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Abstract

Offline reinforcement learning (RL) is a variant of RL where the policy is learned
from a previously collected dataset of trajectories and rewards. In our work, we
propose a practical approach to offline RL with large language models (LLMs).
We recast the problem as reward-weighted fine-tuning, which can be solved using
similar techniques to supervised fine-tuning (SFT). To showcase the value of our
approach, we apply it to learning short-horizon question-answering policies of a
fixed length, where the agent reasons about potential answers or asks clarifying
questions. Our work stands in a stark contrast to state-of-the-art methods in this
domain, based on SFT and direct preference optimization, which have additional
hyper-parameters and do not directly optimize for rewards. We compare to them
empirically, and report major gains in both optimized rewards and language quality.

1 Introduction

Reinforcement learning (RL) [60] is an area of machine learning where the goal is to learn a policy
that maximizes a long-term reward in an uncertain dynamic environment. Because of its generality
and broad applicability, RL has been studied extensively and many RL algorithms have been proposed,
including temporal-difference learning [59], Q-learning [68], policy gradients [70], and actor-critic
methods [61]. All of these algorithms learn from online interactions with the environment, which
is often not possible due to engineering and safety constraints. This motivates the need for offline
reinforcement learning [33, 79]. The key idea in offline RL is to collect a dataset of interactions
with the environment and then learn a policy from it, similarly to learning a classifier in supervised
learning [34]. Offline RL is especially suitable for problems where offline interactions are abundant
or can be easily simulated. As an example, question answering (QA) is an area at the intersection of
natural language processing (NLP) and information retrieval concerned with building systems that
answer natural language questions. Since many QA datasets exist [69, 42, 14, 22] and solving of QA
problems can be simulated using pre-trained large language models (LLMs) [49, 7, 6], several recent
works on QA focused on learning better QA policies using offline RL.

The main contribution of our work are two novel algorithms for offline RL with LLMs: Refit and
Swift. The key idea in Refit is to optimize a lower bound on the online RL objective, given by
the sum of the log-probabilities of logged trajectories weighted by their rewards. This objective has
two primary advantages. First, it does not involve ratios of token-level propensity scores, unlikely in
PPO [55] and GRPO [56]. This leads to a stable and practical algorithm. Second, the optimization
of the objective can be viewed as weighted fine-tuning and thus solved by a minor modification of
supervised fine-tuning (SFT), a standard post-training technique for LLMs. Motivated by GRPO [56],
we also propose Swift, which is a variant of Refit where we standardize trajectory rewards using
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multiple logged trajectories. The standardized rewards lower the variance in policy optimization and
may lead to learning better policies, as observed in our experiments (Section 4). We try to justify this
improvement theoretically in Appendix A.3.

To show the value of Refit and Swift, we apply them to learning multi-turn QA policies, where
the agent reasons about potential answers or asks clarifying questions. The closest related works are
Andukuri et al. [2] and Chen et al. [11], which use RL to learn clarifying questions from simulated
agent-teacher conversations. Andukuri et al. [2] choose the most rewarding trajectories and fine-tune
on them. Chen et al. [11] generate alternative responses for each step of the conversation and then
optimize for better responses using DPO [50]. The main limitation of these approaches is that they do
not fully utilize the reward signal; they only use it to turn the original problem into an SFT or DPO
problem. We directly optimize for rewards using RL. We observe major gains over SFT and DPO in
experiments (Section 4) because an indirect optimization of rewards results in information loss.

We make the following contributions:

1. We formulate a generic RL problem that encompasses conversation optimization. We do not
make any strong assumption on rewards. Our setting captures fixed-horizon conversations
and adaptive ones, when the conversation can stop at any time, for instance because enough
information to answer the question has been gathered.

2. We derive an offline RL objective, which is a lower bound on the online RL objective. As a
result, the online objective is optimized by maximizing the offline one. The offline objective
is equivalent to weighted fine-tuning and hence can be optimized in LLMs using standard
SFT training primitives. The weights are over sequences of tokens, unlike individual tokens
in prior works [51, 18, 74, 78]. We also avoid propensity score ratios [55, 56].

3. We derive an offline RL objective with standardized rewards. The standardized rewards
lower the variance in policy optimization and in this way improve learned policies. We show
this empirically in Section 4.

4. We comprehensively evaluate our approach on multi-turn QA problems over datasets span-
ning open book exams, textual information for science topics, conversational text-to-SQL
dataset, and mathematical dialogue and problem solving. Although we optimize a single
reward, we observe improvements in all other metrics, such as reasoning ability, pedagogical
value, and confidence. We consider five baselines: two variants of SFT, two variants of DPO,
and the original policy. We observe major gains over SFT and DPO because we optimize
the reward signal directly using RL.

5. For each QA benchmark, we generate a dataset of 500 multi-turn conversations. We give
instructions for reproducing the datasets, including all prompts and example conversations,
in Appendices E and F.

The paper is organized as follows. We present our setting in Section 2. In Section 3, we formulate
our offline RL objectives and show how to optimize them using weighted fine-tuning. We report our
results in Section 4 and discuss related work in Section 5. We conclude in Section 6.

2  Setting

We start with introducing our notation. We denote the marginal and conditional probabilities under
the probability measure p by p(X = x) and p(X = x | Y = y), respectively; and write p(x) and
p(x | y) when the random variables are clear from context. The indicator function is 1{-}. For a
positive integer n, we define [n] = {1,...,n}. The i-th entry of vector v is v;. If the vector is already
indexed, such as v;, we write v, ;.

We view the problem of learning multi-turn conversation policies as a generic reinforcement learning
problem [60] where an agent interacts with an environment. The agent takes actions conditioned on
the conversation history and the environment responds. When the conversation ends, it is given a
reward. The reward measures the quality of the conversation and the agent maximizes it.

We formalize the problem as follows. The agent first observes context x € S, where S is the space of
all strings, each represented as a sequence of tokens. The context defines the task. The conversation
between the agent and environment consists of steps indexed by ¢ € N, where N is a set of positive



integers. In step ¢, the agent takes an action a; € S and the environment responds with an observation
y: € S. The conversation is a trajectory 7, = (a1, Y1, .- ., an, yn) of n actions and observations.
The number of steps n can be fixed or a random. When it is random, it can be any function of the
conversation history. The reward is a non-negative function of z and 7,, denoted by r(z, 7,) > 0,
and measures the quality of the conversation. We do not make any additional assumptions on the
reward, such as that it factors over individual steps. This is to maintain generality and because our
algorithms (Section 3) do not require it.

The agent follows a policy conditioned on the conversation history. Specifically, the probability that
action a is taken in context = and history 74— is w(a | x,7¢—1;6), and is parameterized by 0 € ©.
We call 6 a policy and © the space of policy parameters. The probability of observing y; conditioned
on conversation history 7;_1 and action a; is denoted by p(y; | =, 7:—1, a;). We slightly abuse our
notation and denote the probability of trajectory 7,, in context = under policy 6 by

n
(7 | 25 0) = Hp(yt |z, -1, a) mlag | 2,713 0) - ey
t=1
The factorization follows from the chain rule of probability. The expected value of policy €, where ¢
is a distribution over contexts x, is

V(@) = Ea;wq,anﬂ'Hw;a) [T(I7 Tn)} . 2)
Our goal is to learn a policy that maximizes it, §, = argmax gcg V' (6).

Our framework is sufficiently general to model multiple use cases. For instance, suppose that we
want to maximize the pedagogical value of a conversation over n steps [53]. Then r(z, 7,,) would
be the aggregated pedagogical value of 7,, over n steps. As another example, suppose that we want
to learn to clarify an ambiguous question z by asking n questions [2, 11]. Then r(z, 7,,) would be
the quality of the generated answer conditioned on x and 7,,. Finally, suppose that the number of
clarifying questions is adaptively chosen by the agent, after enough information has been gathered
[32]. Then r(z, 7,,) would be the quality of the generated answer discounted by ™ for v € (0, 1).
The discounting prevents the agent from asking clarifying questions indefinitely since the reward
diminishes with the number of steps n. In this case, the number of clarifying questions n is random
and decided by the agent.

3 Algorithms

Our objective is to maximize the expected policy value V() in (2). This can be done in a myriad
of ways [60]. The most natural approach for complex policies, like those represented by LLMs, are
policy gradients [70]. The key idea in policy gradients is to update the policy 6 iteratively by gradient
ascent. The gradient of V() at 0 is

VV(Q) = Ea:wq, T~ (s|z;0) [7“(.’17, Tn)v logﬂ-(Tn | €T 9)]

and can be derived by a direct application of the score identity [1]. The computation of this gradient
is challenging in real-world problems for two reasons. First, since the trajectories 7,, are sampled
under the optimized policy 6, they need to be resampled when 8 changes, in each step of gradient
ascent. Second, a reward model r(x, 7,) is needed to evaluate any potentially sampled trajectory.

To address these challenges, we resort to offline reinforcement learning [33, 79, 34]. The key idea in
offline RL is to collect a dataset of trajectories and their rewards once, and then learn a policy from it,
akin to learning a classifier in classic supervised learning. We denote the data logging policy by 7
and the probability of generating a trajectory 7,, in context x using policy 7o by 7o(7,, | ). A classic
result in control [16] and statistics [25] is that propensity scores,

w(7n | z;0)
mo(7n | @)
can correct for selection bias in the logged dataset. Simply put, the optimization of (2) is equivalent
to maximizing propensity-weighted rewards on a dataset of trajectories collected by another policy
mo. The main challenge with optimizing (3) is that the ratios of the propensity scores can be high.
This can be addressed by clipping [28] at a token level, which is the key idea in both PPO [55] and

GRPO [56]. We discuss differences from these methods at the end of Section 3.1. Now we outline
our approach of reward-weighted fine-tuning for offline RL.

V(@) = Ew~q,m,~7f(~|w;9) [T(I, Tn)] = EJJN(],T”NTFU("(L‘) r(szn) , 3)



3.1 Reward-Weighted Fine-Tuning

The key idea in our work is to maximize a lower bound on (2). While this bound is tight only when
(- | +;0) = mo, it leads to a practical offline RL algorithm that can be implemented using weighted
fine-tuning without introducing propensity score ratios. We build on the lower bound in Liang and
Vlassis [36] and extend it to offline RL.

Lemma 1. For any policies m and my, and any non-negative reward function,
Eiwq,TnNﬂ'('\w;@) [7”(.2?, Tn)] > Ewwq,TnN‘fro(-|m) [T(Z‘, Tn) logﬂ-(Tn | €T 9)] +Ch,

where C1 = Eyoq 7, oo (-|2) (2, Tn) (1 = log mo (7 | )] > 0 is a constant independent of 6.

Proof. Using basic algebra,

w(Tn | 2;0)
Bing, ramn(lz:0) [M(@ Tn)] = Bang, 7mmo(-12) [T(l"Tn)7"0(7'n|17):|
(Tn | 2;0)
> Egrg, rummo(-l2) [r(f’T") (1 +log 7'&'0(7'|$)):|

= Eypmg, rmmo(-|2) [1(2, o) log (T | 250)] + C1 .

The inequality follows from u > 1 + log v and non-negative rewards. O

The bound is loose in practice because we apply v > 1+ log u for a potentially large w. The result of
Lemma 1 is that

J(0) = Epg, 7 momo () [7(2, 7)) log (T | 23 6)] )

is a lower bound on (2). Because (4) is equal to (2) when 7 (- | -; §) = g, a policy that improves (4)
also improves (2). Next we show that (4) is equivalent to reward-weighted fine-tuning. To see this,
we plug the definition of the trajectory probability (1) into (4) and get

n

J(0) = Egrg, rpmmo(|2) |7(25 ) Zlog m(as | @, 1e-1;0)| + C, 5)

t=1

where C' = By g 7o (o) (@, Tn) 2opq 108 p(ys | @, Ti—1, as)] represents the log-probabilities
of observations weighted by trajectory rewards. Because the observation probabilities do not depend
on 6 (Section 2) and neither does 7, ~ mo(- | x), C' is a constant independent of 6. As a result, the
maximization of (5) is equivalent to maximizing n log-probabilities of actions a; | x, 74— weighted
by trajectory reward r(x, 7,,). One natural interpretation of our approach is that we maximize the
likelihood of the trajectories proportionally to their rewards, by equally attributing the reward to each
action in the trajectory. Our objective can also be viewed as weighted fine-tuning with n terms. The
terms are correlated because they belong to the same trajectory and are weighted by the same reward.
We compare (5) to other RL objectives in LLMs next.

PPO, GRPO, and Q-SFT. Let a; ; be the i-th token in action a; and a;,«; be the first ¢ — 1 tokens in
action a;. Then the objective of PPO [55] in our problem can be written as

n
Eazwq, Trn~mo(+]z) Z Z min{Pt,i At,i7 Chp(Pt,i7 1-— €, 1+ 6) At,i} 5 (6)
t=1

i

where P, ; = m(a; | ©, Te—1, ar,<i;0)/mo(ar,i | ©, Te—1, ar <;) is the ratio of token-level propensity
scores for the i-th token in action a;, A ; is the corresponding advantage, and clip clips the propensity
scores to [1 — €, 1 + €] for some € € [0, 1]. Our objective differs in two key aspects. First, (5) does
not involve token-level propensity score ratios, which can be large and cause numerical instability. In
PPO, this is typically mitigated by tuning e. Second, the computation of the advantage A, ; requires
learning a reward model [54], which is yet another estimation problem. GRPO [56] can be viewed as
PPO where A, ; in (6) is estimated using standardized rewards obtained by simulation. Therefore, the
main difference in (5) is that it does not involve token-level propensity score ratios. Finally, Q-SFT of
Hong et al. [24] maximizes Y, >, Q¢ logm(a; | x,7i—1, ar,<i;0), where Qy ; is the Q-function
estimate for the ¢-th token in action a, that depends on its reward, the ratio of propensity scores for



the next token, and maximization over it. To summarize, our objective does not involve token-level
propensity score ratios, which can be large and cause numerical instability.

STaR-GATE and StepDP0. Now we compare (5) to related works in conversation optimization using
RL. These methods are the state of the art in our domain and we compare to them empirically in
Section 4. Andukuri et al. [2] apply SFT to most rewarding trajectories, which can be viewed as
replacing r(z, 7,,) in (5) with an indicator that the trajectory has a high reward. Chen et al. [11] learn
to take the best action in each step by maximizing the negative DPO loss, which can be viewed as
replacing each term in (5) with the DPO loss. We observe major empirical gains over both of these
works because they do not fully utilize the reward signal; they only use it to turn the original problem
into a corresponding SFT or DPO problem.

3.2 Algorithm Refit

Our algorithm is an iterative optimization of (5). We call it reward-weighted fine-tuning (Refit) and
give its pseudo-code in Algorithm 1. The input to Refit is a dataset D = {(x, 7,,7)} collected by a
data logging policy 7y. The dataset is generated as follows. First, we sample context x ~ g. Second,
we sample trajectory 7, ~ 7o (- | ) and get its reward r(z, 7;,). Finally, we add (z, 7, 7(2, 7,)) to
the dataset and repeat this process until D is generated.

The policy 6 is optimized by gradient ascent. The gradient of J(6) at 6 is

v‘](a) = Ezwq,‘rn~7r0(~|m) r(x7Tn)Zv10gﬂ-(at | xaTt—l;e) . @)

t=1

The optimization is iterative. In iteration ¢, we  Algorithm 1 Refit /Swift
approximate V.J(6) by the gradient g; on a sin-
gle trajectory (z,7,,r) € D. Since the trajec-
tories are generated i.i.d., g; is an unbiased esti-
mate of (7). After g; is computed, we update the
policy as 0 + «;g;, where o; > 0 is a learning
rate. The optimization ends after a single pass
over the dataset but more passes are possible.
We note that g; is algebraically equivalent to the
gradient on n SFT data points weighted by the
same reward. Therefore, we implement Refit
by modifying SFT in TRL [64].

1: Input: Learning rate schedule («;)ien
2: Generate a logged dataset D = {(x, 7,,7)},
where » € R is a reward of 7,, (Refit) or a
standardized reward of 7,, (Swift)
Initialize 6 and 7 < 1
for all (x,7,,r) € Ddo
gi < TZ?:1 Viogn(as | z,7-1;0)
0+ 0+a;g;,andi i+ 1
Output: Learned policy 6

N kR®

3.3 Standardized Reward-Weighted Fine-Tuning

One challenge with (7) is that the empirical variance of the estimator can be high. As an example,
let the rewards be in [9, 10]. Then the gradient would be scaled by 10 instead of 1, which could be
obtained by subtracting 9 from all rewards. This motivated many prior works on variance reduction
in policy gradients [61, 5, 45]. This also motivates our work on optimizing standardized rewards. We
start by showing that the optimization of standardized rewards is equivalent to optimizing (2) under
certain assumptions.

Lemma 2. Let pi(x) > 0 and o(x) > 0 be any non-negative functions of context x. Let 7(x,T,) =
(r(x, ) — p(x))/o(x) be the standardized reward. Suppose that there exists 0, that maximizes all
Er on(|z:0) (@, Tn) | 2] jointly. Then it also maximizes

]Erwq,rnrvrr(-\m;G) [’F(x,’l’nﬂ . (8)

The proof is in Appendix A.l. The key assumption in Lemma 2, that there exists 6, that maximizes
all E; < r(.|a:0) [r(2, 7) | 2] jointly, is expected to be satisfied or near-satisfied when the policy class
is rich, such as when represented by an LLM. This is because the policy is conditioned on x.

In the rest of this section, we derive an offline variant of (8) with similar desirable properties to (4) in
Section 3.1. The challenge with applying the same reasoning is that the standardized rewards 7(z, 7,,)
can be negative. The error of our approximation is characterized below.



Lemma 3. For any policies 7 and my, and any rewards in [—b, b),

B, rumr(-12:6) [F(@ )] = Egrsg, rymmo (1) [F(2, Tn) log (7 | 230)]] < [C1] + Ca,

where C1 is a constant independent of 0 defined in Lemma | and

Cy=b max (“T'”)_ (mog”(%'”“”» .

0€O, x, T, 7T0(Tn | .’E) 770(7—71 | .’E)

The proof is in Appendix A.2. Lemma 3 says that the difference between the online objective in (8)
and its offline counterpart

J(0) = Eprg, rpomo(-|2) [T (2, T0) log m(7y, | 25 0)] 9)

is O(|C1| 4+ C2). While C5 can be large, because it depends on the ratios of propensity scores, it is on
the same order as the gap in Lemma 1. This is because the key step in the proof of Lemma 1 is that
we apply u > 1 + logu for u = 7(7,, | «;0)/mo(7y | ). The main difference from Lemma I is that
we do not get a proper lower bound. Using the same reasoning as in Section 3.1, the maximization of
(9) is equivalent to fine-tuning on n data points (as, x, 7+—1) weighted by the standardized trajectory
reward 7(z, 7,,). The terms are correlated because they belong to the same trajectory and are weighted
by the same reward.

We implement the optimization of (9) using Algorithm 1. The only difference is that the rewards are
standardized and thus we call this method standardized reward-weighted fine-tuning (Swift). The
logged dataset D = {(x, 7,,,7)} is generated as follows. First, we sample x. Second, we sample m
trajectories 7, ; ~ mo(- | ) for ¢ € [m] and compute their rewards r(z, 7, ;). Third, we estimate the
mean reward () and the standard deviation of rewards o (z) as

1 & 1 &
~ _ ) N _ N5 2
o) = 2 D) 6(e) = \| oy Do) = (),
respectively. Finally, we standardize all rewards as 7(z, 7, ;) = (r(z, Tn;) — fi(x))/6(x) and add
all (z, 7, ,,7(x, Ty,;)) to the dataset. This process is repeated until D is generated. Note that the cost
of the standardization, computing /i(x) and &(x), is O(mn). So it is of the same order as sampling
m trajectories of length n and thus negligible.

4 Experiments

We evaluate our methods on 6 datasets. OpenBookQA [42], ARC [14], SciQA [69], and MMLU [22]
are standard QA benchmarks. We convert a text-to-SQL conversation dataset CoSQL [71] and math
tutoring dataset MathDial [40] into QA-style conversational datasets. Our datasets cover various
domains and show that we learn better policies in most cases. The datasets are described in more
detail in Appendix D.

We generate 500 tasks for each dataset and report the average performance over the tasks per dataset.
Each task is a conversation of length n = 3 between an agent represented by an assistant and the
environment represented by a teacher. We experiment with two kinds of the tasks. In reasoning
experiments, the teacher asks the assistant to solve the problem in step 1, encourages it to think deeper
in step 2, and asks for a final answer in step 3. The prompts and conversation examples are reported
in Appendix E. In clarifying-questions experiments, the assistant is also encouraged to ask questions
and the teacher answers them. The prompts are conversation examples are reported in Appendix F.
We experiment with both thinking and standard modes. The difference in the thinking mode is that
the assistant reasons within <thinking> tags before responding. The assistant is implemented using
Llama-3.1-8B-Instruct. In reasoning experiments, the teacher is scripted. In clarifying-questions
experiments, the teacher is implemented using a combination of scripting and Llama-3.1-8B-Instruct.
The model and training parameters are reported in Appendix G. We solve each task 3 times with
different temperatures. The three runs are used for reward standardization in Swift, and to implement
Andukuri et al. [2] and Chen et al. [11].

We report multiple metrics. The most fundamental measure of performance is Accuracy, which is
the proportion of questions whose answers match the correct (gold standard) answer. We report the



percentage of times that the model outputs <thinking> tags as Thinking. This shows how well the
model follows reasoning instructions. We also report six conversation reward metrics computed
by a GPT-40 judge (Appendix E): 1. Overall: A summary of the following 5 scores. 2. Accuracy:
Did the assistant select the correct answer? 3. Reasoning Ability: Was the reasoning logical, clear,
and precise? 4. Comprehensiveness: Were alternative options properly addressed? 5. Pedagogical
Value: Would this explanation help someone learn? 6. Confidence Calibration: Was the assistant’s
confidence in giving the final answer appropriate? These metrics are reported with a prefix “R” in our
tables. The reward in all RL algorithms is the overall reward rescaled to [0, 1].

We consider five baselines. The first baseline is the original policy, and we call it Base. We expect
to outperform Base due to learning. All other baselines are offline RL algorithms. To have a fair
comparison, we use the same dataset of sampled trajectories in all of them. The only difference is in
how the dataset is used. STaR-GATE [2] learns policies by supervised fine-tuning on most rewarding
trajectories. This is akin to reward signal thresholding, into the trajectories used for learning and not.
We improve this baseline by distillation, as done in Andukuri et al. [2], and call it STaR-GATE-D. The
fourth baseline is motivated by Chen et al. [11]. The key idea in Chen et al. [11] is to generate a new
trajectory in each step of the original trajectories, and then determine winning and losing actions in
that step based on the corresponding trajectory reward. After this, DPO is used to learn the winning
actions. We call this baseline StepDPO. The main limitations of STaR-GATE and StepDPO are that
they do not fully utilize the reward signal; they only use it to turn the original problem into an SFT or
DPO problem. We directly optimize for rewards using RL. The last baseline is DP0O, where the final
winning and losing responses are used to solve the original problem without asking any questions.
This baseline shows what is attainable without a conversation. Our algorithms Refit and Swift are
implemented as described in Section 3. We expect Swift to outperform Refit because reward-based
learning tends to be sensitive to the scale of rewards [61, 5, 45].

Reasoning experiments. We report our results on all six datasets in Tables 1-12, in both thinking
and standard modes. The best result is highlighted in bold and the second best result is underlined.
The confidence intervals are standard errors of the estimates. The training times of all RL methods
are comparable because they optimize the same LLM agent on similar datasets.

We observe the following trends. First, in terms of accuracy, Swift wins in 7 experiments out of 12
and is among the best two methods in 10 experiments out of 12. Although Swift maximizes the
overall reward, it performs extremely well in all 5 reward metrics. In particular, most of its reward
metrics are among the top two in 9 experiments out of 12. Refit performs significantly worse than
Swift in 3 experiments: thinking OpenBookQA, standard MMLU, and standard CoSQL. Overall
though, it is among the best two methods in 9 experiments out of 12. The gap from Refit is smaller
than expected because SFT in TRL [64] is implemented with adaptive optimizers [31], which adapt
to the scale of the gradient and thus partially mitigate poorly scaled rewards.

The best two baselines are STaR-GATE and STaR-GATE-D. This shows the robustness of RL through
SFT, the key idea in Andukuri et al. [2], which can be further improved by distillation. As discussed
earlier, our work can be viewed refining this idea, where we weight the SFT update by the actual
reward of the trajectory instead of an indicator of having a high reward (Section 3.1). The advantage
of our formulation is that it has no additional hyperparameter that decides which trajectories have
high rewards, and can be properly related to the original objective (Lemma 1) and its standardization
(Lemma 3). The worst baseline is Base and this shows the value of learning. We show differences in
Base and Refit conversations in Appendices E and F. We also visualize the difference using UMAP
[41] in Appendix H.

Clarifying-questions experiments. We report our results on OpenBookQA and SciQA datasets in
Tables 13 and 14. In both experiments, the accuracies of Refit and Swift are higher than those
of the baselines. Although Refit and Swift do not attain the highest conversation reward metrics,
they are comparable to the best baselines. Comparing to the reasoning experiments, the accuracies of
answers drop significantly. This shows that, at least in the benchmarks that we experiment with, the
value of reasoning about answers is higher than that of asking clarifying questions.

Ablation studies. In Appendix B, we ablate the conversation length n and logged dataset size. In
addition, to alleviate the concern that our evaluation is biased due to using a single GPT-40 judge, we
report results with a Claude 4 Opus judge.



Table 1: Model Performance Comparison - Thinking Mode (ARC)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 07993 £0.0236 97.9+0.0 | 7.19+0.14 8.12+0.17 7.46+0.12 6.60 + 0.11 695+013 7.75£0.17
Refit (ours) 0.7889 +0.0240 97.9+0.0 | 7.12+0.14 8.03+0.17 7.37+0.13 6.56 + 0.11 6.88+0.14  7.66 +0.18
DPO 0.6471 £ 0.0281 87+0.0 572+0.18 684+£022 6.05+0.16 530+ 0.15 521+£0.17 6.02£0.21
STaR-GATE 0.6990 £+ 0.0270  90.04+0.0 | 6.67+0.17 748 +£020 6.94+0.16 6.22+0.14 6.50+0.16 7.11+0.21
Base 03772 £0.0146  75.1+0.0 | 647+0.12 7.32+0.14 6.56=+0.11 5.80 £+ 0.09 6.40+0.11 6.92=£0.16
STaR-GATE-D 0.7578 £0.0252  239+0.0 | 547+0.16 699 +020 5.65+0.16 4.83+0.14 474+£0.16  595+0.19
StepDP0 0.6401 £ 0.0282 8.0+ 0.0 546+0.18 6.60+022 576+0.17 5.04+0.15 488+0.17 583+0.21

Table 2: Model Performance Comparison - Thinking Mode (MMLU)

Model Accuracy Thinking (%) | ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.7032 +0.0367 97.44+0.0 | 559+£022 642+026 5.94+0.20 5.10+0.18 5234020 6.144+0.26
Refit (ours) 0.7097 +0.0365 98.1+£0.0 | 5594022 643+026 5944020 5.06 £0.18 519+£020 6.11£0.26
DPO 0.6387 £ 0.0386 7.1+£0.0 477+£023 571+£029 5.09+022 435+0.20 4244022 507+028
STaR-GATE 0.6000 +0.0393  81.34+0.0 | 534+024 591+029 5.70+0.22 4.98 +£0.20 515+022 5.63+£029
Base 0.2774 £0.0127  53.54+0.0 | 587 £0.16 6.57 +0.20 6.03 £ 0.15 5.19 £ 0.14 597+0.15  6.19 +0.22
STaR-GATE-D  0.5548 £0.0399  252+0.0 | 423+0.23 496+028 4.57+0.22 3.934+0.20 377+021 4344027
StepDPO 0.6387 £ 0.0386 52+00 494+023 5.88+028 526+0.21 4.50 £0.20 445+022 5314028

Table 3: Model Performance Comparison - Thinking Mode (OpenBookQA)

Model Accuracy Thinking (%) ‘ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.6814 +£0.0310  96.5+0.0 | 6.16+0.21 6.86+0.24 6.49 + 0.19 5.89 +0.15 599+019 6.52+0.25
Refit (ours) 0.6504 +0.0317 96.54+0.0 | 584+022 6.63+026 6.12+0.21 5.58 £0.17 5624021 6.2540.26
DPO 0.6195 £+ 0.0323 106 £0.0 | 509+021 621+027 535+0.20 4.82+0.18 447+£020 555+0.25
STaR-GATE 0.6549 £0.0316  9254+0.0 | 6.01+£021 6.68+025 6.35+0.20 5.80+0.16 5784+£0.20 6.364+0.26
Base 03628 £0.0175 743 +00 |5994+0.15 6.774+0.19 6.15+£0.14 543 +0.12 5954+0.14  6.314+0.20
STaR-GATE-D  0.6903 +0.0308 208 £0.0 | 521 4+0.19 6.64+025 540+0.18 473 +£0.16 435+£0.17 570+0.23
StepDPO 0.6106 £ 0.0324 11.5£00 | 490+021 6.14+027 5.06=+0.20 4.56 +£0.18 429+£020 533+£025

Table 4: Model Performance Comparison - Thinking Mode (SciQA)

Model Accuracy Thinking (%) | R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 09248 +0.0175  99.1+0.0 | 7.61 £0.12 8.84+0.14 7.73+£0.11 6.76 + 0.10 7.114+0.13 845+ 0.15
Refit (ours) 0.91594+0.0185 960+0.0 | 7.64+0.12 887 +0.14 7.76+0.11 6.81 £ 0.10 713+£012 843 +£0.15
DPO 0.7920 £ 0.0270 584+0.0 596+0.18 7.61+022 6.08+0.18 529+0.16 514 +£0.18 6.50£022
STaR-GATE 0.8186 +0.0256 903 +0.0 | 7.08 £0.18 8.17+0.21 7.27+0.16 6.49 £0.14 6.69 £0.17  7.69 £0.21
Base 0.4956 +0.0076  73.54+0.0 | 7.00£0.10 8.12+0.11 7.03+£0.10 6.11 +0.09 6.84+0.11 7.78+0.13
STaR-GATE-D  0.9027 £0.0197 21.7+0.0 | 6.58+0.16 8.19+0.18 6.72+0.16 578 £0.14 5734+0.17 7.2440.18
StepDPO 0.8186 =+ 0.0256 7.5+0.0 629 £0.18 7.87+021 6.36+0.18 5.57£0.16 542+0.18 6.89 £0.22

Table 5: Model Performance Comparison - Thinking Mode (CoSQL)

Model Accuracy Thinking (%) ‘ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.6500 +£0.0435  96.7+0.0 | 487+0.21 556+027 526+0.19 4.62+0.15 4234+£0.16 5224029
Refit (ours) 0.6500 & 0.0435 99.24+0.0 | 491 +£021 552+027 528+0.18 4.63 +£0.15 422+£0.17 539+031
DPO 0.5167 £0.0456  60.0+0.0 | 434+£0.19 485+025 472+0.17 427+0.15 400+£0.16 429+0.28
STaR-GATE 0.6167 £0.0444  90.0+00 | 5284024 5784+0.30 551+0.22 5.19 £ 0.16 490+£020 5.54+033
Base 0.2000 £0.0143 6584+ 0.0 | 5.65+0.17 6.17 £0.22 5.88 +0.15 5.16+0.13 584+ 015 5.8740.27
STaR-GATE-D  0.4917 £0.0456  57.5+0.0 | 3.944+0.17 449+022 445+0.16 3.894+0.14 3584015 3744025
StepDP0 0.5250 £0.0456  60.0+0.0 | 437+£020 482+026 481+0.18 426 +0.15 408 +£0.18 438+029

Table 6: Model Performance Comparison - Thinking Mode (MathDial)

Model Accuracy Thinking (%) | R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 01933 £0.0228  99.3 £+ 0.0 1.88£0.07 191+0.07 242+0.07 2.15 4+ 0.07 1.83+£0.07 1.61+0.09
Refit (ours) 0.0867 +£0.0162  100.0 £0.0 | 2384+0.07 233+007 3.134+0.08 2.56 £ 0.08 243 £0.07 1.63 £ 0.07
DPO 0.1467 £0.0204  25.0+0.0 1.61 £0.05 1.63+0.06 2.23+0.05 1.78 £0.07 1.56 £0.05 1.40 £0.06
STaR-GATE 0.0467 +£0.0122  100.0 + 0.0 | 2.46 = 0.06 2.40 +0.07 3.28 + 0.07 2.65 £ 0.07 245+0.07 1.53+£0.05
Base 0.0000 £ 0.0212  87.74+0.0 | 2.01 £0.06 2.28+0.07 2.67+0.07 1.77 £ 0.05 220+£0.07  1.39£0.09
STaR-GATE-D  0.1167 £0.0185  95.0 £ 0.0 1.69+£0.06 1.71 £0.06 2.30 +0.07 1.81 £ 0.06 1.63 £0.06  1.35+£0.06
StepDPO 0.1467 £ 0.0204  25.7+0.0 1.58£0.05 1.61+0.06 2.21+0.06 1.72 £ 0.06 1.53+£0.05  1.40 £ 0.06

5 Related Work

We briefly review related work in three paragraphs: classic RL, RL with large language models, and
supervised learning. A more detailed review is in Appendix C.

Classic RL. Conversation optimization using offline RL [29] is a classic topic and Section 6.6 of
Levine et al. [34] reviews it in detail. Zhou et al. [79] propose online and offline policy gradients for



Table 7: Model Performance Comparison - Standard Mode (ARC)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.7778 + 0.0289 0.0+ 0.0 726 +£0.19 8.04£022 7.51+0.17 6.76 + 0.14 7.124+0.18  7.82£0.23
Refit (ours) 0.7729 + 0.0291 0.0 +£0.0 723+0.19 798+022 7.44+0.18 6.80 + 0.14 7.03+0.18  7.66 +0.23
DPO 0.6377 £ 0.0334 0.0+£0.0 5.68+£020 651+025 6.06+0.18 541 +0.16 526£0.19 578£0.25
STaR-GATE 0.7971 £ 0.0280 0.0 +0.0 749 +£0.18 8.25+0.21 7.67+0.17 6.93 +0.14 736 £0.17  8.02 +0.22
Base 0.5652 + 0.0142 0.0 £0.0 6.87 +0.14 7.68+0.18 697 +0.13 6.25+0.11 6.75+0.14  7.21 +£0.20
STaR-GATE-D  0.7101 £ 0.0315 0.0+£0.0 595+0.18 6.96+022 6.29+0.17 5.56 +0.14 5424017 6.18+0.22
StepDP0 0.6280 =+ 0.0336 0.0+0.0 576 +0.20 6.55+025 6.19+0.18 554+0.15 5434+0.19 5844025

Table 8: Model Performance Comparison - Standard Mode (MMLU)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours)  0.7218 £ 0.0389 0.0+£0.0 6.08+0.25 6.88+0.29 6.32+0.23 5.50 +0.21 5.80+0.23  6.71 4+ 0.30
Refit (ours) 0.6917 £ 0.0400 0.0 + 0.0 593+026 6.72+031 6.23+0.24 542 4+0.21 556 +0.25 636+ 0.31
DPO 0.5489 £ 0.0431 0.0+£0.0 486 £025 552+£031 530+£023 461 £0.21 456 £023 492+030
STaR-GATE 0.6842 + 0.0403 0.0+0.0 593+0.26 6.68+031 620+0.25 5414022 559+025 6.41+0.31
Base 0.3008 £ 0.0165 0.0+£0.0 5974+0.19 6.74+023 6.16+0.18 532+0.16 595+0.18 6.11+0.26
STaR-GATE-D  0.5940 + 0.0426 0.0 +£0.0 498 +025 575+£030 529+0.24 4.65+0.21 4.53+024 5264031
StepDP0 0.5263 + 0.0433 0.0+0.0 477+£026 544+£032 5.17+025 449 +0.22 4.38+023 4944031

Table 9: Model Performance Comparison - Standard Mode (OpenBookQA)

Model Accuracy Thinking (%) | R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours)  0.7662 £ 0.0299 0.0+ 0.0 6.85+0.21 7.73+0.24 7.09 +0.19 6.42 +0.15 6.59 +0.20 7.45+0.25
Refit (ours) 0.7562 + 0.0303 0.0 +0.0 673 £021 7664025 6.96+0.20 6.29 £0.16 643 £021 7.25+025
DPO 0.5025 £ 0.0353 0.0+0.0 495+021 549+£026 543+0.19 5.04+£0.16 4.66+020 4.95+0.26
STaR-GATE 0.7512 £ 0.0305 0.0+ 0.0 6.69 £0.22 7.54+025 6.96+0.20 6.27 £0.16 6.50+£0.21  7.23+£0.26
Base 0.4328 £ 0.0180 0.0+ 0.0 6.22+£0.16 695+021 6.37+0.15 5.65+0.13 6.124+0.15  6.514+0.21
STaR-GATE-D  0.7114 £ 0.0320 0.0 +£0.0 584+0.19 696+024 621+0.18 552+0.15 524+£0.18 6.21+£023
StepDPO 0.5174 £ 0.0352 0.0+ 0.0 492+022 554+£027 536+0.20 497 £0.17 4.65+020 4.97+0.27

Table 10: Model Performance Comparison - Standard Mode (SciQA)

Model Accuracy Thinking (%) | ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours)  0.9502 £ 0.0153 0.0+ 0.0 8.04 £0.12 9.13+0.13 8.12+0.11 7.17 £0.10 7.71+£013 8.88 £0.15
Refit (ours) 0.9453 + 0.0160 0.0 +0.0 8.04+0.12 908+0.14 8.11+0.11 7.20 +0.10 7.694+0.13 88740.15
DPO 0.7612 £ 0.0301 0.0+0.0 641 +£0.19 744+023 6.72+0.17 6.00 £0.15 6.02+£0.19 678 £0.23
STaR-GATE 0.9005 + 0.0211 0.0+£0.0 7.854+0.16 8.88+0.18 7.98+0.14 7.06 +0.13 7.524+0.16  8.624+0.19
Base 0.6517 £ 0.0086 0.0+ 0.0 748 £0.10 856+0.11 7.52+0.10 6.55 £ 0.09 7.34+£0.10 8.10=£0.13
STaR-GATE-D ~ 0.9005 =+ 0.0211 0.0+ 0.0 6.90 £0.15 839+0.17 7.13+0.14 6.20 £0.13 6.03+£0.16 7.42+0.18
StepDP0 0.7463 £ 0.0307 0.0+0.0 6.234+020 725+024 652+0.19 5.88 +£0.16 578£0.19  6.53£025

Table 11: Model Performance Comparison - Standard Mode (CoSQL)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.6583 + 0.0433 0.0+ 0.0 545+024 597+030 5.72+0.22 5.28 +£0.17 495+021 5.85+0.33
Refit (ours) 0.6250 + 0.0442 0.0 +0.0 516+ 024 564 +030 5474022 4.99 +0.18 472+020 5524032
DPO 0.2833 £ 0.0411 0.0+£0.0 419+£020 437+£025 479+£0.19 449 £ 0.15 4.13+£0.17 3.69+027
STaR-GATE 0.6083 + 0.0446 0.0+£0.0 5344025 581+031 5654023 5.26+0.18 4994022 5574034
Base 0.1250 £+ 0.0117 0.0 £0.0 5384+0.16 5.88+022 5.66+0.15 492 +0.12 549+ 0.14 5.13+0.24
STaR-GATE-D  0.2083 + 0.0371 0.0 +£0.0 3.62+0.19 382+023 425+0.18 4.02+0.16 373+£0.17 3.03£0.26
StepDPO 0.2917 £ 0.0415 0.0+0.0 421+020 445+026 4.85+0.18 450 +0.15 410+£0.17 3734028

Table 12: Model Performance Comparison - Standard Mode (MathDial)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.0967 +0.0171 0.0+0.0 2434+0.07 241+0.07 3.09+0.08 2.68 +0.07 2.45+0.07 1.66 + 0.07
Refit (ours) 0.0600 & 0.0137 0.0 £0.0 243 +0.07 2.50+0.08 3.15+0.08 2.68 + 0.07 2.41 4+ 0.08 1.63 4+ 0.07
DPO 0.2100 £ 0.0235 0.0+£0.0 1.85+0.06 1.90+0.07 2.41+0.06 2.00 £ 0.07 1.77+£0.06  1.58 £0.07
STaR-GATE 0.1067 £ 0.0178 0.0+0.0 2294+0.07 225+0.07 2.94+0.08 2.58 £0.08 230£0.07 1.56 £0.07
Base 0.0000 £ 0.0168 0.0+£0.0 1.90 £0.06 2.20+0.07 2.54+0.07 1.81 +0.05 2.01 +0.07 1.20 £ 0.08
STaR-GATE-D  0.2000 =+ 0.0231 0.0+ 0.0 1.55+0.04 1.63+£0.05 1.95+0.05 1.79 £+ 0.06 1.51 £0.04 1.31 £0.05
StepDPO 0.2067 £ 0.0234 0.0+£0.0 1.86 £0.06 1.87 +£0.06 2.43 +0.06 2.03 +£0.07 1.78 £0.06  1.55 £ 0.06

improving language quality. Neither this approach nor others based on classic RL primitives, such
as Q functions [68, 43], can be directly applied to LLMs. Reward-weighted approaches to RL have
also been studied before. For instance, Peters and Schaal [48] show that a class of control problems,
which can be solved by immediate reward maximization, can be solved using weighted regression.
Peng et al. [47] maximize the log-probability of actions weighted by an exponentiated advantage.



Table 13: Model Performance Comparison - Thinking Mode (OpenBookQA Clarification)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
Swift (ours) 0.2400 £ 0.0604 46.0+7.0 | 4.67+021 5704030 5.39+0.22 441 40.19 5.13 £0.21 5.23 £0.19
Refit (ours) 0.2800 +0.0635 26.0+62 | 455+021 555+0.32 532+023 437 +0.19 495+022 494+0.19
Base 0.1000 £0.0424  47.0+49 | 489+024 593+031 5.63+022 4.60 £+ 0.20 537+023 535£0.25
DPO 0.1000 £+ 0.0424  30.0+6.5 | 427+024 529+032 505+025 4.04+0.22 4754024 487+0.21
STaR-GATE-D  0.1000 £ 0.0424 40+28 411+£021 5.13+£030 4.85+022 3.81 +0.20 4424021 459+020
StepDP0 0.2000 £+ 0.0566  26.0+6.2 | 427+026 531+035 5.01+028 4.07 £0.24 4.67+£026 4731025

Table 14: Model Performance Comparison - Thinking Mode (SciQA Clarification)

Model Accuracy Thinking (%) | ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence

Swift (ours)  0.2600 £ 0.0620  62.0+69 | 4.63+024 577+033 5394024 4.44+0.22 5074023 4964 0.24
Refit (ours) 0.2400 +0.0604 68.04+6.6 | 503+025 6.21+031 581+022 4.75+£0.20 5424023 53340.22

Base 0.0600 +0.0336  86.0 4.9 | 547 +£0.23 6.69 +£0.28 6.14 +0.21 5.10 + 0.20 595+ 021 5.87+0.21
DPO 0.0800 £0.0384  24.0+6.0 | 444+£025 553+033 517+026 4.19+£0.22 486 +£026 4.86+0.26
STaR-GATE-D  0.1400 £ 0.0491 160 £52 | 401+£022 495+030 4.76+0.24 3.67+0.21 430+£023 465+021
StepDP0 0.0800 +£0.0384 340467 | 470+£023 585+0.32 536+025 4.44+0.21 5.094+0.23 5.134+0.24

RL with LLMs. The closest related works are Andukuri et al. [2] and Chen et al. [11], both of which
use RL to learn clarifying questions from simulated conversations. Andukuri et al. [2] choose the
most rewarding trajectories and fine-tune on them. Chen et al. [11] generate alternative responses
for each step of the conversation and then optimize for better responses using DPO [50]. The main
difference in our work is that we optimize directly for the reward. Our work is also broadly related
to planning with LLMs: Huang et al. [27] plan with a pre-trained model, Hao et al. [21] search for
policies using Monte Carlo tree search, and Wang et al. [67] replan interactively based on reached
sub-goals.

Supervised learning. Many works have focused on clarifying user prompts by asking clarifying
questions [38, 73]. Notably, Zelikman et al. [73] propose a simple yet impactful approach: learning
from rationales for successes and regenerated failures. The problem of whether to ask a clarifying
question has also been studied extensively [39, 8, 35], giving rise to new benchmarks [8, 76] and
surveys [44, 75]. These studies have also been extended to vision-language models [20, 63, 10]. In
contrast to these works, we take an RL approach.

6 Conclusions

Offline RL is a variant of reinforcement learning where the policy is optimized over a previously
collected dataset of trajectories and rewards. In our work, we propose a practical approach to offline
RL with large language models. The key idea is to recast RL as reward-weighted fine-tuning, which
can be implemented using the same techniques as SFT. We also derive an offline objective with
standardized rewards, which could lower variance in policy optimization. To show the value of our
approach, we apply it to learning multi-turn QA policies, where the agent reasons about potential
answers or asks clarifying questions. Our work stands in a stark contrast to state-of-the-art methods in
this domain, based on SFT and DPO, which have extra hyper-parameters and do not directly optimize
rewards. We compare to them empirically, and report major gains in both optimized rewards and
language quality.

Limitations. The computational cost of RL tends to be much higher than that of supervised learning.
We address this issue partially by proposing a reduction of offline RL to SFT, which is a supervised
learning technique. In addition, the quality of the logged dataset is critical for offline RL. We do not
focus on this aspect of the problem and instead rely on a common method to obtain a diverse dataset:
simulate conversation trajectories using different temperatures in the LLM. Finally, similarly to the
closest related works [2, 11], we do not conduct a human evaluation. To alleviate the concern that
our evaluation is biased due to using a single GPT-40 judge, we report results with a Claude 4 Opus
judge in Appendix B.

Future work. We note that our proposed algorithms Refit and Swift are general, and therefore
can be applied to other domains than QA. We focused on QA due to many established benchmarks
and baselines in this domain, which allow us to showcase the benefit of directly optimizing rewards.
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six benchmarks in Section 4.

. Limitations
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. Open access to data and code
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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A Proofs and Supporting Lemmas
This section contains proofs of our main claims and supporting lemmas.

A.1 Proof of Lemma 2

‘We first note that

1
Eong, ramn(las0) [T [7(2,70)] = Ezng o(x) B~ (-|2:6) [r(z, ) 2] = C,

where C' = Ey~q [11(2) /0 ()] is a constant independent of 0. Since all B (.|z:0) [7(, T) | 2] are

jointly maximized by 6, and the weights 1/o(x) are non-negative, 6, also maximizes any weighted
combination of the objectives. This concludes our proof.

A.2 Proof of Lemma 3

Using basic algebra,

N Tn | 23 0)
Emw T~ (+x; n :]Ezw.fwﬂ n
4 Tn (\9)[(557—)] q, Tn~To ( |:7'x7' 71.07_”|£):|
w(Tn | x;0)
=FE;q rpnm ) | 1+1log —————= A6
0””{“ (14T 1)+ 20

= ]ETNQ7T7LN7"0( | ) (:I; Tn) IOng—(Tn | €; 0)] + A( ) + Cl )

A0) = Eprg, rymomo (- [2) [ (@, 7n) (W(Tnlx;e) ( +log (Tnxe)))]

7o(Tn | ) 7T0(Tn | x)

where

and (1 is a constant independent of # defined in Lemma 1. Now we rearrange the equality, take the
absolute value of both sides, and get

‘Erwq,ﬂwﬂ( 12:0) [T(2, Tn)] = Eprg, 7o (-|2) [T(2, Tn) log (T | 25 0)] | = |C1 + A(9)|
<|[Ci] +]A(0)].

AOI B [ (G 757~ (s T 7)) |
fram) (B0 (1o L)Y

We bound |A(6)] as

T | 2) ol 4]
<vre (Gt~ (%)

The last step holds because the rewards are in [—b, b] and v > 1 + log . Finally, to bound |A(6)],
we maximize over 6. This concludes the proof.

A.3 Improvements in Swift Objective

Our analysis builds on Sections 1 and 2 of Jin et al. [30]. Take (7) and let
g(x, 7 0) = ZVIogw(at | ,7¢—1;0)
t=1
be the random gradient inside the expectation, for random x and 7,,. Suppose that
lg(z,7m;0)ll2 < o

holds for any x, 7,,, and 6. Then g(x, 7,,; 0) is a o-norm-sub-Gaussian vector (Lemma 1 in the note).
Let all rewards be non-negative (Section 2) and ry,x = max, -, 7(x, 7,) be the maximum reward.
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Table 15: Model Performance Comparison - Thinking Mode (OpenBookQA n = 4)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence

Swift (ours) 0.9333 £0.0644 933 +0.0 | 8.32+0.27 9.27£0.38 8.47+0.22 7.40 +0.24 7.80+£035 9.13+0.41
Refit (ours) 0.9333 +0.0644 93.3+0.0 | 823 +0.33 9.27+0.37 847+ 0.27 7.40 +0.31 7.87+031 8.87+0.52

Table 16: Model Performance Comparison - Thinking Mode (OpenBookQA n = 6)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence

Swift (ours) 0.8667 £0.0878  100.0 £0.0 | 7.68 +£0.63 8.67£0.77 7.93£0.52 6.93 + 0.52 7.33+£0.61 8334+0.75
Refit (ours) 1.0000 & 0.0000  100.0 £0.0 | 8.53 £0.22 9.80+0.20 8.53 +0.22 7.47 £ 0.24 8.40+0.25 9.60 +0.16

Table 17: Model Performance Comparison - Thinking Mode (OpenBookQA n = 8)

Model Accuracy Thinking (%) \ R Overall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence

Swift (ours) 0.8000 £0.1033  7334+0.0 | 6.87+100 7.87+106 6.80£1.05 6.13 + 0.96 6474103 747+1.05
Refit (ours) 0.9333 +0.0644 933 £0.0 | 7.91+0.66 8.93+0.70 8.00 + 0.68 7.20 £ 0.59 7.60 £0.63  8.60 & 0.75

Table 18: Model Performance Comparison - Thinking Mode (OpenBookQA n = 10)

Model Accuracy Thinking (%) | ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence

Swift (ours) 0.6000 + 0.1265 80.0+00 | 6.14+£095 7.02+1.11 6.33+0.90 5.53+0.80 6.07+091 6.69+1.11
Refit (ours) 0.8667 +0.0878  93.3+0.0 | 7.85+0.73 8.73+0.82 7.87+0.74 7.07 £ 0.61 7.73+0.68  8.47 +0.88

Then r(x, 7,)g(x, Tn; 0) is (Tmax0)-norm-sub-Gaussian. The average of such vectors concentrates
at (7) in the Lo-norm proportionally to their sub-Gaussianity parameter 7,,,x0 (Definition 3 in the
note).

Let pu, = E[r(x,7,)|«]. Since the rewards are non-negative, |7(x, 7)) — ftz| < Tmax holds for
any x and 7,,. Therefore, (r(z, 7,,) — pa)g(2, 7n; 0) is at most (7y.x0)-norm-sub-Gaussian, and the
average of such vectors concentrates faster than without subtracting the mean. Moreover, since

E[r(z,mn)g(z,m;0)] = E[(r(z,70) — pa)g(x, 703 0)]

the optimized function has not changed but we get a higher statistical efficiency in estimating the
gradient.

To the best of our knowledge, the normalization by 02 = var [r(z, 7,,) | ] in

r(z,Th) — fa
Oy

E g(x, Tn; 0)
is hard to analyze because it changes the gradient. It tends to help in practice because it renormalizes
the variances of rewards across all contexts x. Therefore, the learned policy improves more equally

in all contexts without tuning the learning rate per context. This techniques has been popularized by
GRPO [56].

B Ablation Studies

We ablate the performance of Swift and Refit as a function of the conversation length, for n €
{4,6,8,10}, in Tables 15-18. We observe that longer conversations, corresponding to larger values
of n, lead to lower accuracy because the task becomes harder.

To alleviate the concern that our evaluation is biased due to using a single GPT-40 judge, we report
results with a Claude 4 Opus judge on ARC dataset. The prompt is the same as in the GPT-40 judge.
Our results are showed in Table 19. The best two methods are the same as in Table 1: Swift, Refit,
and STaR-GATE-D. As in Table 1, Swift and Refit attain much higher language quality scores than
all baselines.

The run times of Refit and Swift are linear in sample size, because both methods make a single
pass over the logged dataset. We expect the reward to increase as the number of training trajectories
increases. To show this, we conduct a dataset size ablation study on ARC dataset, in both thinking
and standard modes. The results for Refit and two different sample sizes are reported in Tables 20
and 21. The accuracy and language quality metrics improve with more training data.
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Table 19: Claude 4 Opus Judge - Thinking Mode (ARC)

Model Accuracy Thinking (%) | ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence

Swift (ours) 0.8667 £0.0310  97.5+0.0 6.28+0.19 8.76+026 6.734+0.18 5.79+0.14 6334+0.19 724+£023
Refit (ours) 0.8583 £ 0.0318 98.3£0.0 631£020 8.69+027 6.73+£0.19 578 £0.15 634£0.19 7254023

DPO 0.7167 £ 0.0411 75+0.0 4294+024 728+0.37 450+0.24 327+0.18 330+£0.22 4924028
STaR-GATE 0.6990 £0.0270  90.0£0.0 | 6.17+0.17 7.48+£0.20 594 £0.16 522£0.14 550£0.16 7.11+0.21
Base 03772 £0.0146 751 +£00 |547+0.12 732+0.14 556+0.11 5.80 £ 0.09 540 £0.11 592 £0.16
STaR-GATE-D 0.8417 £0.0333 283 +£0.0 | 4224023 830£0.33 4.17£0.24 298 £0.18 3.064+0.22 536+0.28
STaR-GATE-D  0.7167 £ 0.0411 6.7+0.0 4354+024 722+£037 457+£024 331£0.18 3304+0.23  5.08+0.29

Table 20: Dataset Size Ablation - Thinking Mode (ARC)

Sample size Accuracy Thinking (%) | ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
1000 0.7301 £0.0261  93.1+0.0 | 6.75+£0.15 7.55+0.19 7.03+0.14 6.30 +0.12 6.51+0.14  7.194+0.19
2000 0.7543 £ 0.0253  948+0.0 | 6.88+0.15 7.71 £0.18 7.18+0.13 6.46 £ 0.10 6.67+0.14 7.38+£0.18

Table 21: Dataset Size Ablation - Standard Mode (ARC)

Sample size Accuracy Thinking (%) ‘ ROverall R Accuracy R Reasoning R Comprehensive R Pedagogic R Confidence
1000 0.6715 £ 0.0326 0.0+£0.0 6.64 £020 731+£024 697+£0.18 6.30 £ 0.15 6.54+0.19 693+£0.26
2000 0.7633 £ 0.0295 0.0+0.0 7254018 797+£022 7.50£0.16 6.73 £ 0.14 7.14+£0.17 7.73+£0.23

C Detailed Related Work

Related work can be categorized into techniques for clarifying questions for multi-turn multimodal
generation (e.g., MLLMs) or text-to-text generation (e.g., LLMs) settings. We also discuss related
work on simulating user conversation trajectories and reinforcement learning approaches proposed
for other problem settings.

C.1 Supervised Learning

Many works have recently focused on clarifying user prompts by asking clarifying questions [38, 73].
Liu et al. [38] collect a dataset of 1,645 linguistic examples and different ambiguity labels. This is
due to there being many different types of ambiguity. Zelikman et al. [73] introduced a simple and
influential method: learn from rationales by fine-tuning on successful examples and regenerating
rationales for failures. Given a prompt, generate a rationale and answer. If the answer is correct,
fine-tune on prompt, rationale, and answer. Otherwise use the correct answer to generate a new
rationale that leads to the correct answer. Fine-tune on prompt, rationale, and answer. This idea has
since been extended in several directions. V-STaR [26] extends the idea to vision-language tasks, and
Quiet-STaR [72] focuses on learning when not to ask, optimizing a policy to minimize unnecessary
queries. We discuss extensions to reinforcement learning in Appendix C.4. A recent survey by Deng
et al. [15] on proactive conversational techniques, which includes those focused on asking clarifying
questions for disambiguation and the ilk.

Active disambiguation using LL.Ms has also been recently investigated [32, 77, 8]. AskToAct [77]
focused on improving tool use via a self-correction mechanism for clarification. They generate a
dataset and then fine-tune on it. Kobalczyk et al. [32] select clarifying questions based on informa-
tion gain. Their approach emphasizes inference-time reasoning with pre-trained LLMs, while we
learn task-specific policies that optimize questioning directly and efficiently without inference-time
computation over all possible responses.

Recent works have also focused on benchmarking multi-turn conversational dialogue between users
and agent for the purpose of clarification [8]. Zhang et al. [76] introduced a benchmark dataset and
proposed an approach called Clarification-Execution-Planning (CEP) that uses specialized agents
for clarification, execution, and planning. They predict if the question should be clarified and then
generate a clarification.

Many works have also focused on the problem of predicting whether clarification is required in
conversational interfaces [39, 8]. One recent work by [39] investigated a zero-shot approach for
clarification detection in conversational search. They learn a classifier with an LLM backbone to
predict if the query is specific or ambiguous. The training data are generated using a zero-shot LLM.
Li et al. [35] focuses on learning to ask critical questions in product search, using a dual-learning
model that combines implicit session feedback with proactive clarification.
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Surveys have further synthesized this area. Mulla and Gharpure [44] reviews progress in automatic
question generation, including early reinforcement learning attempts, noting RL’s ability to improve
the flow of conversation by considering losses accumulated over n turns in a dialog sequence.
Furthermore, Zhang et al. [75] surveys how conversation analysis can help in the era of LLMs. They
discussed conversation optimization using RL to improve conversation policy learning. The paper
also touches on adapting LLMs with RL for goal-directed conversations, though not specifically
focused on question asking.

C.2 Supervised Learning with Multi-Modal Models

Multimodal multi-turn conversations that perform text-to-image generation have also been studied
for asking clarifying questions to disambiguate and improve generation [20]. In particular, Hahn et al.
[20] introduced an uncertainty-driven method that adaptively triggers clarifying questions when the
system’s confidence is low, enhancing multi-turn generation performance. This work also developed
an automatic evaluation framework simulating users to assess question-asking strategies, using a suite
of simple agents, including rule-based, belief-based, and LLM-based approaches, however, none of
them incorporated any learning-based optimization.

Conversely, Villegas et al. [63] proposed ImageChain that focuses on image-to-text reasoning in
MLLMs by considering a sequence of images as a multi-turn conversation along with the generated
textual descriptions to create a succinct narrative, which has applications in video generation. Se-
quential reasoning over images and text. The description of the next image (treated as an agent) is
conditioned on that image (treated as a user) and the history of the conversation.

Other work by Chen et al. [10] focused on improving multi-modal understanding for spoken conver-
sations. They use spoken language to improve multi-modal conversations. That work constructed a
dataset of per-turn preferences, annotating winning and losing responses, and applied Direct Prefer-
ence Optimization (DPO) at each step. In contrast, our work improves upon this in three key ways:
(1) we employ a more principled objective-driven simulation strategy; (2) we eliminate the need
for DPO entirely since rewards are explicitly defined, direct reward-based policy gradients are both
simpler and more efficient; and (3) we provide formal justification for our method.

C.3 Classic RL

For an overview of pre-2020 RL works on dialogue optimization, please see Section 6.6 of Levine
et al. [34]. The closest related work is Zhou et al. [79], which proposed both online and offline policy
gradients. They have per-step rewards and a fixed dataset of trajectories. They focus on improving
language quality only, without any LLMs or simulators.

A large subset of prior work focuses on learning when and what to ask using RL. For example,
DialFRED [19] trains an RL-based questioner agent to decide what questions to ask to complete
household tasks, penalizing invalid questions. Sigaud et al. [57] used reinforcement learning to train
an agent to ask questions. It uses question generation and question answering systems to create
auxiliary objectives for reward shaping, improving sample efficiency in language-conditioned RL.

Further, Free et al. [17] leveraged Q-learning with DQN and BERT embeddings to train a chatbot
that gathers hidden grid-world information by asking strategic questions to a simulated user. In the
space of conversational recommendation, Lin [37] framed question selection as a bandit optimization
problem, aiming to minimize unnecessary queries while also exploring RL fine-tuning of LLMs for
human-like dialogue. Similarly, Wang and Ai [66] used reinforcement learning to train a DQN model
for risk control in conversational search, focusing on when to ask clarifying questions. The RL agent
learns to balance the rewards of asking relevant questions against the penalties of irrelevant ones.

Finally, Vith et al. [62] introduced a benchmark (LMRL-Gym) for evaluating multi-turn RL for
LLMs, with the goal of enabling intentional interactions through carefully crafted questions, which is
optimized by Q learning and DQN specifically.

C4 RL with LLMs

On RL with LLMs, Hong et al. [23] used offline RL to optimize goal-directed dialogues, leveraging
LLMs to simulate human-like interactions and generate data for training. It addresses the limitations
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of LLMs in asking effective questions and optimizing for conversational outcomes over multiple
turns. The method trains offline RL on the generated dataset. The RL algorithm is classic: implicit
language q learning. We want to avoid value and Q functions.

One closely related work is learning to ask clarifying questions by STaR-GATE [2]. Their algorithm
incorporates interactive conversations and preference elicitation from simulators, fine-tuning on best
responses. This work leverages simulated trajectories between an optimized agent and a user to
collect training data. Then it falls back to supervised learning: SFT on most rewarding trajectories
is used to fine-tune the original LLM. This approach fails to make the full use of the reward signal,
because SFT is equivalent to treating all best demonstrations as equally optimal. This leads to reduced
statistical efficiency and a limited ability to capture nuanced training signals, which our approach
addresses by preserving and exploiting the full reward structure.

Further, RL-STaR [9] provides a theoretical analysis for STaR-style updates in a reinforcement
learning framework. Another related work is learning to tutor [53], which leverages simulated
trajectories between an optimized agent and a user to collect training data. Then it applied DPO to
learn from pairs of winning ans losing trajectories This approach fails to make the full use of the
reward signal, since DPO reduces reward information to binary pairwise preferences, discarding
finer-grained distinctions. This leads to reduced statistical efficiency and a limited ability to capture
nuanced training signals, which our approach addresses by preserving and exploiting the full reward
structure.

One work by Chen et al. [11] studied disambiguation in LLM-based conversations and develops an
approach based on DPO for task-specific use cases that lack high-quality conversational trajectories
such as data question-answering and SQL generation. Unlike the other works discussed above
that focus on clarifying question generation for disambiguation in MLLMs, this work develops an
approach for the simpler LLM clarification question generation problem that takes only text as input
and generates only text as output (whether it is code, data, or other types of text). This is definitely
RL. Similar to [53] but applied to multi-modal models. Additionally, Chi et al. [12] learned to ask
clarifying questions in information retrieval. The key idea is to simulate potential clarifying questions
and user responses, and then fine-tune on those that lead to the highest improvement in ranking
metrics. This is not RL but the idea is similar to our SFT RL baseline.

Furthermore, Chu et al. [13] investigated SFT and RL on generalization and memorization and
find that on a few text and visual tasks that RL generalizes better in both rule-based textual and
visual environments whereas SFT mostly memorizes the training data and fails to generalize in the
out-of-distribution setting. This one is methodological. Interestingly, we show a connection because
RL can be viewed as weighted SFT. Another work by Arik et al. [3] improved conversational skills,
specifically clarification question asking, using Action-Based Contrastive Self-Training (ACT). ACT
is a DPO-based algorithm for sample-efficient dialogue policy learning. While RLHF is mentioned as
a paradigm for building conversational agents, the paper’s primary contribution is not directly about
using RL for question asking, but DPO. Wang et al. [65] used reinforcement learning to enhance
task-oriented dialogue systems, focusing on improving both understanding and generation tasks.
It introduces step-by-step rewards throughout token generation to optimize dialogue state tracking
and response generation. The approach is a variant of PPO and the focus is on individual token
generation.

C.5 Offline RL Algorithms for LLM Post-Training

It is well known in literature that when viewing an LLM based generation as a sequential decision
process, the state comprises of the entire history of generated tokens, the action next generated token,
and the transition function is a deterministic concatenation of the action token to the state tokens.
So, when viewed from the perspective of an environment for RL, the only missing component is
the reward function which is external to the LLM and needs to be provided. So, the key difference
between online and offline RL in the case of LLMs is the availability of a reward function. In one of
the earliest papers on RLHF [46], the authors converted offline feedback data collected from users
to learn a reward function and then use an online RL algorithm (PPO) to train the LLM. Another
branch of work attempted to explore use of offline RL methods to train LLMs with user feedback.
One such method was ILQL [58], where the key idea was to learn a Q function with the LLM’s
hidden state forming the features for this Q function. In this case too some form of numerical reward
from the user was needed, but this could be completely offline. The key considerations here were
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standard offline RL cautionary points such as ensuring to stay within the training data distribution for
the Bellman updates (conservative QL) and the added complexity of estimating and using Q values
during inference. Algorithms inspired by KL constrained policy optimization objectives such as DPO
[50] also function in an offline manner with the objective being to effectively learn an implicit reward
function that is consistent with preference data collected from users. However, collection of pairwise
preference data is a key requirement of this approach. A more detailed discussion on various offline
policy based RL algorithms for LLM post-training is provided in Baheti et al. [4].

We specifically consider the objective functions of two policy based offline RL algorithms - DPO and
ALOL to illustrate the key differences between them and our approach:
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where nw, nl represent the indices of the chosen and rejected sequences respectively, 7 represents the
policy ratio of the propensities with respect to the reference policy and A, represents the advantage
function under the reference policy. We notice that both these gradient estimates can be considered as
scaled versions of the off-policy vanilla policy gradient, with the scaling factor in both these cases
being a function of the ratio of the propensities under the policy being optimized and the reference
policy. In our formulation, we avoid these scaling factors ensure stability and simplicity, while trading
off for an objective that provides a loose lower bound for the original one.

D Dataset

In this section, we present a comprehensive summary of the six benchmark datasets discussed, along
with the experimental setup:

OpenBookQA [42] is a question-answering dataset modeled after open book exams, consisting
of 5,957 multiple-choice elementary-level science questions (4,957 train, 500 dev, 500 test). It
tests understanding of a small "book" of 1,326 core science facts and their application to novel
situations. What makes this dataset challenging is that answering questions requires additional
common knowledge beyond what’s in the provided "book."

SciQA [69] is a multimodal dataset that evaluates Al models’ ability to reason using both textual
and visual information for science topics. It includes approximately 21,000 multimodal questions
covering physics, chemistry, and biology, sourced from educational materials. Models must analyze
both text and diagrams to generate correct answers.

MMLU [22] is a comprehensive benchmark that evaluates models on multiple choice questions
across 57 subjects, including STEM, humanities, social sciences, and more, with difficulty levels
ranging from elementary to advanced professional level. It focuses exclusively on zero-shot and
few-shot settings, making it similar to how we evaluate humans. The benchmark tests both world
knowledge and problem-solving ability.

ARC [14] is a dataset of 7,787 genuine grade-school level, multiple-choice science questions from
grade 3 to 9. It’s divided into two parts: the Challenge Set with 2,590 "hard" questions that both
retrieval and co-occurrence methods fail to answer correctly, and an Easy Set with 5,197 questions.
Most questions have 4 answer choices, with less than 1% having 3 or 5 options. The dataset also
includes a supporting knowledge base of 14.3 million unstructured text passages.
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CoSQL [71] is a corpus for building cross-domain conversational text-to-SQL systems. It consists
of over 30,000 dialogue turns plus more than 10,000 annotated SQL queries, obtained from a Wizard-
of-Oz collection of 3,000 dialogues querying 200 complex databases spanning 138 domains. Each
dialogue simulates a real-world database query scenario with a crowd worker as a user exploring the
database and a SQL expert retrieving answers with SQL. The average question length in CoSQL is
11.2 words with an average of 5.2 question turns per dialogue.

MathDial [40] is a dataset of one-to-one teacher-student tutoring dialogues grounded in multi-step
math reasoning problems. The dataset contains 2,861 conversations in total, split into train and
test sets. It was created by pairing human teachers with a Large Language Model (LLM) that was
prompted to represent common student errors and uses LLMKT model [52]. The dataset focuses on
effective tutoring rather than just problem-solving and exhibits rich pedagogical properties, focusing
on guiding students using sense-making questions.

Experimental Setup: For our experiments, we randomly selected 500 samples from each dataset,
allocating 400 for training and 100 for testing. We created conversations with 3 turns and generated 3
random runs (trajectories) with different temperature settings using our Base model.

E Multi-Turn Reasoning Prompts and Conversations

Our multi-turn reasoning experiments encourage the assistant to progressively deepen its analysis
through iterative prompting by the teacher. The default conversation length is 3 turns, although we
also experiment with longer conversations:

1. Turn 1 - Initial Question: Teacher presents the problem and asks for an initial analysis.
2. Turn 1 - Initial Response: Assistant replies with initial thoughts.

3. Turn 2 - Deeper Analysis: Teacher prompts for wrong options and key concepts.

4. Turn 2 - Deeper Analysis Response: Assistant replies with a detailed reasoning.

5. Turn 3 - Final Answer: Teacher asks for the final answer with full justification.

6. Turn 3 - Final Response: Assistant replies with the final answer and its justification.

Next we present detailed prompts for these conversations, first with thinking tags and then without
thinking tags.

E.1 Prompts WITH Thinking Tags

System Prompt - Assistant (With Thinking)

You are a helpful, accurate assistant who is an expert at answering multiple-choice questions.
When you think through a problem, wrap your thinking in <thinking></thinking> tags.
You MUST first state your final answer in the format: 'The answer is X’ where X is A, B,
C, or D. The final answer must be outside the thinking tags. Then show your thinking in
<thinking></thinking> tags for your step-by-step reasoning.
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Turn 1 - Teacher Initial Question (With Thinking)

Question: [question text]
Choices:

A. [choice A]

B. [choice B]

C. [choice C]

D. [choice D]

[Dataset-specific instruction]

Please use <thinking></thinking> tags to show your step-by-step reasoning, then
provide your initial thoughts outside of these tags.

Turn 1 - Assistant Initial Response (With Thinking)

Initial thoughts or analysis (outside thinking tags) <thinking>Step-by-step
reasoning about each option</thinking>

Turn 2 - Teacher Deeper Analysis (With Thinking)

That’s a good start. Can you explain more about why some options might be incorrect? Use
<thinking></thinking> tags for your analysis.

Turn 2 - Assistant Deeper Analysis Response (With Thinking)

Detailed elimination reasoning (outside thinking tags) <thinking>Systematic
analysis of why wrong options fail and why correct option
succeeds</thinking>

Turn 3 - Teacher Final Answer (With Thinking)

Thank you for your detailed explanations. What is your final answer (A, B, C, or D)? Please
provide a justification for your choice. You MUST first state your final answer in the format:
"The answer is X’ where X is A, B, C, or D. The final answer must be outside the thinking tags.
Then show your thinking in <thinking></thinking> tags for your step-by-step reasoning.

Turn 3 - Assistant Final Response (With Thinking)

The answer is X. <thinking>Complete Jjustification with
step-by-step reasoning</thinking>

For longer conversations than 3 turns, we use the following intermediate prompt between the second
and final turns.

Intermediate Turn - Teacher (With Thinking)

Thank you for your explanation. Let’s explore this further (turn [N]). Could you elaborate on
the key concepts relevant to this question? Continue using <thinking></thinking> tags for
your analysis.
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E.2 Prompts WITHOUT Thinking Tags

System Prompt - Assistant (Without Thinking)

You are a helpful, accurate assistant who is an expert at answering multiple-choice questions.
You MUST first state your final answer in the format: *The answer is X’ where X is A, B, C,
or D. After the final answer clearly explain your reasoning.

Turn 1 - Teacher Initial Question (Without Thinking)

Question: [question text]
Choices:

A. [choice A]

B. [choice B]

C. [choice C]

D. [choice D]

[Dataset-specific instruction]

Please think through this step by step and explain your initial thoughts about the
question.

Turn 1 - Assistant Initial Response (Without Thinking)

Step-by-step reasoning and initial thoughts (all outside, no thinking tags)

Turn 2 - Teacher Deeper Analysis (Without Thinking)

That’s a good start. Can you explain more about why some options might be incorrect? Also,
are there any key concepts or facts that are relevant to answering this question?

Turn 2 - Assistant Deeper Analysis Response (Without Thinking)

Detailed elimination reasoning with explanations (all outside, no thinking tags)

. J

Turn 3 - Teacher Final Answer (Without Thinking)

Thank you for your detailed explanations. What is your final answer (A, B, C, or D)? You
MUST first state your final answer in the format: 'The answer is X’ where X is A, B, C, or D.
After the final answer clearly explain your reasoning.

Turn 3 - Assistant Final Response (Without Thinking)

The answer is X.
Complete justification with step-by-step reasoning (all outside, no thinking tags)

\. J

For longer conversations than 3 turns, we use the following intermediate prompt between the second
and final turns.

Intermediate Turn - Teacher (With Thinking)

Thank you for your explanation. Let’s explore this further (turn [N]). Could you elaborate on
the key concepts relevant to this question?
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E.3 Evaluation Framework

All evaluation is done by a GPT-40 judge. The judge is provided with the complete conversation
transcript up to the last turn, along with the initial question, choices, and correct answer.

System Prompt - GPT-40 Evaluator

You are an expert evaluator of educational conversations about multiple-choice questions.
Your job is to rate the quality and progress of a conversation on a scale from 0 to 10 for
several metrics. For each metric, you MUST provide a numerical score (0-10) and a brief
Jjustification of 1-2 sentences.

The metrics to evaluate are:

1. Accuracy - Is the assistant moving toward the correct answer?

2. Reasoning ability - Is the reasoning logical, clear, and precise?

3. Comprehensiveness - Are key concepts being properly explained?

4. Pedagogical value - Is this explanation helping someone learn?

5. Confidence calibration - Is the assistant appropriately confident in their analysis?

After rating each metric, provide an overall score (0-10) that represents your holistic assess-
ment of the conversation, followed by a brief overall justification.

IMPORTANT: You MUST format your response EXACTLY as follows with these exact labels
and line breaks:

Accuracy: [score] \n[justification] \n\n

Reasoning ability: [score] \n[justification] \n\n
Comprehensiveness: [score] \n[justification] \n\n
Pedagogical value: [score] \n[justification] \n\n
Confidence calibration: [score] \n[Jjustification] \n\n
Overall: [score] \n[Jjustification]

Prompt - GPT-40 Evaluator

Please evaluate this educational conversation about a multiple-choice question up to this
point.

Original Question: [question text]

Choices: A. [choice A], B. [choice B], C. [choice C], D. [choice D]

Correct Answer: [correct answer index]

— CONVERSATION TRANSCRIPT SO FAR —

[Complete conversation history with all turns]

— END CONVERSATION TRANSCRIPT —

Please provide your evaluation following the exact format specified in your system prompt.

We consider the following 6 evaluation metrics:

1. Accuracy (0-10) - Is the assistant moving toward the correct answer?

. Reasoning ability (0-10) - Is the reasoning logical, clear, and precise?

. Comprehensiveness (0-10) - Are key concepts being properly explained?
. Pedagogical value (0-10) - Is this explanation helping someone learn?

. Confidence calibration (0-10) - Is the assistant appropriately confident?

A L W

. Overall (0-10) - Holistic assessment of conversation quality.

E.4 ARC Conversation with Base

We first present a 3-turn conversation with Base on the ARC dataset. The final response shows that
Base is very verbose.
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Teacher Message 1

Question: Which of the following best explains how stems transport water to other parts of
the plant? Choices: A. through a chemical called chlorophyll B. by using photosynthesis C.

through a system of tubes D. by converting water to food
This question is from a science exam. Please use <thinking></thinking> tags to show your
step-by-step reasoning, then provide your initial thoughts outside of these tags.

Assistant Message 1

|\

The answer is C. <thinking> To determine the correct answer, I will evaluate each option in
relation to how stems transport water to other parts of a plant. A. Chlorophyll is a chemical
that is essential for photosynthesis, but it is not directly responsible for transporting water
through the plant. Chlorophyll is involved in absorbing light energy, which is necessary
for photosynthesis to occur, but it is not the mechanism by which water is transported. B.
Photosynthesis is the process by

Teacher Message 2

That’s a good start. Can you explain more about why some options might be incorrect? Use
<thinking></thinking> tags for your analysis.

Assistant Message 2

g

<thinking> Photosynthesis is the process by which plants convert light energy into chemical
energy in the form of glucose. While photosynthesis occurs in the leaves, which are attached
to the stems, it is not the process by which water is transported to other parts of the plant.
The question specifically asks about the mechanism of water transport, not the process of
energy conversion. C. The xylem is a type of vascular tissue that is found in the stems of
plants, which is responsible for transporting water and

Teacher Message 3

Thank you for your detailed explanations. What is your final answer (A, B, C, or D)? Please

provide a justification for your choice. You MUST first state your final answer in the format:
’The answer is X’ where X is A, B, C, or D. The final answer must be outside the thinking
tags. Then show your thinking in <thinking></thinking> tags for your step-by-step reasoning.

Assistant Message 3

g

</thinking> The xylem consists of dead cells that are hollow, which allows water to pass
through them. This is why option A is incorrect. Chlorophyll is a chemical used in pho-
tosynthesis, not in transporting water. Photosynthesis is the process of plants converting
light energy into chemical energy, but it’s not related to water transport. Therefore, option
B is also incorrect. Option D is incorrect because converting water to food is the process of
photosynthesis
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Evaluation Scores by GPT4o0

Criteria Score Rating
Accuracy 8/10 nnun

Reasoning Ability 70 | QOO0

Comprehensiveness 6/10 n n n

Pedagogical Value 7/10 n u n u

Confidence Calibration | 6/10 | 4N ICH

Overall 7.0n0 | Y]
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Evaluation Justifications by GPT40

Accuracy: 8/10

The assistant is moving toward the correct answer, "C," and has correctly identified that the
xylem is responsible for water transport. However, the explanation for option D is incomplete,
and the assistant has not yet explicitly stated the final answer as requested.

Reasoning Ability: 7/10

The reasoning is mostly logical and clear, particularly in explaining why options A and B are
incorrect. However, the analysis of option D is cut off and incomplete, which detracts from
the overall clarity and precision of the reasoning.

Comprehensiveness: 6/10

The assistant provides a good explanation for why options A and B are incorrect and begins
to explain why C is correct. However, the discussion of option D is incomplete, and the
explanation of the xylem could be expanded further to fully address the mechanism of water
transport.

Pedagogical Value: 7/10

The conversation is educational and provides some useful insights, particularly about chloro-
phyll and photosynthesis. However, the incomplete explanations for D and the xylem system
limit the overall learning potential.

Confidence Calibration: 6/10

The assistant appears confident in its reasoning but has not yet explicitly stated the final
answer as requested. Additionally, the incomplete explanation of option D suggests a slight
overconfidence in the clarity of its analysis.

\ J

Overall Assessment by GPT4o

Final Score: 7.0/10

Summary: The conversation is on the right track and provides a mostly accurate and logical
explanation of the question. However, incomplete reasoning for option D and a lack of
explicit final answer detract from the overall quality. Expanding on the xylem’s role and fully
addressing all options would improve the conversation significantly.

Overall [ 7.0
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E.5 ARC Conversation with Swift
Now we show the conversation of Swift on the same ARC dataset. The teacher messages are the

same and hence we do not show them. We observe that Swift updated its reasoning process with
additional information and thus gets a higher evaluation score from the GPT-40 judge.
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Assistant Message 1

«SYS» The answer is C.<thinking>First, I considered each choice individually. I looked at
A and thought, ’What does chlorophyll do?” Chlorophyll is the green pigment in plants that
helps them make food from sunlight through photosynthesis, so this choice doesn’t sound
right. Next, I looked at B and thought, *What is photosynthesis?” Photosynthesis is the
process plants use to make food from sunlight, so this choice also doesn’t seem correct. Then

Assistant Message 2

<thinking>I examined C and thought, ’Is there a system of tubes in a plant that could transport
water?’ Yes, I know that plants have a system of tubes called xylem that transport water from
the roots to the rest of the plant. Finally, I looked at D and thought, ’Does water get converted
to food in the process of transporting it?” No, that’s not how it works. Plants use water to
make food, but that’s not what’s happening when water is being transported

Assistant Message 3

choice C is the best explanation.

</thinking>I have now fully explained why choice C is the best explanation for how stems
transport water to other parts of the plant. Choice C states that stems transport water through
a system of tubes, which is a more accurate description of the plant’s water transport system.
This system, known as xylem, is a network of tubes that allows water to move from the roots
to the leaves of the plant. This is a fundamental process that supports the plant’s

Ve
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Evaluation Scores by GPT4o0

Criteria Score Rating

Accuracy wio | OOOODOODODO0O

Reasoning Ability wio | QOOOOOOoon
Comprehensiveness 10/10 n u n u n n n n n n

Pedagogical Value 10/10 n u n u n n n n n n

Confidence Calibration | 10/10 n n n u n u n n n n
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Evaluation Justifications by GPT40

Accuracy: 10/10

The assistant correctly identifies option C as the answer and provides a scientifically accurate
explanation of how stems transport water through the xylem system. The explanation is
factually correct and directly addresses the question.

Reasoning Ability: 10/10

The reasoning is excellent, with a clear and logical analysis of each option. The assistant
methodically explains why each incorrect option is wrong and why the correct option is right,
demonstrating strong critical thinking skills.

Comprehensiveness: 10/10

The response is exceptionally thorough, addressing all four options with detailed explanations.
The assistant fully explains the role of the xylem in water transport and clearly articulates
why the other options are incorrect.

Pedagogical Value: 10/10

The explanation is highly educational, providing clear distinctions between different plant
processes (photosynthesis vs. water transport) and structures (chlorophyll vs. xylem). The
response teaches valuable plant biology concepts in an accessible way.

Confidence Calibration: 10/10

The assistant demonstrates appropriate confidence in the answer, providing a direct statement
followed by detailed supporting evidence. The thinking process is transparent and the
conclusion is well-justified.

. J

Overall Assessment by GPT40

Final Score: 10.0/10

Summary: This response is exemplary in every aspect. The assistant clearly identifies the
correct answer and provides a comprehensive explanation of plant water transport systems.
Each option is thoroughly analyzed with scientific accuracy, and the distinction between water
transport mechanisms and other plant processes is clearly articulated. The thinking process is
transparent and educational, making this an ideal model response for science education.

Overall [ 100
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E.6 CoSQL Conversation with Base

Our next example is a 3-turn conversation with Base on the CoSQL dataset. The final response shows
that Base follows reasoning from the previous turns. It moves towards the correct answer but the
reasoning is not comprehensive.
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Teacher Message 1

Question: Your task is to generate SQL query based on the following question and information
provided. Which distinctive models are produced by maker with the full name General Motors
or weighing more than 35007 Hint: Consider relationships between multiple tables. The rele-
vant schema tables are: [’car_makers’, "'model_list’, ’car_names’, ’cars_data’]. The optional
foreign keys are: ["CAR_NAMES.model = MODEL_LIST.model’, "MODEL_LIST.maker =
CAR_MAKERS.id’, "CARS_DATA.id = CAR_NAMES.makeid’]. Choices: A. A. SELECT
DISTINCT T1.Model, T3.FullName FROM CARS_DATA AS T4 JOIN CAR_NAMES AS
T1 ON T4.1d = T1.Makeld LEFT JOIN CAR_MAKERS AS T3 ON T1.Makeld = T3.1d
WHERE T3.FullName LIKE ’%General%’ OR T4.weight < 3500; B. B. SELECT DISTINCT
Model FROM MODEL_LIST WHERE Maker IN (SELECT Id FROM CAR_MAKERS
WHERE FullName = ’General Motors’ AND Id IN (SELECT Makeld FROM CARS_DATA
WHERE weight > 3500)); C. C. SELECT DISTINCT T2.Model FROM CAR_NAMES AS
T1 JOIN MODEL_LIST AS T2 ON T1.Model = T2.Model JOIN CAR_MAKERS AS T3 ON
T2.Maker = T3.Id JOIN CARS_DATA AS T4 ON T1.Makeld = T4.1d WHERE T3 .FullName
=’General Motors” OR T4.weight > 3500; D. D. SELECT T1.Model FROM CAR_NAMES
AS T1 WHERE T1.Model IN (SELECT Model FROM CARS_DATA WHERE weight >
3500) AND T1.Makeld IN (SELECT Id FROM CAR_MAKERS WHERE FullName =
’General Motors’);

This question asks for the correct SQL query to retrieve the requested information from a
database. Focus on SQL syntax, correct table joins, and query efficiency. Please think through
this step by step and explain your initial thoughts about the question.

\_ J
Assistant Message 1

«SYS» The answer is C.

To determine the correct SQL query, let’s break down the requirements step by step:

1. **Distinctive models**: We need to find distinct models that match the given conditions.
This means we should use the ‘SELECT DISTINCT® clause.

2. **Maker with full name General Motors**: This indicates we need to filter the data based
on the ‘FullName* of the maker, which is stored in the ‘CAR_MAKERS® table.

3.
. J

Teacher Message 2

That’s a good start. Can you explain more about why some options might be incorrect? Also,
are there any key concepts or facts that are relevant to answering this question?

Assistant Message 2

«SYS»
To evaluate the options, let’s consider the following key concepts and facts:
* **Joining tables**: We need to join multiple tables to retrieve the required information. The
correct join order and type are crucial. * **Filtering conditions**: We have two conditions to
apply: the maker’s full name should be ’General Motors’ or the car’s weight should be more
than 3500. * **Using foreign keys**: The foreign keys are defined as ‘CAR

g J

Teacher Message 3

Thank you for your detailed explanations. What is your final answer (A, B, C, or D)? You
MUST first state your final answer in the format: *The answer is X” where X is A, B, C, or D.
After the final answer clearly explain your reasoning.
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Assistant Message 3

<SYS> group by clause, so option D is not correct. Now, let’s consider the joins and subqueries
in the other options. The answer is C. To solve this problem, we need to find the instructors
who did not teach any courses. This can be achieved by identifying instructors who do not
have a matching id in the "teaches’ table.

We can use a subquery to select the ids of instructors who taught courses. Then, we can use

the
\ Y,

Evaluation Scores by GPT4o0

Criteria Score Rating

Accuracy o |QOOOOgoO
Reasoning Ability 10 | QOO0
Comprehensiveness 5/10 n u n u n

Pedagogical Value 6/10 n u n u n u

Confidence Calibration | 7/10 n u n n n u n

Overall 6.0/10 I " " " " " I
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Evaluation Justifications by GPT40

Accuracy: 7/10

The assistant is moving toward the correct answer (C) and has identified it as the correct
choice. However, the explanation provided so far is incomplete, and the assistant has not yet
fully justified why C is correct or why the other options are incorrect.

Reasoning Ability: 6/10

The reasoning is partially logical and clear, as the assistant has identified the need for
‘SELECT DISTINCT®, proper joins, and filtering conditions. However, the explanation lacks
depth and precision, particularly in explaining the relationships between tables and why
certain options fail to meet the requirements.

Comprehensiveness: 5/10

Key concepts like table joins, filtering conditions, and foreign key relationships are mentioned,
but they are not fully explained. The assistant has not yet addressed why specific options (A,
B, and D) are incorrect, which is critical for a comprehensive analysis.

Pedagogical Value: 6/10

The explanation has some educational value, as it introduces important SQL concepts like
‘SELECT DISTINCT?, filtering, and table joins. However, the lack of detailed reasoning and
comparison between options limits its effectiveness as a learning resource.

Confidence Calibration: 7/10

The assistant confidently identifies C as the correct answer, which is accurate. However, the
confidence is slightly undermined by the incomplete reasoning and lack of detailed analysis

of the other options.
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Overall Assessment by GPT40

Final Score: 6.0/10

Summary: The assistant is on the right track and has correctly identified the answer, but
the explanation lacks depth, clarity, and comprehensiveness. While some key concepts are
mentioned, the conversation would benefit from a more thorough analysis of why the other
options are incorrect and a clearer breakdown of the relationships between tables.

Overall [ 6.0
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E.7 CoSQL Conversation with Swift

Now we show the conversation of Swift on the same CoSQL dataset. The teacher messages are the
same and hence we do not show them. We observe that the response is more accurate than that of
Base, as judged by GPT-4o.

Assistant Message 1

«SYS»[/INST]The answer is C.<thinking>To answer this question, we need to follow these
steps:1. Identify the tables and fields involved.2. Determine the relationship between the
tables. 3. Choose the correct join type.4. Specify the conditions for the query.5. Order the
results to find the model with the largest horsepower.1. The relevant tables are ’car_names’
and ’cars_data’.

. J

Assistant Message 2

«SYS»[/INST]<thinking>The correct query should involve the ’car_names’ table for the
model information and the ’cars_data’ table for the horsepower information. The relationship
between the tables is established by the’makeid’ field, which is the foreign key in ’car_names’
and the primary key in ’cars_data’.Looking at the options, we can eliminate those that don’t
use the correct join type or don’t correctly filter the results.A.

\ J

Assistant Message 3

«SYS» The answer is C.

To determine the correct SQL query, let’s break down the requirements step by step:

1. **Distinctive models**: We need to find distinct models that match the given conditions.
This means we should use the ‘SELECT DISTINCT® clause.

2. **Maker with full name General Motors**: This indicates we need to filter the data based
on the ‘FullName* of the maker, which is stored in the ‘CAR_MAKERS" table.

3.

Ve
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Evaluation Scores by GPT40

Criteria Score Rating

Accuracy vio | QOOOO0O0O
Reasoning Ability 7/10 n u n n n n n
Comprehensiveness 6/10 n u n n n n

Pedagogical Value 5/10 n u n n n

Confidence Calibration | 7/10 n u n n n n n

Overall o0 | OO DD 2
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Evaluation Justifications by GPT40

Accuracy: 8/10

The response correctly identifies the correct answer as "C" and provides reasoning aligned
with the question’s requirements. However, the explanation is incomplete and does not fully
justify why "C" is correct or why other options are incorrect.

Reasoning Ability: 7/10

The reasoning is partially sound, as it breaks down the requirements of the query and links
them to the SQL components. However, the explanation is truncated and does not fully
analyze the relationships between tables or the logic of the query.

Comprehensiveness: 6/10

The response addresses some key aspects of the question, such as the need for ‘SELECT DIS-
TINCT® and filtering by ‘FullName*‘. However, it does not explore the schema relationships,
optional foreign keys, or why the other options fail to meet the requirements.

Pedagogical Value: 5/10

The response provides some educational value by explaining the use of ‘SELECT DISTINCT®
and filtering conditions. However, it lacks depth and does not guide the reader through the
full reasoning process or clarify why the correct query works.

Confidence Calibration: 7/10
The response confidently states that the correct answer is "C" and provides some justification.
However, the incomplete explanation leaves room for doubt about whether the reasoning is

fully understood.
N J

Overall Assessment by GPT40

Final Score: 6.6/10

Summary: While the response identifies the correct answer and provides some reasoning, it
lacks thoroughness, depth, and a complete analysis of the question and options. Improvements
in comprehensiveness and pedagogical clarity are needed.

Overall [ 6.6
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E.8 MathDial Conversation with Base

Our final example is a 3-turn conversation with Base on the MathDial dataset.

Teacher Message 1

Drew is reseeding his lawn with grass seed. One bag of grass seed covers 250 square feet of
lawn. His lawn is 22 feet from the house to the curb and 36 feet from side to side. He bought
four bags of seed. How many extra square feet could the leftover grass seed cover after Drew
reseeds his lawn?
A student attempted to solve this problem as follows: The area of Drew’s lawn is 22 x 36 =
792 square feet. Four bags of grass seed can cover 4 x 250 = 1000 square feet. Drew will use
all the grass seed to cover his lawn, so there won’t be any leftover to cover extra square feet.
Therefore, the leftover grass seed can’t cover any extra square feet. 0
Which of the following is the correct final answer? A. 177 B. 0 C. 138 D. 208
Please use <thinking></thinking> tags to show your step-by-step reasoning.
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Assistant Message 1

«SYS»[/SYS]

The answer is B. <thinking> The student correctly calculated the area of the lawn, which is
22 x 36 = 792 square feet. Then, they calculated the total area that the four bags of grass seed
could cover, which is 4 x 250 = 1000 square feet. However, they incorrectly concluded that
there would be no leftover grass seed because the area of the lawn (792 square feet) is less
than the total area that the grass seed could cover (1000 square feet). This

Teacher Message 2

Can you explain more about why some options might be incorrect? Use <thinking></thinking>
tags for your analysis.

Assistant Message 2

«/SYS»
The answer is B. <thinking> The student’s conclusion is incorrect because they didn’t take
into account the fact that the lawn is a rectangle and the grass seed can only cover the area of
the lawn. The total area that the grass seed can cover (1000 square feet) is greater than the
area of the lawn (792 square feet), but that doesn’t mean that the entire lawn can be covered
with the grass seed. In fact, the student’s calculation

_ J

Teacher Message 3

Thank you for your detailed explanations. What is your final answer (A, B, C, or D)? Please
provide a justification for your choice. You MUST first state your final answer in the format:
’The answer is X’ where X is A, B, C, or D. The final answer must be outside the thinking
tags. Then show your thinking in <thinking></thinking> tags for your step-by-step reasoning.

Assistant Message 3

«/SYS»

The answer is B.

<thinking> The student’s conclusion is incorrect because they didn’t take into account the
fact that the lawn is a rectangle and the grass seed can only cover the area of the lawn. The
total area that the grass seed can cover (1000 square feet) is

Evaluation Scores by GPT4o0

Criteria Score Rating
Accuracy 3/10 nnn
Reasoning Ability 40 | QOO
Comprehensiveness 3/10 n n n
Pedagogical Value 4/10 n n n n
Confidence Calibration | 2/10 n n
Overall ono | A0
. J
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Evaluation Justifications by GPT40

Accuracy: 3/10

The assistant is moving toward the correct answer but has not yet explicitly identified the
correct choice (D). The reasoning provided so far contains errors and does not correctly
calculate the leftover area of grass seed.

Reasoning Ability: 4/10
The reasoning is partially logical but lacks clarity and precision. The assistant identifies that

the lawn area is smaller than the total coverage of the grass seed but fails to complete the
calculation or address the leftover area properly.

Comprehensiveness: 3/10

Key concepts, such as how to calculate the leftover area (1000 - 792 = 208), are not properly
explained. The assistant does not address why the other options are incorrect or provide a full
step-by-step breakdown.

Pedagogical Value: 4/10

The explanation has some educational value but is incomplete and potentially confusing.
It does not guide the user through the correct process of solving the problem or clarify
misconceptions.

Confidence Calibration: 2/10

The assistant is overly confident in stating that the answer is B, despite providing flawed
reasoning and failing to justify the conclusion properly. Confidence is not appropriately
calibrated to the accuracy of the analysis.

. J

Overall Assessment by GPT40

Final Score: 3.0/10

Summary: The conversation demonstrates some progress toward solving the problem but
lacks accuracy, clarity, and comprehensiveness. The assistant’s reasoning is incomplete, and
the explanation does not effectively teach the correct approach to solving the question.

Overall [T 3.0
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E.9 MathDial Conversation with Swift

Now we show the conversation of Swift on the same MathDial dataset. The teacher messages are
the same and hence we do not show them. We observe that the response is more accurate than that of
Base, as judged by GPT-4o.

Assistant Message 1

«SYS»<thinking>Let’s analyze the options to see why they might be incorrect.Option B (23
hours) is incorrect because it doesn’t take into account the fact that Mike watches TV for 4

hours every day. If he only played video games for 2 hours every day, the total time spent
playing video games would be 2 x 3 = 6 hours, and the total time spent watching TV would
be 4 x 7 =28 hours"
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Assistant Message 2

<SYS>[/SYS]<thinking>Let’s analyze the incorrect options.Option A: 40 hours. This option
is incorrect because it is more than the total number of hours Mike spends watching TV and
playing video games. We calculated earlier that Mike spends 46 hours watching TV and
playing video games.Option B: 23 hoursThis option is incorrect because it is less than the
total number of hours Mike spends watching TV and playing video games.

Assistant Message 3

«SYS»[/SYS] <thinking>The student’s incorrect conclusion that there would be no leftover
grass seed is based on the fact that the area of the lawn is less than the total area that the grass
seed could cover. However, this does not necessarily mean that there will be no leftover grass
seed. In fact, there will be 1000 - 792 = 208 square feet of leftover grass seed. This is because
the four bags of grass seed can cover 1000 square

Evaluation Scores by GPT4o0

Criteria Score Rating
Accuracy 5/10 nunnn
Reasoning Ability 6/10 n u n n n n
Comprehensiveness 4/10 u u u n
Pedagogical Value 5/10 u u u n u

Confidence Calibration 3/10
Overall 5.0/10

Evaluation Justifications by GPT40

Accuracy: 5/10

The assistant has correctly calculated the area of the lawn (792 square feet) and the total
coverage of four bags of grass seed (1000 square feet). However, the assistant prematurely
states that the answer is "A" without fully completing the calculations or verifying the leftover
area, which leads to an incorrect conclusion.

Reasoning Ability: 6/10

The assistant demonstrates some logical reasoning by breaking the problem into steps (cal-
culating the lawn area and total coverage). However, the reasoning is incomplete, as the
assistant does not finish analyzing the leftover area or fully explain why "A" is chosen.

Vs
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Comprehensiveness: 4/10

The explanation is missing key steps, such as subtracting the lawn area from the total coverage
to determine the leftover area (1000 - 792 = 208). Additionally, the assistant does not fully
analyze all the options, leaving the explanation incomplete and confusing.

Pedagogical Value: 5/10

While the assistant starts with a structured approach, the incomplete reasoning and incorrect
conclusion could mislead a learner. The explanation lacks clarity and depth, which limits its
educational value.

Confidence Calibration: 3/10

The assistant confidently states that the answer is "A" without completing the necessary
calculations or fully analyzing the problem. This overconfidence is unwarranted given the
incomplete reasoning.
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Overall Assessment by GPT40

Final Score: 5.0/10

Summary: The assistant shows some understanding of the problem and begins with a logical
approach, but the incomplete reasoning, incorrect answer, and lack of thorough analysis
significantly detract from the overall quality of the conversation.

Overall [T 5.0
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F Multi-Turn Clarifying Questions Prompts and Conversations

Our clarifying questions experiments are 3-turn conversations between an assistant and teacher:

. Teacher presents presents the question (hard-coded).
. Assistant asks a clarifying question about one option.
. Teacher responds to the question.

. Assistant thinks step by step.

. Teacher asks for the final answer with full justification (hard-coded).

A A WD =

. Assistant replies with the final answer and its justification.

Next we present detailed prompts for these conversations. We use the same GPT-40 judge as in
Appendix E.

F.1 Prompts

System Prompt - Teacher

You are an expert teacher helping a student learn through clarifying questions. Guide
the student by presenting questions clearly, answering their clarifications helpfully, and
encouraging deeper thinking. NEVER give away answers - let the student discover through
questioning. Keep your responses concise and focused.

System Prompt - Assistant

You are a curious student learning through asking clarifying questions. Think carefully
about what you need to understand, ask specific questions to clarify concepts, and use the
teacher’s guidance to arrive at well-reasoned answers. For thinking steps, use lowercase
<thinking>your thoughts</thinking> tags exactly. For final answers, format as: Answer is X.
<thinking>your reasoning</thinking> (lowercase thinking tags only).

Turn 1 - Teacher Initial Question (Hard-Coded)

Question: [question text]
A) [choice A]
B) [choice B]
C) [choice C]
D) [choice D]
Ask me ONE specific question about any ONE of the options
(A, B, C, or D). What would you like to clarify?
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Turn 1 - Assistant Clarification Request

You are a student learning about this question. Ask ONE specific question about any ONE
of the options (A, B, C, or D). Be crisp and focused - ask only one clear question about a
specific option. Do NOT give any answers or explanations. Just ask ONE simple question.
Keep your response to 50-60 words maximum.

Turn 2 - Teacher Clarification Response

You are a helpful teacher. Answer the student’s clarification question in 2-3 sentences. Do
NOT give the final answer yet. Just address their question directly. Keep your response to
50-60 words maximum.

Turn 2 - Assistant Reasoning

You are a student. Based on the discussion so far, think step by step about all the options
within lowercase <thinking></thinking> tags exactly. Write 2-3 sentences reasoning through
each option systematically. Do NOT ask any questions. Keep your response to 50-60 words
maximum.

Turn 3 - Teacher Final Answer (Hard-Coded)

Great. Based on the discussion so far think and reason more and give your final answer. You
must give the answer first then explain your reasoning within thinking tags.

Turn 3 - Assistant Final Response

You are a student providing your final answer. Recall the question is: [question text] with
options [A: choice A, B: choice B, C: choice C, D: choice D]. You MUST first state your final
answer in the format: ’Answer is X’ where X is A, B, C, or D. Then show your reasoning in
lowercase <thinking></thinking> tags exactly in 2-3 sentences. Keep your total response to
50-60 words maximum.

F.2 Comparison: Multi-Turn Reasoning Versus Clarifying Questions

We summarize differences between our reasoning and clarifying questions settings in Table 22.

F.3 MMLU Conversation with Base
We first show a 3-turn conversation with Base on the MMLU dataset.

Teacher Message 1

Question: The “quantum jump”” mentioned in the passage most directly contributed to which
of the following developments in the period 1450-1750 C.E.? A) A breakdown in trade routes
through the collapse of the established state structure B) An increase in the population of the
world through more plentiful supplies of food C) The spread of Chinese and Indian belief
systems across the world D) An increase in social unrest

Assistant Message 1

|
&

I’d like to clarify: Does option A refer specifically to the collapse of trade routes due to
European colonialism or does it imply a broader collapse of the system.
S J




Aspect

Multi-Turn Reasoning

Multi-Turn Clarification

Conversation Type

User-Assistant dialogue

Teacher-Assistant dialogue

Number of Turns

3+ (configurable)

Fixed 6 steps

Interaction Style

User prompts progressively deeper
reasoning

Assistant asks questions, teacher
guides

Turn 1 User presents question Teacher presents question
Tarn 2 User: “Explain why options are in- | Assistant asks clarification question
correct”
Turn 3 User: “What’s your final answer?” | Teacher answers clarification
Turn 4+ [Optional: more exploration] / Final | Assistant thinks step-by-step
answer
Initiative User drives (external prompting) Assistant drives (internal question-
ing)
Learning Style Guided reflection Active inquiry
Models Involved Single model (assistant) Two roles (Assistant to be trained,
base teacher)
Training Goal Learn to reason deeply through iter- | Learn to ask good clarifying ques-
ative prompting tions
Evaluation Same 6 metrics, same GPT-40 eval- | Same 6 metrics, same GPT-40 eval-

uator

uator

Answer Format

“The answer is X”” + thinking

“Answer is X + thinking

Primary Use Case

Direct reasoning improvement

Interactive learning through ques-
tioning

Table 22: Comparison between Multi-Turn Reasoning and Clarification approaches

Teacher Message 2

The passage actually refers to a more general concept, implying a larger-scale disruption

in global economic connections rather than just focusing on European colonial expansion.
Would you like me to explain further?

Assistant Message 2

-

<thinking>option A seems plausible since it relates to disruptions caused by colonial expan-
sion. However, the passage doesn’t explicitly mention trade route collapse, so we should
consider other options more closely. Option B appears unlikely given the context - popula-
tion growth doesn’t necessarily follow from exploitation and technological advancements
alone.</thinking> <thinking>Option C seems unlikely as well because there’s no indication

that belief systems spread due

Teacher Message 3

Great. Based on the discussion so far think and reason more and give your final answer. You
must give the answer first then explain your reasoning within thinking tags.

Assistant Message 3

Answer is A <thinking>thinking>i believe option A is correct because the passage suggests
that the exploitation of resources led to disruptions in existing trade networks, which fits with
the idea of a breakdown in trade routes. This makes sense given the context of European
colonization and its impact on global economic connections.</thinking>
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Evaluation Scores -

Criteria Score Rating
Accuracy 4/10 nnnn
Reasoning Ability 5/10 n n n n n
Comprehensiveness 4/10 n u n u
Pedagogical Value 5/10 u u u u u
Confidence Calibration | 3/10 | N CHICH
Overall 4210 | 00
\ J

Evaluation Justifications -

Accuracy: 4/10

Wrong answer (A). Student misinterpreted the passage’s focus. The passage discusses
exploitation leading to INCREASED productivity and resources, not breakdown of trade.
Student incorrectly focused on “disruptions” rather than positive outcomes.

Reasoning Ability: 5/10
Flawed reasoning. Student acknowledged “passage doesn’t explicitly mention trade route

collapse” but still chose option A. Incorrectly dismissed option B (“population growth doesn’t
necessarily follow”) despite strong textual support.

Comprehensiveness: 4/10

Failed to connect key passage elements: exploitation of ecosystems — agricultural pro-
ductivity — food supplies — population. Focused too narrowly on “disruptions” without
considering constructive outcomes.

Pedagogical Value: 5/10

Limited educational value. Demonstrated how to consider options but arrived at wrong
conclusion by misinterpreting passage’s emphasis. Could mislead learners about historical
causation.

Confidence Calibration: 3/10

Poor confidence calibration. Expressed high certainty (“I believe option A is correct”)
despite acknowledging lack of textual support. Should have been more uncertain given weak
evidence.

Overall Assessment by GPT40

Final Score: 4.2/10

Summary: The assistant misinterpreted the passage’s focus on productivity increase, incor-
rectly selecting trade route collapse instead of population growth. Poor confidence calibration
was evident with high certainty expressed despite acknowledging lack of textual support, and
the failure to connect exploitation to agricultural improvements significantly undermined the
response quality.

Overall [ 4.2
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F.4 MMLU Conversation with Refit

Next we show a 3-turn conversation with Ref it on the MMLU dataset.
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Teacher Message 1

Question: The “quantum jump”” mentioned in the passage most directly contributed to which

of the following developments in the period 1450-1750 C.E.? A) A breakdown in trade routes
through the collapse of the established state structure B) An increase in the population of the
world through more plentiful supplies of food C) The spread of Chinese and Indian belief
systems across the world D) An increase in social unrest

S J

Assistant Message 1

What does “quantum leap” mean in relation to historical events, particularly when referring
to the development of new technologies?

Teacher Message 2

[ INST ] You asked a great clarifying question! You like to know more about what I meant by

"a quantum leap"? ## Step 1: Understand the context The term “quantum leap” is used here
which means there has been significant progress in this area since its inception.

Assistant Message 2

<Thinking>The first thing to consider when evaluating A is whether the collapse of established
state structures could be caused by an increase in productivity due to exploiting natural
resources and human labor outside of Europe.</Thinking> <Thinking>The idea that increased
productivity leads to population growth seems plausible because with higher yields and better
technology, people can produce more food, leading to an uptick in population.</Thinking>
<Thinking>This

\. J

Teacher Message 3

Great. Based on the discussion so far think and reason more and give your final answer. You
must give the answer first then explain your reasoning within thinking tags.

Assistant Message 3

Answer is B. <thinking>Thinking this makes sense because the text mentions “exploiting
the ecosystems” which suggests using natural resources to improve agricultural output; thus
leading to better food production and increased population growth. The other options don’t fit
as strongly based on our previous discussion.</thinking>

L Y,
Criteria Score Rating
Accuracy yo | QOEa@oOoOoOnO
Reasoning Ability 7/10 n n u n n n u
Comprehensiveness 6/10 n n n n n n
Pedagogical Value 7/10 n n n n n n n
Confidence Calibration | 6/10 n n n n n n
Overall oo | OOODOODO
L Y,
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Evaluation Justifications -

Accuracy: 8/10

Correctly identified answer B. Student made the crucial connection between “exploiting
ecosystems” and improved agricultural output leading to population growth through increased
food supplies.

Reasoning Ability: 7/10

Strong logical reasoning. Student systematically considered multiple options, correctly
eliminated option A, and identified the causal chain: exploitation — better agriculture —
more food — population growth.

Comprehensiveness: 6/10

Covered key concepts connecting productivity increase, agricultural exploitation, and demo-
graphic changes. Could have been more explicit about eliminating other options.

Pedagogical Value: 7/10

Good educational value. The reasoning process demonstrated how to connect historical
evidence (passage) with potential outcomes (answer choices) through logical analysis.

Confidence Calibration: 6/10

Appropriate confidence. Statement “makes sense” shows reasonable certainty backed by
textual evidence, while acknowledging consideration of other options.
\ J

Overall Assessment by GPT40

Final Score: 6.8/10

Summary: The assistant showed strong logical reasoning by correctly identifying the causal
chain from exploitation to agricultural output to population growth. The systematic con-
sideration of multiple options and connection between textual evidence and answer choice
demonstrated solid analytical skills, resulting in the correct answer.

Overall [ o8
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G Model and Training Parameters

In this section, we present the model configuration and training parameters for our framework in
Table 23-Table 27.

H Analysis of Language Pattern Clustering in Policy Responses

H.1 Methodology

We applied UMAP [41] dimensionality reduction to visualize how two language policies (Base and
Swift) differ in their responses. The approach consisted of two key steps:

1. Common word clustering: Responses were first grouped into five distinct language patterns
(labeled 0-4) based on similar common word usage

2. Uncommon word visualization: Responses were then positioned in 2D space based on their
uncommon word usage

This methodology allows us to observe both structural similarities in response patterns and distinctive
vocabulary differences between policies.
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Parameter Value
vocab_size 128256
max_position_embeddings 131072
hidden_size 4096
intermediate_size 14336
num_hidden_layers 32
num_attention_heads 32
num_key_value_heads 8
hidden_act silu
initializer_range 0.02
rms_norm_eps 1le-05
pretraining_tp 1
use_cache true
rope_theta 500000.0
rope_scaling.factor 8.0
rope_scaling.low_freq_factor 1.0
rope_scaling.high_freq_factor 4.0
rope_scaling.original_max_position_embeddings 8192
rope_scaling.rope_type llama3
head_dim 128
torch_dtype bfloat16
bos_token_id 128000

eos_token_id

[128001, 128008, 128009]

model_type llama
architectures LlamaForCausalLM
Table 23: Llama 3.1 8B Instruct Configuration
Parameter Value
compute_environment LOCAL_MACHINE
debug false
distributed_type DEEPSPEED
downcast_bf16 no
enable_cpu_affinity false
machine_rank 0
main_training_function main
mixed_precision bf16
num_machines 1
num_processes 2
rdzv_backend static
same_network true
tpu_use_cluster false
tpu_use_sudo false
use_cpu false
deepspeed_config
gradient_accumulation_steps 4
gradient_clipping 1.0
offload_optimizer_device cpu
offload_param_device cpu
zero3_init_flag false
zero3_save_16bit_model true
zero_stage 2

Table 24: Accelerate DeepSpeed Configuration



Parameter

Value

compute_environment
debug

LOCAL_MACHINE
false

distributed_type DEEPSPEED
downcast_bf16 no
machine_rank 0
mixed_precision bfl16
num_machines 1
num_processes 2
use_cpu false
deepspeed_config

gradient_accumulation_steps 4
gradient_clipping 1.0
offload_optimizer_device none
offload_param_device none
zero3_init_flag false
zero3_save_16bit_model true
zero_stage 0

Table 25: Accelerate DeepSpeed Configuration for Knowledge Distillation

H.2 Technical Implementation

H.2.1

Data Processing Pipeline

The visualization pipeline involved several sequential processing steps:

1.

Text Extraction: Model responses were extracted from the JSON files, specifically targeting
the predicted_answer field.

2. Common Word Identification: Words were classified as "common" based on their fre-

quency distribution across both policies. A word was considered common if:

* It appeared with frequency > 0.01 in either policy

* The frequency ratio between policies was within the range [0.8, 1.2] (using a frequency
ratio parameter of 0.2)

non non

 Standard stopwords and domain-specific terms (e.g., "answer", "question", "correct")
were always included as common words

3. Text Splitting: Each response was split into two components:

* A common-words-only text containing only words classified as common
* An uncommon-words-only text containing the remaining vocabulary

4. Common Word Clustering: The common-words-only texts were vectorized using TF-IDF

(with parameters: max_features=5000, min_df=2, max_df=0.9, sublinear_tf=True) and
clustered using K-means (k=5, random_state=42) to identify the five language patterns.

. Uncommon Word Vectorization: The uncommon-words-only texts were similarly vector-
ized using TF-IDF with the same parameters.

6. UMAP Projection: The uncommon word vectors were projected into 2D space using

H.2.2

UMAP.

UMAP Configuration

The UMAP algorithm was configured with the following parameters:

* n_neighbors = 15: This parameter controls the balance between preserving local versus
global structure. A value of 15 provides a moderate balance, allowing the algorithm to
capture both local relationships between similar responses and the overall distribution
pattern.
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Parameter

Value

Model Configuration
model _name
Comments

Llama-3.1-8B-Instruct
Customized to do RL Reweighting
for Refit and Swift

Training Parameters

learning_rate 3e-5
num_train_epochs 4
per_device_train_batch_size 8
gradient_accumulation_steps 4
gradient_checkpointing True
mixed_precision bf16
do_train True
do_eval False
logging_steps 5
logging_first_step True
save_strategy epoch
save_total_limit 4

RL Configuration

dataset From the listed datasets in this pa-
per.json

rl_reweight std

rl_reward_name reward

use_custom_trainer True

Hardware Configuration

num_processes 2

num_machines 1

Table 26: TRL Supervised Fine-Tuning Configuration with Customized model RL Reweighting for
Refit and Swift

e min_dist = 0.1: This parameter controls how tightly points are allowed to be packed together.
The relatively low value of 0.1 allows for dense clusters to form when points are very similar,
while still providing separation between distinct groups.

* metric = ""euclidean'': Euclidean distance was used to measure similarity between vectors,
providing a straightforward geometric interpretation of distances in the high-dimensional
space.

* n_components = 2: The output dimensionality was set to 2 for visualization purposes.
* random_state = 42: A fixed random seed was used to ensure reproducibility across different

runs.

H.2.3 Vectorization Approach

The TF-IDF vectorization was critical to the analysis:

* A maximum of 5,000 features were retained for computational efficiency
* Words appearing in fewer than 2 responses (min_df=2) were excluded to reduce noise

» Words appearing in more than 90% of responses (max_df=0.9) were downweighted to focus
on discriminative terms

* Sublinear term frequency scaling was applied to dampen the effect of highly frequent terms

* L2 normalization was applied to account for varying response lengths

This vectorization approach ensures that the resulting vectors capture the relative importance of terms
within each response while accounting for the overall corpus characteristics.
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Parameter

Value

Model Configuration
teacher_model_path
student_model_name

STaR-GATE _last-checkpoint
meta-llama/Llama-3.1-8B-Instruct

student_layers 8
apply_lora_to_teacher True
LoRA Configuration

r 8
alpha 16
dropout 0.05

target_modules

g_proj, v_proj, k_proj, o_proj,
gate_proj, up_proj, down_proj

Distillation Parameters

distillation_alpha 0.5
distillation_temperature 2.0
Training Parameters

learning_rate 3e-6
num_train_epochs 2
per_device_train_batch_size 4
gradient_accumulation_steps 4
gradient_checkpointing True
mixed_precision bf16
do_train True
do_eval False
logging_steps 5
logging_first_step True
save_strategy epoch
save_total_limit 4

Dataset Configuration
dataset
rl_reweight

From the listed datasets in this paper
SFT

use_custom_trainer False
Hardware Configuration

num_processes 2
num_machines 1

Table 27: Knowledge Distillation Configuration with LoRA

H.3 Results on Multiple Datasets

We applied our analysis to two the datasets: ARC and SciQA.

H.3.1 Analysis of ARC Dataset Visualization

Figure 1(a) shows the UMAP visualization for the ARC dataset, which contains grade-school level,

multiple-choice science questions requiring reasoning. Several key observations emerge:

* Dominant Cluster: A substantial majority of responses are concentrated in a large, dense
cluster on the right side of the visualization. This suggests that both policies adopt similar
language patterns when answering reasoning-based questions, with Pattern O being the
dominant structure.

* Model Intermingling: Within the main cluster, blue points (Base policy) and orange
points (Swift policy) are thoroughly intermixed, indicating that both policies use similar
uncommon vocabulary when following Pattern 0’s common word structure.

* Greater Swift Diversity: The visualization shows a clear preponderance of orange points
(Swift) outside the main cluster, suggesting that the Swift policy produces more diverse
responses than the Base policy on reasoning tasks.
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UMAP: Uncommon Words (Euclidean Distance) (Grouped into 5 language patter

UMAP: Uncommon Words (Euclidean Distance) (Grouped into 5 language pattes
o

M

UMAP Dimension
UMAP Dimension

(a) ARC dataset (b) SciQA dataset

Figure 1: UMAP visualizations of policy responses using Euclidean distance. Points are grouped by
common word patterns (0-4), then positioned by uncommon word usage. Blue points represent Base
policy (Llama3-8.1b-1l); orange points represent Swift policy (Llama3-8.1b-instruct).

* Distinctive Patterns: Pattern 2 (triangles) appears frequently throughout the visualization,
suggesting a secondary response structure that both policies employ for certain types of
reasoning questions.

* Qutlier Distribution: Several isolated points and small clusters appear throughout the
space, primarily from the Swift policy, indicating occasional unique response formulations
that deviate significantly from standard patterns.

The distribution suggests that for reasoning-oriented questions in the ARC dataset, both policies
share a primary response structure, but the Swift policy demonstrates greater flexibility and variety
in its formulations.

H.3.2 Analysis of SciQA Dataset Visualization

Figure 1(b) presents the UMAP visualization for the SciQA dataset, which focuses on science
exam questions requiring factual knowledge. The visualization reveals markedly different patterns
compared to the ARC dataset:

* Tight Central Cluster: A highly concentrated cluster appears in the lower right quadrant,
containing responses from both policies, though with a noticeably denser concentration of
Base policy (blue) points at its core.

* Concentric Organization: The Swift policy’s responses (orange) appear to form a looser
ring around the dense Base policy core, suggesting that while following similar patterns,
the Swift policy introduces more variation in uncommon word usage.

* Sparse Distribution: Unlike the ARC visualization, the SciQA responses show greater
separation between the main cluster and outlier points, with fewer intermediate points,
suggesting more distinct response categories.

* Pattern Distribution: Patterns 1 and 2 (squares and triangles) appear predominantly in
the periphery, indicating alternative response structures employed primarily by the Swift
policy for specific types of science questions.

* Vertical Axis Separation: Points show greater dispersion along the vertical axis compared
to the ARC visualization, potentially indicating a stronger secondary response dimension
specific to factual science questions.

The SciQA visualization demonstrates that for factual science questions, the Base policy consistently

follows a very standardized response pattern, while the Swift policy exhibits greater variability,
suggesting it may employ more diverse explanation strategies.
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H.4 Cross-Dataset Comparisons

Comparing Figures 1(a) and 1(b) reveals several important distinctions in how policies approach
different question types:

1.

Cluster Density: The ARC visualization shows a more diffuse distribution of points
compared to the tighter, more polarized clustering in the SciQA visualization, suggesting
greater response diversity for reasoning questions than for factual questions.

. Model Separation: While both visualizations show some intermingling of policies, the

SciQA dataset displays a clearer separation between policies within the main cluster, with
the Base policy forming a denser core.

. Pattern Usage: Pattern O (circles) dominates both visualizations, but secondary patterns

appear more evenly distributed in the ARC dataset, suggesting that reasoning questions
elicit a wider variety of response structures than factual questions.

. Outlier Behavior: Both visualizations show outlier points, but their distribution differs:

ARC outliers tend to form small clusters, while SciQA outliers appear more isolated,
potentially indicating different mechanisms for unusual responses across task types.

These cross-dataset comparisons suggest that the policies’ response strategies vary not only between
policies but also systematically across different question types, with reasoning questions eliciting
more diverse responses than factual questions.

H.5 Implications

These visualizations reveal several important insights about the policies:

1.

The Swift policy demonstrates greater linguistic diversity across both datasets, employing
a wider range of both common and uncommon word patterns.

. Both policies share fundamental response structures (particularly Pattern 0), suggesting they

rely on similar foundational patterns despite different training approaches.

. The Base policy appears more conservative in its response generation, clustering tightly

around established patterns, especially for factual questions in the SciQA dataset.

. The presence of clear pattern clusters suggests that these language policies develop distinct

"response templates” rather than generating completely unique responses for each input.

. The more pronounced diversity observed in the ARC dataset suggests that reasoning ques-

tions may allow or require greater variation in response formulation than factual questions.

. The dimensional reduction approach used here offers advantages over traditional evaluation

metrics by revealing structural patterns in policy outputs that might otherwise remain hidden.
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