e-3
Swin-Tiny 1 15 5 8e-4
CLip-Large 100 3 1 1e-5
CLip-Base 100 3 3 1e-5

Table 8: The hyperparameters of expriments mentioned above in updating stage.

16

Published as a conference paper at ICLR 2025

Model Method Latency Time Params FLOPS(B)

CLIP-base

Uncompressed 9.273s 299100% 41.2100%

SPP

8.675s 27893.0% 38.593.4%
7.859s 25786.0% 35.586.2%
7.341s 23478.3% 31.977.4%
6.490s 18160.5% 22.955.6%
5.461s 13043.5% 13.633.0%

Table 9: The latency time results of compressed CLIP-baseTouvron et al. (2021b) models.

0 1 2 3 4 5 6 7 8 9 10 11
Compressed Ratio 0%

MHA-Q

MHA-K

MHA-V

MLP

100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100

0 1 2 3 4 5 6 7 8 9 10 11
Compressed Ratio 30%

MHA-Q

MHA-K

MHA-V

MLP

100 71 100 98 98 93 100 93 89 89 14 1

100 71 100 98 98 93 100 93 89 89 14 1

43 96 98 100 96 100 85 85 98 31 6 9

49 60 57 63 60 61 58 77 73 70 62 71

0 1 2 3 4 5 6 7 8 9 10 11
Compressed Ratio 50%

MHA-Q

MHA-K

MHA-V

MLP

100 48 98 92 79 81 81 84 79 82 1 1

100 48 98 92 79 81 81 84 79 82 1 1

37 87 98 98 96 85 21 78 89 4 1 1

41 48 42 48 47 47 44 68 63 59 48 49

0 1 2 3 4 5 6 7 8 9 10 11
Compressed Ratio 70%

MHA-Q

MHA-K

MHA-V

MLP

96 12 59 35 1 10 4 9 1 21 1 1

96 12 59 35 1 10 4 9 1 21 1 1

29 54 90 92 90 12 3 6 71 1 1 1

30 29 25 28 27 26 27 48 51 44 27 18

Figure 4: Visualization of components. The depth of color shows the sparsity of the corresponding
layer. The number shows the dim of the linear matrix.

and |Γg| represents the number of weights in each group Γg . Therefore, we have a clear formula for
solving this equation:

Γg = κ ·max(0, 1− 1

∥Γg∥2
)V g. (18)

A.2 MORE RELATED WORKS

Mirror Descent Algorithm (MDA) was first proposed by Nemirovskij & Yudin (1983) to solve
constrained convex optimization, and can be seen as a generalized projected gradient descent Beck &
Teboulle (2003) using Bregman distance BΩ(u, v) := Ω(u)− Ω(v)− ⟨∇Ω(v), u− v⟩ induced by
a convex and differentiable function Ω(.),

Zk+1 = Zk − α∇L(Wk) (19a)
Wk+1 = ∇Ω∗(Zk+1) (19b)

where the conjugate function of Ω(.) is Ω∗(Z) := supW,Z{⟨W,Z⟩−Ω(W)}. Equation (1) optimizes
Wk+1 in two steps: Eq.19a implements the gradient descent on Z in the dual space Zk = ∇Ω(Wk);
and Eq.19b projects it back to the primal space. As step size α → 0, MDA converges to the following
ordinary differential equation (ODE) dynamicsSu et al. (2016):

Żt = α∇L(Wt) (2a)
Wt = ∇Ω∗(Zt) (2b)

Compared with DessiLBI Both our method and DessiLBI use the mirror descent algorithm to get
the solution path, with the sparse model obtained through early stopping. However, our method is
specifically designed for pre-trained models, while DessiLBI, which trains from scratch, doesn’t
perform well on them. During the search stage, we keep the pre-trained model’s weights fixed and
only update the mask parameters, making our approach more suitable for tasks like pruning LLMs.

17

Published as a conference paper at ICLR 2025

Additionally, our method uses a pair-wise mask architecture, which works for fully connected layers
in transformers, but is not applicable to CNN architectures.

B PROOF OF THEOREM 1

First of all, we reformulate Eq.(13) into an equivalent form. Without loss of generality, consider
Ω = Ω1 in the sequel. Denote R(P) := Ω(Γ), then Eq.(13) can be rewritten as:

Pk+1 = ProxκR(Pk + κ(pk − α∇L̄(Pk))), (20a)

pk+1 = pk − κ−1(Pk+1 − Pk + κα∇L̄(Pk)), (20b)

where pk = [0, gk]
T ∈ ∂R(Pk) and gk ∈ ∂Ω(Γk). Thus Algorithm is equivalent to the following

iterations,

Mk+1 = Mk − κα∇W L̄(Mk,Γk), (21a)

Γk+1 = ProxκΩ(Γk + κ(gk − α∇ΓL̄(Mk,Γk))), (21b)

gk+1 = gk − κ−1(Γk+1 − Γk + κα · ∇ΓL̄(Mk,Γk)). (21c)

Exploiting the equivalent reformulation (21a-21c), one can establish the global convergence of
(Mk,Γk, gk) based on the Kurdyka-Łojasiewicz framework. In this section, the following extended
version of Theorem 1 is actually proved.
Theorem 2. [Global Convergence of Our method] Suppose that Assumption 1 holds. Let
(Mk,Γk, gk) be the sequence generated by Our method (Eq. (21a-21c)) with a finite initializa-
tion. If

0 < αk = α <
2

κ(Lip ∗ C + ν−1)
,

then (Mk,Γk, gk) converges to a critical point of F . Moreover, {(Mk,Γk)} converges to a stationary
point of L̄ defined in Eq. 9, and {Mk} converges to a stationary point of L(M).
Remark 3. Assumption 1 (a)-(c) are regular in the analysis of nonconvex algorithm (see, Attouch
et al. (2013) for instance), while Assumption 1 (d) is also mild including all Lipschitz continuous
convex function over a compact set. Some typical examples satisfying Assumption 1(d) are the ℓ1
norm, group ℓ1 norm, and every continuously differentiable penalties. By Eq. (15) and the definition
of conjugate, the Lyapunov function F can be rewritten as follows,

F (W,Γ, g) = αL̄(W,Γ) + Ω(Γ) + Ω∗(g)− ⟨Γ, g⟩. (22)

Applying to the neural networks, typical examples are summarized in the following corollary.
Corollary 1. Let {Mk,Γk, gk} be a sequence generated by Our method (21a-21c) for neural
network training where (a) ℓ is any smooth definable loss function, such as the square loss (t2),
exponential loss (et), logistic loss log(1+e−t), and cross-entropy loss; (b) σi is any smooth definable
activation, such as linear activation (t), sigmoid (1

1+e−t), hyperbolic tangent (e
t−e−t

et+e−t), and softplus
(1c log(1 + ect) for some c > 0) as a smooth approximation of ReLU; (c) Ω is the group Lasso.

Then the sequence {Mk} converges to a stationary point of L(M) under the conditions of Theorem
1.

B.1 SUFFICIENT DESCENT PROPERTY ALONG LYAPUNOV FUNCTION

Let Pk := (Mk,Γk), and Qk := (Pk, gk−1), k ∈ N. In the following, we present the sufficient
descent property of Qk along the Lyapunov function F .

Lemma. Suppose that L is continuously differentiable and ∇L is Lipschitz continuous with a
constant Lip > 0,C = max |W0|is the max value of the pretrained model parameters W0. Let {Qk}
be a sequence generated by SLBI with a finite initialization. If 0 < α < 2

κ(Lip∗C+ν−1) , then

F (Qk+1) ≤ F (Qk)− ρ∥Qk+1 −Qk∥22,

where ρ := 1
κ − α(Lip∗C+ν−1)

2 .

18

Published as a conference paper at ICLR 2025

Proof. By the optimality condition of (20a) and also the inclusion pk = [0, gk]
T ∈ ∂R(Pk), there

holds

κ(α∇L̄(Pk) + pk+1 − pk) + Pk+1 − Pk = 0,

which implies

−⟨α∇L̄(Pk), Pk+1 − Pk⟩ = κ−1∥Pk+1 − Pk∥22 +D(Γk+1,Γk) (23)

where
D(Γk+1,Γk) := ⟨gk+1 − gk,Γk+1 − Γk⟩.

Let W0 ⊙M = Ŵ ,with L̂(M) = L(W0 ⊙M),

∇L̂(M) =
∑

∇L(Ŵ) ∗W0 (24)

Noting that L̄(P) = L̂(M) + 1
2ν ∥M − Γ∥22 = L(W0 ⊙M) + 1

2ν ∥M − Γ∥22 , and by the Lipschitz
continuity of ∇L(W) with constants Lip > 0, C = max |W0| > 0 implies ∇L̄ is Lipschitz
continuous with a constant Lip ∗ C + ν−1. This implies

L̄(Pk+1) ≤ L̄(Pk) + ⟨∇L̄(Pk), Pk+1 − Pk⟩+
Lip ∗ C + ν−1

2
∥Pk+1 − Pk∥22.

Substituting the above inequality into (23) yields

αL̄(Pk+1) +D(Γk+1,Γk) + ρ∥Pk+1 − Pk∥22 ≤ αL̄(Pk). (25)

Adding some terms in both sides of the above inequality and after some reformulations implies

αL̄(Pk+1) +Bgk
Ω (Γk+1,Γk) (26)

≤ αL̄(Pk) +B
gk−1

Ω (Γk,Γk−1)− ρ∥Pk+1 − Pk∥22 −
(
D(Γk+1,Γk) +B

gk−1

Ω (Γk,Γk−1)−Bgk
Ω (Γk+1,Γk)

)
= αL̄(Pk) +B

gk−1

Ω (Γk,Γk−1)− ρ∥Pk+1 − Pk∥22 −B
gk+1

Ω (Γk,Γk−1)−B
gk−1

Ω (Γk,Γk−1),

where the final equality holds for D(Γk+1,Γk)−Bgk
Ω (Γk+1,Γk) = B

gk+1

Ω (Γk,Γk−1). That is,

F (Qk+1) ≤ F (Qk)− ρ∥Pk+1 − Pk∥22 −B
gk+1

Ω (Γk,Γk−1)−B
gk−1

Ω (Γk,Γk−1) (27)

≤ F (Qk)− ρ∥Pk+1 − Pk∥22, (28)

where the final inequality holds for Bgk+1

Ω (Γk,Γk−1) ≥ 0 and B
gk−1

Ω (Γk,Γk−1) ≥ 0. Thus, we
finish the proof of this lemma.

Based on Lemma B.1, we directly obtain the following lemma.

Lemma 1. Suppose that assumptions of Lemma B.1 hold. Suppose further that Assumption 1 (b)-(d)
hold. Then

(i) both α{L̄(Pk)} and {F (Qk)} converge to the same finite value, and
limk→∞ Bgk

Ω (Γk+1,Γk) = 0.

(ii) the sequence {(Mk,Γk, gk)} is bounded,

(iii) limk→∞ ∥Pk+1 − Pk∥22 = 0 and limk→∞ D(Γk+1,Γk) = 0,

(iv) 1
K

∑K
k=0 ∥Pk+1 − Pk∥22 → 0 at a rate of O(1/K).

Proof. By (25), L̄(Pk) is monotonically decreasing due to D(Γk+1,Γk) ≥ 0. Similarly, by (28),
F (Qk) is also monotonically decreasing. By the lower boundedness assumption of L(W), both
L̄(P) and F (Q) are lower bounded by their definitions, i.e., (9) and (15), respectively. Therefore,
both {L̄(Pk)} and {F (Qk)} converge, and it is obvious that limk→∞ F (Qk) ≥ limk→∞ αL̄(Pk).
By (27),

B
gk−1

Ω (Γk,Γk−1) ≤ F (Qk)− F (Qk+1), k = 1,

19

Published as a conference paper at ICLR 2025

By the convergence of F (Qk) and the nonegativeness of Bgk−1

Ω (Γk,Γk−1), there holds

lim
k→∞

B
gk−1

Ω (Γk,Γk−1) = 0.

By the definition of F (Qk) = αL̄(Pk) +B
gk−1

Ω (Γk,Γk−1) and the above equality, it yields

lim
k→∞

F (Qk) = lim
k→∞

αL̄(Pk).

Since L(M) has bounded level sets, then Mk is bounded. By the definition of L̄(M,Γ) and the
finiteness of L̄(Mk,Γk), Γk is also bounded due to Mk is bounded. The boundedness of gk is due to
gk ∈ ∂Ω(Γk), condition (d), and the boundedness of Γk.

By (28), summing up (28) over k = 0, 1, . . . ,K yields
K∑

k=0

(
ρ∥Pk+1 − Pk∥2 +D(Γk+1,Γk)

)
< αL̄(P0) < ∞. (29)

Letting K → ∞ and noting that both ∥Pk+1 − Pk∥2 and D(Γk+1,Γk) are nonnegative, thus

lim
k→∞

∥Pk+1 − Pk∥2 = 0, lim
k→∞

D(Γk+1,Γk) = 0.

Again by (29),

1

K

K∑
k=0

(
ρ∥Pk+1 − Pk∥2 +D(Γk+1,Γk)

)
< K−1αL̄(P0),

which implies 1
K

∑K
k=0 ∥Pk+1 − Pk∥2 → 0 at a rate of O(1/K).

B.2 RELATIVE ERROR PROPERTY

In this subsection, we provide the bound of subgradient by the discrepancy of two successive iterates.
By the definition of F (15),

Hk+1 :=

 α∇M L̄(Mk+1,Γk+1)
α∇ΓL̄(Mk+1,Γk+1) + gk+1 − gk

Γk − Γk+1

 ∈ ∂F (Qk+1), k ∈ N. (30)

Lemma. Under assumptions of Lemma 1, then

∥Hk+1∥ ≤ ρ1∥Qk+1 −Qk∥, for Hk+1 ∈ ∂F (Qk+1), k ∈ N,

where ρ1 := 2κ−1 +1+α(Lip ∗C +2ν−1). Moreover, 1
K

∑K
k=1 ∥Hk∥2 → 0 at a rate of O(1/K).

Proof. Note that

∇M L̄(Mk+1,Γk+1) = (∇M L̄(Mk+1,Γk+1)−∇M L̄(Mk+1,Γk)) (31)

+ (∇M L̄(Mk+1,Γk)−∇M L̄(Mk,Γk)) +∇M L̄(Mk,Γk).

By the definition of L̄ (see (9)),

∥∇M L̄(Mk+1,Γk+1)−∇M L̄(Mk+1,Γk)∥ = ν−1∥Γk − Γk+1∥,
∥∇M L̄(Mk+1,Γk)−∇M L̄(Mk,Γk)∥ = ∥(∇L(Mk+1)−∇L(Mk)) + ν−1(Mk+1 −Mk)∥

≤ (Lip ∗ C + ν−1)∥Mk+1 −Mk∥,
where the last inequality holds for the Lipschitz continuity of ∇L with a constant Lip > 0,and
C = max |W0| .By (21a),

∥∇M L̄(Mk,Γk)∥ = (κα)−1∥Mk+1 −Mk∥.
Substituting the above (in)equalities into (31) yields

∥∇M L̄(Mk+1,Γk+1)∥ ≤
[
(κα)−1 + Lip ∗ C + ν−1

]
· ∥Mk+1 −Mk∥+ ν−1∥Γk+1 − Γk∥

20

Published as a conference paper at ICLR 2025

Thus,

∥α∇M L̄(Mk+1,Γk+1)∥ ≤
[
κ−1 + α(Lip ∗ C + ν−1)

]
· ∥Mk+1 −Mk∥+ αν−1∥Γk+1 − Γk∥.

(32)

By (21c), it yields

gk+1 − gk = κ−1(Γk − Γk+1)− α∇ΓL̄(Mk,Γk).

Noting that ∇ΓL̄(Mk,Γk) = ν−1(Γk −Mk), and after some simplifications yields

∥α∇ΓL̄(Mk+1,Γk+1) + gk+1 − gk∥ = ∥(κ−1 − αν−1) · (Γk − Γk+1) + αν−1(Mk −Mk+1)∥
≤ αν−1∥Mk −Mk+1∥+ (κ−1 − αν−1)∥Γk − Γk+1∥,

(33)

where the last inequality holds for the triangle inequality and κ−1 > αν−1 by the assumption.

By (32), (33), and the definition of Hk+1 (30), there holds

∥Hk+1∥ ≤
[
κ−1 + α(Lip ∗ C + 2ν−1)

]
· ∥Mk+1 −Mk∥+ (κ−1 + 1)∥Γk+1 − Γk∥

≤
[
2κ−1 + 1 + α(Lip ∗ C + 2ν−1)

]
· ∥Pk+1 − Pk∥ (34)

≤
[
2κ−1 + 1 + α(Lip ∗ C + 2ν−1)

]
· ∥Qk+1 −Qk∥.

By (34) and Lemma 1(iv), 1
K

∑K
k=1 ∥Hk∥2 → 0 at a rate of O(1/K).

This finishes the proof of this lemma.

B.3 KURDYKA-ŁOJASIEWICZ PROPERTY

To introduce the definition of the Kurdyka-Łojasiewicz (KL) property, we need some notions and
notations from variational analysis, which can be found in Rockafellar & Wets (1998).

The notion of subdifferential plays a central role in the following definitions. For each x ∈ dom(h) :=

{x ∈ Rp : h(x) < +∞}, the Fréchet subdifferential of h at x, written ∂̂h(x), is the set of vectors
v ∈ Rp which satisfy

lim inf
y ̸=x,y→x

h(y)− h(x)− ⟨v,y − x⟩
∥x− y∥

≥ 0.

When x /∈ dom(h), we set ∂̂h(x) = ∅. The limiting-subdifferential (or simply subdifferential) of h
introduced in Mordukhovich (2006), written ∂h(x) at x ∈ dom(h), is defined by

∂h(x) := {v ∈ Rp : ∃xk → x, h(xk) → h(x), vk ∈ ∂̂h(xk) → v}. (35)

A necessary (but not sufficient) condition for x ∈ Rp to be a minimizer of h is 0 ∈ ∂h(x). A point
that satisfies this inclusion is called limiting-critical or simply critical. The distance between a point
x to a subset S of Rp, written dist(x,S), is defined by dist(x,S) = inf{∥x− s∥ : s ∈ S}, where
∥ · ∥ represents the Euclidean norm.

Let h : Rp → R ∪ {+∞} be an extended-real-valued function (respectively, h : Rp ⇒ Rq be a
point-to-set mapping), its graph is defined by

Graph(h) := {(x, y) ∈ Rp × R : y = h(x)},
(resp. Graph(h) := {(x,y) ∈ Rp × Rq : y ∈ h(x)}),

and its domain by dom(h) := {x ∈ Rp : h(x) < +∞} (resp. dom(h) := {x ∈ Rp : h(x) ̸= ∅}).
When h is a proper function, i.e., when dom(h) ̸= ∅, the set of its global minimizers (possibly
empty) is denoted by

argminh := {x ∈ Rp : h(x) = inf h}.

The KL property (Łojasiewicz, 1963; 1993; Kurdyka, 1998; Bolte et al., 2007a;b) plays a central role
in the convergence analysis of nonconvex algorithms (Attouch et al., 2013; Wang et al., 2019). The
following definition is adopted from Bolte et al. (2007b).

21

Published as a conference paper at ICLR 2025

Definition 1. [Kurdyka-Łojasiewicz property] A function h is said to have the Kurdyka-Łojasiewicz
(KL) property at ū ∈ dom(∂h) := {v ∈ Rn|∂h(v) ̸= ∅}, if there exists a constant η ∈ (0,∞),
a neighborhood N of ū and a function ϕ : [0, η) → R+, which is a concave function that is
continuous at 0 and satisfies ϕ(0) = 0, ϕ ∈ C1((0, η)), i.e., ϕ is continuous differentiable on (0, η),
and ϕ′(s) > 0 for all s ∈ (0, η), such that for all u ∈ N ∩ {u ∈ Rn|h(ū) < h(u) < h(ū) + η}, the
following inequality holds

ϕ′(h(u)− h(ū)) · dist(0, ∂h(u)) ≥ 1. (36)

If h satisfies the KL property at each point of dom(∂h), h is called a KL function.

KL functions include semialgebraic functions, real analytic functions, continuous subanalytic func-
tions (Bolte et al., 2007a) and locally strongly convex functions, tame functions defined in some
o-minimal structures (Kurdyka, 1998; Bolte et al., 2007b). In the following, we provide some
important examples that satisfy the Kurdyka-Łojasiewicz property.
Definition 2. [Semialgebraic]

(a) A function h : Rp → R ∪ {+∞} (resp. a point-to-set mapping h : Rp ⇒ Rq) is called
semialgebraic if its graph Graph(h) is a semialgebraic set.

(b) A set D ⊂ Rp is called semialgebraic (Bochnak et al., 1998) if it can be represented as

D =

s⋃
i=1

t⋂
j=1

{x ∈ Rp : Pij(x) = 0, Qij(x) > 0} ,

where Pij , Qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t.

According to (Łojasiewicz, 1965; Bochnak et al., 1998) and (Shiota, 1997, I.2.9, page 52), the class of
semialgebraic sets are stable under the operation of finite union, finite intersection, Cartesian product
or complementation. Some typical examples include polynomial functions, the indicator function of
a semialgebraic set, and the Euclidean norm (Bochnak et al., 1998, page 26).
Definition 3. [Real analytic] A function h with domain an open set U ⊂ R and range the set of either
all real or complex numbers, is said to be real analytic at u if the function h may be represented by a
convergent power series on some interval of positive radius centered at u: h(x) =

∑∞
j=0 αj(x−u)j ,

for some {αj} ⊂ R. The function is said to be real analytic on V ⊂ U if it is real analytic at each
u ∈ V (Krantz & Parks, 2002, Definition 1.1.5). The real analytic function f over Rp for some
positive integer p > 1 can be defined similarly.

According to Krantz & Parks (2002), typical real analytic functions include polynomials, exponential
functions, and the logarithm, trigonometric and power functions on any open set of their domains.
One can verify whether a multivariable real function h(x) on Rp is analytic by checking the analyticity
of g(t) := h(x+ ty) for any x,y ∈ Rp.

B.4 KL PROPERTY IN DEEP LEARNING AND PROOF OF COROLLARY 1

In the following, we consider the deep neural network training problem. Consider a l-layer feedfor-
ward neural network including l − 1 hidden layers of the neural network. Particularly, let di be the
number of hidden units in the i-th hidden layer for i = 1, . . . , l − 1.

Let d0 and dl be the number of units of input and output layers, respectively. Let W i ∈ Rdi×di−1 be
the weight matrix between the (i− 1)-th layer and the i-th layer for any i = 1, . . . l1.

According to Theorem 2, one major condition is to verify the introduced Lyapunov function F
defined in (15) satisfies the Kurdyka-Łojasiewicz property. For this purpose, we need an extension
of semialgebraic set, called the o-minimal structure (see, for instance Coste (1999), van den Dries
(1986), Kurdyka (1998), Bolte et al. (2007b)). The following definition is from Bolte et al. (2007b).
Definition 4. [o-minimal structure] An o-minimal structure on (R,+, ·) is a sequence of boolean
algebras On of “definable” subsets of Rn, such that for each n ∈ N

1To simplify notations, we regard the input and output layers as the 0-th and the l-th layers, respectively, and
absorb the bias of each layer into W i.

22

Published as a conference paper at ICLR 2025

(i) the elements of O1 are exactly finite unions of intervals and points.

(ii) On contains the family of algebraic subsets of Rn, that is, every set of the form

(iii) if A belongs to On, then A× R and R×A belong to On+1;

(iv) if Π : Rn+1 → Rn is the canonical projection onto Rn, then for any A in On+1, the set
Π(A) belongs to On;

{x ∈ Rn : p(x) = 0},
where p : Rn → R is a polynomial function.

Based on the definition of o-minimal structure, we can show the definition of the definable function.

Definition 5. [Definable function] Given an o-minimal structure O (over (R,+, ·)), a function
f : Rn → R is said to be definable in O if its graph belongs to On+1.

According to van den Dries & Miller (1996); Bolte et al. (2007b), there are some important facts of
the o-minimal structure, shown as follows.

(i) The o-minimal structure is stable under the sum, composition, the inf-convolution and
several other classical operations of analysis.

(iI) The collection of semialgebraic sets is an o-minimal structure. Recall the semialgebraic sets
are Bollean combinations of sets of the form

{x ∈ Rn : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0},

where p and qi’s are polynomial functions in Rn.

(iiI) There exists an o-minimal structure that contains the sets of the form

{(x, t) ∈ [−1, 1]n × R : f(x) = t}

where f is real-analytic around [−1, 1]n.

(iV) There exists an o-minimal structure that contains simultaneously the graph of the exponential
function R ∋ x 7→ exp(x) and all semialgebraic sets.

The Kurdyka-Łojasiewicz property for the smooth definable function and non-smooth definable
function were established in (Kurdyka, 1998, Theorem 1) and (Bolte et al., 2007b, Theorem 14),
respectively. Now we are ready to present the proof of Corollary 1.

Proof. [Proof of Corollary 1] To justify this corollary, we only need to verify the associated Lyapunov
function F satisfies Kurdyka-Łojasiewicz inequality. In this case and by (22), F can be rewritten as
follows

F (M,Γ,G) = α

(
L(M,Γ) +

1

2ν
∥M − Γ∥2

)
+Ω(Γ) + Ω∗(g)− ⟨Γ, g⟩.

Because L and σi’s are definable by assumptions, then L(M,Γ) are definable as compositions of
definable functions.

Moreover, according to Krantz & Parks (2002), ∥M − Γ∥2 and ⟨Γ, g⟩ are semi-algebraic and thus
definable. Since the group Lasso Ω(Γ) =

∑
g ∥Γ∥2 is the composition of l2 and l1 norms, and the

conjugate of group Lasso penalty is the maximum of group l2-norm, i.e. Ω∗(Γ) = maxg ∥Γg∥2,
where the l2, l1, and l∞ norms are definable, hence the group Lasso and its conjugate are definable
as compositions of definable functions. Therefore, F is definable and hence satisfies Kurdyka-
Łojasiewicz inequality by (Kurdyka, 1998, Theorem 1).

The verifications of other cases listed in assumptions can be found in the proof of (Zeng et al., 2019,
Proposition 1). This finishes the proof of this corollary.

23

Published as a conference paper at ICLR 2025

B.5 PROOF OF THEOREM 2

Our analysis is mainly motivated by a paper (Benning et al., 2017), as well as the influential work
(Attouch et al., 2013). According to Lemma 2.6 in Attouch et al. (2013), there are mainly four
ingredients in the analysis, that is, the sufficient descent property, relative error property, continuity
property of the generated sequence and the Kurdyka-Łojasiewicz property of the function. More
specifically, we first establish the sufficient descent property of the generated sequence via exploiting
the Lyapunov function F (see, (15)) in Lemma B.1 in Section B.1, and then show the relative error
property of the sequence in Lemma B.2 in Section B.2. The continuity property is guaranteed by the
continuity of L̄(M,Γ) and the relation limk→∞ Bgk

Ω (Γk+1,Γk) = 0 established in Lemma 1(i) in
Section B.1. Thus, together with the Kurdyka-Łojasiewicz assumption of F , we establish the global
convergence of SLBI following by (Attouch et al., 2013, Lemma 2.6).

Let (W̄ , Γ̄, ḡ) be a critical point of F , then the following holds

∂MF (M̄, Γ̄, ḡ) = α(∇L(M̄) + ν−1(M̄ − Γ̄)) = 0,

∂ΓF (M̄, Γ̄, ḡ) = αν−1(Γ̄− M̄) + ∂Ω(Γ̄)− ḡ ∋ 0, (37)

∂gF (M̄, Γ̄, ḡ) = Γ̄− ∂Ω∗(ḡ) ∋ 0.

By the final inclusion and the convexity of Ω, it implies ḡ ∈ ∂Ω(Γ̄). Plugging this inclusion into the
second inclusion yields αν−1(Γ̄− M̄) = 0. Together with the first equality imples

∇L̄(M̄, Γ̄) = 0, ∇L(M̄) = 0.

This finishes the proof of this theorem.

24

	Introduction
	Related work
	Method
	Mask-based pruning
	Differential inclusion for regularization weight family

	Convergence
	Experiments
	Main results
	Ablation studies
	Further studies

	Conclusion
	Experiments details and visualization
	Group Lasso
	More Related Works

	Proof of theorem 1
	Sufficient Descent Property along Lyapunov Function
	Relative Error Property
	Kurdyka-Łojasiewicz Property
	KL Property in Deep Learning and Proof of Corollary 1
	Proof of Theorem 2

