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Abstract Meta Learning automates the search for learning algorithms. At the same time, it creates a
dependency on human engineering on the meta-level, where meta learning algorithms need
to be designed. In this paper, we investigate self-referential meta learning systems thatmodify
themselves without the need for explicit meta optimization. We discuss the relationship of
such systems to memory-based meta learning and show that self-referential neural networks
require functionality to be reused in the form of parameter sharing. Finally, we propose
Fitness Monotonic Execution (FME), a simple approach to avoid explicit meta optimization.
A neural network self-modifies to solve bandit and classic control tasks, improves its self-
modifications, and learns how to learn, purely by assigning more computational resources
to better performing solutions.

1 Introduction

Machine learning is the process of deriving models and behavior from data or environment in-
teraction using human-engineered learning algorithms. Meta learning takes this process to the
meta-level: Its goal is to derive the learning algorithms themselves automatically as well (Schmid-
huber, 1987; Hochreiter et al., 2001; Wang et al., 2016; Duan et al., 2016; Finn et al., 2017; Flennerhag
et al., 2019; Kirsch et al., 2019; Kirsch and Schmidhuber, 2020). Unfortunately, this creates a depen-
dency on human engineering on themeta-level, where researchers now have to designmeta learning
algorithms. In this paper, we investigate methods for neural self-referential meta learning (Schmid-
huber, 1993b; Schmidhuber et al., 1997). In particular, we seek a process of self-improvement that
reduces our reliance on human engineering to the largest extent possible.

A central piece in the discussion of self-referential meta learning is the self-referential neural
architecture (Schmidhuber, 1993b). Such an architecture allows the modification not just of some
memory to improve future behavior, but also to modify all its own neural weights. This enables
self-modification and self-improvement allowing the architecture to learn, meta-learn, meta-meta-
learn, etc. We show that (1) in order to construct systems that can change all their parameters (or
variables more generally), parts of the computational graph need to be reused. This is done in the
form of parameter (variable) sharing. (2) We discover that memory-based architectures are capable
of similar self-improvement. There is a representational equivalence between neural networks with
memory and self-referential architectures. Despite this, we show that self-referential architectures
are useful in the absence of meta optimization.

Finally, we propose Fitness Monotonic Execution (FME), a simple approach to avoid explicit
meta optimization. Instead of proposing changes to the model or learning algorithm explicitly, all
changes to the model are self-modifications and the resulting solutions are selected for execution
more frequently the better their performance. We empirically demonstrate FME with a neural
network that self-modifies to solve bandit and classic control tasks, improves its self-modifications,
and learns how to learn.
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2 Background

2.1 Self-referential Architectures

A key requirement for a self-improving system is that it can make self-modifications such that
it can change its behavior and learning arbitrarily. One previously suggested way of achieving
this is to bring all variables in a neural network under control of the network itself (Schmidhuber,
1993b). This is referred to as a self-referential neural architecture. Compare this to a conventional
neural network where there is a subset of variables (called the weights or parameters) that are
only updated by a fixed learning algorithm (such as backpropagation). This entails that part of the
(meta-)learning behavior is fixed and needs to be defined by the researcher.

In contrast, self-referential architectures control all variables. This includes activations (con-
ventionally updated by the neural network itself), weights (conventionally updated by a learning
algorithm), meta weights, etc. In this section, we discuss necessary conditions on such a self-
referential architecture and possible implementations.

Notation. In the remainder of this paper, we denote external inputs to the neural network as
𝑥 ∈ R𝑁𝑥 (such as observations and rewards in Reinforcement Learning, or error signals in supervised
learning), outputs as 𝑦 ∈ R𝑁𝑦 (e.g. actions in Reinforcement Learning), and the parameters of the
neural network as 𝜃 . Further, we denote time-varying variables (memory) as ℎ ∈ R𝑁ℎ (such as the
hidden state of an RNN). We summarize all variables in a neural network as 𝜙 = {𝜃, ℎ,𝑦}.

Necessary Conditions. A self-referential architecture 𝜙 ← 𝑔𝜙 (𝑥) is described by a connected
computational graph for the function 𝑔 that has variables 𝜙 = {𝜃, ℎ,𝑦} (one node per scalar). The
network controls all of its variables in the sense that any element(s) of 𝜙 can be changed through
network actions at every iteration. This blurs the distinction between activations (memory) ℎ and
weights 𝜃 . Computational graphs that fulfill this definition are required to have a certain structure.
At every iteration at least some variables need to be reused in multiple operations (node out-degree
> 1). We refer to this as variable sharing, a generalization of weight sharing (Fukushima, 1979)
extending beyond classical weights.

Consider a square dense weight matrix. It consists of 𝑁 2 weights and 𝑁 activations. While the
activations are time-varying, the weights are source nodes in the computational graph and cannot
be directly updated by actions of the network itself. To change that, we need to derive 𝑁 2 variables
from 𝑁 time-varying variables. This can only be done by reusing some of the same 𝑁 time-varying
variables in multiple operations generating the 𝑁 2 variables.

Observation 2.1. Variable sharing in self-referential systems. Assuming a connected computational
graph, an architecture that updates all its variables 𝜙 ∈ R𝑁𝜙 in iteration 𝑡 needs to reuse elements of 𝜙
multiple times in the computational graph to generate 𝜙𝑡+1 ∈ R𝑁𝜙 from 𝜙𝑡 ∈ R𝑁𝜙 .

Proof. As there are no more elements in 𝜙𝑡 than there are in 𝜙𝑡+1, any operation generating an
element in 𝜙𝑡+1 that makes use of more than one element in 𝜙𝑡 needs to reuse an element already
in use by a different operation. □

Implementations. Under the previous constraints, various implementations for self-referential
neural architectures are conceivable. Schmidhuber (1993b) assigns an address to each weight such
that the network outputs can be used to attend to weights and both read and write their values.
Instead of updating one weight at a time, the fast weight programmers of 1992-93 (Schmidhuber,
1992, 1993a) are networks that learn to generate key and value patterns to rapidly change many
fast weights simultaneously. Outer products between activations (a type of sharing) are used to
derive𝑀 ∗ 𝑁 variables,𝑀, 𝑁 ∈ N, from𝑀 + 𝑁 variables. This allows updating all the weights of
a neural network layer by its own activations (Irie et al., 2021). Alternatively, a coordinate-wise
mechanism may generate all updates continuously as a function of the weight address (D’Ambrosio
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and Stanley, 2007). Other works have used multiple RNNs with shared weights and messaging
passing between those to increase the number of time-varying variables ℎ arbitrarily while keeping
the number of parameters 𝜃 constant (Rosa et al., 2019; Kirsch and Schmidhuber, 2020). This can be
made self-referential by using a subset of ℎ to update parameters 𝜃 .

2.2 Expressivity of Memory and Self-referential Architectures

In this section, we show that self-referential architectures do not have a representational advantage
over memory-based architectures when the free (initial) variables are meta-optimized using a
human engineered learning algorithm.

We defined self-referential architectures𝜙,𝑦 ← 𝑔𝜙 (𝑥) as those that can update all their variables
𝜙 in the computational graph. Compare this to a memory architecture such as a recurrent neural
network ℎ,𝑦 ← 𝑓𝜃 (ℎ, 𝑥) parameterized by 𝜃 where ℎ corresponds to its hidden state (memory).
Can the self-referential architecture represent any functions that the memory architecture can
not? A commonly used intuition (Schmidhuber, 1993b) is that self-referential architectures are
self-modifying, in that they change their own weights, affecting not only their outputs and current
weights but also future weight changes through 𝑔𝜙 . These architectures can thus not only learn,
but also meta-learn, meta-meta-learn, etc. While memory architectures do not update their weights,
they are also self-modifying. Changes in memory ℎ affect the output directly, but also the effective
function 𝑓𝜃 by modifying its input ℎ, in turn determining future changes to ℎ.

Observation 2.2. For any self-referential architecture 𝜙,𝑦 ← 𝑔𝜙 (𝑥) and some initial 𝜙0 we can find
a memory architecture ℎ,𝑦 ← 𝑓𝜃 (ℎ, 𝑥), 𝜃 , and initial ℎ0 such that for any sequence of 𝑥1:𝑇 we have
𝑓 (𝑥1:𝑇 ) = 𝑔(𝑥1:𝑇 ) where 𝑓 and 𝑔 are the unrolls returning 𝑦1:𝑇 of 𝑓 and 𝑔 respectively.

Proof. We construct an emulator 𝑓𝜃 (a sufficiently large neural network parameterized by 𝜃 ) that
stores 𝜙 in ℎ and set 𝜃, ℎ0 such that at each step 𝑡 ∈ N it performs the same computation as 𝑔𝜙 by
taking 𝜙𝑡 from ℎ𝑡 , computing 𝜙𝑡+1, and storing it in ℎ𝑡+1. □

Furthermore, any memory-based architecture can be represented by a self-referential architec-
ture where a subset of variables is updated by the identity function. In conclusion, the function class
that can be represented by self-referential architectures is equivalent to memory architectures, given
sufficiently rich parameterizations. For both memory architectures and self-referential architectures
the same question arises: How do we set the free variables 𝜃 , ℎ0, or 𝜙0? If these free variables
are directly optimized (eg by following the gradient of some objective), from a representability
perspective there is no advantage of self-referential architectures. Orthogonal to this, the chosen
architecture (whether memory or self-referential) may have varying optimizability or regularizing
benefits due to e.g. sparsity in the computational graph, multiplicative interactions, or variable
sharing. In the following, we discuss how self-referential architectures are relevant in the absence
of direct meta-optimization.

3 Method: Fitness Monotonic Execution

Both in the case of self-referential and memory architectures the free (initial) variables need to be
found. Here we propose a method, Fitness Monotonic Execution (FME), that avoids explicit meta
optimization of these free variables. Instead of modifying 𝜙 directly using a human-engineered
learning algorithm, we simply select between different configurations of 𝜙 that are generated using
self-modifications. In particular, through interactions with the environment we continuously add
new solutions to a set of Φ = {𝜙𝑖}. Computation time is distributed across solutions monotonic
in their performance, i.e. better performing solutions are executed longer (or are selected for
execution more frequently). This can be formalized as a pmf 𝑝 (𝜙) that assigns each solution 𝜙 ∈ Φ
a probability for being executed at any given time-step based on its average reward 𝑅 (𝜙)

Δ𝑡 relative to
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other solutions (where Δ𝑡 is the solution’s total lifetime). As a special case, 𝑝 may put all probability
mass on the current best solution, greedily selecting for improvement. See Algorithm 1 for a full
description.

Note that in this scheme, memory architectures are now inadequate. If there were any variables
that are not modifiable, their value could not be determined through self-modifications. As we
do not use any human-engineered optimization process, their value would be undefined. Thus,
self-referential architectures are required.

Algorithm 1 Fitness monotonic execution
Require: Initial solution(s) Φ = {𝜙𝑖}, self-referential architecture 𝑔𝜙 , probability 𝑝 (𝜙), an RL
environment 𝐸
while forever do

𝜙 ∼ 𝑝 (𝜙) where 𝜙 ∈ Φ ⊲ Sample next solution to execute, monotonic
in its performance

𝜙,𝑦1:𝐿 ← 𝑔𝐿
𝜙
(𝑥1:𝐿) ⊲ Execute 𝑔 for 𝐿 steps with 𝑥1:𝐿 from the en-

vironment 𝐸 including a feedback signal
Φ← Φ ∪ {𝜙} ⊲ Add new 𝜙 to Φ

Least-recently-used Buffer. To limit the number of solutions we need to store, we implement
Fitness Monotonic Execution with a least-recently-used (LRU) buffer. It consists of𝑚 buckets where
each bucket holds recent solutions in a specific performance range. Solutions from buckets with
higher performance are sampled exponentially more frequently.

Outer-product-based Architecture. For the self-referential neural network architecture, we chose
an outer-product mechanism adapted from prior work (Irie et al., 2021). By applying a weight
matrix𝑊𝑡−1 ∈ R𝑁𝑥×(𝑁𝑦+2𝑁𝑥+4) to some input 𝑥𝑡 ∈ R𝑁𝑥 we generate the output 𝑦𝑡 ∈ R𝑁𝑦 , key
𝑘𝑡 ∈ R𝑁𝑥 , query 𝑞𝑡 ∈ R𝑁𝑥 , and a learning rate 𝛽𝑡 ∈ R4. Using an outer-product, the key and query
generate an update to the weight matrix𝑊𝑡−1, obtaining𝑊𝑡 :

𝑦𝑡 , 𝑘𝑡 , 𝑞𝑡 , 𝛽𝑡 =𝑊𝑡−1𝜓 (𝑥𝑡 ) (1)
𝑣𝑡 =𝑊𝑡−1𝜓 (𝑘𝑡 ) (2)
𝑣𝑡 =𝑊𝑡−1𝜓 (𝑞𝑡 ) (3)
𝑊𝑡 =𝑊𝑡−1 + 𝜎 (𝛽𝑡 ) (𝜓 (𝑣𝑡 ) −𝜓 (𝑣𝑡 )) ⊗𝜓 (𝑘𝑡 ) (4)

where𝜓 is the tanh activation, 𝜎 is the sigmoid function, and ⊗ is the outer product. The learning
rate 𝛽𝑡 ∈ R4 controls the rate of update to the four parts generating 𝑦, 𝑘, 𝑞, 𝛽 . We stack multiple
such self-referential layers.

4 Experiments

We empirically investigate several questions: Firstly, starting with a randomly initialized solution,
can the network modify itself to solve a bandit task? We compare this to a hill climbing strategy.
Secondly, how do self-modifications compare when solving a markov decision process? Thirdly,
given a bandit task that is non-stationary, can the network learn to modify itself based on the
reward it receives as input?

Learning a Bandit Policy. The first question we investigate is whether a randomly initialized
self-referential architecture is capable of making self-modifications that lead to a useful policy
for a given task. We test this on a simple 2-armed bandit where one arm gives payouts (rewards)
of 1 and the other 0. From Figure 1 (left) we observe that after around 40 self-modifications and
selections a solution is found that always selects the arm with a higher payoff. We compare this to
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Figure 1: A randomly initialized self-referential architecture makes modifications to itself to solve
a two-armed bandit problem (left). On a Cartpole task (right) the self-modifications not
only directly improve the policy, but also improve future improvements, resulting in faster
learning compared to hill climbing. The found policy balances the pole for about 100 steps.
Standard deviations are shown for 5 seeds.

hill climbing with a variance-tuned Gaussian noise on the network parameters. We observe that in
this simple environment, Fitness Monotonic Execution is as effective as hill climbing to find an
optimal solution to this bandit problem.

Cartpole. Next, we increase the difficulty of the policy to be found by running a self-referential
network on the Cartpole task (Figure 1, right). We observe that reaching a good performing policy
takes significantly more self-modifications and selections. At the same time, a simple hill climbing
strategy (with tuned noise) fails at improving the policy at the same rate as the self-modifying
architecture. This suggests that we are not only selecting for good policies but also strategies for
self-modification that lead to policy improvement in the future.

0.00

0.25

0.50

0.75

1.00

Ac
tio

n 
pr

ob
ab

ilit
y

FME with reward
FME without reward

0 200 400 600 800 1000
Step

0

1

Go
od

 a
rm

Figure 2: Given the reward as input, self-modifications
enable adaptation to swapping of the good
arm in a two-armed bandit.

Meta Learning a Bandit Learning Algorithm.
Given a non-stationary task, a good policy can
not exhibit a fixed behavior but must adapt to
changing rewards (learn). We test the capabil-
ities of Fitness Monotonic Execution to adapt
to a changing bandit task. In Figure 2 we swap
the good and bad arm at random intervals. We
further feed the reward as an input to the pol-
icy such that it can adapt its behavior based on
the reward. We observe that Fitness Monotonic
Execution leads to self-modifying policies that
change their action (learn) in response to the
reward they previously received. In contrast,
if this reward is not fed as an input, the policy
fails to adapt.

5 Discussion

Limitations. This paper represents an initial discussion of self-referential systems that do not rely
on fixed human-engineered meta-optimization. The empirical evaluation is still minimalistic at this
time but should be a good starting point for larger experiments and improvements. Our intention
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is to incite further interest in this research direction. Semantically, it is an open question whether
FME should be called a (minimalistic) meta optimizer after all. Usually, optimizers define how
solutions are modified based on a feedback signal. In the case of FME, these modifications are
self-generated.

Broader impact. This paper is not directly concerned with applications of machine learning.
Nevertheless, meta learning methods may pose additional challenges in the future. For instance,
learning algorithms are now also subject to learning which means that learning itself becomes
more difficult to interpret and to monitor for biases extracted from data.

Self-modifying architecture. We described a meta learner that can self-modify all its variables
including those that define the self-modifications, but its architecture is still hard-coded. In fitness
monotonic execution, the self-modifications do not require differentiability. Thus, self-modifications
can be extended to include architecture modifications 𝜙,𝑦, 𝑔← 𝑔𝜙 (𝑥), such as adding or removing
neurons and weights, changing operations, and (un-)sharing variables.

6 Conclusion

In this paper, we discussed self-referential systems that exhibit self-improvement while reducing
the reliance on human engineering to the largest extent possible. In particular this means avoiding
the use of human engineered learning algorithms on the meta level. We showed that in order to
construct systems that can change all their parameters (or variables more generally), functionality
needs to be reused. This is done in the form of parameter (variable) sharing. We further demon-
strated the representational equivalence between neural networks with memory and self-referential
architectures while highlighting the benefit of self-referential architectures in the absence of meta
optimization. Finally, we proposed Fitness Monotonic Execution (FME), a simple approach to avoid
explicit meta optimization. A neural network self-modifies to solve bandit and classic control tasks,
improves its self-modifications, and learns how to learn, purely by assigning more computational
resources to better performing solutions.
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A Implementation Details

Least-recently-used Buffer. We initialize a least-recently-used (LRU) buffer with a single randomly
initialized neural network. The𝑚 = 100 buckets evenly cover the entire current performance range
and each hold the 100 most recent solutions. Solutions from buckets with higher performance are
sampled exponentially more frequently. We use an exponential base of 𝑒20. All layers are initialized
from a truncated normal with a standard deviation of 𝜎 = 1√

𝑁𝑥
.

Architecture. We stack three self-referential layers with 32 hidden units.

Sources of Randomness. To create a temporal tree of self-modifying solutions, randomness must
be injected into the system. This randomness originates from the policy action sampling, non-
deterministic environment steps, and potential external noise injection as an input to the policy. We
found external noise injection not to improve the agent’s performance when sufficient randomness
originates from the policy and environment.

7


	Introduction
	Background
	Self-referential Architectures
	Expressivity of Memory and Self-referential Architectures

	Method: Fitness Monotonic Execution
	Experiments
	Discussion
	Conclusion
	Implementation Details

