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The Pairwise Prony Algorithm: Efficient Inference of
Stochastic Block Models with Prescribed Subgraph Densities
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Abstract
We present an elegant and flexible algorithm that
provides the parameters of the simplest stochas-
tic block model (SBM) for a given set of pre-
scribed subgraph densities, from which one can
sample networks with negligible computational
overhead. The method generalizes the classical
method of Prony to the pairwise data of networks.
The class of inferred models are at the intersection
of exponential random graph models (ERGMs),
which are characterized in terms of maximum en-
tropy, and of exchangeable random graphs (i.e.,
graphons). We show that the required subgraph
densities can be efficiently computed for both
dense and sparse networks, and provide an im-
plementation of our algorithm in python. Our
method provides standardized null models for sta-
tistical analysis of network data, including for the
challenging case of a single observed graph.

1. Motivation
Statistical significance is generally meaningless without
a properly specified alternative. The use of judiciously
chosen distributions as standardized null models facilitates
reproducibility and meaningful comparisons. For example:

“outliers differ by more than 3 standard deviations”
“false-positive rate for a χ2 with 5 degrees of freedom”

While networks enjoy myriad summary statistics, their cor-
responding null models suffer from a lack of consensus.
Yet, it is well-known that every distribution of infinitely
exchangeable graphs is completely determined by the sub-
graph densities of all finite subgraphs (Lovász, 2012). This
class of distributions contains all graphons and stochastic
block models (SBMs) (Diaconis & Janson, 2008).

In classical statistics, the method of moments (Pearson,
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1894; Prony, 1795) offers a powerful technique for inferring
exchangeable distributions, in particular mixture models
(Gordon et al., 2021). For network data, subgraph densities
are the equivalent of the classical moments (Bickel et al.,
2011). While it is possible to estimate a (finite number) of
subgraph densities consistently and at a guaranteed asymp-
totic rate from a single observed graph as the graph grows
(Zhang & Xia, 2022), estimating these densities is only a
first step in the inference process. Currently there is no
general method for translating them into an estimate of a
graphon or stochastic block model. Instead, most infer-
ence algorithms used in practice (e.g., Gao et al. (2015);
Latouche & Robin (2016); Peixoto (2014)) rely on some
combination of maximum likelihood estimation, MCMC
sampling, variational inference, clustering of the nodes, or
other heuristics.

This work introduces a method that solves several problems
simultaneously: efficiently estimating parameters without
laborious and delicate numerical fitting, and efficiently sam-
pling from the model without the often-encountered problem
of degeneracy that plagues many intuitively attractive net-
work models (Karwa et al., 2016). We generalize a classical
algorithm for inferring latent sources (sometimes known as
Prony’s method) to graph data. The method is an example
of an algorithm that recovers a sparse signal from noisy data,
and is related to compressed sensing (Sauer, 2018) and the
notion of a matrix pencil (Markus, 1988).

Our method proceeds in two steps. The first step is es-
sentially an application of the classical Prony’s method to
estimate properties of individual latent blocks, such as their
normalized degrees and their relative sizes. The second
step is entirely new; by leveraging the properties inferred
in the first step, it uses a generalization of Prony’s method
to infer properties of pairs of the latent blocks, such as the
connection properties of a stochastic block model.

While many algorithms for fitting stochastic block models
(e.g., Celisse et al. (2012); De Nicola et al. (2022); Deng
et al. (2023)) and graphons (e.g, Airoldi et al. (2013); Li
et al. (2022)) have been proposed, ours is unique in that it
requires essentially zero computational overhead once the
subgraph densities have been estimated.
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The Pairwise Prony Algorithm

2. Notation and Definitions
We use lower-case bold symbols to denote vectors, and
upper-case bold symbols to denote matrices and higher-
order tensors. Non-bold versions of these symbols refer to
particular entries of the bold versions, indicated by their
subscripts. We use ◦ to denote Hadamard product (i.e.,
element-wise multiplication), and • for inner product.

A graph G is defined by a set of vertices/nodes V (G) and
a set of edges E(G) ⊆ V (G) × V (G) denoting pairwise
connections between nodes. For simplicity, we focus on
undirected, unweighted graphs, with no loops or multiple
edges. Indexing the N = |V (G)| nodes by the positive
integers [N ], we G can represented by listing its edges (i, j),
where 1 ≤ i < j ≤ N . Or, equivalently, by its N -by-N
adjacency matrix A, where Aij = Aji = 1 if there is an
edge between nodes i and j, and 0 otherwise.

A stochastic block model SBM(π,B) is defined by: π, a
probability vector of length K, which assigns each node
to one of K (unobserved) latent blocks; and B, a K-by-K
connectivity matrix, whose entries Bkk′ give the probability
of an edge connecting a node in block k to a node in block k′.
As we are considering undirected graphs, B is symmetric.

Distributions over graphs can be characterized by their
homomorphism subgraph densities µ(g). Indexed by (some
family of) subgraphs g, they are the graphical analogue of
the classical moments of a distribution. For a SBM, one can
compute µ(g) by summing over all possible assignments of
the vertices of g to the K blocks of SBM(π,B):

µ
(
g
)∣∣∣

SBM(π,B)︸ ︷︷ ︸
homomorphism density
µ of a subgraph g in an
SBM given by π and B

with K blocks

=

|V (g)|K∑
φ:V (g)→[K]︸ ︷︷ ︸

sum over all maps φ
from vertices in g to

the K blocks[( ∏
i∈V (g)

πφ(i)

)
︸ ︷︷ ︸

probability of that
vertex assignment

×

( ∏
(i,j)∈E(g)

Bφ(i)φ(j)

)
︸ ︷︷ ︸

probability of the
corresponding edges

]
(1)

Sampling a graph from SBM(π,B) proceeds in two steps.
First, for each node n ∈ [N ], sample its latent block
k(n) ∈ [K] independently from π. Then, for each pair of
nodes (n, n′), include an edge between them independently
with probability Bk(n)k(n′). Thus, a stochastic block model
defines a distribution over graphs with N nodes for each
choice of N , and can be identified with the limit of this
sequence of distributions as N →∞.

3. From Subgraph Densities to an SBM
We now describe how to recover the parameters of an SBM,
given access to only its subgraph densities. In appendix A,

we describe how to infer these subgraph densities from a
graph sampled from such an SBM.

3.1. Classical Coin Collecting

Before explain our Pairwise Prony method, let us consider
the simpler case of a mixture model for exchangeable
sequences of binary variables. Also known as the Bernoulli
mixture model, such a distribution can be thought of as
the outcomes of (some number of) flips of (some number
of) biased coins, where each coin is sampled i.i.d. from
a (possibly unequal) mixture of K different biases. To
recover this distribution, one must infer the K latent biases
bk, as well as the fraction πk of coins with each bias. Note
that one does not initially know which of the coins have
the same latent bias (otherwise the inference problem
would be trivial). The moments of this distribution are the
expectation of powers of these biases:

⟨br⟩ =
∑
k

πkb
r
k (2)

The mixture proportion π and the biases b can be system-
atically inferred from these moments using the standard
Prony’s method. In short, construct two matrices C and C′,
with entries Cij = ⟨bi+j⟩ and C ′

ij = ⟨bi+j+1⟩

C =

 ⟨b
0⟩ · · · ⟨bK−1⟩

...
. . .

...
⟨bK−1⟩ · · · ⟨b2K−2⟩

 (3)

C′ =

 ⟨b
1⟩ · · · ⟨bK⟩

...
. . .

...
⟨bK⟩ · · · ⟨b2K−1⟩

 (4)

While not immediately obvious, it is easy to show that the
eigenvalues of C′C−1 are the entries of b, from which one
can obtain the associated entries of π. In the next section,
we show why this is the case, while superficially replacing
the biases b of each coin type with the average normalized
degrees d of each block of nodes.

3.2. Distilling the Degree Distribution

The first step of the Pairwise Prony method is to apply
this standard Prony’s Method to the obtain the normalized
degrees d of the blocks:

dk =
∑
j

πjBjk (5)

Much like the coin biases from before giving the expected
fraction of heads for a coin of a given type, the normalized
degrees give the expected fraction of other nodes that share
an edge with a node in a given block. As before, we define
two matrices C ij = ⟨di+j⟩ and Cd

ij = ⟨di+j+1⟩, where

⟨dr⟩ =
∑
k

πkd
r
k (6)



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

The Pairwise Prony Algorithm

Note that, while πk and dk are initially unknown, the
resulting moments are observable — they are precisely the
homomorphism densities of the star subgraphs

⟨d0⟩ = µ
( )

= 1 ⟨d1⟩ = µ
( )

⟨d2⟩ = µ
( )

⟨d3⟩ = µ
( )

(7)

As mentioned in the previous section, the eigenvalues of
Cd(C )−1 give the normalized degrees of the K blocks.
To see why this is the case, notice that C can be written as
a sum of K rank-1 matrices (weighted by π)

C =
∑
k

πk

 d0k · · · dK−1
k

...
. . .

...
dK−1
k · · · d2K−2

k



=
∑
k

πk

 d0k
...

dK−1
k


 d0k

...
dK−1
k


⊤

= V diag(π)V⊤ (8)

where V is a matrix with entries Vjk = dj−1
k

V =

 d01 · · · d0K
...

. . .
...

dK−1
1 · · · dK−1

K

 (9)

By decomposing Cd in the same manner,

Cd = V diag(πd)V⊤ (10)

we find that Cd(C )−1 can be diagonalized as follows

Cd(C )−1 =
(
V diag(πd)V⊤)(V diag(π)V⊤)−1

= V diag(d)V−1 (11)

Thus, its spectrum is indeed the normalized degrees d of
the K latent blocks:

eigval
(
Cd(C )−1

)
=
{
dk

}
k∈[K]

(12)

(Note that this procedure relies on the fact that the
normalized degrees of the blocks are unique, otherwise V
will not be invertible.) After obtaining the entries of d, one
can construct V and solve a linear system of equations for
the corresponding entries of π:∑

k

Vjkπk = ⟨dj−1⟩ (13)

3.3. Gluing Graphs: An Algebra

Before moving to the second step of our method, it is use-
ful to introduce the notion of (partially-)labelled homomor-
phism densities. Together with the gluing product, these

densities form an algebra that is well-suited for describ-
ing the Pairwise Prony method. Tables summarizing these
operations are provided in appendix C.

Recall equation (1), the definition of (unlabelled) homo-
morphism subgraph densities of an SBM. For a given
distribution SBM(π,B), each subgraph g corresponds to a
scalar density µ(g). Here we introduce (singly-)labelled
homomorphism densities, which take as input a subgraph g
with a designated “labelled” vertex v ∈ V (g), and return K
scalars, one for each of the K blocks to which the labelled
vertex v is mapped:

µk

(
g; v
)∣∣∣

SBM(π,B)︸ ︷︷ ︸
homomorphism density
µ of a subgraph g with

labelled vertex v in block k

=

|V (g)\v|K∑
φ:V (g)→[K]

φ(v)=k︸ ︷︷ ︸
sum over all maps φ that
send vertex v to block k[( ∏

i∈V (g)\v

πφ(i)

)
︸ ︷︷ ︸

probability of that assignment
of unlabelled vertices

×

( ∏
(i,j)∈E(g)

Bφ(i)φ(j)

)
︸ ︷︷ ︸

probability of the
corresponding edges

]
(14)

The sum is now over maps φ that send the labelled
vertex v to a particular block k, and the probability of
vertex assignment includes only the remaining unlabelled
vertices. All the edges E(g) contribute to the product
exactly as in equation (1). A labelled vertex with a single
edge corresponds to the normalized degrees of the K blocks:

←→ d (15)

Labelled subgraphs may be combined via an operation
known as the gluing product,(Lovász, 2012) obtained
by taking their disjoint union, then merging the labelled
vertices:

◦ = ←→ d ◦ d = d2

◦ = ←→ d ◦ d2 = d3

◦ = ←→ d2 ◦ d3 = d5 (16)

As this corresponds algebraically to entrywise multiplication
of vectors, we use the same notation ◦ for the gluing product
as for the Hadamard product. Finally, to convert a labelled
subgraph into an observable subgraph density, the labelled
vertex may be “unlabelled” by taking the dot product with π

←→ d3 • π = ⟨d4⟩ (17)

Before describing how to recover the entries of B, let
us summarize the method for recovering the normalized
degrees from the previous section using the language of
labelled graphs. For an SBM with K blocks, define a vector
v of (at least) K labelled subgraphs, and take the outer
product of this vector with itself where entries are combined
via the gluing product. For example:
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v ◦ v⊤ =


 ◦



⊤

=




While the labelled subgraph densities are not directly
observable, their unlabelled counterparts are, and the entries
of C (equation (4), left) are given by the densities of these
unlabeled versions

C =
(
v ◦ v⊤

)
• π =




(The glyph containing an unlabelled node and no edges
evaluates to 1.) To obtain the second matrix Cd (equa-
tion (4), right), glue the labeled subgraph to all entries
prior to unlabelling

Cd =
((

v ◦ v⊤
)
◦
)
• π =




Indeed, the reason that the spectrum of C (Cd)−1 gives
the normalized degrees d of the latent blocks is precisely
because we glued an extra copy of the corresponding la-
belled subgraph in the construction of Cd. The next
section follows a similar recipe.

3.4. Extracting the Edge Expectations

The previous matrices C and Cd were obtained by taking
a dot product that sums over the K blocks. This allowed us
to obtain properties of a single block (e.g., its degree dk). A
main insight of this work is that Prony’s method can also
be used to obtain properties of pairs of blocks (i.e., their
connection probability Bkk′ ) by using the gluing algebra of
bilabelled subgraphs. A bilabelled subgraph (g;u, v) has
two (distinct) labelled vertices, and their gluing product is
given by taking the disjoint union then separately merging
the vertices labelled u and the vertices labelled v.

For an SBM with K blocks, there are K +
(
K
2

)
degrees

of freedom for the entries of B, so we require a vector v
of at least K +

(
K
2

)
bilabelled subgraphs. To this end, we

use the symmetric polynomials (with exponent at most K)
in the two variables and , corresponding to the
normalized degrees of the two blocks. For example:

v ◦ v⊤ =


+

+ + 2 + +

+



In this example for K = 2, the second row of v has been
symmetrized with respect to the two labelled vertices, re-
sulting in a formal linear combination of elements in the
gluing algebra.

As before, C is obtained by unrooting the entries, while
for the construction of CB, we glue the labelled subgraph

, which corresponds to entries of B. Continuining
with the K = 2 blocks SBM example:

C =


2

2 2 + 2 2

2

 (18)

CB =


2

2 2 + 2 2

2

 (19)

Note that, once unlabelled, isomorphic graphs are
equivalent, e.g.: = = . As promised, the
eigenvalues of CB(C )−1 are precisely the entries of B

eigval
(
CB(C )−1

)
=
{
Bkk′

}
k≤k′

(20)

Moreover, the structure of their corresponding eigenvectors
allows us to select specific entries Bkk′

eigvec
(
CB(C )−1

)
=

{[
1

dk + dk′

dkdk′

]}
k≤k′

(21)

Thus, for each pair of blocks k and k′ with normalized
degrees dk and dk′ , we can estimate Bkk′

Bkk′ =
v⊤(CB(C )−1)v

v⊤v
v =

[ 1
dk + dk′

dkdk′

]
In appendix B, we discuss how to add more subgraph to
this method, and show results of applying our method in
appendix D.

4. Concluding Context
The power of statistics lies in its ability to summarize
large quantities of data with appropriate summary statis-
tics. While the map from stochastic block models to sub-
graph densities is essentially a counting exercise, the map
from subgraph densities to stochastic block models is rather
nontrivial. This work offers such an inverse map.

The method we presented can be easily extended in a variety
of ways (directed edges, weighted edges, directed weighted
edges, etc). While we aimed to make this particular instan-
tiation as clear as possible, the broader message we would
like to convey is that the space of clever inferential methods
is by no means exhausted, and inspiration can be found even
in stepping-stones over two centuries old.
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A. From an Observed Graph to an SBM
In order to apply the Pairwise Prony method to an observed graph, we need to obtain unbiased estimators of the homomor-
phism densities used to construct the C matrices. In particular, for a subgraph g and a (large) graph G, we want to compute
the fraction of injective maps φ from V (g) to V (G), such that if (u, v) ∈ E(g), then (φ(u), φ(v)) ∈ E(G).

A.1. Quickly Counting (Injective) Homomorphisms

We start with the adjacency matrix A, the identity matrix I, and the all-ones matrix 1. Then, we perform our only
computationally intensive matrix multiplication:

∑
k AikAkj = Dij + Λij , where D is the diagonal matrix of node degrees,

and Λ is the (traceless) “two-hop adjacency” matrix. From these, we can recursively count all the relevant subgraphs using
only entrywise multiplication.

We index our subgraphs with a tuple of non-negative integers (ℓ, c, r), corresponding to: the number of edges incident to
only the “left” node i, the number of two-hop paths between the “left” and “right” nodes, and the number of edges incident
to only the “right” node j. First, we add the two-hop paths:

M(0,0,0) = 1− I (22)

M(0,c+1,0) = M(0,c,0) ◦
(
Λ− c1

)
(23)

Define the matrix of “left” degrees to be L = D •
(
1− I

)
−A (i.e., the degree of node i if node j ̸= i were deleted, and

zero when i = j), and the matrix of “right” degrees to be its transpose R = L⊤. Next, we add single edges to node i, then to
node j:

M(ℓ+1,c,0) = M(ℓ,c,0) ◦
(
L− (ℓ+ c)1

)
(24)

M(ℓ,c,r+1) = M(ℓ,c,r) ◦
(
R− (r + c)1

)
− ℓM(ℓ−1,c+1,r−1) (25)

Finally, if an edge connecting the left and right nodes is to be included, we put a mark on the middle integer:

M(ℓ,c′,r) = M(ℓ,c,r) ◦A (26)

To obtain the counts of a subgraph g in the entire graph, simply sum the entries of the corresponding matrix M(ℓ,c,r). This
is analogous to the “unlabelling” operation from before.

r
M(ℓ,c,r)

z
=
∑
i

∑
j

M(ℓ,c,r) (27)

For example, JAK is twice the number of edges, as the injective homomorphisms count both orientations. The injective
homomorphism densities are obtained by dividing this count by the number of injective maps

µ
(
g(ℓ,c,r)

)
=

q
M(ℓ,c,r)

y

N
(
N − 1

)
· · ·
(
N − |V (g)|+ 1

) (28)

B. Beyond Degree Correlations: Cycles Do Better
The method described in the main text can be thought of as a “basic” minimum working example of a much more general
family of Pairwise Prony methods. The subgraph densities in C and Cd are sensitive only to the degree distribution, and
the subgraphs in C and CB contain information about the degree-degree correlations. While this is sufficient to recover
the parameters of an SBM when the normalized degrees of the blocks are well-separated, the method can sometimes be
made more robust by adding additional subgraphs.

In particular, define the “two-hop” matrix of connection probabilities Λ = B •πB, where •π denotes the matrix product
weighted by π, ie:

Λij =
∑
k

BikπkBkj (29)
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These bilabelled subgraphs interact with the others via gluing and unlabelling (see table 3).

We can then use this to add more columns to C and CB:

C =


2 2

2 2 + 2 2 2 2 + 2 2

2 2

 (30)

CB =


2 2

2 2 + 2 2 2 2 + 2 2

2 2

 (31)

Remarkably, we can use these larger matrices in exactly the same way as before (using the Moore-Penrose pseudoinverse).
As shown in figure 1 in appendix D, including these additional subgraphs can make the recovery of the SBM more robust.

C. Guide for Gluing Graphs

glyph symbol meaning

d = B • π vector of the K normalized degrees
d2 = d ◦ d entrywise multiplication
d3 • π homomorphism density of subgraph

Table 1. Operations using homomorphism densities of singly-labelled subgraphs.

glyph symbol meaning

d1⊤ = L row matrix of (left) normalized degrees

1d⊤ = R column matrix of (right) normalized degrees
B matrix of connection probabilities
L2 ◦B ◦R entrywise multiplication

π •
(
L2 ◦B ◦R

)
• π = µ

( )
observable subgraph density

Table 2. Operations using homomorphism densities of doubly-labeled subgraphs.

glyph symbol meaning

B •πB = Λ two-hop connection probability
Λ ◦B entrywise multiplication

π •
(
Λ ◦B

)
• π = µ

( )
homomorphism density of triangles

Table 3. Incorporating the “two-hop” connection probability Λ into the gluing algebra.

D. Some Simulations
Here we provide a few more simulations for recovering the parameters of 2-by-2, 3-by-3, and 4-by-4 stochastic block
models. The code implementing the method will be made available upon acceptance.

To best illustrate the usefulness of the method, we chose stochastic block models with communities that have similar
normalized degree densities and rather idiosyncratic inter-community connection probabilities:
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K = 2 (64 iterations)

π B d

0.25 0.850 0.375 0.49375
0.75 0.375 0.400 0.39375

K = 3 (32 iterations)

π B d

0.25 0.9 0.3 0.6 0.600
0.25 0.3 0.7 0.5 0.500
0.50 0.6 0.5 0.3 0.425

K = 4 (16 iterations)

π B d

0.25 0.8 0.4 0.6 0.8 0.65
0.25 0.4 0.8 0.7 0.3 0.55
0.25 0.6 0.7 0.2 0.5 0.50
0.25 0.8 0.3 0.5 0.2 0.45
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Figure 1. Recovery of the parameters of SBMs using our proposed method without adding extra subgraph densities (green) and adding the
“two-hop” density (blue). Left figure corresponds to SBMs with 2 blocks, middle figure to SBMs with 3 blocks, and right figure to SBMs
with 4 blocks. Vertical axis denotes the average squared error of the probability of a random dyad, i.e. π⊤

true(Btrue −Binfer)
2πtrue. Shading

denotes one standard error. The black curve denotes the expected squared error if the latent blocks of the nodes were provided.

In addition, we performed a fit to the C. Elegans connectome (White et al., 1986) containing 297 nodes and 2148 edges,
obtaining the following parameters for a 4-block SBM, obtaining:

π B

0.0041 0.6891 0.1024 0.3927 0.5367
0.0483 0.1024 0.6314 0.2134 0.0770
0.5628 0.3927 0.2134 0.0663 0.0184
0.3849 0.5367 0.0770 0.0184 0.0056


