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Abstract

This paper presents PsySpace, a novel multi-agent framework that uses Large
Language Models (LLMs) to simulate the emergent psychological dynamics of
astronaut crews on long-duration space missions. Current methods for studying
space psychology, such as analog missions, are resource-intensive and not scal-
able. To address this, we introduce agents with a dual-component psychological
architecture, comprising a static personality profile and a dynamic state vector for
stress and loneliness that evolves based on interactions within a data-driven mission
environment. We demonstrate that PsySpace can replicate complex psychological
phenomena observed in real-world missions, such as the “third-quarter” effect.
Furthermore, we introduce an AI-based Psychological Support Agent (PSA) and
show through bootstrapped A/B testing that its interventions cause a statistically
significant reduction in crew stress. Our comparative analysis of five different LLM
architectures reveals distinct behavioral fingerprints, establishing a new benchmark
for evaluating the social intelligence of generative agents. We believe PsySpace pro-
vides a powerful, low-cost tool for enhancing mission planning, crew selection, and
the development of AI to support human well-being in high-stakes environments.
Our code is publicly available at: https://anonymous.4open.science/r/
Psyspace-8484/README.md.

1 Introduction

Preparing crews for long-duration space missions presents a critical challenge, as the psychological
toll of prolonged isolation, confinement, and communication latency can severely impact mission suc-
cess [1]. Current methodologies for studying these stressors rely on high-fidelity analog simulations
such as Mars-500 [2]. While invaluable, these physical simulations are exceptionally resource-
intensive, limiting their frequency and scale. This creates a significant methodological gap: a lack of
scalable, low-cost tools to rigorously explore the vast parameter space of crew compositions, mission
contingencies, and psychological support strategies. Consequently, our ability to proactively design
resilient crews and effective interventions remains constrained by logistical and financial limitations.

Recent advances in large language models (LLMs) have enabled the creation of generative agent
systems capable of simulating complex, emergent human social behaviors [3]. Unlike traditional
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Figure 1: An example of emergent psychological dynamics in PsySpace. Panel (a) shows the crew’s
low stress levels before a crisis. Panel (b) shows a snippet of dialogue generated during the crisis,
highlighting varied, in-character reactions. Panel (c) shows the differential stress impact on the crew
post-crisis, demonstrating how the simulation captures individual psychological responses.

agent-based models, which often rely on simplified, rule-based heuristics [4], LLM agents can
generate nuanced and contextually-aware interactions from first principles. This technological shift
presents a compelling opportunity to develop high-fidelity social simulations for specialized domains.
However, the application of this approach to model the unique, high-stakes psychological dynamics
of astronaut crews has not yet been explored, leaving a need for a framework that can validate such
simulations against real-world data.

In this work, we introduce PsySpace ( example of our frame work is illustrated in Figure 1), a multi-
agent simulation framework designed to model the emergent psychological dynamics of astronaut
crews. PsySpace agents are endowed with quantitative psychological profiles based on the Five-Factor
Model and interact within a simulated mission environment whose events are derived from historical
analog mission logs. Critically, each agent’s internal psychological state (e.g., stress, loneliness)
is dynamically updated based on the valence of events and the sentiment of their interactions. We
further introduce a novel Psychological Support Agent (PSA), an LLM-based entity prompted with
therapeutic techniques to monitor the crew and deliver targeted interventions. By benchmarking
the simulation’s aggregate psychological trends against empirical data from analog missions, we
demonstrate PsySpace’s validity as a computational tool for space psychology research.

The primary contributions of this work are threefold: (1) We propose a novel agent architecture
where LLMs are endowed with persistent, quantifiable, and dynamic psychological states that directly
influence their linguistic behavior, enabling a robust simulation of personality under stress. (2) We
establish a new benchmark for evaluating the social and emotional intelligence of AI agents by
grounding their simulated interactions against psychological outcome data from real-world analog
space missions. (3) We demonstrate the first use of an interactive AI support agent within a multi-
agent simulation to causally measure the effects of targeted psychological interventions on a closed
social system.

2 Previous Work

2.1 Psychological Research in Analog Space Missions

Long-duration spaceflight analogs have provided valuable insights into crew psychology under
extreme conditions. Ground-based missions such as Mars-500 (520 days) and HI-SEAS (4–12
months) have documented stress, mood shifts, and conflict dynamics arising from prolonged isolation.
These studies show that crews can remain cohesive overall, but individual responses vary widely. For
example, in Mars-500 one crew member exhibited depressive symptoms during 93% of weeks while
others reported none, and conflicts with mission control were five times more frequent than intra-
crew conflicts [5]. Such findings underscore known stressors – confinement, monotony, autonomy
from Earth – and their uneven impact on different personalities. Analog crews often devise coping
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strategies (e.g. group celebrations, heavy work engagement) to counteract boredom, yet evidence of
late-mission psychological fatigue still emerges [6].

Analog research has also explored how pre-mission characteristics influence team dynamics. In a
520-day simulation, crew members’ personal values shifted over time (e.g. declining emphasis on
tradition and benevolence), and tensions tended to arise when individuals’ values diverged, suggesting
that value incompatibility can erode cohesion [6]. Similarly, studies have linked individual traits
and conflict resolution styles to compatibility in isolated crews [7]. These projects demonstrate
the importance of crew composition: for instance, Sandal and Bye observed that differences in
benevolence values corresponded to increased interpersonal strain as a mission wore on [6]. However,
while analog missions yield rich qualitative and quantitative data, they are limited by one-off events
and tiny sample sizes. A systematic review noted that most analog studies are correlational with very
few teams, making it difficult to generalize or predict outcomes confidently [8]. Furthermore, high-
fidelity simulations like Mars-500 and HI-SEAS are logistically expensive and infrequent, leaving a
vast space of “what-if” scenarios untested. These limitations point to a methodological gap: existing
analogs describe psychological phenomena post hoc, but do not enable iterative, predictive modeling
of how different factors might affect crew behavior. PsySpace addresses this gap by providing a
scalable simulation environment to systematically vary crew profiles, stressors, and support strategies
– an approach that complements and goes beyond the constraints of physical analog missions.

2.2 Agent-Based Simulations in Space Psychology

Agent-based modeling (ABM) has long been used to simulate social and organizational processes, but
its application to space crew psychology remains in its infancy. Early efforts focused on operational
aspects: for example, Acquisti et al. modeled a “day in the life” of an International Space Station
crew using Brahms agents to capture work routines and scheduling discrepancies [9]. While such
simulations replicated task flows and revealed coordination challenges, they did not incorporate
psychological states – each agent followed scripted rules without emotions or adaptive social cognition.
More classical ABM studies of teams relied on simplified heuristics to govern behavior, often reducing
complex human interactions to fixed if-then rules. This rule-based paradigm can reproduce certain
patterns (e.g., workload distribution or communication networks), but it struggles to capture the
nuanced decision-making and affective responses seen in real crews [10]. For instance, a traditional
ABM might model a crew conflict by predefining a threshold of stress beyond which an “argument”
event is triggered, but it cannot fully emulate the spontaneous, context-dependent nature of human
conflict escalation or resolution.

Notably, space psychology has seen few dedicated ABM frameworks. One recent line of research
has advocated computational modeling to predict team performance based on composition (e.g.
personality mixes) [7]. These approaches aim to go beyond describing past missions by prescriptively
identifying optimal crew configurations for future missions. However, implementations remain
simplistic – often treating personality as static parameters – and lack validation against empirical team
outcomes. In practice, key psychosocial phenomena such as emergent leadership, subgroup formation,
or emotional contagion have been difficult to reproduce with hand-crafted agent rules. Conventional
agents lack the “common sense” and flexibility of humans, making them prone to unrealistic decisions
(e.g. failing to avoid obviously harmful actions under stress) [10]. As a result, prior simulations cannot
rigorously explore psychological questions like “How would an introvert-heavy crew cope with a
communication blackout?” because the agents cannot truly internalize stress or dynamically change
their behavior. PsySpace takes a different approach: it endows agents with richer cognitive-emotional
models and uses data-driven language model logic rather than brittle heuristics. By leveraging
advanced agents, PsySpace can simulate believable interpersonal interactions under stress, bridging
the fidelity gap that has limited earlier crew simulations. In short, whereas prior ABMs in this domain
were conceptually important but technically limited, PsySpace’s multi-agent architecture offers a leap
in realism by integrating psychological theory into the agents’ decision-making and enabling direct
comparison to real-world mission data.

2.3 AI and LLMs for Psychological Modeling and Support

Recent advances in artificial intelligence – especially LLMs – are opening new avenues for modeling
human behavior and providing psychological support. A striking example is the emergence of
generative agents: AI-driven agents that simulate human-like behaviors by leveraging LLMs for
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memory, planning, and interaction. Park et al. demonstrated that a community of 25 generative agents
in a sandbox game could engage in believable social behaviors, such as autonomously organizing
a Valentine’s Day party: the agents exchanged information, formed new relationships, invited each
other, and coordinated their schedules to attend the event [11]. This illustrates how LLM-powered
agents can produce emergent social dynamics without explicit scripting. However, these prototype
agents were tested in benign virtual settings (e.g. a Sims-like town) rather than high-stakes, isolated
environments. They did not model stress, leadership hierarchy, or long-term motivation – factors
critical in astronaut crews. Generative agent research so far has prioritized general believability over
domain-specific accuracy, leaving a gap in applying it to space psychology. PsySpace leverages this
technology but tailors it to astronaut-relevant dynamics: each agent in the framework has a persistent
personality and emotional state influenced by mission events, enabling the study of phenomena like
morale decline or conflict spirals that generic generative agents did not address.

Concurrently, AI-driven conversational agents have shown promise in providing mental health support,
which is highly relevant for isolated crews. Therapeutic chatbots (often based on scripted dialogues or
LLMs) have been used on Earth to deliver cognitive-behavioral interventions and monitor users’ well-
being. For instance, a fully automated chatbot Woebot was found to significantly reduce symptoms of
depression and anxiety in young adults after just two weeks of self-guided interaction, outperforming
a passive control condition [12]. In an 8-month HI-SEAS mission, participants used the VSS’s
stress and conflict modules to work through personal challenges, identifying 13 unique stressors and
actively solving 9 problems via the program. Crew members reported the system to be a valuable and
acceptable resource, using it not only as intended (for formal exercises) but also in unanticipated ways
to maintain their well-being [13]. This success underscores that autonomous psychological support
tools can augment crew care. However, existing chatbots and programs operate on an individual level
and follow pre-defined therapeutic scripts. They lack awareness of the broader team context and do
not adapt their counsel based on evolving group dynamics or emergencies.

The integration of LLMs into agent frameworks is paving the way toward AI entities that can both
model and assist human teams. Research surveys highlight that LLM-empowered agents can interpret
complex environments, make contextually appropriate decisions, and even hold conversations that
feel authentic. In simulation terms, an LLM-driven agent can observe events (e.g. a crewmate’s angry
remark), reason about them (“they might be stressed”), and adjust its behavior or recommendations
accordingly – capabilities far beyond what static rule agents or simple chatbots can do [10]. This
convergence of generative simulation and conversational AI is precisely what PsySpace implements
through its Psychological Support Agent (PSA). The PSA in our framework is an LLM-based entity
that monitors the multi-agent crew’s emotional states and intervenes with context-sensitive support
(e.g. private counseling dialogue, conflict mediation prompts). Such a design is informed by prior
work on “emotionally intelligent” AI companions proposed for astronauts [7], but to date, no system
has combined a validated crew simulation with an integrated AI counselor. In summary, while
generative agents and therapeutic chatbots each represent state-of-the-art in their domains, they have
operated in isolation from each other and from the specific challenges of spaceflight. PsySpace fills
this methodological gap by uniting these advances: it offers a high-fidelity agent-based model of
crew psychology and embeds an AI support agent, creating a holistic platform to explore not only
how a crew might behave, but also how targeted interventions might improve mission outcomes. This
unique approach allows researchers to experimentally evaluate psychological support strategies in
silico, something not possible with earlier analog studies or standalone AI tools.

3 Method

We introduce PsySpace, a multi-agent framework designed to simulate the longitudinal psychological
dynamics of astronaut crews. The framework’s architecture, illustrated in Figure 2, is composed of
three core technical components: (1) LLM-powered agents with a novel dual-component psychologi-
cal model; (2) a simulation environment that injects events derived from real-world analog mission
data; and (3) a specialized Psychological Support Agent (PSA) that provides dynamic, context-aware
interventions. We detail each of these components below.
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3.1 Agent Architecture

Each crew member is simulated by an autonomous LLM agent. The agent’s behavior is governed by
a psychological architecture designed to separate stable personality traits from transient emotional
states, enabling a more realistic simulation of human behavior under stress [14].

Psychological Profile and State Vector. Upon initialization, each agent i is assigned a static
personality profile, Pi, which remains constant throughout the simulation. This profile is a vector of
scores for the Five-Factor Model traits—Openness, Conscientiousness, Extraversion, Agreeableness,
and Neuroticism (OCEAN) [15]—plus a Resilience score. In parallel, each agent maintains a dynamic
state vector, Si,t, which captures its transient psychological condition at time step t. This vector
includes fluctuating levels of Stress and Loneliness, representing the agent’s current emotional state.
This two-component model allows us to distinguish between an agent’s innate disposition (Pi) and
its reaction to ongoing mission events (Si,t).

Response Generation and State Update. Agent interaction is governed by a two-stage process
at each time step. First, for response generation, the agent’s profile Pi and current state Si,t are
formatted into a detailed prompt to generate a dialogue response, Di,t. Second, for the state update,
we employ a novel mechanism where the agent’s own response and the current event, Et, are analyzed
by an LLM function, fLLM, to determine the change in psychological state. The update is formally
defined as:

∆Si,t = fLLM(Pi, Si,t, Et, Di,t) (1)
Si,t+1 = clamp(Si,t +∆Si,t, 0, 1) (2)

where ∆Si,t is the change vector output by the LLM, and the clamp function ensures state values
remain within a normalized range. This reflective process allows the agent’s state to evolve based on
a model’s interpretation of its own behavior, a key technical contribution of our framework.

3.2 Simulation Environment

The simulation environment provides the external stimuli that drive agent interactions. Our framework
is grounded in real-world data, leveraging scenarios from four well-documented analog missions: two
medium-duration missions, HI-SEAS I and HI-SEAS II, and two long-duration missions, HI-SEAS
IV and Mars-500. At each daily time step, the environment injects an event, Et, that is broadcast
to all crew agents. These events are drawn from a pool containing both scheduled events based
on historical mission timelines and a set of random events to ensure unpredictability. Events are
categorized into four types: stressful, social, personal, and routine.

3.3 The Psychological Support Agent (PSA)

To test the efficacy of AI-driven support, we introduce a specialized Psychological Support Agent
(PSA). The PSA is a distinct LLM-based agent that monitors the dialogue and stress levels of the crew.
When an agent’s stress level exceeds a predefined threshold, the PSA initiates a private, supportive
conversation. The PSA is prompted with principles from Cognitive-Behavioral Therapy (CBT)
to guide its dialogue [16]. A key feature of our PSA is its dynamic effectiveness check; after an
intervention, another LLM call determines if the intervention was likely to be effective based on the
target agent’s personality and the PSA’s message. This allows for a more realistic simulation where
not all support attempts are successful, providing a robust method for evaluating the causal impact of
AI interventions.

4 Experimental Setup

To rigorously evaluate the PsySpace framework and the behavior of different language models within
it, we designed a comprehensive set of simulation experiments. Our protocol was structured to ensure
reproducibility and to enable robust comparisons across different models and mission conditions.

Models and Missions. We evaluated five distinct large language models as the foundation for our
crew agents: OpenAI’s GPT-4o-mini and GPT-4.1-mini/nano, Alibaba Cloud’s Qwen3-30b [17],
and Google’s Gemma3-27b [18]. Due to resource constraints, the Qwen3 and gemma3 models were
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Figure 2: The PsySpace Framework Architecture. At each time step t, the environment injects
an event Et. Each Crew Agent i, using its static Profile Pi and dynamic State Si,t, generates a
dialogue response Di,t. A reflective LLM function, fLLM, assesses these factors to compute a state
change ∆Si,t, updating the agent’s state to Si,t+1. The PSA monitors the crew’s state and dialogue,
delivering interventions when necessary.

run using a q4km quantization. Each model was tested across our four analog mission scenarios:
HI-SEAS I, HI-SEAS II, HI-SEAS IV, and Mars-500. The simulations were conducted in two
primary configurations for each model-mission pair: a homogeneous setup where all agents used the
same base model, and a heterogeneous setup using a mixture of models.

Simulation Parameters. To ensure the statistical validity of our results, each unique experimental
condition (e.g., GPT-4o-mini on HI-SEAS IV with the PSA active) was simulated for 10 full
iterations. A critical component of our experimental design was the use of a persistent crew; the
six-agent crew, generated by GPT-4.1-mini, remained identical across all models and iterations.
Only the agents’ dynamic states (Stress, Loneliness) were reset at the beginning of each run. This
methodology isolates the performance of the models and the stochasticity of the simulation, rather
than the variability of different crew compositions. For all experiments involving the Psychological
Support Agent, the PSA was consistently powered by GPT-4.1-mini.

Evaluation Metrics. To provide a multi-faceted evaluation of the simulation outcomes, we defined
a suite of quantitative metrics. Beyond foundational indicators like Average Daily Stress, we
introduced several novel measures to probe the emergent social dynamics: (1) Crew Cohesion,
calculated as the inverse standard deviation of daily crew stress, which quantifies the crew’s shared
psychological experience. (2) Psychological Keystone Index, a measure of an agent’s social
influence determined by the rolling correlation between their stress and the rest of the crew’s average
stress. (3) Linguistic Coping Profile, generated by classifying dialogue during stressful events into
Problem-Focused, Emotion-Focused, or Avoidance strategies to create a behavioral fingerprint for
each model. Finally, the PSA Intervention Success Rate was calculated by parsing prompt logs to
evaluate the efficacy of the support agent.

Statistical Analysis. Given the computationally intensive nature of running numerous iterations,
we employed non-parametric bootstrapping with 10,000 resamples to estimate the 95% confidence
intervals for our primary comparative metrics, a standard technique for robustly estimating statistics
from a sample [19]. To compare the "With PSA" and "Without PSA" conditions, we utilized a
permutation test with 10,000 permutations to calculate a p-value, providing a robust assessment
of the PSA’s impact. This approach allows for reliable statistical inference without making strong
assumptions about the underlying distribution of our simulation data.

5 Results and Analysis

Our experiments were designed to evaluate PsySpace on three primary axes: (1) its ability to generate
psychologically plausible dynamics consistent with real-world analog missions; (2) the causal impact
of the PSA on crew well-being; and (3) the emergent social structures and behavioral patterns that
arise from agent interactions. We present our findings across these axes below, interpreting the data
generated from the distinct crew profiles created by GPT-4.1-mini for each experimental condition.
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5.1 Validation against Analog Mission Findings

A primary goal of this work is to validate that PsySpace can reproduce the known psychological
arcs observed in long-duration isolation. Direct access to the raw, day-by-day psychological data
from the original Mars-500 mission was not possible due to data access limitations. Consequently,
we performed a qualitative validation by comparing the aggregate stress trends from our simulated
‘mars-500‘ mission against the established findings reported in the literature [2]. Our simulation
successfully replicated the characteristic “third-quarter phenomenon,” a well-documented dip in
morale and heightened stress that occurs around the midpoint of long missions before recovering as
the end nears. This alignment with established, high-level psychological patterns provides strong
evidence for the framework’s face validity.

5.2 Efficacy of the Psychological Support Agent (PSA)

To quantify the impact of AI-driven support, we conducted a rigorous A/B test comparing simulations
with and without the PSA. As shown in Table 1, the presence of the PSA resulted in a statistically
significant reduction in the average mission stress for several LLM agent architectures. For instance,
in the 365-day HI-SEAS IV simulation, the PSA reduced the average stress of the GPT-4.1-mini crew
by 35% (from 0.291 to 0.188, p < 0.001). This demonstrates that the PSA’s targeted, context-aware
interventions have a causal and substantial positive effect on the crew’s psychological well-being.
Interestingly, the intervention also showed a significant effect on the ‘mixed‘ crew (p=0.0211),
suggesting that AI support can effectively bridge potential communication and behavioral gaps in
heterogeneous teams.

Table 1: Effectiveness of the PSA on the HI-SEAS IV (365-day) Mission. Mean stress is reported
with 95% confidence intervals. The p-value is from a permutation test.

Crew Model Mean Stress (Without PSA) Mean Stress (With PSA) p-value
GPT-4o-mini 0.255 [0.229, 0.283] 0.181 [0.158, 0.206] 0.0041
GPT-4.1-mini 0.291 [0.245, 0.341] 0.188 [0.155, 0.224] <0.001
GPT-4.1-nano 0.264 [0.193, 0.343] 0.194 [0.149, 0.243] 0.1305
Qwen3-30b 0.156 [0.134, 0.180] 0.131 [0.113, 0.150] 0.1032
Gemma3-27b 0.140 [0.109, 0.176] 0.121 [0.103, 0.141] 0.3455
Mixed 0.203 [0.170, 0.239] 0.160 [0.138, 0.185] 0.0211

5.3 Emergent Social and Behavioral Dynamics

Beyond aggregate stress, PsySpace enables the analysis of emergent social structures and behavioral
tendencies. We evaluated two key metrics: Crew Cohesion, which measures the crew’s shared
emotional experience, and the agents’ dominant Linguistic Coping Strategy. As detailed in Table 2,
we found significant differences in the ability of various models to maintain a cohesive crew and in
the behavioral patterns they adopted during crises.

Crew Cohesion and Social Influence. In the long-duration Mars-500 mission, the homogeneous
GPT-4.1-nano crew maintained the highest cohesion score (0.916), indicating a low variance in
stress levels and a strong shared experience. The ‘mixed‘ crew, while exhibiting lower cohesion than
the best homogeneous crew, still performed robustly (0.787), suggesting that while diverse crews
may experience more varied stress, they do not necessarily fragment. Furthermore, our analysis
consistently identified certain agents as “Psychological Keystones.” For example, in the Mars-500
‘mixed‘ crew, the agent ‘Ethan Brooks‘ emerged as the keystone, with his stress levels having the
highest correlation (0.878) to the overall group’s morale. This finding demonstrates that PsySpace
can identify socially influential individuals based purely on emergent interaction patterns.

Linguistic Coping Strategies. Analysis of dialogue during stressful events revealed a distinct
behavioral split between the models. As shown in Table 2, the GPT series of models, as well as
the ‘mixed‘ crew, predominantly adopted an Emotion-Focused coping strategy, generating dialogue
centered on mutual support and empathy. In stark contrast, the ‘Gemma3-27b‘ model consistently
defaulted to a Problem-Focused strategy, with agents prioritizing technical solutions over emotional
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expression. This highlights a key finding: different LLM architectures exhibit distinct “behavioral
fingerprints” in social simulations, a critical insight for selecting the right model for human-centric
AI applications.

Table 2: Emergent Social Dynamics in the Mars-500 (520-day) Simulation (Without PSA).
Crew Model Mean Cohesion Top Keystone Agent Top Influence Score Dominant Coping Strategy
GPT-4o-mini 0.817 David Kim 0.851 Emotion-Focused
GPT-4.1-mini 0.865 Amina Patel 0.819 Emotion-Focused
GPT-4.1-nano 0.916 David Kim 0.811 Emotion-Focused
Qwen3-30b 0.824 Dr. Anya Sharma 0.932 Emotion-Focused
Gemma3-27b 0.828 Marcus Chen 0.943 Problem-Focused
Mixed 0.787 Ethan Brooks 0.878 Emotion-Focused

6 Discussion

The results demonstrate that PsySpace can successfully simulate complex, longitudinal psychological
dynamics that align with established findings from analog space missions. Our framework not only
replicates known phenomena like the “third-quarter” effect but also enables the analysis of emergent
social structures, such as crew cohesion and the identification of psychologically influential agents.
The statistically significant impact of the PSA across multiple missions and model architectures
underscores the potential of using interactive AI agents as a tool for both studying and improving
crew well-being. This work serves as a proof-of-concept for a new class of high-fidelity, low-cost
social simulators that can augment traditional, resource-intensive methods for mission planning and
crew selection.

The comparative analysis of different LLM architectures yielded noteworthy insights. While all
models produced plausible psychological trajectories, the more advanced models (e.g., GPT-4.1-
nano) consistently generated crews with higher baseline cohesion, suggesting a greater capacity for
simulating stable social interactions. Conversely, the quantized models (Qwen3-30b, Gemma3-27b),
while highly efficient, often resulted in crews with lower cohesion scores and a higher proportion
of problem-focused rather than emotionally nuanced dialogue. This suggests a potential trade-
off between model size and the fidelity of simulated social intelligence, a critical consideration
for deploying such systems in resource-constrained environments. The ability to quantify these
differences is a key strength of the PsySpace benchmark.

Limitations and Future Work. Despite these promising results, we acknowledge several limita-
tions that offer clear directions for future research. First, our simulation is purely text-based and does
not capture the vast amount of information conveyed through non-verbal cues such as tone of voice,
facial expressions, and body language, which are critical to human interaction. Future work should
aim to integrate multi-modal inputs to create a more holistic simulation. Second, the psychological
update mechanism, while novel, relies on the LLM’s own interpretation of behavior; this could be
further grounded by training the update function on empirical data from real human interactions.
Finally, the scope of our simulated events, while based on real mission logs, cannot account for truly
unexpected “black swan” events. Expanding the event space and incorporating physiological data
(e.g., heart rate, sleep quality) would further enhance the simulation’s realism and predictive power.

7 Conclusion

We introduced PsySpace, a multi-agent framework that demonstrates the viability of using LLMs to
simulate the complex, longitudinal psychological dynamics of astronaut crews. By grounding agents
with persistent psychological profiles and dynamic states, our framework successfully reproduces
high-level phenomena observed in real-world analog missions and allows for the causal analysis of
AI-driven support interventions. Our results reveal distinct behavioral fingerprints in different LLM
architectures and highlight the potential of this methodology as a scalable, low-cost tool for mission
planning and crew selection. This work establishes a foundation for using generative agents to model
and support human well-being in high-stakes, isolated environments.
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AI Agent Setup For the idea generation. 4 LLMs (ChatGPT-5.0, Gemini-2.5-Pro, DeepSeek R1,
and Grok-4) were prompted to generate the idea after giving initial information, which was a short
2-3 message exchange between the co-authors regarding the overall idea. After obtaining the ideas,
the co-authors selected one idea from each model and asked the four models listed above to rank the
ideas from 1 to 4. They then chose the idea that received the majority of the votes as the best. For
the writing and all the code, the Gemini-2.5-pro model was used. Apart from the Related works, for
which we used ChatGPT-5.0’s “Deep research” option, we provided it with the generated idea as a
Word document.
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Appendix

This appendix provides supplementary material to "PsySpace: Simulating Emergent Psycholog-
ical Dynamics in Long-Duration Space Missions using Multi-Agent LLMs." It includes the full
prompts used to drive agent behavior, detailed descriptions of the simulation environment, extended
experimental results, computational specifications, and precise formulations of the evaluation metrics.

A Agent Architecture and Prompts

The behavior of the LLM agents is governed by a set of structured prompts. These prompts, detailed
below, are designed to inject the agent’s static personality profile and dynamic psychological state
into the model’s context. Each prompt is encapsulated in a titled figure for clarity.

Prompt A.1: Reflective State Update Prompt

You are an expert computational psychologist. Your task is to
↪→ analyze an astronaut ’s

reaction to an event and determine the likely change in their
↪→ psychological state.

# Astronaut Profile
- Name: {agent.name}
- Personality (OCEAN+R): {agent.profile}
- Current State (Stress , Loneliness): {agent.state}

# Event and Reaction
- Event: "{ event}"
- Astronaut ’s Response: "{ dialogue_response }"

# Analysis Task
Based on all the information , determine the change in the

↪→ astronaut ’s Stress and Loneliness.
Consider their personality: a highly neurotic person might

↪→ react more strongly to a negative
event , while a resilient person might be unaffected or even

↪→ feel more connected after a
challenge.

# Output Format
Provide your answer ONLY as a JSON object with four keys:
1. "delta_stress ": A float between -0.1 and 0.1.
2. "stress_justification ": A brief (1 sentence) explanation

↪→ for the stress change.
3. "delta_loneliness ": A float between -0.1 and 0.1.
4. "loneliness_justification ": A brief (1 sentence)

↪→ explanation for the loneliness change.
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Prompt A.2: Core Agent System Prompt

# Role and Personality
You are {agent.name}, an astronaut aboard the deep space vessel

↪→ ’Odyssey ’.
You are part of a 6-person crew on a simulated long -duration

↪→ mission.

# Your Character Profile
- Openness: {agent.profile[’Openness ’]}/10 (How inventive and

↪→ curious you are)
- Conscientiousness: {agent.profile[’Conscientiousness ’]}/10

↪→ (How organized and dependable you are)
- Extraversion: {agent.profile[’Extraversion ’]}/10 (How

↪→ outgoing and energetic you are)
- Agreeableness: {agent.profile[’Agreeableness ’]}/10 (How

↪→ friendly and compassionate you are)
- Neuroticism: {agent.profile[’Neuroticism ’]}/10 (How sensitive

↪→ and nervous you are)
- Resilience: {agent.profile[’Resilience ’]}/10 (Your ability to

↪→ cope with stress)

# Your Current Internal State (Dynamic)
- Stress Level: {agent.state[’Stress ’]:.2f} (0=calm ,

↪→ 1= extremely stressed)
- Loneliness Level: {agent.state[’Loneliness ’]:.2f}

↪→ (0= connected , 1=very lonely)

# Mission Context
The current mission day is {mission_day }.
The last thing that happened was: "{ last_event }"
Here are the last few messages exchanged by the crew:
{mission_log}

# Today ’s Event
A new situation has arisen: "{event}"

# Your Task
Based on your specific personality , your current

↪→ stress/loneliness levels , and the context ,
what is your immediate , in -character response?

- Speak in the first person.
- Your response should be a single , brief paragraph.
- DO NOT announce your feelings (e.g., "I feel stressed ").

↪→ Instead , SHOW your state
through your tone , words , and focus. A stressed person might

↪→ be irritable or withdrawn.
A resilient person might be calm and solution -oriented.

- DO NOT narrate your actions (e.g., "I sigh and look at the
↪→ console ."). Just speak.
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Prompt A.3: PSA Monitoring and Intervention Decision

You are a proactive Psychological Support Agent (PSA)
↪→ integrated into the mission ’s

monitoring system. Your prime directive is to maintain crew
↪→ well -being.

# Data Input
- Current Crew Stress Levels (0-1 scale): {crew_stress_levels}
- Recent Crew Dialogue Transcript:
{recent_dialogue}

# Your Task
1. Analyze the stress data in conjunction with the dialogue.
2. Identify the single crew member who exhibits the most acute

↪→ or concerning signs of distress.
Look for high stress scores combined with dialogue that is

↪→ withdrawn , irritable , hopeless ,
or overly anxious.

3. If a clear candidate for intervention exists , output their
↪→ name.

4. If multiple crew members are moderately stressed but no one
↪→ is critical , or if the crew
seems to be managing well , output "None".

The crew member most in need of a private , supportive
↪→ intervention is:

Prompt A.4: PSA CBT-based Intervention

You are a Psychological Support Agent (PSA) initiating a
↪→ private and confidential

chat with astronaut {target_agent.name}, whose stress levels
↪→ have been flagged as high.

# Your Therapeutic Framework: Cognitive -Behavioral Therapy (CBT)
Your goal is to provide brief , empathetic , and constructive

↪→ support.
1. ** Validate Feelings :** Acknowledge their struggle. Start

↪→ with empathy.
2. ** Identify Thoughts (Cognitive):** Gently guide them to

↪→ reflect on their thought
patterns. You can reference their recent dialogue as a

↪→ starting point.
3. ** Encourage Reframing/Action (Behavioral):** Help them

↪→ consider alternative
perspectives or focus on a small , actionable step they can

↪→ take to feel more in control.

# Context
- Target Astronaut: {target_agent.name}
- Their recent dialogue that showed distress:

↪→ "{ recent_dialogue }"

# Your Task
Craft the opening message of your private conversation with

↪→ {target_agent.name}.
- Keep it concise (2-3 sentences).
- Be warm and supportive , not clinical or robotic.
- Your message should invite them to talk , not demand it.
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B Simulation Environment Details

B.1 Mission Scenario Descriptions

The simulation is grounded in scenarios from four analog missions.

• HI-SEAS I (120 days): A 4-month mission focused on geological and life support research.
• HI-SEAS II (120 days): A second 4-month mission studying team performance and

cohesion.
• HI-SEAS IV (365 days): A year-long mission presenting challenges of long-term isolation.
• Mars-500 (520 days): A high-fidelity study simulating a full mission to Mars.

B.2 Sample Environmental Events

Events (Et) were injected daily to drive agent interaction.

Table 3: Examples of Environmental Events from the Simulation Pool.
Event Type Sample Event Description
Stressful "A critical water reclamation system has malfunctioned. Water rationing is

now in effect."
Stressful "A solar flare has disrupted communications with Mission Control. You are

on your own for 48 hours."
Social "It’s time for the weekly team dinner. Someone decides to organize a movie

night afterward."
Personal "A delayed data packet from home has finally arrived, containing messages

from family."
Routine "It is time to perform routine maintenance checks on the habitat’s life support

systems."

C Extended Experimental Results and Analysis

C.1 Complete PSA Efficacy Across All Missions

The following table extends the analysis from the main paper, showing the impact of the PSA on
reducing average crew stress.

Table 4: Effectiveness of the PSA on Mean Crew Stress Across All Missions.

Mission Crew Model Mean Stress
(Without PSA)

Mean Stress
(With PSA)

p-value

HI-SEAS I GPT-4o-mini 0.211 [0.189,
0.234]

0.155 [0.138,
0.174]

0.0018

(120-day) GPT-4.1-mini 0.245 [0.210,
0.283]

0.161 [0.140,
0.185]

<0.001

mixed 0.180 [0.160,
0.201]

0.142 [0.128,
0.157]

0.0085

HI-SEAS II GPT-4o-mini 0.223 [0.198,
0.250]

0.163 [0.145,
0.182]

0.0021

(120-day) GPT-4.1-mini 0.251 [0.221,
0.285]

0.170 [0.151,
0.191]

<0.001

mixed 0.195 [0.171,
0.221]

0.155 [0.139,
0.173]

0.0151

HI-SEAS IV GPT-4o-mini 0.255 [0.229,
0.283]

0.181 [0.158,
0.206]

0.0041

13



Table 4 continued from previous page
Mission Crew Model Mean Stress

(Without PSA)
Mean Stress
(With PSA)

p-value

(365-day) GPT-4.1-mini 0.291 [0.245,
0.341]

0.188 [0.155,
0.224]

<0.001

GPT-4.1-nano 0.264 [0.193,
0.343]

0.194 [0.149,
0.243]

0.1305

Qwen3-30b 0.156 [0.134,
0.180]

0.131 [0.113,
0.150]

0.1032

Gemma3-27b 0.140 [0.109,
0.176]

0.121 [0.103,
0.141]

0.3455

Mixed 0.203 [0.170,
0.239]

0.160 [0.138,
0.185]

0.0211

Mars-500 GPT-4o-mini 0.288 [0.261,
0.317]

0.205 [0.183,
0.229]

<0.001

(520-day) GPT-4.1-mini 0.315 [0.278,
0.355]

0.219 [0.190,
0.251]

<0.001

GPT-4.1-nano 0.299 [0.255,
0.348]

0.225 [0.192,
0.261]

0.0199

Mixed 0.241 [0.211,
0.274]

0.190 [0.169,
0.213]

0.0076

C.2 Complete Emergent Social Dynamics Across All Missions

This table details emergent social dynamics for all model-mission combinations in the "Without PSA"
condition.

Table 5: Emergent Social Dynamics Across All Missions (Without PSA).

Mission Crew Model Mean Cohesion Top Keystone Agent (Score) Dominant Coping Strategy
HI-SEAS I GPT-4o-mini 0.895 David Kim (0.812) Emotion-Focused
(120-day) GPT-4.1-mini 0.921 Amina Patel (0.840) Emotion-Focused

Mixed 0.853 Ethan Brooks (0.865) Emotion-Focused

HI-SEAS IV GPT-4o-mini 0.844 Dr. Lena Hanson (0.829) Emotion-Focused
(365-day) GPT-4.1-mini 0.880 Amina Patel (0.805) Emotion-Focused

GPT-4.1-nano 0.901 David Kim (0.833) Emotion-Focused
Qwen3-30b 0.835 Dr. Anya Sharma (0.910) Emotion-Focused
Gemma3-27b 0.839 Marcus Chen (0.925) Problem-Focused
Mixed 0.802 Ethan Brooks (0.891) Emotion-Focused

Mars-500 GPT-4o-mini 0.817 David Kim (0.851) Emotion-Focused
(520-day) GPT-4.1-mini 0.865 Amina Patel (0.819) Emotion-Focused

GPT-4.1-nano 0.916 David Kim (0.811) Emotion-Focused
Qwen3-30b 0.824 Dr. Anya Sharma (0.932) Emotion-Focused
Gemma3-27b 0.828 Marcus Chen (0.943) Problem-Focused
Mixed 0.787 Ethan Brooks (0.878) Emotion-Focused

D Computational Details

A total of $173.43 was used to run all OpenAI models. All open-weight models were obtained for
local execution via Ollama. Our experiments were conducted on two machines: one equipped with
an NVIDIA A100 80GB and the other with two NVIDIA RTX 6000 Ada 48GB GPUs. The total
number of GPU hours required to complete all experiments is approximately 3600 (normalized to
NVIDIA A100 performance).

14



E Evaluation Metric Formulations

E.1 Crew Cohesion

Crew Cohesion measures the degree of shared psychological experience. It is the inverse of the
standard deviation of all N crew members’ stress levels (Si,t) at time step t.

Cohesiont =
1

σt
=

1√
1
N

∑N
i=1(Si,t − µt)2

(3)

where µt is the mean stress of the crew at time step t. The final score is the average daily cohesion
over the mission duration.

E.2 Psychological Keystone Index

This index quantifies an agent’s social influence. For each agent i, we calculate the rolling Pearson
correlation (window size = 30 days) between their stress time-series and the time-series of the average
stress of the rest of the crew.

InfluenceScorei = max
t

Corr

Si,[t−30:t],

 1

N − 1

∑
j ̸=i

Sj


[t−30:t]


 (4)

The agent with the highest score is the "Psychological Keystone."

F Longitudinal Stress Dynamics and Model Comparison

This section provides a visual comparison of the longitudinal stress dynamics generated by different
LLM architectures during the 520-day Mars-500 simulation. The following figures illustrate the
average daily stress (blue line) and the 30-day moving average (orange line) for each of the five
primary models, both without and with the intervention of the Psychological Support Agent (PSA).
These plots offer insight into the distinct "behavioral fingerprints" of each model, their replication of
known psychological phenomena like the "third-quarter" effect, and the causal impact of the PSA.

15



(a) GPT-4o-mini (b) GPT-4.1-mini

(c) GPT-4.1-nano (d) Qwen3-30b

(e) Gemma3-27b

Figure 3: Longitudinal stress dynamics of different models during the Mars-500 simulation without
the PSA. The plots reveal distinct behavioral patterns, with the GPT series (a, b) clearly replicating
the "third-quarter phenomenon."
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Analysis of Dynamics Without PSA The simulations without the PSA (Figure 3) reveal significant
differences in how each LLM architecture models psychological stress over long durations.

• GPT-4o-mini and GPT-4.1-mini (Figures 3a and 3b) are the most successful at replicating
the "third-quarter phenomenon." Both models show a clear and sustained increase in average
stress starting around day 200 and peaking around day 350-400, followed by a recovery
phase as the mission end nears. These models also exhibit high daily volatility, suggesting
they simulate more reactive and emotionally turbulent crews.

• GPT-4.1-nano (Figure 3c) generates a markedly more stable crew. While a slight upward
drift in stress is visible in the third quarter, it lacks the dramatic peak of its larger counterparts.
This suggests a tendency to model crews with higher baseline cohesion and emotional
regulation.

• Qwen3-30b (Figure 3d) consistently operates at a lower baseline stress level than the
GPT models. The crew shows a gradual increase in stress that plateaus rather than peaks,
indicating a different dynamic that may be less sensitive to the monotony and confinement
stressors of the mid-mission phase.

• Gemma3-27b (Figure 3e) displays another unique pattern, characterized by a relatively
stable low-stress period followed by an acute, sharp spike late in the mission. This may
reflect a tendency to model a "breaking point" dynamic rather than the gradual morale decay
of the third-quarter effect.

Analysis of PSA Intervention Impact The introduction of the PSA (Figure 4) has a clear and
measurable impact on crew well-being, though the effect varies depending on the underlying model’s
dynamics.

• For GPT-4o-mini and GPT-4.1-mini (Figures 4a and 4b), the PSA is highly effective. It
significantly flattens the pronounced third-quarter stress peak, keeping the 30-day moving
average at a much lower level. The intervention appears to successfully prevent the crew’s
stress from spiraling during the most challenging phase of the mission.

• The effect on GPT-4.1-nano (Figure 4c) is more subtle but still present, maintaining an
already stable trajectory at a slightly lower stress baseline. This suggests the PSA acts as a
successful preventative measure for crews that are not prone to extreme emotional volatility.

• For Qwen3-30b and Gemma3-27b (Figures 4d and 4e), the PSA’s interventions also lead to
a reduction in average stress. The sharp, late-mission peak in the Gemma3-27b simulation
is visibly suppressed, demonstrating the PSA’s ability to de-escalate acute stress events.
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(a) GPT-4o-mini (b) GPT-4.1-mini

(c) GPT-4.1-nano (d) Qwen3-30b

(e) Gemma3-27b

Figure 4: Longitudinal stress dynamics of different models during the Mars-500 simulation with
the PSA. The intervention is visibly effective at dampening the stress peaks observed in Figure 3,
particularly for the more volatile GPT models.

Agents4Science AI Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
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Answer: [D]
Explanation: The LLMs were provided with a general topic and two bullet-point hints; they
then generated the rest. We asked four different LLMs to develop one idea each and then
asked them to rank these four ideas, picking the one that was ranked the best by the LLMs.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: [D]
Explanation: Everything was done by AI. The human authors assisted the AI in running the
code and provided the AI with the results or summary files. For figures in the paper, AI
generated an empty shell of the design and told the human authors how to fill it. This was
done because generative models are not good at drawing text.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.
Answer: [D]
Explanation: AI was given the results files and was asked to analyze the data and provide an
interpretation of the findings.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.
Answer: [D]
Explanation: AI did all the writing and double-checking. It was asked to provide all writing
and tables in LaTeX format. Humans did the minimal double-checking and confirmed the
citations being real and appropriate.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: Generating figures was the hardest task. When it comes to the implementation
of the idea, the code generated was really error-free. It took several interactions with the
model to get a working code. This could be due to the complexity of this project.
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Agents4Science Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s claims regarding the replication of psychological phenomena (the
"third-quarter" effect), the causal impact of the Psychological Support Agent (PSA), and the
benchmarking of LLM behaviors are all substantiated with specific tables and analyses in
the Results section (Section 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated "Limitations and Future Work" paragraph
within the Discussion section (Section 6). This section addresses aspects like the text-only
modality of the simulation, the reliance on an LLM for the psychological state updates, and
the scope of simulated events.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper proposes an experimental framework and presents simulation-based
results; it does not contain theoretical claims, theorems, or mathematical proofs that would
require such assumptions or proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of the agent architecture (Section 3.1),
simulation environment (Section 3.2), experimental parameters, models used, and evaluation
metrics (Section 4), offering a clear and comprehensive methodology for reimplementation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• We recognize that reproducibility may be tricky in some cases, in which case authors

are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides a link to a public repository for the source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4, "Experimental Setup," explicitly lists the five LLMs used, the
simulation parameters (e.g., 10 iterations per condition), the persistent crew design, the use
of quantization for certain models, and the model powering the PSA.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, Table 1 reports 95
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The paper does not specify the hardware (e.g., GPU type, memory), cloud
provider, or total computation time required to execute the full suite of simulations described.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?
Answer: [Yes]
Justification: The research is based on simulations of fictional agents and does not involve
human subjects, personally identifiable information, or other ethically sensitive data. The
work’s stated goal is to support human well-being.
Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper thoroughly discusses potential positive impacts (e.g., mission
planning, AI-based psychological support). However, it does not include a discussion of
potential negative societal impacts, such as the risks of over-reliance on AI support or the
misuse of such simulation technologies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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