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Abstract

Building automatic extraction models for vi-001
sually rich documents like invoices, receipts,002
bills, tax forms, etc. has received significant at-003
tention lately. A key bottleneck in developing004
extraction models for new document types is005
the cost of acquiring the several thousand high-006
quality labeled documents that are needed to007
train a model with acceptable accuracy. In this008
paper, we propose selective labeling as a so-009
lution to this problem. The key insight is to010
simplify the labeling task to provide “yes/no”011
labels for candidate extractions predicted by a012
model trained on partially-labeled documents.013
We combine this with a custom active learning014
strategy to find the predictions that the model015
is most uncertain about. We show through ex-016
periments on document types drawn from 3017
different domains that selective labeling can re-018
duce the cost of acquiring labeled data by 10×019
while achieving negligible loss in accuracy.020

1 Introduction021

Visually rich documents such as invoices, receipts,022

paystubs, insurance statements, tax forms, etc. are023

pervasive in business workflows. The tedious and024

error-prone nature of these workflows has led to025

much recent research into machine learning meth-026

ods for automatically extracting structured infor-027

mation from such documents (Lee et al., 2022; Gar-028

ncarek et al., 2021; Xu et al., 2021; Tata et al.,029

2021). Given a target document type with an as-030

sociated set of fields of interest, as well as a set031

of human-annotated training documents, these sys-032

tems learn to automatically extract the values for033

these fields from documents with unseen layouts.034

A critical hurdle in the development of high-035

quality extraction systems is the large cost of ac-036

quiring and annotating training documents belong-037

ing to the target types. The human annotators often038

require training not only on the use of the annota-039

tion tools but also on the definitions and semantics040

of the target document type. The annotation task041

can be tedious and cognitively taxing, requiring 042

the annotator to identify and draw bounding boxes 043

around dozens of target fields in each document. 044

Not all the fields in the schema occur in all docu- 045

ments, leading to higher quality ground-truth an- 046

notations for the easier fields that occur frequently 047

and lower quality annotations for infrequent fields, 048

which are often missed. 049

This data efficiency requirement has not gone un- 050

noticed in the research literature on this topic. Pre- 051

training on large unlabeled document corpora (Xu 052

et al., 2020, 2021) as well as applying transfer learn- 053

ing from an out-of-domain labeled corpus (Tor- 054

rey and Shavlik, 2010; Nguyen et al., 2019) have 055

both proven to be useful techniques in reducing the 056

amount of training data required to get accurate 057

models. However, even with these techniques, em- 058

pirical evidence suggests that performing well on a 059

new target document type still requires thousands 060

of annotated documents, amounting to hundreds of 061

hours of human labor (Zhang, 2021). Automating 062

document-heavy business workflows in domains 063

like procurement, banking, insurance, mortgage, 064

etc. requires scaling to extraction models for hun- 065

dreds of different document types. 066

The cost of acquiring high quality labeled data 067

for hundreds of document types is prohibitively ex- 068

pensive and is currently a key bottleneck. We could 069

apply active learning strategies to select a few but 070

informative documents for human review (Settles, 071

2009), however the cost-reducing effect of this ap- 072

proach is limited, as it requires annotation of every 073

candidate extraction span in every selected docu- 074

ment, many of which may not be informative if they 075

are repetitive, anomalous, or too easy for the extrac- 076

tion model to predict. In this paper, we propose a 077

technique called selective labeling that reduces this 078

cost by 10×. The key insight is to combine two 079

ideas: First, we redefine and simplify the task per- 080

formed by the human annotators – rather than label- 081

ing every target field in every document by drawing 082
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Figure 1: A classic annotation task. Even labeling 9
fields in this toy invoice imposes a heavy cognitive bur-
den on the annotator, while real-world documents are
significantly more complicated.

bounding boxes around their values, we ask them083

to simply verify whether a proposed bounding box084

is correct. This binary “yes/no” annotation task is085

faster and imposes a lighter cognitive burden on086

the annotator (Blog, 2020; Ganchev et al., 2007;087

Skeppstedt et al., 2017). Second, we adapt exist-088

ing active learning strategies to select the examples089

(i.e., candidate extraction spans) that the model is090

most uncertain in each round to annotate.091

We find that relying on a simple uncertainty met-092

ric, such as the distance between prediction scores093

and the middle point between the target labels (e.g.,094

0.5), is sufficient for selecting informative candi-095

date extraction spans to annotate. We further pro-096

pose new methods to increase diversity in the se-097

lection pool by reallocating the annotation budget098

to encourage selection of more infrequent fields.099

This is accomplished by calibrating the highly im-100

balanced prediction scores at the field level and101

limiting the number of candidates of each field to102

be reviewed in each document.103

We interleave rounds of such human annotation104

with training a model that is capable of consum-105

ing partially-labeled documents. In combination,106

our proposed approach dramatically improves the107

efficiency of the annotation workflow for this ex-108

traction task. In fact, through experiments on docu-109

ment types drawn from multiple domains, we show110

that selective labeling allows us to build models111

with 10× lower annotation cost while achieving112

Figure 2: A “yes/no” annotation task. Presenting a pro-
posed span and asking the annotator to accept or reject
the label is simpler, quicker, and less prone to errors.

nearly the same accuracy as a model trained on 113

several thousand labeled documents. 114

2 Background 115

We first describe how a typical annotation task is 116

set up to acquire labeled documents. We point out 117

two major deficiencies with this approach before 118

outlining an alternative that takes advantage of the 119

characteristics of this domain. We then describe 120

the assumptions underlying our approach. 121

2.1 Annotation Workflow 122

2.1.1 Classic Annotation Workflow 123

Given a document type for which we want to learn 124

an extraction model, we begin by listing out the 125

fields that we want to extract, along with human- 126

readable descriptions, viz., “labeling instructions”. 127

We provide these instructions to human annotators 128

and present them with various document images 129

to label. The classic annotation task is to draw a 130

bounding box around each instance of any of the 131

target fields and label it with the corresponding 132

field name (Figure 1). Typical document types like 133

invoices and paystubs have dozens of fields, and 134

each document may contain multiple pages. 135

The high cognitive burden of the classic annota- 136

tion workflow leads to two major drawbacks. First, 137

it makes training data collection extremely expen- 138

sive. In one annotation task for paystub-like docu- 139

ments with 25 target fields, the average time to label 140
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each document was about 6 minutes. Scaling this141

to hundreds of document types with thousands of142

documents each would be prohibitively expensive.143

Second, the resulting annotation quality is often144

quite poor. We have observed systematic errors145

such as missing labels for fields that occur infre-146

quently in the documents or for instances that are in147

the bottom third of the page. To obtain acceptable148

training and test data quality, each document must149

be labeled multiple times, further exacerbating the150

annotation cost issue.151

2.1.2 Proposed Annotation Workflow152

We propose the following alternative to the classic153

annotation workflow:154

(1) We speed up labeling throughput by simplify-155

ing the task: rather than drawing bounding boxes,156

we ask human annotators to accept or reject a can-157

didate extraction. Figure 2 illustrates how much158

easier this “yes/no” task is compared to the classic159

one in Figure 1.160

(2) We further cut down annotation cost by only161

labeling a subset of documents and only a subset162

of fields in each document.163

(3) We use a model trained on partially-labeled doc-164

uments to propose the candidate extraction spans165

for labeling. This allows us to interleave model166

training and labeling so that the model keeps im-167

proving as more labels are collected.168

(4) We use a customized active learning strategy to169

identify the most useful labels to collect, viz., the170

candidate extraction spans about which the model171

is most uncertain. In successive labeling rounds,172

we focus our labeling budget on the fields that the173

model has not yet learned to extract well, such as174

the more infrequent ones.175

In Section 5, we show empirical evidence that176

this improved workflow allows us to get to nearly177

the same quality as a model trained on 10k docs178

by spending an order-of-magnitude less on data-179

labeling. Note that naively switching the labeling180

task to the “yes/no” approach does not cut down the181

labeling cost – if we were to highlight every span182

that might potentially be an amount and present183

an “Is this the tax_amount?” question like in Fig-184

ure 2, with the dozens of numbers that are typically185

present in an invoice, this workflow will be much186

more expensive than the classic one. A key insight187

we contribute is that a model trained on a modest188

amount of data can be used to determine a highly189

effective subset of “yes/no” questions to ask.190

2.2 Assumptions 191

We make the following four assumptions about the 192

problem setting: (1) We assume access to a pool of 193

unlabeled documents. This is a natural assumption 194

in any work on managing cost of acquiring labeled 195

training data. (2) We assume the extraction model 196

can be trained on partially labeled documents. (3) 197

We assume the model can generate candidate spans 198

for each field and a measure of uncertainty – this 199

is used to decide the set of “yes/no” questions to 200

present to the annotator. (4) The analysis in this 201

paper uses empirical measurements for labeling 202

tasks on documents with roughly 25 fields to model 203

the costs of the traditional approach (6 minutes per 204

document) and the proposed approach (10 seconds 205

per “yes/no” question (Blog, 2020)). For more 206

complex documents the difference in the two costs 207

may be significantly higher. 208

Throughout this work, we use an extraction sys- 209

tem similar to the architecture described in (Ma- 210

jumder et al., 2020). This architecture consists of 211

two stages: candidate generation and candidate 212

classification. In the first stage, we generate candi- 213

dates for each field according to the type associated 214

with that field. For example, the candidates gen- 215

erated for the date of invoice field would be the 216

set of all dates in that invoice. The candidate gen- 217

erators for field types like dates, prices, numbers, 218

addresses, etc. are built using off-the-shelf, domain 219

agnostic, high-recall text annotation libraries. In 220

the second stage, we score each candidate’s like- 221

lihood of being the correct extraction span for the 222

document and field it belongs to. This scoring is 223

done using a neural network model trained as a bi- 224

nary classifier. The highest-scoring candidate for a 225

given document and field is predicted as the extrac- 226

tion output for the document and field if it exceeds 227

a certain field-specific threshold. 228

The ability to train on partially labeled docu- 229

ments is trivially true for this modeling approach 230

since it employs a binary classifier trained on the la- 231

beled candidates. This should be relatively straight- 232

forward for sequence labeling approaches, such as 233

(Xu et al., 2021), as well. Identifying a potential 234

span in the document to present as a “yes/no” ques- 235

tion to an annotator is an exercise in ranking the 236

candidates for each field. We expect that sequence 237

labeling approaches can be adapted to satisfy this 238

requirement, e.g., by using beam search to decode 239

the top few sequence labels. However, this is likely 240

more complex than the aforementioned approach, 241
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Figure 3: The model training pipeline starts by inital
training (blue) the binary classifier using the small clas-
sically labeled dataset. We then selectively label (pur-
ple) a fixed number of candidates according to the bud-
get, which are then used to re-train (orange) the model
together with the initial dataset.

and we leave this as an exercise for future work.242

3 Selective Labeling Methodology243

We first provide an overview of the selective la-244

beling framework before describing various uncer-245

tainty measures and ways to deal with the unique246

characteristics of this setting, such as varying diffi-247

culty for different fields.248

3.1 Overview249

Figure 3 provides a visual overview of our selective250

labeling workflow. Given a corpus of several thou-251

sand unlabeled documents belonging to the target252

document type, we begin by fully labeling a small253

randomly-sampled subset, say 50-250 docs, using254

the classic annotation workflow. We use this initial255

corpus to fine-tune a checkpoint originally trained256

on an out-of-domain corpus.257

Our labeling workflow proceeds in rounds. In258

each round, we leverage the current model to select259

k candidate spans from the unlabeled set and have260

them reviewed by human annotators. The anno-261

tators answer a “yes/no” question (see Figure 2)262

either accepting or rejecting this proposed label.263

The newly labeled examples are merged into the264

training set and the model is retrained in each round.265

We repeat this iterative labeling-and-training pro-266

cedure until we exhaust our annotation budget or267

reach our target F1 score.268

The efficacy of this workflow clearly depends269

on the procedure we use to select candidate spans270

for human annotation. Based on the fundamental271

insight underlying much active learning literature,272

we select the candidates that the model is most273

uncertain about. In the remainder of this section, 274

we describe how we adapt standard active learning 275

strategies to a document extraction setting. 276

3.2 Measuring Uncertainty 277

There are a number of metrics we can use to quan- 278

tify a model’s prediction uncertainty (Lewis and 279

Gale, 1994; Ko et al., 1995). In this work, we 280

explored two types of uncertainty metrics. 281

Score distance. This method assigns a metric to 282

each candidate based on the distance that the score 283

is from some threshold (Li and Sethi, 2006). More 284

formally, the uncertainty is 1−|score−threshold|. 285

For example, if the threshold is 0.5, this suggests 286

that the model is most uncertain of its predictions 287

of scores close to 0.5, in either direction. 288

Score variance. This method performs inference 289

on a candidate multiple times with the dropout 290

layer enabled and assigns the uncertainty metric as 291

the variance of the scores (Gal and Ghahramani, 292

2016; Kirsch et al., 2019; Ostapuk et al., 2019). An 293

alternative method trains multiple models indepen- 294

dently from one another and assigns the uncertainty 295

metric as the variance of the scores across all mod- 296

els (Seung et al., 1992). Note that empirically, we 297

observed this yields near identical results as the 298

dropout-based approach, so we only present find- 299

ings for the latter. 300

3.2.1 Score Calibration 301

Our model’s predicted scores tend to be un- 302

calibrated, particularly in initial rounds and for 303

infrequent fields due to training data scarcity. We 304

calibrate scores in such a way that picking a can- 305

didate with a calibrated score of, say, 0.6 yields a 306

60% probability that it has a positive label (Guo 307

et al., 2017). We compute calibration curves using 308

the labeled training dataset by bucketing the candi- 309

dates based on score. Note that we recompute the 310

calibration curves for the new model after every 311

round of selective labeling. 312

There are two interesting design choices we 313

made in this process, both of which are made based 314

on our knowledge of the score distribution. (1) 315

The vast majority (> 90%) of our candidates are 316

negative and most of them have very low scores 317

(< 10−3), while the region of interest to us when 318

calibrating the scores is the rest ([10−3, 1]). In cal- 319

culating bin edges, we exclude all candidates with 320

scores that are smaller than a threshold (10−3). All 321

the scores below this threshold are placed in the 322

first bin ([0, 10−3)). Since the vast majority of can- 323
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didates get excluded by this filter, the remaining324

bins have a much higher resolution. (2) We use325

equal-frequency bins rather than equal-width bins326

because of the highly non-uniform distribution of327

scores, even within the score region of interest – in328

other words, each bin has roughly the same number329

of scores, except the first bin.330

Once binned, calibration curves are computed331

for each field by interpolating between the curves332

prevalence (i.e., the proportion of candidates in333

each score bin that are positive) and the median334

scores for all the score bins.335

By calibrating the scores, threshold selection336

becomes much more intuitive for the score-based337

uncertainty metric. For example, if we specify a338

threshold of 0.5, we expect that to mean we will339

select candidates for which the model has a 50%340

chance of classifying correctly across all fields.341

3.3 Sampling Candidates342

Once the uncertainty metric is calculated for each343

candidate in the unlabeled set, the next step is to se-344

lect a subset of those candidates for human review.345

The most obvious method is to select the top-k can-346

didates, thereby selecting the candidates for which347

the model is most uncertain. In practice, this can348

lead to sub-optimal results when the model finds349

many examples for which it is uncertain but may350

in fact be very similar to one another. The most351

common approach to break out of this trap is to352

introduce some notion of diversity in the sampling353

methodology (Gao et al., 2020; Ishii et al., 2002).354

Combining Top-k and Random Sampling. A355

common method is to reallocate the k budget in356

each round so that a portion of that budget goes357

towards the top candidates by uncertainty (ensuring358

we get labels for the most uncertain candidates) and359

the remaining budget goes towards a random sam-360

ple of candidates from the unlabeled set (ensuring361

that some amount of diversity is included in each362

round). One approach is to select the top-k′ candi-363

dates by the uncertainty metric, where k′ < k, and364

then randomly sample k − k′ candidates from the365

remaining unlabeled dataset. A second approach366

is to randomly sample k candidates from a pool of367

top-n candidates, where n > k. We found in prac-368

tice that these two methods yield nearly identical369

results, so we only present findings for the first.370

Capping Candidates for Each Document and371

Field. An important observation we make about372

the extraction problem is the following: While a373

given field typically has multiple candidates in ev- 374

ery document, usually, at most one of these is posi- 375

tive and the rest are negative. For example, there 376

are usually many dates in an invoice, and typically 377

only one of them is the date of invoice. The un- 378

certainty metrics we defined in Section 3.2 do not 379

take into account this relationship between labels. 380

We leverage this intuition to increase sample diver- 381

sity by capping the number of candidates selected 382

from the same document and field. After ordering 383

the candidates by the chosen uncertainty metric, 384

if we were to simply select the top-k candidates, 385

we might end up selecting too many candidates for 386

the same document and field. Instead, we select 387

at most m candidates for each document and field, 388

m being a tunable hyperparameter. This ensures 389

that we spread the annotation budget over more 390

documents and fields. 391

3.4 Automatically Inferring Negatives 392

After candidates have been selected and labeled, 393

we merge the newly-labeled candidates into our 394

training set. At this point, there is another oppor- 395

tunity to draw additional value from the unlabeled 396

corpus by utilizing the structure of the extraction 397

problem. The key insight here is that when a posi- 398

tive label is revealed via selective labeling, we can 399

infer negative labels for some remaining candidates 400

in the document. 401

If we assume that there is no more than one 402

instance of a positive per field in a document then 403

we can automatically infer that all of that field’s 404

remaining candidates in the document are negative. 405

While for some fields it is possible that multiple 406

instances of the same field appear on a document, 407

we have found in practice that most fields only 408

appear once in each document and applying this 409

inference can collect more negative instances with 410

useful contrastive knowledge. 411

4 Experiment Setup 412

To evaluate the performance of our proposed meth- 413

ods, we use datasets belonging to three different 414

domains, summarized in Table 1. The number of 415

fields varies across domains, e.g., the Tax Forms 416

dataset has more than twice the fields as the Retail 417

Finance dataset. We use hidden-label datasets in- 418

stead of real unlabeled datasets and simulate the 419

labeling procedure by revealing the labels of the 420

candidates from the hidden-label datasets. 421

Recall from Section 2 that we employ two anno- 422

tation methods: the classic annotation method (6 423
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Domain # Fields Splits # Docs # Candidates

Supply Chain 18

Initial-50 50 11.8K
Initial-100 100 24.5K
Initial-250 250 58.7K

Test 5,019 1.2M
Hidden-label 10,000 2.4M

Retail Finance 11
Initial-100 100 76.0K

Test 849 1.2M
Hidden-label 4,000 5.6M

Tax Forms 24
Initial-100 100 13.4K

Test 1,498 1.0M
Hidden-label 7,500 5.1M

Table 1: Statistics of datasets in three domains.

minutes per document), which is always applied to424

the initial training set, and the proposed “yes/no”425

method (10 seconds per candidate), which is ap-426

plied during the selective labeling procedure on the427

unlabeled dataset. To explore how the size of the428

initial labeled dataset impacts our methods, we cre-429

ate three initial splits for the Supply Chain domain430

with 50, 100, and 250 documents.431

In all of our experiments, we split the train set432

into 80-20 training-validation sets. The validation433

set is used to pick the best model by AUC-ROC,434

and we use the test split to report the performance435

metrics. We train using the Rectified Adam (Liu436

et al., 2020) optimizer with a learning rate of 0.001437

for 25 epochs and set the dropout rate to 0.1 and438

batch size to 128. We also measure AUC-ROC on439

the validation set to decide whether to trigger early440

stopping after 3 epochs of no improvement. Finally,441

we evaluate our methods by measuring the over-442

all extraction system’s performance on the test set443

using the maximum F1 averaged across all fields,444

denoted as “Average E2E Max F1” in (Majumder445

et al., 2020). Every reported F1 score is further446

averaged over 10 independent runs to account for447

variability. After applying grid search to tune the448

hyperparameters, we specify k′ = 0.9k and sample449

at most m = 1 candidates for each document and450

field. The binary classifier has 330k parameters451

and each set of experiments trained within 4 hours452

on a NVIDIA Tesla P100 GPU.453

5 Results454

In this section, we present the overall performance455

of our best selective labeling strategy on three do-456

mains, a comparison of the different selection met-457

rics, sampling methodologies, and how the number458

of rounds of selective labeling affects performance.459

We perform an ablation study to understand the460

effectiveness of our proposed diversity techniques,461

and finally demonstrate how performance varies462

with the size of the initial labeled dataset.463

Figure 4: Best performing Selective Labeling as com-
pared to Initial which is trained on just 100 documents
and Full Labeling in which the hidden-label dataset
(used in Selective Labeling) is fully used in training.

5.1 Best Performance on Different Domains 464

We train three initial models on a randomly sam- 465

pled and labeled set of 100 documents for each 466

domain. For example, as shown in Figure 4, the 467

initial model for the Supply Chain domain achieves 468

0.547 F1 on the test dataset. We fine-tune the ini- 469

tial model on a fully labeled 10k document dataset 470

(i.e., the hidden-label set from Table 1, in which for 471

the purposes of this analysis we use its true labels), 472

resulting in an F1 score of 0.705. The performance 473

gap between these two models is thus 0.158. 474

Starting from the same initial model, we apply 475

our best selective labeling strategy (which we dis- 476

cuss in the following sections) to reveal the labels 477

from a subset of candidates that comprises only 478

10% of the annotation cost of fully labeling the 479

hidden-label dataset. For the Supply Chain domain, 480

this achieves an F1 score of 0.687, which closes 481

the performance gap by 89%. Similarly, we close 482

the gap by 88% and 92% for the Retail Finance 483

and Tax Forms domains, respectively. This demon- 484

strates that our method can dramatically decrease 485

the annotation cost without sacrificing much per- 486

formance. 487

5.2 Selection Metrics 488

In Figure 5a we plot per-round performance of 489

two selection metrics in the Supply Chain domain 490

given the same set of documents and annotation 491

budget (i.e, 10% cost) and using the top-k sampling 492

methodology. We observe that not only is com- 493

puting score distances as the uncertainty indicator 494

much more computationally efficient than variance- 495

based metrics (10× faster), but it also significantly 496

outperforms the latter as well. As we exhaust the 497

budget over time, the advantage of score distance 498

becomes more obvious. 499
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(a) (b) (c)

Figure 5: Performance comparisons between (a) selection metrics, (b) sampling approaches, and (c) the rate at
which we exhaust the budget through different number of rounds of selective labeling. The x-axis denotes the
percentage of the total selective labeling budget consumed.

5.3 Sampling Methodology500

Figure 5b compares performance across different501

sampling methodologies. As one might expect,502

pure random sampling is far worse than any other503

approach – we believe the initial model is confident504

in predicting a large quantity of candidates (espe-505

cially the negatives), and randomly sampling from506

them does not obtain much useful knowledge.507

The top-k strategies produce much more im-508

pressive results. Furthermore, we observe in later509

rounds that injecting some diversity via random-510

ness achieves slightly better performance than the511

vanilla top-k approach. We believe this mimics the512

aggregation of exploitation (top-k) and exploration513

(random) processes, proven to be beneficial in rein-514

forcement learning applications (Ishii et al., 2002).515

This also confirms our suspicion that top-k alone516

can lead us into selecting many uncertain examples517

which are in fact very similar to one another.518

5.4 Multi-round Setting519

In Figure 5c, we compare 5 learning curves, each520

of which denotes selecting the same number of521

candidates in total (10% annotation cost) over a522

different number of rounds. For example, the 16-523

round experiment selects 1
16 of the total budget in524

each round, while the 1-round experiment utilizes525

the entire budget in a single round.526

As we increase the total number of rounds, the527

model tends to yield better extraction performance528

until it peaks at about 12 rounds. This finer-grained529

strategy usually performs better than coarser ones530

but the gains become marginal at a higher number531

of rounds. Interestingly, we find that using up just532

half the budget in the first 8 rounds of a 16-round533

Models Avg E2E Max F1 (std.) ∆

SL 0.671 (0.006) -
SL+CS 0.679 (0.005) +1.2%
SL+CC 0.675 (0.005) +0.6%
SL+AIN 0.683 (0.009) +1.8%
SL+CS+CC+AIN 0.687 (0.005) +2.1%

Table 2: Ablation Study. SL denotes selective labeling
utilizing the top-k sampling and score distance metric.
CS, CC, and AIN represent calibrating scores, capping
candidates and automatically inferring negatives.

experiment achieves slightly better performance 534

than exhausting the entire budget in the 1-round 535

experiment. This comparison underscores the im- 536

portance of employing a multi-round approach. 537

5.5 Ablation Study 538

Table 2 presents an ablation study to understand 539

the impact of different diversity strategies. SL rep- 540

resents a 12-round selective labeling method using 541

top-k sampling on the score distance metric. We 542

separately add one feature at a time to test the effec- 543

tiveness of calibrating scores (CS), automatically 544

inferring negatives (AIN) and capping candidates 545

(CC). Results show that every feature improves 546

the model, but we achieve the largest improvement 547

when applying all features in SL+CS+CC+AIN. 548

It is reasonable to conclude that increasing diversity 549

intelligently helps us select more useful candidates 550

than relying on the uncertainty metric alone. 551

5.6 Initial Labeled Dataset Size 552

Given the dependence of the selective labeling 553

method on an initially labeled small dataset, it is 554

imperative that we evaluate how the approach is 555

affected by the number of documents in this initial 556
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Figure 6: Comparison among three initial dataset sizes
in the Supply Chain domain. We present the same three
approaches as in Figure 4: Initial is trained on the ini-
tial dataset alone, Selective Labeling selects the equiv-
alent of 10% annotation cost in candidates, and Full
Labeling fine-tunes from the initial model on the full
hidden-label data.

dataset. We experiment with initial datasets of 50,557

100, and 250 documents in the Supply Chain do-558

main using our best selective labeling strategy and559

a budget equivalent of 10% cost of annotating the560

“unlabeled” dataset.561

Figure 6 indicates that the size of the initial562

dataset greatly impacts the performance of the563

model trained solely on those initial training sets,564

but has starkly less of an impact once we apply565

selective labeling. We close the performance gap566

by 77%, 89%, and 87%, for initial dataset sizes of567

50, 100, and 250, respectively. We can conclude568

that selective labeling is capable of finding use-569

ful candidates to significantly improve the model570

performance even at a cost of only 10% of the an-571

notation budget. And it is not surprising that the572

selective labeling gains may suffer when the initial573

dataset is too small (e.g. 50).574

6 Related Work575

Form Extraction. There have been numerous re-576

cent studies on information extraction for form-like577

documents. Existing approaches either individually578

categorize every text span in the document (Ma-579

jumder et al., 2020) or formulate the task into a se-580

quence modeling problem (Aggarwal et al., 2020;581

Lee et al., 2022; Garncarek et al., 2021; Xu et al.,582

2021) and encode texts, layouts, and visual pat-583

terns into feature space. While these approaches584

produce state-of-the-art extraction systems, they585

require large amounts of labeled training data to do586

so. In our work, we do not propose a new model587

architecture but instead, focus on the cost of acquir-588

ing labeled data for such extraction models.589

Active Learning. We refer to (Settles, 2009) for 590

an extensive review of the literature. In our work, 591

we are interested in a pool-based selection strat- 592

egy that assumes a large unlabeled set to select 593

samples from and request for human annotation. 594

Two popular approaches for requesting annota- 595

tion are (1) uncertainty-based selection (Lewis and 596

Gale, 1994) which can measure the uncertainty 597

based on entropy (Ko et al., 1995), least confi- 598

dence (Culotta and McCallum, 2005), or maximum 599

margin (Boser et al., 1992); and (2) committee- 600

based selection (Seung et al., 1992), which select 601

instances based on disagreement upon multiple pre- 602

dictions (Gal and Ghahramani, 2016; Kirsch et al., 603

2019). Methods that are only concerned with un- 604

certainty might introduce redundancy or skew the 605

model towards that particular area of the distribu- 606

tion. Researchers seek to increase the diversity by 607

forcing the selection to cover a more representa- 608

tive set of examples (Yang et al., 2017; Yin et al., 609

2017; Sener and Savarese, 2018) or incorporating 610

discriminative learning to make the labeled set and 611

the unlabeled pool indistinguishable (Gissin and 612

Shalev-Shwartz, 2019). 613

To the best of our knowledge, we are the first to 614

customize active learning strategies to reduce the 615

annotation cost in the form-like document extrac- 616

tion task. In our selective labeling experiments, we 617

explore a variety of informativeness-based selec- 618

tion strategies due to their simplicity and promising 619

performance. We also explore introducing diver- 620

sity by reallocating a portion of the labeling budget 621

for random sampling as well as through proposing 622

task-aware methods, such as automatic negative 623

inference and capping candidates. 624

7 Conclusion 625

We have presented a new approach to acquire la- 626

beled data for form extraction tasks that reduces the 627

annotation cost by 10× as compared to fully label- 628

ing a large corpus, without sacrificing much extrac- 629

tion performance. The key insight is to transform 630

the annotation task into a “yes/no” task and lever- 631

age a model type that can be trained on partially 632

labeled documents in a multi-round active learning 633

setting. We proposed novel techniques that take 634

advantage of the characteristics of the problem to 635

further improve extraction performance in the con- 636

text of our selective labeling strategy. Thus, our 637

approach has the potential to overcome the bottle- 638

neck of obtaining large amounts of high-quality 639

training data for hundreds of document types. 640
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