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ABSTRACT

Heuristic functions are central to the performance of search algorithms such as A*,
where admissibility—the property of never overestimating the true shortest-path
cost—guarantees solution optimality. Recent deep learning approaches often dis-
regard admissibility and provide limited guarantees on generalization beyond the
training data. This paper address both of these limitations. First, we pose heuris-
tic learning as a constrained optimization problem and introduce Cross-Entropy
Admissibility (CEA), a loss function that enforces admissibility during training.
On the Rubik’s Cube domain, this method yields near-admissible heuristics with
significantly stronger guidance than compressed pattern database (PDB) heuristics.
Theoretically, study the sample complexity of learning heuristics. By leveraging
PDB abstractions and the structural properties of graphs such as the Rubik’s Cube,
we tighten the bound on the number of training samples needed for A* to generalize.
Replacing a general hypothesis class with a ReLU neural network gives bounds
that depend primarily on the network’s width and depth, rather than on graph size.
Using the same network, we also provide the first generalization guarantees for
goal-dependent heuristics.

1 INTRODUCTION

Heuristic search algorithms such as A* (Hart et al., 1968) are widely used in pathfinding tasks (Yone-
tani et al., 2021; Meng et al., 2024; Kirilenko et al., 2023), where the objective is to find a least-cost
path from a start state to a goal state in a graph. These algorithms rely on a heuristic function that
estimates the cost-to-go from a state to the goal. To guarantee optimality, A* requires the heuristic to
be admissible, meaning it must never overestimate the true cost, h∗, to the goal. If we wish to integrate
machine learning with heuristic search algorithms like A* we have several possible approaches: (1)
We can adapt learning to meet the requirements of search algorithms (Samadi et al., 2008; Li et al.,
2022), (2) we can adapt search algorithms to meet the properties of ML heuristics (Lelis et al., 2021),
(3) we can do a combination of both, or (4) we can abandon all theoretical guarantees, hoping for
high quality solutions or fast search in practice (Orseau et al., 2023; Hazra et al., 2024; Chen et al.,
2025; Huang et al., 2025). This paper studies the foundations of the first question: what is the sample
complexity needed to learn admissible heuristics, what is an effective loss function for training, and
how close we can get to optimal heuristics in practice?

Traditionally, admissible heuristic functions are computed from domain knowledge of the problem
(Katz & Keyder, 2022; Haslum et al., 2005; Seipp, 2024). One prominent example is pattern databases
(PDBs) (Korf, 1997; Culberson & Schaeffer, 1998). PDBs result from abstracting the problem and
storing h∗ for all states in the abstract problem. Learning heuristics from data (Li et al., 2022;
Agostinelli et al., 2021; Pándy et al., 2022; Shen et al., 2020; Chen et al., 2024b) has become
increasingly popular for two main reasons: (1) designing good heuristics for complex environments is
challenging, and (2) data-driven deep learning algorithms have demonstrated outstanding performance
in analogous tasks (Silver et al., 2017; Schrittwieser et al., 2020; Wurman et al., 2022; Touvron
et al., 2023). While learned heuristic functions may outperform traditional heuristics, they typically
lose admissibility and thus suboptimality guarantees (Agostinelli et al., 2019; Yonetani et al., 2021;
Archetti et al., 2021; Kirilenko et al., 2023). Despite substantial empirical progress, the theoretical
foundations of heuristic learning are relatively underexplored. A central question is: How many
training samples are required to ensure that the learned heuristic generalizes effectively to the entire
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graph? Sakaue & Oki (2022) addressed this question for Greedy Best-First Search (GBFS) and A*,
providing upper and lower bounds on the training samples necessary to ensure generalization.

We extend this work to the problem of learning admissible heuristics in two main directions. First,
we analyze the sample complexity of learning heuristic functions from a given dataset. We introduce
a new upper bound for the expected suboptimality of A* with reopenings. We then derive tighter
generalization bounds by leveraging structural properties of the graphs of interest. We further
incorporate neural networks as the heuristic model and derive generalization bounds that depend
primarily on the size of the network rather than the size of the underlying graph. Notably, using
neural networks, we establish the first generalization bounds for goal-dependent heuristics. Across
all theoretical results, we demonstrate that leveraging PDBs instead of drawing training samples from
the original graph leads to improved bounds.

Second, we formulate the optimization problem for learning admissible heuristics for search ap-
plications. We propose a novel loss function, termed Cross Entropy Admissibility (CEA), along
with a training framework that satisfies all the constraints of the optimization problem. We evaluate
our framework on several 3 × 3 Rubik’s Cube pattern databases PDBs. The CEA loss function
produces near-admissible heuristics, achieving inadmissibility rates around 1 × 10−6 across all
PDBs—significantly outperforming standard training based on the Cross Entropy (CE) loss. The
strength of the learned heuristics exceeds that of same-sized PDBs obtained using classical compres-
sion techniques; notably, for the 8-corner PDB, the CEA loss successfully learns the admissible PDB
heuristic perfectly.

2 BACKGROUND

In heuristic search, the task is to find a path from a start state sinit ∈ V to a goal state goal ∈ V in
a graph {G = {V,E}, c, h}, where c : E → R+ specifies the cost for each edge and the heuristic
function h(v) estimates the distance from any state v to goal. A heuristic is called admissible if, for all
v ∈ V , we have h(v) ≤ h∗(v), where h∗(v) is the true shortest distance from v to goal. A heuristic
function h is consistent if, for all states a, b ∈ V such that (a, b) ∈ E, we have h(a) ≤ c(a, b)+h(b).
In large state spaces, the graph G is represented implicitly and is generated dynamically during search
by expanding states and exploring their neighbors. Although A* guarantees optimal solutions under
an admissible heuristic, it can become less efficient if the heuristic is inconsistent, due to the potential
for re-expanding nodes (Martelli, 1977; Felner et al., 2011; Helmert et al., 2019). For a positive
integer d, write [d] := {1, 2, . . . , d}. Given vectors {x1, . . . ,xt} ⊆ Rd, we use superscripts to index
the vectors and subscripts for coordinates, so xi

j denotes coordinate j of vector i. For any real vector
x, the operator ⌈x⌉ applies the ceil function coordinatewise. We use I(·) to denote the indicator
function, which returns 1 when the stated condition holds and 0 otherwise. Let Π denote the space
of problem instances and let D be an unknown distribution supported on Π; we write x ∼ D for a
random instance. Each x ∈ Π specifies a start state sinit from which the search is initiated. We make
the following assumption on all instances.
Assumption 1 (Fixed graph and reachability). The state graph G and goal ∈ V are fixed and shared
across all instances x ∈ Π. For every instance with start state sinit ̸= goal, there exists at least one
directed path from sinit to goal.

A* Algorithm. We use A∗
h to denote an A* algorithm that employs a heuristic function h. This

algorithm maintains two lists of states: OPEN for states that have been generated but not expanded,
and CLOSED for states that have already been expanded. Additionally, we store a pointer to the
parent of state s, denoted as Parent(s), which allows us to reconstruct the path to sinit by tracing
backward from s. Algorithm 1 in Appendix B provides an overview of the procedure of A∗

h. Given
an instance x ∈ Π, A∗

h initializes its search by adding sinit to OPEN. At each iteration, it selects from
OPEN a state s with the minimum value of f(s) = h(s) + g(s). To ensure consistent performance
bounds for A∗

h, we impose the following assumption when ties occur.
Assumption 2. If the state space V contains n vertices, we impose an arbitrary strict total order on
V . For example, consider the order v1 < v2 < · · · < vn. In this ordering, if two states vi and vj
have the same lowest f value, we select vi when i < j, and vj otherwise.

When expanding a state s, let gnew ← g(s) + c(s, s′) denote the generated cost of the path from the
start through s to its child s′. Three situations can arise for s′ based on gnew:

2



Published as a conference paper at ICLR 2026

1. If s′ /∈ OPEN ∪ CLOSED, then we add s′ to OPEN.
2. If s′ ∈ OPEN and gnew < g(s′), then we update Parent(s′) and g(s′) to reflect the

improved path.
3. If s′ ∈ CLOSED and gnew < g(s′), then we update Parent(s′), g(s′), and move s′ from

CLOSED back to OPEN.

Case 3 is only needed if the heuristic is inconsistent. After generating and evaluating all children of s,
we remove s from OPEN and place it in CLOSED. This procedure continues until the goal state is
selected from OPEN for expansion, at which point the algorithm terminates with a path to goal.

(a) Center cubes. (b) Corner cubes. (c) Edge cubes.

Figure 1: A solved 3× 3 Rubik’s Cube with each
group of cubies shown separately: (a) center cu-
bies, (b) corner cubies, and (c) edge cubies.

Abstraction-Based Heuristics. As a form of
abstraction heuristics, Pattern Databases (PDBs)
simplify a graph V by applying a homomor-
phic transformation to obtain a reduced state
space ϕ(V ). For example, a 3× 3 Rubik’s Cube
contains 26 cubies—12 edges, 8 corners, and
6 centers—as illustrated in Figure 1. One can
abstract away the edges and centers to construct
an 8-corner PDB with 8!× 37 states, in contrast
to the 4.33 × 1019 states in the original graph.
Within this abstract representation, if there is an
edge between v1 and v2 in V , an edge will also
be present between ϕ(v1) and ϕ(v2) in ϕ(V ).
Thus, all distances are admissible, and all states from V that reduce to the same state in ϕ(V ) have
identical heuristic values. More details regarding the reduction from states in V to states in ϕ(V ) are
shown in Figure 3 in Appendix C. The PDB stores the perfect heuristic value (optimal distance to
the abstract goal) for every abstract state, obtained by running an optimal search in the abstract state
space. During the search, the current state is mapped to ϕ(v), and a ranking function (Myrvold &
Ruskey, 2001) is used to assign a unique integer to the abstract state. This functions as an index in
the lookup table to retrieve the the precomputed distance to the abstract goal, which serves as the
heuristic value h(v). Compression techniques (Felner et al., 2007; Helmert et al., 2017) reduce the
size of the PDB by grouping entries and only storing the lowest heuristic value from the group, which
maintains admissibility.

Preliminaries for Sample Complexity Analysis. We use pseudo-dimension (Pollard, 1984), a
central concept for measuring the complexity of a class of real-valued functions, as the foundation of
our analysis. The definition of pseudo-dimension is as follows.
Definition 1. LetH ⊆ RY be a set of functions mapping a domain Y into R. We say that a subset
{y1, . . . , yN} ⊆ Y is shattered byH if there exist target values z1, . . . , zN ∈ R such that∣∣∣{(I{h(y1) ≥ z1}, . . . , I{h(yN ) ≥ zN}

)
| h ∈ H

}∣∣∣ = 2N .

The largest number of samples that can be shattered by H is called the pseudo-dimension of H,
denoted by Pdim(H).

We use the following proposition (Theorem 11.8 in (Mohri et al., 2018)) that helps us to attain
generalization bounds using the definition of pseudo-dimension.

Proposition 1. Let H > 0,H ⊆ [0, H]
Y , and D be a probability distribution over Y . Suppose we

draw {y1, . . . , yN} ∼ DN i.i.d. Then, with probability at least 1 − δ over this random draw, the
following holds for all h ∈ H:∣∣∣∣ 1N

N∑
i=1

h(yi) − Ey∼D
[
h(y)

]∣∣∣∣ = O

(
H

√
Pdim(H) log

(
N

Pdim(H)

)
+ log

(
1
δ

)
N

)
.

In simpler terms, if the size of the training dataset is N = Ω
(

H2

ϵ2

(
Pdim(H) log H

ϵ + log 1
δ

))
, with

a probability of 1− δ, we can guarantee that the difference between true expectation over the entire
graph and the emperical mean over the dataset is less than ϵ.
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Performance measure. We need a general definition of performance that can cover various metrics.
Specifically, we measure the performance of A∗

h on x ∈ Π using a utility function u, defined below:
Assumption 3 (Sakaue & Oki (2022, Assumption 3)). Let H > 0. A utility function u takes x and
a series of all OPEN, CLOSED, and Parent(·) generated during the execution of A∗

h on x ∈ Π as
input, and returns a scalar value in [0, H].

With this definition, the utility function could, for instance, be the number of node expansions
or the total running time, since both can be directly computed from the sizes of the OPEN and
CLOSED lists. As shown in Proposition 1, we require a strict upper bound on these measures to
ensure that all functions in the class U return positive, bounded values. This assumption is explicitly
used in experiments, as we often set time or memory constraints when running A∗

h. We denote by
uh : Π→ [0, H] the utility function that evaluates A∗

h’s performance on any instance x ∈ Π, and we
define the class of such functions as U = {uh : Π→ [0, H] | h ∈ Rn}.
Our goal is to determine the number of training instances needed to learn a heuristic function h ∈ Rn

such that the A∗
h algorithm achieves optimal performance w.r.t the utility function on all instances

x ∼ D. Concretely, we want to learn a heuristic function that attains optimal expected performance,
Ex∼D[uĥ(x)]. Because we only observe the performance of A∗

h on the training instances x1, . . . , xN ,
namely uh(x1), . . . , uh(xN ), we must ensure generalization to any x ∼ D. To achieve this, we need
to bound the difference between the empirical average performance and the expected performance,∣∣∣∣∣ 1N

N∑
i=1

uh(xi) − Ex∼D[uh(x)]

∣∣∣∣∣
uniformly for all h ∈ Rn. Establishing such a bound requires determining the pseudo-dimension of
U . In the following section, we use our theoretical tools to derive this result. Note that all proofs and
an extended related work discussion are provided in the appendix.

3 SAMPLE COMPLEXITY ANALYSIS

In this section, we attain the Pdim(U) for the A∗
h algorithm. To this aim, we need to discretize Rn

into regions such that all heuristics in a region have the same performance: uh1
= uh2

if h1, h2 ∈ P .
If we look at the Algorithm 1, the only part that the heuristic function impacts the performance is
the node selection step from OPEN (line 3). However, in addition to h, the path cost from sinit to
each state v also matters to determine the total cost: f(v) = g(v) + h(v). If only h determines which
node to expand, such as in GBFS, we know that only the total ranking given by h over all states
v ∈ V matters. So, the number of regions are the total number of different ordering among the states,
which is n! (Sakaue & Oki, 2022; Chrestien et al., 2024). In the case of A* algorithm, we first need
to define the cases when two different heuristics result in the same performance:
Lemma 1. Let h and h′ be two heuristic functions in Rn such that h(vi)− h(vj) = h′(vi)− h′(vj)
for any two pairs of vi, vj ∈ V . Then, it follows that uh(x) = uh′(x) for every x ∈ Π.

Before presenting our main theorem, we require a more detailed examination of g-costs, which appear
as one component of the f -cost. Formally, at each iteration of A*, g(v) tracks the cost of the shortest
path discovered so far from sinit to a vertex v. This cost may be updated if a lower-cost path is found
later in the search, implying that g(v) always represents an upper bound on the true cost from sinit to
v. To determine the number of distinct g(v) values in a graph, we impose the following assumption,
which holds for many combinatorial problems (e.g., the Rubik’s Cube).
Assumption 4. Let {G = {V,E}, c, h} define our task. The edge cost function c : E → {c0} assigns
a constant cost c0 to all edges.

Under Assumption 4, the number of distinct values that g(v) can take for any v ∈ V is at most
|V | = n. Define GV =

{
(v, g(v)) | v ∈ V

}
, which is the set of vertex–cost pairs. Hence,

|GV | ≤ n2. Armed with these observations, we now establish an upper bound on Pdim(U) for A* in
the following theorem. While our proof uses a different derivation technique, the resulting bound
matches that of Sakaue & Oki (2022).
Theorem 1. Let Ah have parameters h ∈ Rn, and let the graph G satisfy Assumption 4. Then, it
holds that Pdim(U) = O(n log n).
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Extension to PDB Heuristics. In general, we consider heuristic functions h ∈ Rn. However, for
PDB heuristics, one can learn values on an abstracted state space whose size is m, which can be
exponentially smaller than n. In that case, h effectively lives in Rm. We next show that learning
heuristic functions to approximate a PDB heuristic can further reduce Pdim(U).
Theorem 2. Let G be a graph with |G| = n, and let P be a PDB dataset over G with an induced
graph of size m. Suppose Ah uses a heuristic h trained on P and that G satisfies Assumption 4. Then,
Pdim(U) = O

(
m log n

)
.

Remarks on upper bounds for Pdim(U)Pdim(U)Pdim(U). Sakaue & Oki (2022) provided the first upper bounds
on Pdim(U). For a general class of graphs, they proved an upper bound ofO(n2 log n), later refining
it to O(n log(nW )) under the assumption that edge weights are bounded by a constant W . In our
setting, where graphs follow Assumption 4, we initially obtain an upper bound of O(n log n). We
then improve this bound to O(m log n) by utilizing learned PDB heuristics, with m representing the
size of the graph induced by the PDB.

3.1 UPPER BOUNDS ON THE EXPECTED SUBOPTIMALITY

If we aim to achieve Pdim(U) for the A* algorithm without imposing Assumption 4, the sample
complexity scales on the order of O(n2 log n). Consequently, to obtain tighter results, one often
restricts the class of graphs under consideration. The general class of performance measures defined
earlier encompasses a wide range of metrics related to the performance of theA∗

h algorithm, including
runtime, the number of node expansions, and memory consumption. Rather than seeking tighter
bounds for this general class, we focus on a special measure called the expected suboptimality, which
captures how far the solution returned by A* is from the optimal solution. For a given problem
instance x ∈ Π, let C(x) be the cost of the path found by A*, and let C∗(x) be the cost of an optimal
path. We define the suboptimality as

uh(x) = Ch(x) − C∗(x).

Then, applying the bound on Pdim(U) together with Proposition 1, we obtain the following upper
bound on the gap between the expected and empirical suboptimality on training data:

Ex∼D
[
Ch(x) − C∗(x)

]
≤ 1

N

N∑
i=1

(
Ch(xi) − C∗(xi)

)
+ Õ

(
H

√
n2 + log 1

δ

N

)
. (1)

To reduce the error term in Equation (1), we employ a worst-case bound on the quality of the solution
returned by A*. Valenzano et al. (2014) proved that if A* does not reopen nodes (i.e., if we remove
lines 13–14 in Algorithm 1), then the suboptimality can be bounded by the total inconsistency along
the edges of an optimal path. Importantly, this bound holds for any heuristic function—even if it is
not admissible—as long as the following conditions are satisfied for all s ∈ V :

• h(s) ≥ 0,

• h(s) = 0 if s = goal, and

• h(s) ̸=∞ whenever h∗(s) ̸=∞.

Concretely, for any instance x ∈ Π, if v0, v1, . . . , vk is an optimal path with cost C∗(x), then

Ch(x) − C∗(x) ≤
k−1∑
j=1

INCh

(
vj , vj+1

)
,

where, for every edge (p, c) ∈ E, the inconsistency INCh is defined as INCh(p, c) = max
{
h(p) −

h(c) − c(p, c), 0
}

. Because INCh(·, ·) is always non-negative, the total inconsistency on any path
can be estimated by summing the edge inconsistencies along that path. Sakaue & Oki (2022) further
showed that this bound remains valid even when A* reopen nodes from CLOSED upon discovering a
path with lower g cost. In Theorem 3, we show that the bound can be tightened when A* is allowed
to reopen nodes.
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Theorem 3. Let x ∈ Π be a problem instance, and let Popt = v0, v1, . . . , vk be its optimal solution
path with cost C∗(x). Suppose A* is allowed to reopen nodes. Then the cost Ch(x) of any solution
returned by A* satisfies

Ch(x) − C∗(x) ≤ max
v∈Popt

[
h(v) − h∗(v)

]
.

We use Ψh(x) = maxv∈Popt

[
h(v)− h∗(v)

]
to represent the inadmissibility function parameterized

by h for x. We define the class of all inadmissibility functions as Û = {Ψh : Π→ [0, Ĥ]
∣∣∣ h ∈ Rn},

where Ĥ is the bound on the performance measure required by Assumption 3. In the following
theorem, we bound the difference between the empirical inadmissibility over N training instances,
namely 1

N

∑N
i=1 Ψh(xi), and the expected inadmissibility using Pdim(Û).

Theorem 4. For the class Û of inadmissibility functions, it holds that Pdim(Û) = O(n log n) and
we can bound the generalization error by

E
x∼D

[
Ψh(x)

]
≤ 1

N

N∑
i=1

Ψh(xi) + Õ
(
Ĥ

√
n+log

1
δ

N

)
. (2)

Now, looking at the generalization error from Theorem 4 and Theorem 3, we get a tighter upper
bound for the expected suboptimality:

E
x∼D

[Ch(x) − C∗(x)] ≤ E
x∼D

[Ψh(x)] ≤
1

N

N∑
i=1

Ψh(xi) + Õ

Ĥ
√
n+ log 1

δ

N

. (3)

3.2 SAMPLE COMPLEXITY USING NEURAL NETWORKS

So far, we have analyzed the sample complexity of heuristic functions h ∈ Rn under the assumption
that each vertex v ∈ V has a distinct value, and modifying the heuristic at one vertex does not affect
the others. However, in many data-driven settings, these heuristics are realized by a neural network
rather than a simple mapping in Rn. In this section, we derive sample complexity bounds for neural
network–based heuristic functions on graphs that satisfy Assumption 4. To do so, we first formalize
both the mapping induced by these networks and our corresponding hypothesis class.
Definition 2 (Neural networks Cheng et al., Definition 2.4). Given any function σ : R → R,
we will use the notation σ(x) for x ∈ Rd to mean [σ(x1), σ(x2), . . . , σ(xd)]

T ∈ Rd. Let σ :
R → R and let L be a positive integer. A neural network with activation σ and architecture
w = [w0, w1, . . . , wL, wL+1]

T ∈ ZL+2
+ is a parameterized function class, parameterized by L+ 1

affine transformations {Ti : Rwi−1 → Rwi , i ∈ [L+ 1]} with TL+1 linear, is defined as the function

TL+1 ◦ σ ◦ TL ◦ · · ·T2 ◦ σ ◦ T1.
L denotes the number of hidden layers in the network, while wi signifies the width of the i-th hidden
layer for i ∈ [L]. The input and output dimensions of the neural network are denoted by w0 and
wL+1, respectively. If Ti is represented by the matrix Ai ∈ Rwi×wi−1 and vector bi ∈ Rwi , i.e.,
Ti(x) = Aix+ bi for i ∈ [L+ 1], then the weights of neuron j ∈ [wi] in the i-th hidden layer come
from the entries of the j-th row of Ai while the bias of the neuron is indicated by the j-th coordinate
of bi. The size of the neural network is defined as w1 + · · ·+ wL, denoted by U .

With reference to Definition 2, a family of neural networks is defined as Nσ : Rw0 × RW → RwL+1 ,
where Rw0 is the input space, σ is the activation function in hidden layers, and RW is the parameter
space. The parameter space RW is implicitly defined by all weight matrices Ai and bias vectors bi

for i ∈ [L+ 1] within the neural network. Each function Nσ(x,w) is defined for any x ∈ Rw0 and
w ∈ RW as

Nσ(x,w) = TL+1

(
σ
(
TL(. . . T2(σ(T1(x))) . . . )

))
,

where each Ti is an affine transformation that depends on w. For the hidden layers, we employ the
ReLU activation, while the last layer uses the Softmax activation, consistent with treating heuristic
learning as a classification task.
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• ReLU: The Rectified Linear Unit (ReLU) activation ReLU : R → R≥0 is given by
ReLU(x) = max{0, x}.

• Softmax: The Softmax activation : Rℓ → (0, 1)ℓ is applied coordinatewise:

Softmax(xi) =
exp(xi)∑k
j=1 exp(xj)

, i = 1, . . . , ℓ.

The parameterization induced by the neural network Nσ,σ′
is shown as φNσ,σ′

w , where σ is the
hidden-layer activation function and σ′ is the activation function in the final layer. This gives rise to
the performance class U = {uh : Π→ [0, H]

∣∣ h = φNσ,σ′

w ,w ∈ RW }. In the following theorem,
we derive Pdim(U).
Theorem 5. Let G be a graph with |V | = n, and let P be a PDB dataset over G whose induced
graph has size m. Assume G satisfies Assumption 4, and let h : V → [0, D] be a heuristic function
trained via a neural network. Then, Pdim(U) = O(n). Moreover, if h is trained on P , it follows that
Pdim(U) = O(m).

The bound in Theorem 5 depends on the size of the graph, which may be large. Ideally, we want
to leverage neural networks to obtain a tighter bound in terms of the network’s size. The proposed
approach from Balcan et al. (2021a) is not guaranteed to remain valid under a neural network’s
parameterization. So, we first define a representation function and then derive a bound on Pdim(U)
that accounts for the parameters of the neural network.

Definition 3. For each instance I ∈ I , we define a representation function Rep(I) = x, where x is
the feature vector fed into the neural network. This representation encompasses all relevant features
of an instance, including any common across instances.

Our definition of Rep(I) must encompass all the information required to find a path from the start
state to the goal. However, we cannot simply include all states in each instance, since computing h∗
for all states is itself the ultimate goal of training. Instead, for each instance, we include a set B of
states encountered by running a search from the start state for that instance to the goal using h∗. This
approach allows us to capture only the necessary data without relying on all possible states.

Theorem 6. LetG be a graph with |V | = n, and let P be a PDB dataset overG whose induced graph
has size m. Assume G satisfies Assumption 4, and let h : V → [0, D] be a heuristic function trained
via a neural network. Then, Pdim(U) = O (LW log (U + ℓ) +W log (ℓ|B|(L+ 1))). Moreover, if
h is trained on P , it follows that Pdim(U) = O (LW log (U + ℓ′) +W log (ℓ′|B′|(L+ 1))).

Instance-dependent framework. So far, our analysis of sample complexity has focused on heuristic
functions that can be used for all instances, under the assumption that each instance shares the same
goal state, and thus the same heuristic values. However, we can also view instances as sinit–goal
pairs, where changing the goal requires a different heuristic. To address this, we adopt neural networks
as the learning framework, enabling heuristic values that adapt to instance-specific features.

Theorem 7. Let G be a graph with |V | = n, and let P be a PDB dataset over G whose induced
graph has size m. Assume that G satisfies Assumption 4, and let h : V → [0, D] be a heuristic
function trained via a neural network, capable of estimating heuristic values for varying goal in G.
Then, Pdim(U) = O (LW log (U + ℓ) +W log (ℓ|B|n(L+ 1))). Moreover, if h is trained on P , it
follows that Pdim(U) = O (LW log (U + ℓ′) +W log (ℓ′|B′|m(L+ 1))).

4 TRAINING FRAMEWORK

Our goal is to learn a heuristic h that can be queried many times during A* search while satisfying
three key requirements: (1) Perfect admissibility: the heuristic must satisfy h(s) ≤ h∗(s) for every
state s ∈ V ; (2) High average value: among admissible heuristics, those with higher mean values,
defined as 1

|S|
∑

s∈S h(s), provide stronger guidance for search; and (3) Fast inference: the size of
the model to calculate h, denoted as |h|, should be as small as possible to minimize per-call latency
and memory overhead during search. These objectives can be expressed as the optimization problem
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max
h

1

|S|
∑
s∈S

h(s) s.t. h(s) ≤ h∗(s) (∀s ∈ S), |h| is minimized. (4)

Framing the Task as Ordinal Classification. Under Assumption 4 the problem can be treated as a
classification task where each heuristic value 0, 1, . . . , ℓ forms a class. The cross-entropy (CE) loss,

CE = − 1

N

N∑
i=1

ℓ∑
k=1

y
(i)
k log p

(i)
k , p

(i)
k =

exp(x
(i)
k )∑ℓ

j=1 exp(x
(i)
j )

,

optimises accuracy but ignores the order among classes and treats under- and over-estimation equally.
Because we prefer underestimation to overestimation, we introduce a new loss function called
Cross-Entropy Admissibility (CEA):

CEA = − 1

N

N∑
i=1

log

( h∗i∑
k=1

(
k
h∗i

)β
p
(i)
k

)
+ η

[
− log p

(i)
h∗i

]
. (5)

The first term reallocates probability mass to all classes k ≤ h∗i; the weight
(
k/h∗i

)β
decreases

as k moves farther below the true class. The parameter β > 0 balances admissibility (smaller β)
against heuristic strength (larger β). The second term is a CE penalty, scaled by η, that sharpens the
distribution around the true class. It discourages the model from assigning high probability to an
inadmissible class even when most mass lies on admissible ones. Choosing η so that η ≪ 1 maintains
the dominance of the first (admissibility) term while still penalizing low probability on the true class.
With this loss, the unique global optimum is achieved when p(i)h∗i

= 1 for every sample, fulfilling both
admissibility and maximal average heuristic.

Delta heuristic. PDBs can have imbalanced distributions of states and heuristic values. In the
6-edge Rubik’s-Cube PDB, more than 86% of the states fall in classes 7 and 8. Because these classes
have large heuristic values, a model that over-predicts them is likely to violate admissibility on states
with lower heuristics. This can be improved using a delta heuristic h∆ (Sturtevant et al., 2017).
Instead of storing distances in a single PDB, we store a small base PDB with a pattern that is a subset
of the full PDB and store only the difference between these PDBs ∆ = hlarge − hbase. At inference
time, the final heuristic is reconstructed as hlarge(s) = hbase(s) + ∆(s). Table 3 (Appendix G) shows
that subtracting a 4-edge PDB from the 6-edge PDB significantly shifts the class imbalance.

5 EXPERIMENTS

In this section, we aim to answer the following key questions: (1) How effective is the proposed
training framework in learning strong admissible heuristics? (2) How robust is the proposed loss
function to hyperparameter choices? (3) What is the trade-off between model complexity and the
strength of the learned heuristic? (4) How does the bound on generalization error behave as the
number of training instances increases?

To evaluate these questions, we focus on the 3 × 3 Rubik’s Cube, where, to our knowledge, no
previous machine learning methods have learned an admissible heuristic. We selected four PDBs
with distinct characteristics: 8-Corner, ∆(6, 4)-Edge, 6-Edge, and 7-Edge. All PDBs are sourced
from the HOG2 repository1. The summary statistics for the PDBs are presented in Table 1, and the
complete heuristic distributions are provided in Table 3 (Appendix G). For learning heuristic models,
we adopt a neural network architecture based on the ResNet model (He et al., 2016). A complete
description of the model architecture and the selected hyperparameters is presented in Appendix G.

1https://github.com/nathansttt/hog2/tree/PDB-refactor
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Training and Sampling Strategy. Looking at the PDB heuristic distributions in Table 3 (Ap-
pendix G), there is a massive class imbalance in all PDBs. If we uniformly sample training batches,
the model overfits the most populated classes. To avoid this, we handle imbalance at the sampling
stage. Mini-batches are constructed by uniformly sampling within each heuristic class, and the
number of sampled states from each class is proportional to its size. Our setting also differs from
standard supervised learning. In a typical setup, we train on a subset and aim to generalize to a small
test set that represents a much larger unseen population. Here, each PDB contains all states of a
graph, and a ranking function maps every Rubik’s Cube state uniquely to a PDB state. If a model
predicts an admissible heuristic for every state in the PDB, we obtain a fully admissible heuristic for
Rubik’s Cube. Therefore, the goal is to compress the information in this large dataset into a small
model while losing as little information as possible. To this end, we sample training batches from the
full dataset for a fixed number of epochs. Many individual states are never seen during training, due
to both dataset size and randomness in sampling, but training still reflects the full data distribution.

Post-hoc weight pruning. One of the constraints in Equation 4 is the model size |h|, since fast
heuristic evaluation during search is essential. A common approach for improving inference efficiency
is post-hoc weight pruning and related compression techniques (Han et al., 2015; Micikevicius et al.,
2017; Krishnamoorthi, 2018). In our work, we adopt a simple but effective variant: we train all
models in 32-bit precision but perform inference in 16-bit precision, substantially reducing latency
during search. We also experimented with 8-bit quantized inference; however, the accuracy loss was
significant, so we chose not to consider it further.

Table 1: Summary statistics for the PDBs.

PDB Avg. Heuristic Number of States PDB Size (MB)
4-edge 6.75 3,041,280 1.52
6-edge 7.65 42,577,920 21.29

8-corner 8.76 88,179,840 44.09
7-edge 8.51 510,935,040 255.47

Table 2: Comparison between learned neural network heuristics and compressed PDBs.

Heuristic Type Pattern Avg. Heuristic Overestimation Rate Model Size (MB) Compression Rate

NN + CEA loss
7-edge

7.45 2× 10−5 3.75 68.12×
NN + CE loss 8.44 1.4× 10−2 3.75 68.12×

Compressed PDB 6.83 0 3.65 70.00×

NN + CEA loss
8-corner

8.76 3× 10−7 1.89 23.32×
NN + CE loss 8.76 2× 10−3 1.89 23.32×

Compressed PDB 6.84 0 1.91 23.00×

NN + CEA loss
6-edge

6.92 9× 10−5 1.95 10.91×
NN + CE loss 7.46 9× 10−2 1.95 10.91×

Compressed PDB 6.68 0 1.93 11.03×

NN + CEA loss
∆(6,4)-edge

1.31 3× 10−6 3.20 6.65×
NN + CE loss 1.89 15× 10−2 3.20 6.65×

Compressed PDB 1.05 0 3.04 7.00×

Evaluating Learned Heuristics. We compare the heuristic learned with CEA loss function against
two baselines: (1) the learned heuristic using CE loss, and (2) a compressed PDB constructed using
the min compression technique. The compression factor was chosen so that the compressed PDB
and both NN models occupy the same amount of memory. For the NN models, we used the same
hyperparameters and allocated the same number of training epochs for both loss functions. The
CEA-specific parameters, β and η, are tuned per model; Appendix J details a general tuning procedure
applicable to any model.

The most critical property of a learned heuristic for achieving optimality is its overestimation rate,
which should ideally be zero. However, assigning zero to all states, though admissible, offers no
useful guidance. Our goal, therefore, is to learn a heuristic that is both admissible and highly

9



Published as a conference paper at ICLR 2026

informative. Our results are summarized in Table 2. We achieved an overestimation rate which
is nearly zero, indicating a fully admissible heuristic, for the 8-corner and ∆(6, 4)-Edge PDBs,
and only a few thousand overestimated states for the 6-edge and 7-edge PDBs. The CEA loss
achieved a fully admissible heuristic in the 8-corner PDB while matching the average heuristic of
the original PDB, demonstrating no information loss. Across all PDBs, the overestimation rate for
our loss function is nearly 104× smaller than that obtained with the CE loss. The comparison of the
distributions of overestimated states for both loss functions across all PDBs is presented in Figures 6–
9 in Appendix H. These findings suggest that CE loss is ill-suited for learning admissible heuristics
in domains satisfying Assumption 4, where the heuristic learning problem can be formulated as a
classification task. We attribute the challenges faced by the CE loss in learning admissible heuristics
to two main factors: (1) the dataset’s large size and (2) the sparse representation of each state, which
includes only the location and rotation of each cubie. In deep learning classification tasks for large
datasets (Sun et al., 2017), there are usually no constraints on model size, and the representation for
each state is richer.

Compared to a compressed PDB built with the min–compression technique, CEA achieves a signifi-
cantly higher average heuristic on all PDBs, even though a few thousand overestimated states remain
in the 6-edge and 7-edge cases. This suggests that CEA preserves more information than classical
compression methods such as min–compression. For the 8-corner PDB, when the learned model is
used in search to assess its strength, the number of nodes generated was less than half of that for the
size-matched compressed PDB heuristic (Futuhi & Sturtevant, 2025). To evaluate how far we can
reduce model size while maintaining admissibility and accuracy, we conduct an experiment on the
8-corner PDB (Appendix I). Remarkably, we achieve a 51× compression relative to the original PDB
while maintaining performance comparable to the results in Table 2.
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Figure 2: Generalization error vs. train-
ing size for the 8-corner PDB.

Empirical analysis of the generalization error. Up
to this point, our experiments have focused on the final
overestimation rate of the learned heuristic. Since our
sample-complexity analysis establishes a relationship be-
tween the generalization error term and the number of
training instances, we conduct an additional experiment
to empirically examine this behavior. Specifically, we
evaluate how the generalization error associated with the
inadmissibility functions in Theorem 4 changes with num-
ber of training instances. Figure 2 presents the results for
8-corner PDB. We observe that the generalization error
decreases as the number of training instances N increases,
following a sublinear decay pattern that aligns with the
theoretical rate of Õ

(
Ĥ
√
(n+ log(1/δ))/N

)
. This confirms the expected 1/

√
N decay predicted

by our sample-complexity analysis.

6 CONCLUSION AND FUTURE WORK

This paper lays a foundation for learning admissible heuristics that are both effective in practice and
backed by theory. We formulate heuristic learning as an optimization problem with explicit constraints
on model size, heuristic strength, and admissibility. We introduce Cross-Entropy Admissibility (CEA),
a loss that improves accuracy while directly penalizing any admissibility error. In experiments on
3× 3 Rubik’s-Cube PDBs, CEA reduced the ratio of inadmissible states to below 10−6 and matched
or outperformed classical compression techniques On the theory side, we tightened the sample-
complexity bounds by leveraging the exponential reduction offered by PDB abstractions and the
graph structure commonly seen in heuristic-search tasks. When the hypothesis class is restricted to
neural networks, the bound depends primarily on network depth and width rather than graph size. We
provide the first generalization guarantees for goal-dependent heuristics. We also introduce a new
bound on expected suboptimality using the maximum inadmissibility encountered at any state on the
optimal path. The focus of future work will be on finding the most effective ways adapt both search
and learning to work together while providing solution quality guarantees.
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A RELATED WORK

There has been significant effort to learn good heuristics for heuristic search algorithms (Chen et al.,
2023; Numeroso et al., 2022; Greco et al., 2022; Chen et al., 2024b; Ferber et al., 2020; Yu et al.,
2020; Kim & An, 2020; ús Virseda et al., 2013; Heller et al., 2022; Agostinelli et al., 2019; Kirilenko
et al., 2023; Chen et al., 2024a; Hao et al., 2024; Bettker et al., 2024). One branch of work uses Graph
Neural Networks to better learn the heuristic function by exploiting the graph structure of the problem
(Pándy et al., 2022; Shen et al., 2020). In heuristic search problems, the heuristic value of a state can
often be approximated from its neighbors’ values, as they differ only by the cost of the connecting
edge. Consequently, one can employ bootstrapping methods such as TD-learning (Sutton, 1988) to
learn the heuristic value for each state (Ferber et al., 2022; Agostinelli et al., 2024). Veerapaneni
et al. (2023) take a different approach than learning the global cost-to-go values, since these can
be time-consuming to train and difficult to generalize to new problems. Instead, Veerapaneni et al.
(2023) train local heuristics that estimate the cost to escape from small regions for the robot, and
later combine these local heuristics with a global heuristic to reduce node expansions. Because data
collection for the local heuristic can be slow for large graphs, Veerapaneni et al. (2024) propose an
efficient data collection approach that leverages the combinatorial nature of tasks. Another branch
of work considers directly learning the policy that decides which node to expand next rather than
learning heuristic values (Orseau & Lelis, 2021; Gomoluch et al., 2020; Feng et al., 2022; Choudhury
et al., 2018). For instance, Choudhury et al. (2018) train a policy using imitation learning that bases
its decisions solely on the portion of the search space uncovered so far.

Garrett et al. (2016) propose focusing on the ordering of states induced by the heuristic, rather than
learning exact heuristic values. They employ Rank Support Vector Machines (RankSVM) by using
the number of incorrectly ordered pairs of states in each problem as the loss function. Later on,
Chrestien et al. (2024) provide theoretical proof that training heuristic functions to produce correct
rankings is sufficient for optimal performance, and explain why learning the exact cost-to-go values
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State Space

8-corner PDB

State A

State B
ϕ(A) = ϕ(B) = C

h(A) = 4

h(B) = 6
h(C) = 0 ≤ min(h(A), h(B))

State Space 8-corner PDB

90° anti-clockwise

90° clockwise

1 quarter turn
1 quarter turn

Abstract

Abstract

Figure 3: Comparison between the full state-space graph of the 3×3 Rubik’s Cube and the abstraction
generated using only the eight corner cubies.

Algorithm 1 A* algorithm

1: OPEN = {sinit}, CLOSED = ∅, Parent(sinit) = null and g(sinit) = 0.
2: while OPEN is not empty :
3: s← argmin{g(v) + h(v)|v ∈ OPEN} ▷ selection step.
4: if s = goal :
5: return solution path using Parent(s) recursively.
6: for each child s′ of s :
7: gnew ← g(s) + c(s, s′).
8: if s′ /∈ OPEN ∪ CLOSED :
9: g(s′)← gnew, and OPEN← OPEN ∪ {s′}.

10: else if s′ ∈ OPEN and gnew < g(s′) :
11: g(s′)← gnew and Parent(s′)← s.
12: else if s′ ∈ CLOSED and gnew < g(s′) :
13: g(s′)← gnew and Parent(s′)← s.
14: Move s′ from CLOSED to OPEN. ▷ node reopening.
15: Move s from OPEN to CLOSED.

via mean-squared error regression can be unnecessarily difficult; their experiments on a wide range
of tasks also show that ranking-based loss functions outperform regression-based ones. Subsequently,
Chrestien et al. (2022) propose the L∗ loss, which upper-bounds the number of expanded nodes by
ensuring that states on the optimal path have lower heuristic values than those off it. Li et al. (2022)
and Agostinelli et al. (2021) investigate the admissibility of learned heuristics, guaranteeing full
and approximate admissibility, respectively. Núñez-Molina et al. (2024) model the learned heuristic
as a Truncated Gaussian, with an admissible heuristic serving as the lower bound. Balcan et al.
(2021a) introduce a theoretical framework that provides generalization guarantees for data-driven
algorithms by bounding the performance gap between training data and unseen data for algorithms
relying on learned parameters. This framework is further applied to establish sample-complexity
bounds for general tree-search algorithms (Balcan et al., 2021b; 2022) and for GBFS/A* (Sakaue &
Oki, 2022). Cheng et al. address the sample complexity of branch-and-cut problems by modeling
the parameter space with neural networks. They also derive a sample complexity bound for learning
instance-dependent parameters.

B PSEUDOCODE FOR THE A* ALGORITHM

In this section, we provide an overview of the general procedure of A∗
h, as shown in Algorithm 1.
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C COMPARING THE PDB ABSTRACTION TO THE FULL GRAPH

Figure 3 compares the abstracted state space (8-corner PDB) with the main graph and highlights
two basic properties. First, all states in the main graph that map to the same abstract state receive
the same heuristic value—namely, the shortest-path distance in the abstracted space to the abstract
goal—which is a lower bound on their true distances; thus admissibility is guaranteed. Second, if two
states are connected by a move in the main graph, then their images in the abstracted space are either
the same state or adjacent states by the same move, so connectivity is preserved under the abstraction.

D PROOFS FOR HEURISTIC FUNCTIONS IN Rn

In this section, we provide proofs for theoretical results that assume h ∈ Rn.

Proof of Lemma 1. Suppose we have two heuristic functions h and h′ that satisfy the condition of
Lemma 1. Consider two states vi and vj such thatA∗

h selects vi for expansion before vj . By definition
of the selection rule, this implies one of the following:

1. g(vi) + h(vi) < g(vj) + h(vj),

2. g(vi) + h(vi) = g(vj) + h(vj) and, under the tie-breaking rule specified by Assumption 2,
A∗

h chooses vi over vj .

In either case, we derive: g(vi) + h(vi)− h(vj) ≤ g(vj). By Lemma 1, we have h(vi)− h(vj) =
h′(vi)− h′(vj). Substituting this into the above inequality gives

g(vi) + h′(vi)− h′(vj) ≤ g(vj) =⇒ g(vi) + h′(vi) ≤ g(vj) + h′(vj).

Hence, underA∗
h′ , the same selection decision is made, choosing vi instead of vj . Since this reasoning

applies to all selection steps, A∗
h and A∗

h′ perform identical, implying uh(x) = uh′(x) for every
x ∈ Π.

Proof of Theorem 1. From Lemma 1, any two heuristic functions that induce the same pairwise value
differences for every pair of vertices in V result in identical performance. Our aim is thus to partition
Rn into regions in which the relative differences h(vi)− h(vj) remain consistent for all vertex pairs
(vi, vj), guaranteeing the same performance for any x ∈ Π. Recall that vertices in the open list OPEN
are ranked by their f values, where f(v) = g(v)+h(v). Under Assumption 4 with c0 = 1, consider
a scenario in which g(v1) = 2 and g(v2) = 4. Then any heuristic satisfying h(v1)− h(v2) ≥ 2 will
favor v1 over v2 in OPEN. However, suppose a different instance or an update in the search reduces
g(v1) from 2 to 1. In this case, h(v1)− h(v2) = 3.5 favors v1, whereas h(v1)− h(v2) = 2.5 favors
v2, even though both heuristic differences exceed 2. To capture all such distinctions, we consider 2n
hyperplanes for each ordered pair (vi, vj):

h(vi)− h(vj) = ±1c0, ±2c0, . . . , ±nc0.

Between any two of these hyperplanes, the ordering between vi and vj—considering all feasible
g(·) values—remains unchanged. Above a boundary hyperplane such as h(vi) − h(vj) = nc0,
no further hyperplanes are necessary, since g values cannot exceed nc0. Consequently, we have
in total 2n ·

(
n
2

)
hyperplanes. By the Shi arrangement (Orlik & Terao, 2013), these hyperplanes

partition Rn intoO
(
(2n+1)n

)
regions. Each region corresponds to a unique assignment of heuristic

differences for all vertex pairs, which in turn induces a unique ranking of vertices in OPEN, thus a
unique performance outcome on any instance x ∈ Π. To shatter N instances, we require at least 2N
such unique (ux1

, ux2
, ..., uxN

) tuples; hence, O
(
(2n+ 1)n

)
≥ 2N . Solving for the largest N in

terms of n yields the upper bound Pdim(U) = O(n log n).

Proof of Theorem 2. The dataset P partitions the set V of n vertices into m groups
M1,M2, . . . ,Mm, each containing vertices that correspond to the same abstract state. Conse-
quently, the trained heuristic satisfies h(vi) = h(vj) ∀ vi, vj ∈M for anyM∈ P . To compute
Pdim(U), one might naively substitute m for n in Theorem 1; however, the g values still come from
G, so there remain 2n hyperplanes for any pair of vertices. Total number of hyperplanes is 2n ·

(
m
2

)
18
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because there are m groups, and all vertices within the same group have the same g cost. These
hyperplanes partition the space Rm into O

(
(2n+ 1)m

)
regions. To shatter N instances, we require

at least 2N such regions. Setting O
(
(2n + 1)m

)
≥ 2N and solving for N in terms of n yields

Pdim(U) = O
(
m log n

)
.

To compare the bound achieved by a PDB dataset with the one in Theorem 1, we need to examine
the effect of replacing the main graph G with the PDB graph P . In the worst-case scenario, where
the PDB does not abstract away any features (i.e., |G| = |P | or m = n), there is no improvement
over the O(n log n) bound. However, PDBs often yield an exponential reduction in the size of the
graph, so that m = O( c

√
n). In this case, the resulting bound improves to O( c

√
n log n). For instance,

in an exponential state space with branching factor b and depth d, where n = bd, the root index c is
bounded by O(d).

E EXPECTED SUBOPTIMALITY OF A* WITH REOPENINGS

In this section, we provide the proof of Theorem 3, restated below. Before beginning the proof, we
introduce the necessary terminology. We have already defined INCh(p, c) for an edge from p to c
as the inconsistency of the heuristic h for this edge: INCh(p, c) = max

{
h(p)− h(c)− c(p, c), 0

}
.

For simplicity, assume that for every h ∈ Rn, we have h(goal) = 0. Let g∗(n) denote the cost of an
optimal path from nstart to n. With this notation, g∗(n,m) is the cost of an optimal path from n to m.
Throughout the search, the g-costs maintained by the algorithm are upper bounds on the true optimal
costs. Hence, if gt(n) is the g-cost for vertex n after t iterations, we have gt(n) ≥ g∗(n). We define
the difference between gt(n) and g∗(n) as the g-cost error, denoted gδt (n) = gt(n) − g∗(n).
Because we only update gt(n) when we discover a strictly better path to n, both gt(n) and gδt (n) are
non-increasing for every n ∈ V .

Theorem. Let x ∈ Π be a problem instance, and let Popt = v0, v1, . . . , vk be its optimal solution
path with cost C∗(x). Suppose A* is allowed to reopen nodes. Then the cost Ch(x) of any solution
returned by A* satisfies

Ch(x) − C∗(x) ≤ max
v∈Popt

[
h(v) − h∗(v)

]
.

Proof. To prove the above theorem, we first state the following lemma from Hart et al. (1968). We
omit its proof, which is straightforward and appears in the original work.

Lemma 2. Let Popt be an optimal solution path to a given problem. At any time prior to the
expansion of a goal node by A*, there is a node from Popt which is in OPEN.

Suppose that for a problem instance x ∈ Π, the optimal path is Popt = v0, v1, . . . , vk, and that the
goal node vk is selected for expansion at iteration t. Let vi be the node from Popt in OPEN at this
time. Since we select vk instead of vi, we have:

f(vi) > f(vk), (1)
gt(vi) + h(vi) > gt(vk) + h(vk), (2)

g∗(vi) + gδt (vi) + h(vi) > gt(vk), (3)

g∗(vi) + gδt (vi) + h(vi) + h∗(vi)− h∗(vi) > C, (4)

C∗ + gδt (vi) + h(vi)− h∗(vi) > C, (5)

C − C∗ < gδt (vi) + [h(vi)− h∗(vi) ]. (6)

Here, (2) follows from the definition of f(·), (3) follows from the definition of gt(·), and (5) uses the
fact that the optimal path can be split at any node n ∈ Popt into the optimal path from nstart to n and
from n to vk. Inequality (6) thus indicates that the suboptimality can be bounded by the sum of the
g-cost error for ni and the difference h(ni)− h∗(ni).
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Valenzano et al. (2014) showed that for A* without reopening, we have

gδt (ni) ≤
i−1∑
j=1

INCh

(
vj , vj+1

)
,

h(ni)− h∗(ni) ≤
k−1∑
j=i

INCh

(
vj , vj+1

)
,

gδt (ni) + h(ni)− h∗(ni) ≤
k−1∑
j=1

INCh

(
vj , vj+1

)
.

To complete the proof of Theorem 3, we must show that if A* allows reopening nodes, then
gδt (ni) = 0. In that case:

C − C∗ < gδt (ni) + [h(ni)− h∗(ni) ], (7)
C − C∗ < [h(ni)− h∗(ni) ], (8)

C − C∗ < max
v∈Popt

[
h(v)− h∗(v)

]
. (9)

Inequality (9) follows from the definition of the max function. The next theorem implies this
condition and thus completes the proof of Theorem 3.

Theorem 8. Let Popt = v0, v1, . . . , vk be an optimal solution path to a given problem. If at iteration
t the goal node vk is selected for expansion, there will be a node vi from Popt which is in OPEN such
that gδt (vi) = 0.

The proof is by induction on the number of iterations (i.e., node expansions), denoted by t. If t = 0
and the goal is selected for expansion, it means Popt = v0 and the statement is vacuously true.
If t = 1, we have OPEN = {children of v0} and CLOSED = {v0}. Since the goal is selected for
expansion, it must be one of v0’s children. Now, if Popt = v0, v1, the statement is correct since v1
from the optimal path is in OPEN and gδt (v1) = 0. Suppose the goal does not appear immediately
after v0 in Popt. In this case, v1 is not the goal, but it connects v0 to the rest of Popt. Since the edge
(v0, v1) is on Popt, we can conclude that g∗(v1) = g∗(v0, v1) = c(v0, v1), and thus the statement is
correct.

We assume that for all iterations from 1 to n, if the goal is selected for expansion, there is a node vi
from Popt in OPEN such that gδt (vi) = 0. Now consider iteration n+ 1 where the goal vk is selected
for expansion. This shows that the node expanded at iteration n was not the goal. If the expanded
node at iteration n is not vi, then the statement remains correct for iteration t+ 1 as well, because vi
from the previous iteration is still in OPEN. If the expanded node is vi, it is moved to CLOSED, and
there are three cases for its child vi+1 on Popt:

• vi+1 is already on OPEN.

• vi+1 is not explored. In this case, we add vi+1 to OPEN.

• vi+1 is already on CLOSED. In this case, we move vi+1 back to OPEN.

In all three cases, we update the g-cost of vi+1 using vi’s g-cost. This is because every subpath on
Popt between any two nodes p, c has the optimal g-cost g∗(p, c). As a result, vi+1 will have the
optimal g-cost. Having handled all scenarios for iteration t+ 1, the statement is correct by induction.

Proof of Theorem 4. To apply Proposition 1 to Û , we require Ψh(·) : Π → [0, Ĥ]. This is not
always possible if the heuristic function can assign h(v) =∞ to some vertex v. To avoid this, we
assume that ∀v ∈ V, h(v) ̸= ∞ if h∗(v) ̸= ∞, which means the learned heuristic cannot treat
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any node from which the goal is reachable as a dead-end. We know that Ĥ is not greater than the
upper bound derived on expected suboptimality without reopening. In Valenzano et al. (2014), a
worst-case graph and Martelli’s subgraphs (Martelli, 1977) show that without reopenings, the bounds
on expected suboptimality are tight. Hence, Ĥ is not too large relative to suboptimality. For this
theorem, measuring the pseudo-dimension ofH directly is challenging, while it is simpler to measure
it for the dual class ofH. We introduce Assouad’s dual class ofH as follows.

Definition 4 (Assouad (1983)). Given a class,H ⊆ RY , of functions h : Y → R, the dual class ofH
is defined asH∗ =

{
h∗y : H → R

∣∣ y ∈ Y } such that h∗y(h) = h(y) for each y ∈ Y .

We now introduce a class known as (F ,B,K)-piecewise decomposable, which has a piecewise
structure as formalized in Definition 5. If the dual class ofH is (F ,B,K)-piecewise decomposable,
we can use Proposition 2 to bound the pseudo-dimension ofH.

Definition 5 (Balcan et al. (2021a, Definition 3.2)). A class, H ⊆ RY , of functions is (F ,B,K)-
piecewise decomposable for a class B ⊆ {0, 1}Y of boundary functions and a class F ⊆ RY of
piece functions if the following condition holds: for every h ∈ H, there exist K boundary functions
b(1), . . . , b(K) ∈ B and a piece function fb for each binary vector b ∈ {0, 1}K such that for all
y ∈ Y , it holds that h(y) = fby (y) where by = (b(1)(y), . . . , b(K)(y)) ∈ {0, 1}K .

Proposition 2 (Balcan et al. (2021a, Theorem 3.3)). Let U ⊆ RΠ be a class of functions. If U∗ ⊆ RU

is (F ,B,K)-piecewise decomposable with a class B ⊆ {0, 1}U of boundary functions and a class
F ⊆ RU of piece functions, the pseudo-dimension of U is bounded as follows:

Pdim(U) = O((Pdim(F∗) + VCdim(B∗)) log(Pdim(F∗) + VCdim(B∗)) + VCdim(B∗) logK).

Now, we begin our proof by defining the function classes B and F . We consider that B ={
bh,z0 : Û → {0, 1}

∣∣∣ h ∈ Rn, z0 ∈ R
}
⊆ {0, 1}Û and F =

{
fh : Û → R

∣∣∣ h ∈ Rn
}
⊆ RÛ

to be classes of boundary and piece functions, respectively. We first prove that Û∗ is (F ,B,O(n))-
piecewise decomposable. Fix any Ψ∗

x ∈ Û∗. This choice determines a unique instance x ∈ Π and
its optimal solution Popt(x) ⊆ E. Let K = |V | = O(n). We define K boundary functions of the
form b(v)(h) = I

(
hv − h∗v > 0

)
for each vertex v ∈ V . These boundary functions partition Rn

into regions such that, in each region, Ψ∗
x(h) is expressible as a function in h, which belongs to

F . Specifically, for a given binary vector bh =
(
b(v)(h)

)
v∈V
∈ {0, 1}K , define Ph(x) ⊆ Popt(x)

by Ph(x) =
{
v ∈ Popt(x) : b(v)(h) = 1

}
. Hence v ∈ Ph(x) whenever hv − h∗v > 0. From

the definition of Ψh(x), we obtain Ψ∗
x(h) = Ψh(x) = maxv∈Ph(x)

(
hv − h∗v

)
. This quantity is

piecewise linear in h, so we can pick fbh
∈ F such that Ψ∗

x(h) = fbh
(h) in that region. Since

this holds for every bh in {0, 1}K , we conclude Ψ∗
x(h) = fbh

(h) for all h ∈ Rn. Therefore,
Û∗ is (F ,B,O(n))-piecewise decomposable. Since B is the set of single-coordinate threshold
functions in Rn, we have VCdim(B∗) = VCdim(B) = n. For F , which is a family of max
functions on Rn, each function can shatter at most n instances. By (Balcan et al., 2021a, Lemma
3.10), we know Pdim(F∗) ≤ Pdim(F) = n. Consequently, from Proposition 2, it follows that
Pdim(Û) = O(n log n).

Although we introduced a framework with fewer boundary functions, the bound here is not sharper
than that of (Sakaue & Oki, 2022). The key limitation is that, even if F contained only constant
functions, the dimension would still be constrained by VCdim(B).

F PROOF OF THEOREMS USING NEURAL NETWORKS

In this section, we provide proofs for the theorems that use neural networks to represent the heuristic
function.

Proof of Theorem 5. In many planning domains such as the Sliding Tile Puzzle (STP), TopSpin,
and Rubik’s Cube—the primary applications considered in this work—all the assumptions from
Theorem 5 hold. By these assumptions, there are

⌈
D
c0

⌉
possible heuristic values. This allows us to
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defineAh with the heuristic h = NReLU, softmax : Rw0×RW → Rℓ, where ℓ =
⌈
D
c0

⌉
. Since each

vertex can only take one of ℓ heuristic values, the total number of possible heuristic functions is ℓn.
Thus, there are at most ℓn distinct performance measures. Setting O(ℓn) ≥ 2N and solving for N
in terms of n gives Pdim(U) = O(n). Moreover, if the neural network is trained on the PDB dataset
P , which reduces the induced graph size to m, a similar argument shows that Pdim(U) = O(m).
Note that both bounds are derived under the assumption that the model is sufficiently expressive to
realize all possible ℓn or ℓm heuristic combinations, respectively.

For the next proofs, we first introduce the necessary auxiliary lemmas and definitions.
Lemma 3 (Lemma A.1 in (Cheng et al.)). For any x1, . . . , xn, λ1, . . . , λn > 0, the following
inequalities hold:

log x1 ≤
x1
λ1

+ log

(
λ1
e

)
, (10)

Lemma 4 (Theorem A.2 in (Cheng et al.)). Let P ⊆ Rℓ and let f1, . . . , ft : Rℓ → R with t ≥ ℓ be
functions that are polynomials of degree m when restricted to P . Then

|{(sgn(f1(p)), . . . , sgn(ft(p))) : p ∈ P}| = 1, m = 0,

|{(sgn(f1(p)), . . . , sgn(ft(p))) : p ∈ P}| ≤
(

et

ℓ+ 1

)ℓ+1

, m = 1,

|{(sgn(f1(p)), . . . , sgn(ft(p))) : p ∈ P}| ≤ 2

(
2etm

ℓ

)ℓ

, m ≥ 2.

Lemma 5 (Lemma A.3 in (Cheng et al.)). Let h : I × P → R define a parameterized function class
with P ⊆ Rℓ, and let H be the corresponding hypothesis class. Let m ∈ N and R : N → N be
a function with the following property: for any t ∈ N and I1, . . . , It ∈ I, there exist R(t) subsets
P1, . . . ,PR(t) of P such that P = ∪R(t)

i=1 Pi and, for all i ∈ [R(t)] and j ∈ [t], h(Ij ,p) restricted to
Pi is a polynomial function of degree at most m depending on at most ℓ′ ≤ ℓ of the coordinates. In
other words, the map

p 7→ (h(I1,p), . . . , h(It,p))

is a piecewise polynomial map from P to Rt with at most R(t) pieces. Then,

Pdim(H) ≤ sup

{
t ≥ 1 : 2t−1 ≤ R(t)

(
2et(m+ 1)

ℓ′

)ℓ′
}

Lemma 6 (Lemma A.4 in (Cheng et al.)). Let NReLU : Rd × RW → Rℓ be a neural network
function with ReLU activation and architecture w = [d,w1, . . . , wL, ℓ] (Definition 2). Then for
every natural number t > LW , and any x1, . . . ,xt ∈ Rd, there exists subsets W1, . . . ,WQ of

RW with Q ≤ 2L
(

2et
∑L

i=1(iwi)

LW

)LW

whose union is all of RW , such that N(xj ,w) restricted to

w ∈ Wi is a polynomial function of degree at most L+ 1 for all (i, j) ∈ [Q]× [t].

Proof. The proof of Lemma 6 is provided in Section 2 of (Bartlett et al., 1998), and the proof of
Lemma 5 is presented in Section A of (Cheng et al.).

Proof of Theorem 6. Our goal is to apply Lemma 5 to heuristic functions parameterized by P = RW .
Specifically, we must show that for any t ∈ N and instances I1, . . . , It ∈ I, there exist R(t) subsets
P1, . . . ,PR(t) of P such that P = ∪R(t)

i=1 Pi and, for all i ∈ [R(t)] and j ∈ [t], u(Ij ,p) restricted to
Pi is a polynomial function of degree at most m depending on at most ℓ′ ≤ ℓ of the coordinates.

Partitioning RW : Hidden Layers and Final Layer. We first split RW into two parts: W′ (the pa-
rameters for the hidden layers) and Rℓ×wL (the parameters for the final layer and its activation). There
is a one-to-one correspondence between RW and W′×Rℓ×wL , whereW ′ =W−ℓwL. By Lemma 6,

the number of regions for W′ is
(

e t U
W ′

)W ′

, so within each such region, NReLU
(
Rep(Ij),w

)
is a

polynomial function of degree at most L+ 1 for all j ∈ [t].
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Analyzing the Final Layer. Next, we analyze Softmax(AL+1zj), the output of the final layer,
where zj denotes the hidden-layer output for the instance Ij in a given region of W′. Let AL+1 ∈
Rℓ×wL be the weight matrix of the final layer. Then

(
Softmax(AL+1zj)

)
k

=
exp
(∑wL

i=1A
L+1
ki zji

)
∑ℓ

k′=1 exp
(∑wL

i=1A
L+1
k′i zji

) , k = 1, . . . , ℓ.

Define
θki = exp

(
AL+1

ki

)
, so that exp

(
AL+1

ki zji
)

=
(
θki
)zj

i .

Thus, we can rewrite:

(
Softmax(AL+1zj)

)
k

=

∏wL

i=1

(
θki
)zj

i∑ℓ
k′=1

∏wL

i=1

(
θk′i

)zj
i

.

Arg Max Operation for Heuristic Prediction. The heuristic is chosen by:

h(Ij) = arg max
1≤k≤ℓ

(
Softmax(AL+1zj)

)
k
.

Because the exponential function is strictly increasing, softmax preserves the ordering of its inputs.
Hence, the softmax function itself does not alter the partitioning of Rℓ×wL needed for counting regions.
We consider argmax(Softmax(·)) effectively as argmax on AL+1zj . Following Theorem 1, we
use Γ = 2ℓ ·

(|B|
2

)
hyperplanes

h(vi)− h(vj) = ±1 c0, ±2 c0, . . . , ±ℓ c0, ∀ (vi, vj) ∈ B,

to partition Rℓ. These hyperplanes keep the coordinate order fixed within each region, implying
a constant A* performance in each region. In other words, if we define polynomial functions
ψj
1, . . . , ψ

j
Γ for all AL+1 such that

ψj
1

(
argmax(Softmax(AL+1zj))

)
, . . . , ψj

Γ

(
argmax(Softmax(AL+1zj))

)
have the same signs, then

U
(
Ij , (w, A

L+1)
)

= U
(
Ij , φ

NReLU,Softmax
w,AL+1 (Rep(Ij))

)
remains constant. Since the softmax preserves order, each argmax(Softmax(AL+1zj))

can be viewed as a polynomial of degree wL in θki. The hyperplanes ψj
1, . . . , ψ

j
Γ each

have degree 1. The total number of such functions across all training instances, i.e.
ψj
1(argmax(AL+1zj)), . . . , ψj

Γ(argmax(AL+1zj)) for j ∈ [t], is tΓ.

Number of Regions. By Lemma 4, we can partition Rℓ×wL into at most

2
(

2e tΓwL

ℓwL

)ℓwL

≤ 2
(

2e tΓ
ℓ

)ℓwL

regions, within each of which u
(
Ij , (w, A

L+1)
)

is constant as a function of (w, AL+1). Combining
this with the regions from the hidden layers W′, the total number of regions in RW is at most

R(t) = 2L
(

2e t
∑L

i=1(i wi)

LW

)LW

· 2
(

2e tΓ
ℓ

)ℓwL

≤ 2L+1
(

2e t U
W

)LW

·
(

2e tΓ
ℓ

)ℓwL

.

Within each region, u
(
Ij , (w, A

L+1)
)

is a polynomial of degree at most L+ 1. Applying Lemma 5,
Pdim(U) is bounded by the largest t ∈ N such that

2t−1 ≤ 2L+1
(

2e t U
W

)LW

·
(

2e tΓ
ℓ

)ℓwL

·
(

2e t (L+1)
W

)W
.

Taking logarithms on both sides:

t− 1 ≤ (L+ 1) + LW log
(

2e t U
W

)
+ ℓwL log

(
2e tΓ

ℓ

)
+ W log

(
2e t (L+1)

W

)
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= (L+ 1) + (LW + ℓwL +W ) log t +
(
LW log

(
2eU
W

)
+ ℓwL log

(
2eΓ
ℓ

)
+W log

( 2e (L+1)
W

))
.

Using inequality (10) from Lemma 3, with x1 = t and an appropriate λ, we get:

log t ≤ t

λ
+ log

(λ
e

)
.

Substituting and setting λ = 8 (LW + ℓwL +W ), after simplification we obtain:

t
(
1− 1

8 log 2

)
≤ (L+ 1) +

(LW + ℓwL +W )

log 2
log
(

8 (LW+ℓwL+W )
e

)
+ LW log2

(
2eU
W

)
+ ℓwL log2

(
2eΓ
ℓ

)
+ W log2

(
2e (L+1)

W

)
.

Solving for t, we conclude:

t = O
(
(LW + ℓwL +W ) log(U + ℓ) + W log

(
Γ(L+ 1)

))
.

Hence,
Pdim(U) = O

(
LW log(U + ℓ) + W log

(
Γ(L+ 1)

))
.

Training on the Main Graph. When training on the main graphG, we have Γ = 2 ℓ·
(|B|

2

)
= ℓ |B|2.

Substituting this gives:

Pdim(U) = O
(
LW log(U + ℓ) + W log

(
ℓ |B| (L+ 1)

))
.

Training on the Graph Induced by P. If we train on the graph induced by P, the only modified
parameters are B′ and ℓ′. In this abstracted graph, the heuristic values and the number of generated
nodes during search are bounded by those in the original graph. Thus, let B′ be the number of
states needed to represent each training instance, and ℓ′ be the number of heuristic classes. A similar
argument shows:

Pdim(U) = O
(
LW log(U + ℓ′) + W log

(
ℓ′ |B′| (L+ 1)

))
.

Proof of Theorem 7. When the goal state can vary for each instance, the number of states required per
instance and the number of hyperplanes in the neural network’s final layer both change accordingly.
Consider a fixed instance Rep(Ij) with start state sj . If goal were fixed, we would need |B| states
to represent this single instance. However, in this setting, the goal state can be any of the n states
vi ∈ V for i ∈ [n].

Because heuristic values for distinct (sj − gi) pairs are generally independent, we must account for
separate hyperplanes for each such pair. Therefore, we have these hyperplanes set for every instance:

For (sj − g1) : h(vi)− h(vj) = ±1 c0, ±2 c0, . . . , ±ℓ c0 ∀ (vi, vj) ∈ B1,

For (sj − g2) : h(vi)− h(vj) = ±1 c0, ±2 c0, . . . , ±ℓ c0 ∀ (vi, vj) ∈ B2,

...
For (sj − gn) : h(vi)− h(vj) = ±1 c0, ±2 c0, . . . , ±ℓ c0 ∀ (vi, vj) ∈ Bn.

Hence, the total number of hyperplanes is

Γ = 2 ℓ n ·
(
|B|
2

)
.

The rest of the analysis follows the same approach as in the fixed-goal case. For the original graph G,
we obtain:

Pdim(U) = O
(
LW log

(
U + ℓ

)
+ W log

(
ℓ n |B| (L+ 1)

))
.

and with same argument for the graph induced by dataset P :

Pdim(U) = O (LW log (U + ℓ′) +W log (ℓ′m|B′|(L+ 1))) .
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Figure 4: Neural Network structure.

G EXPERIMENTAL SETUP

Our experiments use a ResNet architecture (He et al., 2016) (see Figure 4); the full set of training
hyper-parameters appears in Table 4. Table 3 present the details for all PDBs. All runs were carried
out on a server with a 32-core AMD Ryzen Threadripper 2950X CPU and two NVIDIA GeForce RTX
2080 Ti GPUs (CUDA 12.4). The NN model sizes and performances reported in Table 2 correspond
to the 16-bit precision models used during search.

G.1 STATE REPRESENTATION

For each PDB, we use one-hot encodings tailored to the type of cubies included:

• 8-Corner PDB. Each face is encoded using six 3×3 channels—one per color—resulting in
a total of 6× 6 = 36 channels. All non-corner cubies are assumed to be in the solved state.

• Edge PDBs. For a PDB with n edges, we construct a 3n-channel input of size 4×3, con-
sisting of: (i) location—a one-hot map over the 12 possible edge positions; (ii) rotation—a
one-hot indicator set if the cubie is correctly oriented; and (iii) goal position—a fixed map
encoding the target location for each edge.

Table 3: Heuristic distributions for the PDBs.

h 8-corner 7-edge 6-edge 6–4 (delta)
0 1 1 1 1,076,354
1 18 15 15 11,389,507
2 243 191 184 21,759,383
3 2,874 2,455 2,256 7,581,788
4 28,000 30,519 25,909 742,213
5 205,416 356,462 266,101 28,240
6 1,168,516 3,766,700 2,239,790 428
7 5,402,628 32,719,467 12,567,043 7
8 20,776,176 186,297,009 24,415,346 –
9 45,391,616 274,719,633 3,061,105 –

10 15,139,616 13,042,507 170 –
11 64,736 81 – –

H OVERESTIMATION DISTRIBUTION

In this section, we present the distribution of overestimated states for neural network models trained
with both the CEA and standard CE loss functions. The distributions are shown in Figures 6–9. Each
figure illustrates the number of overestimated states for both loss functions within a specific PDB. We
depict the distribution by showing the number of overestimated states at each true heuristic value in
the PDB, along with the range of predicted classes to which these overestimated states are assigned.
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Table 4: Training hyperparameters for each PDB.

Hyperparameter 8-corner 7-edge 6-edge ∆ PDB
Optimizer Adam

Learning rate 1× 10−3 3× 10−3

Batch size 1× 105 5× 105 1× 105

β 1.0 0.6 0.7 0.9
η 0.01 0.001

ResNet blocks 2 3

As the overestimation rates are also reported in Table 2, it is evident that the number of overestimated
states for CEA loss is approximately 104× smaller than that for the CE loss across all PDBs.

I MODEL SIZE & HEURISTIC QUALITY

A key question is how small a model can be while still preserving admissibility and heuristic strength.
We investigated this through a scaling experiment with networks of different sizes. To make the
comparison fair, we kept the overall architecture—layer types and counts—the same as the network
used for the 8-corner PDB in Table 2. In particular, every model keeps the initial convolutional layer
unchanged, so their representation learning is identical; we vary only the number of neurons in the
fully connected layers and residual blocks. We focus on the 8-corner PDB because our reference
model for it already achieves nearly 100% admissibility and the exact average heuristic. Table 5
represents each model’s size, structure, and performance. All models were trained for the same
number of iterations, although additional training would improve the smaller ones. As model size
decreases, performance drops: the over-estimation rate rises monotonically and is about 103 times
higher in Model 5 than in Model 1. Nevertheless, Model 3 achieves almost the same performance as
Model 1 while using fewer than half as many parameters, yielding a 51× compression relative to the
original PDB.

Table 5: Summary of architectural details and performance for models used in the scaling experiment
on the 8-corners PDB.

Model FC Layer
Neurons

Residual Block
Neurons

Size (MB) Avg.
Heuristic

Overestimation
Rate

Model 1 1000 300 1.89 8.76 3× 10−7

Model 2 800 250 1.28 8.76 3× 10−7

Model 3 600 200 0.86 8.75 3× 10−7

Model 4 400 150 0.51 8.57 2× 10−5

Model 5 200 100 0.24 8.24 1× 10−3

J DYNAMICS OF (β , η) DURING TRAINING

We divide the training process into multiple phases. In the first phase, we set the hyperparameters to
β = 1 and η = 0.1, encouraging the model to approximate the true heuristic as closely as possible.
We monitor both the loss and the overestimation rate throughout training. If the model stops making
progress (i.e., neither the loss nor the overestimation rate continues to decrease), this indicates that
the model cannot learn the exact heuristic across all states. At this point, we move to the next phase
by gradually adjusting the hyperparameters toward more admissibility (i.e., decreasing β and η). We
repeat this refinement process until the model reaches the desired overestimation rate.

The values used for the hyperparameters β and η for each PDB are presented in Figure 5. For the
8-corner PDB, we did not need to adjust these parameters, as the initial values already yielded a
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perfect heuristic. Our approach is to reduce both parameters whenever there is no progress in the loss
or the overestimation rate. We monitored these metrics throughout training, and whenever progress
stalled, we lowered both parameters to promote stronger admissibility. As a result, the number of
training epochs between each reduction is not fixed. One strategy is to automatically halve both
parameters every c epochs when no improvement is observed. This provides a general heuristic for
adapting CEA to other models and domains.
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(a) 6-edges.
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Figure 5: The (η, β) values used throughout the training for each PDB.
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Figure 6: Distribution of overestimated predictions per true cost-to-go for CEA and CE in 6-
edges PDB. Each box represents the spread of predicted values, while n indicates the number of
overestimation states for each class.

28



Published as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11
True Cost-to-Go

4
5
6
7
8
9

10
11

Pr
ed

ict
ed

 C
la

ss

n=0 n=0 n=0
n=2

n=21
n=59

n=9 n=11
n=78 n=21

n=1

n=0

Overestimated Predictions per Cost-to-Go

(a) CEA loss.

0 1 2 3 4 5 6 7 8 9 10 11
True Cost-to-Go

1
2
3
4
5
6
7
8
9

10
11

Pr
ed

ict
ed

 C
la

ss

n=1

n=18 n=225
n=1.8 k

n=4.8 k

n=5.8 k

n=14.2 k

n=26.3 k

n=126.3 k
n=59.0 k

n=154

n=0

Overestimated Predictions per Cost-to-Go
k = 103

M = 106

(b) CE loss.

Figure 7: Distribution of overestimated predictions per true cost-to-go for CEA and CE in 8-
corners PDB. Each box represents the spread of predicted values, while n indicates the number of
overestimation states for each class.
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Figure 8: Distribution of overestimated predictions per true cost-to-go for CEA and CE in
∆(6,4)-edge PDB. Each box represents the spread of predicted values, while n indicates the
number of overestimation states for each class.
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Figure 9: Distribution of overestimated predictions per true cost-to-go for CEA and CE in 7-
edge PDB. Each box represents the spread of predicted values, while n indicates the number of
overestimation states for each class.
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