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Abstract

Building automatic extraction models for vi-
sually rich documents like invoices, receipts,
bills, tax forms, etc. has received significant at-
tention lately. A key bottleneck in developing
extraction models for new document types is
the cost of acquiring the several thousand high-
quality labeled documents that are needed to
train a model with acceptable accuracy. In this
paper, we propose selective labeling as a so-
lution to this problem. The key insight is to
simplify the labeling task to provide “yes/no”
labels for candidate extractions predicted by a
model trained on partially-labeled documents.
We combine this with a custom active learning
strategy to find the predictions that the model
is most uncertain about. We show through ex-
periments on document types drawn from 3
different domains that selective labeling can re-
duce the cost of acquiring labeled data by 10x
while achieving negligible loss in accuracy.

1 Introduction

Visually rich documents such as invoices, receipts,
paystubs, insurance statements, tax forms, etc. are
pervasive in business workflows. The tedious and
error-prone nature of these workflows has led to
much recent research into machine learning meth-
ods for automatically extracting structured infor-
mation from such documents (Lee et al., 2022; Gar-
ncarek et al., 2021; Xu et al., 2021; Tata et al.,
2021). Given a target document type with an as-
sociated set of fields of interest, as well as a set
of human-annotated training documents, these sys-
tems learn to automatically extract the values for
these fields from documents with unseen layouts.
A critical hurdle in the development of high-
quality extraction systems is the large cost of ac-
quiring and annotating training documents belong-
ing to the target types. The human annotators often
require training not only on the use of the annota-
tion tools but also on the definitions and semantics
of the target document type. The annotation task

can be tedious and cognitively taxing, requiring
the annotator to identify and draw bounding boxes
around dozens of target fields in each document.
Not all the fields in the schema occur in all docu-
ments, leading to higher quality ground-truth an-
notations for the easier fields that occur frequently
and lower quality annotations for infrequent fields,
which are often missed.

This data efficiency requirement has not gone un-
noticed in the research literature on this topic. Pre-
training on large unlabeled document corpora (Xu
etal., 2020, 2021) as well as applying transfer learn-
ing from an out-of-domain labeled corpus (Tor-
rey and Shavlik, 2010; Nguyen et al., 2019) have
both proven to be useful techniques in reducing the
amount of training data required to get accurate
models. However, even with these techniques, em-
pirical evidence suggests that performing well on a
new target document type still requires thousands
of annotated documents, amounting to hundreds of
hours of human labor (Zhang, 2021). Automating
document-heavy business workflows in domains
like procurement, banking, insurance, mortgage,
etc. requires scaling to extraction models for hun-
dreds of different document types.

The cost of acquiring high quality labeled data
for hundreds of document types is prohibitively ex-
pensive and is currently a key bottleneck. We could
apply active learning strategies to select a few but
informative documents for human review (Settles,
2009), however the cost-reducing effect of this ap-
proach is limited, as it requires annotation of every
candidate extraction span in every selected docu-
ment, many of which may not be informative if they
are repetitive, anomalous, or too easy for the extrac-
tion model to predict. In this paper, we propose a
technique called selective labeling that reduces this
cost by 10x. The key insight is to combine two
ideas: First, we redefine and simplify the task per-
formed by the human annotators — rather than label-
ing every target field in every document by drawing
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Figure 1: A classic annotation task. Even labeling 9
fields in this toy invoice imposes a heavy cognitive bur-
den on the annotator, while real-world documents are
significantly more complicated.

bounding boxes around their values, we ask them
to simply verify whether a proposed bounding box
is correct. This binary “yes/no” annotation task is
faster and imposes a lighter cognitive burden on
the annotator (Blog, 2020; Ganchev et al., 2007;
Skeppstedt et al., 2017). Second, we adapt exist-
ing active learning strategies to select the examples
(i.e., candidate extraction spans) that the model is
most uncertain in each round to annotate.

We find that relying on a simple uncertainty met-
ric, such as the distance between prediction scores
and the middle point between the target labels (e.g.,
0.5), is sufficient for selecting informative candi-
date extraction spans to annotate. We further pro-
pose new methods to increase diversity in the se-
lection pool by reallocating the annotation budget
to encourage selection of more infrequent fields.
This is accomplished by calibrating the highly im-
balanced prediction scores at the field level and
limiting the number of candidates of each field to
be reviewed in each document.

We interleave rounds of such human annotation
with training a model that is capable of consum-
ing partially-labeled documents. In combination,
our proposed approach dramatically improves the
efficiency of the annotation workflow for this ex-
traction task. In fact, through experiments on docu-
ment types drawn from multiple domains, we show
that selective labeling allows us to build models
with 10x lower annotation cost while achieving
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Figure 2: A “yes/no” annotation task. Presenting a pro-
posed span and asking the annotator to accept or reject
the label is simpler, quicker, and less prone to errors.

nearly the same accuracy as a model trained on
several thousand labeled documents.

2 Background

We first describe how a typical annotation task is
set up to acquire labeled documents. We point out
two major deficiencies with this approach before
outlining an alternative that takes advantage of the
characteristics of this domain. We then describe
the assumptions underlying our approach.

2.1 Annotation Workflow
2.1.1 Classic Annotation Workflow

Given a document type for which we want to learn
an extraction model, we begin by listing out the
fields that we want to extract, along with human-
readable descriptions, viz., “labeling instructions”.
We provide these instructions to human annotators
and present them with various document images
to label. The classic annotation task is to draw a
bounding box around each instance of any of the
target fields and label it with the corresponding
field name (Figure 1). Typical document types like
invoices and paystubs have dozens of fields, and
each document may contain multiple pages.

The high cognitive burden of the classic annota-
tion workflow leads to two major drawbacks. First,
it makes training data collection extremely expen-
sive. In one annotation task for paystub-like docu-
ments with 25 target fields, the average time to label



each document was about 6 minutes. Scaling this
to hundreds of document types with thousands of
documents each would be prohibitively expensive.
Second, the resulting annotation quality is often
quite poor. We have observed systematic errors
such as missing labels for fields that occur infre-
quently in the documents or for instances that are in
the bottom third of the page. To obtain acceptable
training and test data quality, each document must
be labeled multiple times, further exacerbating the
annotation cost issue.

2.1.2 Proposed Annotation Workflow

We propose the following alternative to the classic
annotation workflow:

(1) We speed up labeling throughput by simplify-
ing the task: rather than drawing bounding boxes,
we ask human annotators to accept or reject a can-
didate extraction. Figure 2 illustrates how much
easier this “yes/no” task is compared to the classic
one in Figure 1.

(2) We further cut down annotation cost by only
labeling a subset of documents and only a subset
of fields in each document.

(3) We use a model trained on partially-labeled doc-
uments to propose the candidate extraction spans
for labeling. This allows us to interleave model
training and labeling so that the model keeps im-
proving as more labels are collected.

(4) We use a customized active learning strategy to
identify the most useful labels to collect, viz., the
candidate extraction spans about which the model
is most uncertain. In successive labeling rounds,
we focus our labeling budget on the fields that the
model has not yet learned to extract well, such as
the more infrequent ones.

In Section 5, we show empirical evidence that
this improved workflow allows us to get to nearly
the same quality as a model trained on 10k docs
by spending an order-of-magnitude less on data-
labeling. Note that naively switching the labeling
task to the “yes/no” approach does not cut down the
labeling cost — if we were to highlight every span
that might potentially be an amount and present
an “Is this the tax_amount?” question like in Fig-
ure 2, with the dozens of numbers that are typically
present in an invoice, this workflow will be much
more expensive than the classic one. A key insight
we contribute is that a model trained on a modest
amount of data can be used to determine a highly
effective subset of “yes/no” questions to ask.

2.2 Assumptions

We make the following four assumptions about the
problem setting: (1) We assume access to a pool of
unlabeled documents. This is a natural assumption
in any work on managing cost of acquiring labeled
training data. (2) We assume the extraction model
can be trained on partially labeled documents. (3)
We assume the model can generate candidate spans
for each field and a measure of uncertainty — this
is used to decide the set of “yes/no” questions to
present to the annotator. (4) The analysis in this
paper uses empirical measurements for labeling
tasks on documents with roughly 25 fields to model
the costs of the traditional approach (6 minutes per
document) and the proposed approach (10 seconds
per “yes/no” question (Blog, 2020)). For more
complex documents the difference in the two costs
may be significantly higher.

Throughout this work, we use an extraction sys-
tem similar to the architecture described in (Ma-
jumder et al., 2020). This architecture consists of
two stages: candidate generation and candidate
classification. In the first stage, we generate candi-
dates for each field according to the type associated
with that field. For example, the candidates gen-
erated for the date of invoice field would be the
set of all dates in that invoice. The candidate gen-
erators for field types like dates, prices, numbers,
addresses, etc. are built using off-the-shelf, domain
agnostic, high-recall text annotation libraries. In
the second stage, we score each candidate’s like-
lihood of being the correct extraction span for the
document and field it belongs to. This scoring is
done using a neural network model trained as a bi-
nary classifier. The highest-scoring candidate for a
given document and field is predicted as the extrac-
tion output for the document and field if it exceeds
a certain field-specific threshold.

The ability to train on partially labeled docu-
ments is trivially true for this modeling approach
since it employs a binary classifier trained on the la-
beled candidates. This should be relatively straight-
forward for sequence labeling approaches, such as
(Xu et al., 2021), as well. Identifying a potential
span in the document to present as a “yes/no” ques-
tion to an annotator is an exercise in ranking the
candidates for each field. We expect that sequence
labeling approaches can be adapted to satisfy this
requirement, e.g., by using beam search to decode
the top few sequence labels. However, this is likely
more complex than the aforementioned approach,
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Figure 3: The model training pipeline starts by inital
training (blue) the binary classifier using the small clas-
sically labeled dataset. We then selectively label (pur-
ple) a fixed number of candidates according to the bud-
get, which are then used to re-train (orange) the model
together with the initial dataset.

and we leave this as an exercise for future work.

3 Selective Labeling Methodology

We first provide an overview of the selective la-
beling framework before describing various uncer-
tainty measures and ways to deal with the unique
characteristics of this setting, such as varying diffi-
culty for different fields.

3.1 Overview

Figure 3 provides a visual overview of our selective
labeling workflow. Given a corpus of several thou-
sand unlabeled documents belonging to the target
document type, we begin by fully labeling a small
randomly-sampled subset, say 50-250 docs, using
the classic annotation workflow. We use this initial
corpus to fine-tune a checkpoint originally trained
on an out-of-domain corpus.

Our labeling workflow proceeds in rounds. In
each round, we leverage the current model to select
k candidate spans from the unlabeled set and have
them reviewed by human annotators. The anno-
tators answer a “yes/no” question (see Figure 2)
either accepting or rejecting this proposed label.
The newly labeled examples are merged into the
training set and the model is retrained in each round.
We repeat this iterative labeling-and-training pro-
cedure until we exhaust our annotation budget or
reach our target F1 score.

The efficacy of this workflow clearly depends
on the procedure we use to select candidate spans
for human annotation. Based on the fundamental
insight underlying much active learning literature,
we select the candidates that the model is most

uncertain about. In the remainder of this section,
we describe how we adapt standard active learning
strategies to a document extraction setting.

3.2 Measuring Uncertainty

There are a number of metrics we can use to quan-
tify a model’s prediction uncertainty (Lewis and
Gale, 1994; Ko et al., 1995). In this work, we
explored two types of uncertainty metrics.

Score distance. This method assigns a metric to
each candidate based on the distance that the score
is from some threshold (Li and Sethi, 2006). More
formally, the uncertainty is 1 — |score—threshold|.
For example, if the threshold is 0.5, this suggests
that the model is most uncertain of its predictions
of scores close to 0.5, in either direction.

Score variance. This method performs inference
on a candidate multiple times with the dropout
layer enabled and assigns the uncertainty metric as
the variance of the scores (Gal and Ghahramani,
2016; Kirsch et al., 2019; Ostapuk et al., 2019). An
alternative method trains multiple models indepen-
dently from one another and assigns the uncertainty
metric as the variance of the scores across all mod-
els (Seung et al., 1992). Note that empirically, we
observed this yields near identical results as the
dropout-based approach, so we only present find-
ings for the latter.

3.2.1 Score Calibration

Our model’s predicted scores tend to be un-
calibrated, particularly in initial rounds and for
infrequent fields due to training data scarcity. We
calibrate scores in such a way that picking a can-
didate with a calibrated score of, say, 0.6 yields a
60% probability that it has a positive label (Guo
et al., 2017). We compute calibration curves using
the labeled training dataset by bucketing the candi-
dates based on score. Note that we recompute the
calibration curves for the new model after every
round of selective labeling.

There are two interesting design choices we
made in this process, both of which are made based
on our knowledge of the score distribution. (1)
The vast majority (> 90%) of our candidates are
negative and most of them have very low scores
(< 1073), while the region of interest to us when
calibrating the scores is the rest ([10~3, 1]). In cal-
culating bin edges, we exclude all candidates with
scores that are smaller than a threshold (1072). All
the scores below this threshold are placed in the
first bin ([0, 1073)). Since the vast majority of can-



didates get excluded by this filter, the remaining
bins have a much higher resolution. (2) We use
equal-frequency bins rather than equal-width bins
because of the highly non-uniform distribution of
scores, even within the score region of interest — in
other words, each bin has roughly the same number
of scores, except the first bin.

Once binned, calibration curves are computed
for each field by interpolating between the curves
prevalence (i.e., the proportion of candidates in
each score bin that are positive) and the median
scores for all the score bins.

By calibrating the scores, threshold selection
becomes much more intuitive for the score-based
uncertainty metric. For example, if we specify a
threshold of 0.5, we expect that to mean we will
select candidates for which the model has a 50%
chance of classifying correctly across all fields.

3.3 Sampling Candidates

Once the uncertainty metric is calculated for each
candidate in the unlabeled set, the next step is to se-
lect a subset of those candidates for human review.
The most obvious method is to select the top-k can-
didates, thereby selecting the candidates for which
the model is most uncertain. In practice, this can
lead to sub-optimal results when the model finds
many examples for which it is uncertain but may
in fact be very similar to one another. The most
common approach to break out of this trap is to
introduce some notion of diversity in the sampling
methodology (Gao et al., 2020; Ishii et al., 2002).
Combining Top-4 and Random Sampling. A
common method is to reallocate the k& budget in
each round so that a portion of that budget goes
towards the top candidates by uncertainty (ensuring
we get labels for the most uncertain candidates) and
the remaining budget goes towards a random sam-
ple of candidates from the unlabeled set (ensuring
that some amount of diversity is included in each
round). One approach is to select the top-%’ candi-
dates by the uncertainty metric, where k' < k, and
then randomly sample k& — &’ candidates from the
remaining unlabeled dataset. A second approach
is to randomly sample k candidates from a pool of
top-n candidates, where n > k. We found in prac-
tice that these two methods yield nearly identical
results, so we only present findings for the first.
Capping Candidates for Each Document and
Field. An important observation we make about
the extraction problem is the following: While a

given field typically has multiple candidates in ev-
ery document, usually, at most one of these is posi-
tive and the rest are negative. For example, there
are usually many dates in an invoice, and typically
only one of them is the date of invoice. The un-
certainty metrics we defined in Section 3.2 do not
take into account this relationship between labels.
We leverage this intuition to increase sample diver-
sity by capping the number of candidates selected
from the same document and field. After ordering
the candidates by the chosen uncertainty metric,
if we were to simply select the top-k candidates,
we might end up selecting too many candidates for
the same document and field. Instead, we select
at most m candidates for each document and field,
m being a tunable hyperparameter. This ensures
that we spread the annotation budget over more
documents and fields.

3.4 Automatically Inferring Negatives

After candidates have been selected and labeled,
we merge the newly-labeled candidates into our
training set. At this point, there is another oppor-
tunity to draw additional value from the unlabeled
corpus by utilizing the structure of the extraction
problem. The key insight here is that when a posi-
tive label is revealed via selective labeling, we can
infer negative labels for some remaining candidates
in the document.

If we assume that there is no more than one
instance of a positive per field in a document then
we can automatically infer that all of that field’s
remaining candidates in the document are negative.
While for some fields it is possible that multiple
instances of the same field appear on a document,
we have found in practice that most fields only
appear once in each document and applying this
inference can collect more negative instances with
useful contrastive knowledge.

4 Experiment Setup

To evaluate the performance of our proposed meth-
ods, we use datasets belonging to three different
domains, summarized in Table 1. The number of
fields varies across domains, e.g., the Tax Forms
dataset has more than twice the fields as the Retail
Finance dataset. We use hidden-label datasets in-
stead of real unlabeled datasets and simulate the
labeling procedure by revealing the labels of the
candidates from the hidden-label datasets.

Recall from Section 2 that we employ two anno-
tation methods: the classic annotation method (6



Domain ‘ # Fields ‘ Splits ‘ # Docs ‘ # Candidates
Initial-50 50 11.8K
Initial-100 100 24.5K
Supply Chain 18 Initial-250 250 58.7K
Test 5,019 1.2M
Hidden-label | 10,000 2.4M
Initial-100 100 76.0K
Retail Finance 11 Test 849 1.2M
Hidden-label | 4,000 5.6M
Initial-100 100 13.4K
Tax Forms 24 Test 1,498 1.0M
Hidden-label | 7,500 5.1IM

Table 1: Statistics of datasets in three domains.

minutes per document), which is always applied to
the initial training set, and the proposed “yes/no”
method (10 seconds per candidate), which is ap-
plied during the selective labeling procedure on the
unlabeled dataset. To explore how the size of the
initial labeled dataset impacts our methods, we cre-
ate three initial splits for the Supply Chain domain
with 50, 100, and 250 documents.

In all of our experiments, we split the train set
into 80-20 training-validation sets. The validation
set is used to pick the best model by AUC-ROC,
and we use the test split to report the performance
metrics. We train using the Rectified Adam (Liu
et al., 2020) optimizer with a learning rate of 0.001
for 25 epochs and set the dropout rate to 0.1 and
batch size to 128. We also measure AUC-ROC on
the validation set to decide whether to trigger early
stopping after 3 epochs of no improvement. Finally,
we evaluate our methods by measuring the over-
all extraction system’s performance on the test set
using the maximum F1 averaged across all fields,
denoted as “Average E2E Max F1” in (Majumder
et al., 2020). Every reported F1 score is further
averaged over 10 independent runs to account for
variability. After applying grid search to tune the
hyperparameters, we specify &’ = 0.9k and sample
at most m = 1 candidates for each document and
field. The binary classifier has 330k parameters
and each set of experiments trained within 4 hours
on a NVIDIA Tesla P100 GPU.

5 Results

In this section, we present the overall performance
of our best selective labeling strategy on three do-
mains, a comparison of the different selection met-
rics, sampling methodologies, and how the number
of rounds of selective labeling affects performance.
We perform an ablation study to understand the
effectiveness of our proposed diversity techniques,
and finally demonstrate how performance varies
with the size of the initial labeled dataset.
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Figure 4: Best performing Selective Labeling as com-
pared to Initial which is trained on just 100 documents
and Full Labeling in which the hidden-label dataset
(used in Selective Labeling) is fully used in training.

5.1 Best Performance on Different Domains

We train three initial models on a randomly sam-
pled and labeled set of 100 documents for each
domain. For example, as shown in Figure 4, the
initial model for the Supply Chain domain achieves
0.547 F1 on the test dataset. We fine-tune the ini-
tial model on a fully labeled 10k document dataset
(i.e., the hidden-label set from Table 1, in which for
the purposes of this analysis we use its true labels),
resulting in an F1 score of 0.705. The performance
gap between these two models is thus 0.158.

Starting from the same initial model, we apply
our best selective labeling strategy (which we dis-
cuss in the following sections) to reveal the labels
from a subset of candidates that comprises only
10% of the annotation cost of fully labeling the
hidden-label dataset. For the Supply Chain domain,
this achieves an F1 score of 0.687, which closes
the performance gap by 89%. Similarly, we close
the gap by 88% and 92% for the Retail Finance
and Tax Forms domains, respectively. This demon-
strates that our method can dramatically decrease
the annotation cost without sacrificing much per-
formance.

5.2 Selection Metrics

In Figure 5a we plot per-round performance of
two selection metrics in the Supply Chain domain
given the same set of documents and annotation
budget (i.e, 10% cost) and using the top-k sampling
methodology. We observe that not only is com-
puting score distances as the uncertainty indicator
much more computationally efficient than variance-
based metrics (10x faster), but it also significantly
outperforms the latter as well. As we exhaust the
budget over time, the advantage of score distance
becomes more obvious.
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5.3 Sampling Methodology

Figure 5b compares performance across different
sampling methodologies. As one might expect,
pure random sampling is far worse than any other
approach — we believe the initial model is confident
in predicting a large quantity of candidates (espe-
cially the negatives), and randomly sampling from
them does not obtain much useful knowledge.
The top-k strategies produce much more im-
pressive results. Furthermore, we observe in later
rounds that injecting some diversity via random-
ness achieves slightly better performance than the
vanilla top-k approach. We believe this mimics the
aggregation of exploitation (top-k) and exploration
(random) processes, proven to be beneficial in rein-
forcement learning applications (Ishii et al., 2002).
This also confirms our suspicion that top-k alone
can lead us into selecting many uncertain examples
which are in fact very similar to one another.

5.4 Multi-round Setting

In Figure 5c, we compare 5 learning curves, each
of which denotes selecting the same number of
candidates in total (10% annotation cost) over a
different number of rounds. For example, the 16-
round experiment selects %6 of the total budget in
each round, while the 1-round experiment utilizes
the entire budget in a single round.

As we increase the total number of rounds, the
model tends to yield better extraction performance
until it peaks at about 12 rounds. This finer-grained
strategy usually performs better than coarser ones
but the gains become marginal at a higher number
of rounds. Interestingly, we find that using up just
half the budget in the first 8 rounds of a 16-round

Models | A\gE2EMaxFI (std) [ A
SL 0.671 (0.006) -
SL+CS 0.679 (0.005) +1.2%
SL+CC 0.675 (0.005) +0.6%
SL+AIN 0.683 (0.009) +1.8%
SL+CS+CC+AIN 0.687 (0.005) +2.1%

Table 2: Ablation Study. SL denotes selective labeling
utilizing the top-k sampling and score distance metric.
CS, CC, and AIN represent calibrating scores, capping
candidates and automatically inferring negatives.

experiment achieves slightly better performance
than exhausting the entire budget in the 1-round
experiment. This comparison underscores the im-
portance of employing a multi-round approach.

5.5 Ablation Study

Table 2 presents an ablation study to understand
the impact of different diversity strategies. SL rep-
resents a 12-round selective labeling method using
top-k sampling on the score distance metric. We
separately add one feature at a time to test the effec-
tiveness of calibrating scores (CS), automatically
inferring negatives (AIN) and capping candidates
(CCQC). Results show that every feature improves
the model, but we achieve the largest improvement
when applying all features in SL+CS+CC+AIN.
It is reasonable to conclude that increasing diversity
intelligently helps us select more useful candidates
than relying on the uncertainty metric alone.

5.6 Initial Labeled Dataset Size

Given the dependence of the selective labeling
method on an initially labeled small dataset, it is
imperative that we evaluate how the approach is
affected by the number of documents in this initial
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Figure 6: Comparison among three initial dataset sizes
in the Supply Chain domain. We present the same three
approaches as in Figure 4: Initial is trained on the ini-
tial dataset alone, Selective Labeling selects the equiv-
alent of 10% annotation cost in candidates, and Full
Labeling fine-tunes from the initial model on the full
hidden-label data.

dataset. We experiment with initial datasets of 50,
100, and 250 documents in the Supply Chain do-
main using our best selective labeling strategy and
a budget equivalent of 10% cost of annotating the
“unlabeled” dataset.

Figure 6 indicates that the size of the initial
dataset greatly impacts the performance of the
model trained solely on those initial training sets,
but has starkly less of an impact once we apply
selective labeling. We close the performance gap
by 77%, 89%, and 87%, for initial dataset sizes of
50, 100, and 250, respectively. We can conclude
that selective labeling is capable of finding use-
ful candidates to significantly improve the model
performance even at a cost of only 10% of the an-
notation budget. And it is not surprising that the
selective labeling gains may suffer when the initial
dataset is too small (e.g. 50).

6 Related Work

Form Extraction. There have been numerous re-
cent studies on information extraction for form-like
documents. Existing approaches either individually
categorize every text span in the document (Ma-
jumder et al., 2020) or formulate the task into a se-
quence modeling problem (Aggarwal et al., 2020;
Lee et al., 2022; Garncarek et al., 2021; Xu et al.,
2021) and encode texts, layouts, and visual pat-
terns into feature space. While these approaches
produce state-of-the-art extraction systems, they
require large amounts of labeled training data to do
so. In our work, we do not propose a new model
architecture but instead, focus on the cost of acquir-
ing labeled data for such extraction models.

Active Learning. We refer to (Settles, 2009) for
an extensive review of the literature. In our work,
we are interested in a pool-based selection strat-
egy that assumes a large unlabeled set to select
samples from and request for human annotation.
Two popular approaches for requesting annota-
tion are (1) uncertainty-based selection (Lewis and
Gale, 1994) which can measure the uncertainty
based on entropy (Ko et al., 1995), least confi-
dence (Culotta and McCallum, 2005), or maximum
margin (Boser et al., 1992); and (2) committee-
based selection (Seung et al., 1992), which select
instances based on disagreement upon multiple pre-
dictions (Gal and Ghahramani, 2016; Kirsch et al.,
2019). Methods that are only concerned with un-
certainty might introduce redundancy or skew the
model towards that particular area of the distribu-
tion. Researchers seek to increase the diversity by
forcing the selection to cover a more representa-
tive set of examples (Yang et al., 2017; Yin et al.,
2017; Sener and Savarese, 2018) or incorporating
discriminative learning to make the labeled set and
the unlabeled pool indistinguishable (Gissin and
Shalev-Shwartz, 2019).

To the best of our knowledge, we are the first to
customize active learning strategies to reduce the
annotation cost in the form-like document extrac-
tion task. In our selective labeling experiments, we
explore a variety of informativeness-based selec-
tion strategies due to their simplicity and promising
performance. We also explore introducing diver-
sity by reallocating a portion of the labeling budget
for random sampling as well as through proposing
task-aware methods, such as automatic negative
inference and capping candidates.

7 Conclusion

We have presented a new approach to acquire la-
beled data for form extraction tasks that reduces the
annotation cost by 10x as compared to fully label-
ing a large corpus, without sacrificing much extrac-
tion performance. The key insight is to transform
the annotation task into a “yes/no” task and lever-
age a model type that can be trained on partially
labeled documents in a multi-round active learning
setting. We proposed novel techniques that take
advantage of the characteristics of the problem to
further improve extraction performance in the con-
text of our selective labeling strategy. Thus, our
approach has the potential to overcome the bottle-
neck of obtaining large amounts of high-quality
training data for hundreds of document types.
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