MARS: META-LEARNING AS SCORE MATCHING IN
THE FUNCTION SPACE

Krunoslav Lehman Pavasovic * Jonas Rothfuss * Andreas Krause

ETH Zurich ETH Zurich ETH Zurich

Switzerland Switzerland Switzerland

klehman@ethz.ch rojonas@ethz.ch krausea@ethz.ch
ABSTRACT

Meta-learning aims to extract useful inductive biases from a set of related datasets.
In Bayesian meta-learning, this is typically achieved by constructing a prior dis-
tribution over neural network parameters. However, specifying families of com-
putationally viable prior distributions over the high-dimensional neural network
parameters is difficult. As a result, existing approaches resort to meta-learning
restrictive diagonal Gaussian priors, severely limiting their expressiveness and
performance. To circumvent these issues, we approach meta-learning through the
lens of functional Bayesian neural network inference, which views the prior as a
stochastic process and performs inference in the function space. Specifically, we
view the meta-training tasks as samples from the data-generating process and for-
malize meta-learning as empirically estimating the law of this stochastic process.
Our approach can seamlessly acquire and represent complex prior knowledge by
meta-learning the score function of the data-generating process marginals instead
of parameter space priors. In a comprehensive benchmark, we demonstrate that
our method achieves state-of-the-art performance in terms of predictive accuracy
and substantial improvements in the quality of uncertainty estimates.

1 INTRODUCTION

Using data from related tasks is of key importance for sample efficiency. Meta-learning attempts to
extract prior knowledge (i.e., inductive bias) about the unknown data generation process from these
related tasks and embed it into the learner so that it generalizes better to new learning tasks (Thrun &
Pratt, 1998; Vanschoren, 2018). Many meta-learning approaches try to amortize or re-learn the entire
inference process (e.g., Santoro et al., 2016; Mishra et al., 2018; Garnelo et al., 2018) or significant
parts of it (e.g., Finn et al., 2017; Yoon et al., 2018). As a result, they require large amounts of
meta-training data and are prone to meta-overfitting (Qin et al., 2018; Rothfuss et al., 2021a).

The Bayesian framework provides a sound and statistically optimal method for inference by
combining prior knowledge about the data-generating process with new empirical evidence in the
form of a dataset. In this work, we adopt the Bayesian framework for inference at the task level
and only focus on meta-learning informative Bayesian priors. Previous approaches (Amit & Meir,
2018; Rothfuss et al., 2021a) meta-learn Bayesian Neural Network (BNN) prior distributions from
a set of related datasets; by meta-learning the prior distribution and applying regularization at the
meta-level, they facilitate positive transfer from only a handful of meta-training tasks. However,
BNNs lack a parametric family of (meta-)learnable priors over the high-dimensional space of neural
network (NN) parameters that is both computationally viable and, simultaneously, flexible enough
to account for the over-parametrization of NNs. In practice, both approaches use a Gaussian family
of priors with a diagonal covariance matrix, which is too restrictive to accurately match the complex
probabilistic structure of the data-generating process.

To address these shortcomings, we take a new approach to formulating the meta-learning problem
and represent prior knowledge in a novel way. We build on recent advances in functional approx-
imate inference for BNNs that perform Bayesian inference in the function space rather than in the
parameter space of neural networks (Wang et al., 2018; Sun et al., 2019). When viewing the BNN
prior and posterior as stochastic processes, the perfect Bayesian prior is the (true) data-generating

*Equal contribution.

stochastic process itself. Hence, we view the meta-training datasets as samples from the meta-data-
generating process and interpret meta-learning as empirically estimating the law of this stochastic
process. More specifically, we meta-learn the score function of its marginal distributions, which can
then directly be used as a source of prior knowledge when performing approximate functional BNN
inference on a new target task. This ultimately allows us to use flexible neural network models for
learning the score and overcome the issues of meta-learning BNN priors in the parameter space.

In our experiments, we demonstrate that our proposed approach, called Meta-learning via Attention-
based Regularised Score estimation (MARS), consistently outperforms previous meta-learners in
predictive accuracy and yields significant improvements in the quality of uncertainty estimates.
Notably, MARS enables positive transfer from only a handful of tasks while maintaining reliable
uncertainty estimates. This promises fruitful future applications to domains like molecular biology
or medicine, where meta-training data is scarce and reasoning about epistemic uncertainty is crucial.

2 RELATED WORK

Meta-Learning. Common approaches in meta-learning amortize the entire inference process (San-
toro et al., 2016; Mishra et al., 2018; Ravi & Beatson, 2018; Garnelo et al., 2018), learn a good
neural network initialization (Finn et al., 2017; Rothfuss et al., 2019; Nichol et al., 2018; Kim et al.,
2018) or a shared embedding space (Baxter, 2000; Vinyals et al., 2016; Snell et al., 2017). Although
these approaches can meta-learn complex inference patterns, they require a large amount of meta-
training data and often perform poorly in settings where data is scarce. Another line of work uses
a hierarchical Bayesian approach to meta-learn priors over the NN parameters (Pentina & Lampert,
2014; Amit & Meir, 2018; Rothfuss et al., 2021a). Such methods perform much better on small
data. However, they suffer from the lack of expressive families of priors for the high-dimensional
and complex parameter space of NNs, making too restrictive assumptions to represent complex in-
ductive biases. Our approach overcomes these issues by viewing the problem in the function space
and directly learning the score, which can easily be represented by a NN instead of a prior distribu-
tion. Also related to our stochastic process approach are methods that meta-learn Gaussian Process
(GP) priors (Fortuin et al., 2019; Rothfuss et al., 2021b; 2022). However, the GP assumption is quite
limiting, while MARS can, in principle, match the marginals of any data-generating process.

Score estimation. We use score estimation as a central element of our meta-learning method.
In particular, we use a parametric approach to score matching and employ an extended version of
the score matching objective of Hyvirinen & Dayan (2005). For high-dimensional problems, Song
et al. (2020); Pang et al. (2020) propose randomly sliced variations of the score matching loss.
Alternatively, there is a body of work on nonparametric score estimation (Canu & Smola, 2006; Liu
et al., 2016; Shi et al., 2018; Engl et al., 1996; Zhou et al., 2020). Among those, the Spectral Stein
Gradient Estimator (Shi et al., 2018) has been used for estimating the stochastic process marginals
for functional BNN inference in a setting where the stochastic prior is user-defined and allows for
generating arbitrarily many samples (Sun et al., 2019). Such estimators make it much harder to
add explicit dependence on the measurement sets and prevent meta-overfitting via regularization,
making them less suited to our problem setting.

3 BACKGROUND

Bayesian Neural Networks. Consider a regression task with data D = (XP,y?) that consists
of m i.i.d. noisy function evaluations y; = f(x;) + ¢; of an unknown function f : X —).
Here, XP = {x;}/", € A" denotes training inputs and y” = {y;}'_, € Y™ the corre-
sponding noisy function values. Let hy : X —) be a function parametrized by a NN with
weights § € ©. For regression, where)V C R, we can use hy to define a conditional distri-
bution over the noisy observations p(y|x,6) = N (y|hg(x),c?), with flexible mean represented
by hg and observation noise variance o“. Given a prior distribution p(#) over the model param-
eters 0, Bayes’ theorem yields a posterior distribution p(f|X?,yP) o p(yP|X?P,0)p(6), where
p(yP|XP,0) = H;"':l p(y;|x;,0). For an unseen test point x*, we compute the predictive dis-
tribution, which is defined as p(y*|x*,X?,y?) = [p(y*|x*,0)p(0|XP,yP)d6 and obtained by
marginalizing out the posterior over parameters 6.

BNN inference in the function space. Posterior inference for BNNs is difficult due to the
high-dimensional parameter space © and the over-parameterized nature of the NN mapping hg ().

An alternative approach views BNN inference in the function space, i.e., the space of regression
functions h : X +), yielding the Bayes rule p(h|XP,y?) « p(yP|XP,h)p(h) (Wang et al.,
2019; Sun et al., 2019). Here, p(h) is a stochastic process prior with index set X, taking values in).

Stochastic processes can be understood as infinite-dimensional random vectors, and, thus, are hard to
work with computationally. However, given finite measurement sets X := [x1,...,x;] € X kkeN,
the stochastic process can be characterized by its corresponding marginal distributions of function
values p(h*X) := p(h(x;),...h(xy)) (cf. Kolmogorov Extension Theorem, Oksendal (2013)). Thus,
we can break down the functional posterior into a more tractable form by re-phrasing it in terms of

posterior marginals based on measurement sets X: p(h*|X, X? yP) « p(yP |hXD)p(h%).

This functional posterior can be tractably approximated to achieve functional BNN inference (Sun
et al., 2019; Wang et al., 2019). We briefly describe how this can be done via functional Stein
Variational Gradient Descent (fSVGD, Wang et al., 2019). The procedure is explained in more
detail in Appendix A.1. The fSVGD algorithm approximates the posterior using a set of L NN pa-
rameter particles {61, ..., 01 }. To optimize posterior approximation, fSVGD iteratively re-samples
measurement sets X from a measurement distribution v, supported on X, computes SVGD up-
dates (Liu & Wang, 2016) in the function space, and projects them back into the parameter
space, in order to update the parameter-space particle configuration approximating the posterior.
To achieve this, fSVGD uses the functional posterior score, i.e., the gradient of the log-density
Vix Inp(h¥|X, XP yP) = Vpx lnp(yD|hXD) + Vix Inp(h*) to guide the particles towards
areas of high posterior probability. Formally, foralll = 1, ..., L the particle updates are computed as

L
T(1
0' 0" — v (Vghy) (L D K1 Vi Inp(hif| X, X7, yP) + Vix Kh) (1)
i=1

SVGD update in the function space

where K = [k(h, h%)];; is the kernel matrix between the function values in the measurement
points based on a positive semi-definite kernel function k(-,-). A key insight that will later draw
upon in the paper is that such functional approximate inference techniques only use the prior scores
and, in principle, do not require a full prior density that integrates to 1.

4 META-LEARNING AS SCORE ESTIMATION IN THE FUNCTION SPACE
4.1 PROBLEM STATEMENT: META-LEARNING

Meta-learning extracts prior knowledge (i.e., inductive bias) from a set of related learning tasks
to accelerate inference on a new and unseen learning task. The meta-learner is given n datasets
D, ..., D,, where each dataset D; = (XiD, yiD) consists of m; noisy function evaluations y; ; =
fi(x;1) + € corresponding to a function f; : X —)Y C R and additive o sub-Gaussian
noise €. In short, we write XZ.D = (xi1, ...,xi,mi)—'— for the matrix of function inputs and
yP = (Yi1s s yi,mi)T for the vector of corresponding observations. Following previous work
(e.g., Baxter, 2000; Pentina & Lampert, 2014; Rothfuss et al., 2021a), we assume that the functions
fi ~ T are sampled i.i.d. from a task distribution 7", which can be thought of as a stochastic process
p(f) that governs the random function f : X' +—).

Our goal is to extract knowledge from the observed datasets, which can then be used as a form of
prior for learning a new, unknown target function f* ~ 7T from a corresponding dataset D*. By
performing Bayesian inference with a meta-learned prior that is attuned to the task distribution 7,
we hope to obtain posterior predictions that generalize better.

4.2 SHORTCOMINGS OF META-LEARNING PRIORS IN THE PARAMETER SPACE

Previous work phrases meta-learning as hierarchical Bayesian problems and tries to meta-learn a
prior distribution p(#) on the NN weight space that resembles p(f) (e.g., Amit & Meir, 2018;
Rothfuss et al., 2021a). This approach suffers from the following central issues: Due to the over-
parameterized nature of neural networks, a large set of parameters 6 correspond to exactly the same
mapping hg(-). This makes specifying a good prior distribution p(#) typically very difficult. At
the same time, there is a lack of sufficiently rich parametric families of distributions over the high-
dimensional parameter space © that are also computationally viable. So far, only the very restrictive
Gaussian family of priors with diagonal covariance matrices has been employed. As a result, the

meta-learned posterior lacks the necessary flexibility to match the complex probabilistic structure of
the data-generative process accurately.

4.3 META-LEARNING AS SCORE ESTIMATION ON THE DATA-GENERATING PROCESS

Aiming to address these issues, we acquire prior knowledge in a data-driven manner with a new
perspective. We develop a novel approach to meta-learning which hinges upon three key ideas:

First, we view BNN inference in the function space (see Sec. 3), i.e., as posterior inference
p(h|XP,yP) o« p(yP|XP,h)p(h) over neural network mappings hg : X +) instead of pa-
rameters 6. From this viewpoint, the prior, which is the target of our meta-learning problem, is
p(h), a stochastic process on the function space. This alleviates the aforementioned problem of
over-parametrization, which arises when considering priors on the parameter space.

Second, we ask ourselves what is a desirable prior: from a Bayesian perspective, the best possible
prior is the stochastic process of the task generating distribution 7 itself, i.e., p(h) = p(f). Hence,
we would want to meta-learn a prior that matches p(f) as closely as possible. Since the meta-training
datasets Dy, ..., D,, constitute noisy observations of the function draws f1,, f,, ~ p(f), we can
use them to estimate the stochastic process marginals p(fX). Crucially, we tractably represent and
estimate the stochastic process p(f) through its finite marginals p(fX) in measurement sets X.

Our third insight is that all popular approximate inference methods for BNNs only use the
prior score, i.e., the gradient of the log-prior, and not the prior distribution itself. In addition,
parametrizing and estimating the prior score is computationally easier than the prior distribution
itself since it does not have to integrate to 1, allowing for much more flexible neural network
representations. For this reason, our meta-learning approach directly forms an estimate of the scores
s(fX,X) = Vex Inp(fX) of the data-generating process marginals.

In summary, our high-level approach is to meta-learn / estimate the prior score Vyx In p(h®) that
matches data-generating stochastic process from meta-training data D, ..., D,,. At meta-test time,
the meta-learned prior marginals are used in the approximate functional BNN inference on a target
dataset D* to infuse the acquired prior knowledge into the posterior predictions. In the following
section, we discuss in more detail how to implement this general approach as a concrete, computa-
tionally feasible algorithm with strong empirical performance.

5 THE MARS META-LEARNING ALGORITHM

In Section 4, we have motivated and sketched the idea of meta-learning via score estimation of the
data-generating process marginals. We now discuss particular challenges and outline the design
choices for translating this idea into a practical meta-learning algorithm.

Score estimation of stochastic process marginals has previously been used in the context of existing
functional BNN approaches (Wang et al., 2019; Sun et al., 2019). However, they presume a known
stochastic process prior with oracle access to arbitrarily many sampled functions that can be evalu-
ated in arbitrary locations of the domain X. Compared to such a stochastic process prior with oracle
access, we face two key challenges which make the score estimation problem much harder:

1. We only have access to a finite number of datasets {D;}!"_;, each corresponding to one
function f; drawn from the data-generating stochastic process. This means, we have so esti-
mate the marginal scores Vx In p(h*) from only n function samples without over-fitting.

2. Per function f;, we only have a limited number of m; noisy function evaluations y?
in input locations XP which are given to us exogenously, and we have no control over

them. However, to perform score estimation for the marginal p(h*) distributions, for each
function, we need a vector of function values fiX evaluated in the measurements points X.

In the following subsections, we present our approach to estimating the stochastic prior scores and
discuss how to solve these challenges. In addition, we discuss how to perform functional approxi-
mate BNN inference with the meta-learned score estimates.

5.1 PARAMETRIC SCORE MATCHING FOR STOCHASTIC PROCESS MARGINALS

Performing functional approximate inference with fSVGD updates as in (1) requires estimation
of the prior marginal scores Vy,x Inp(h*) for arbitrary measurement sets X. A key property of

stochastic process marginal scores is their permutation equivariance: if we permute the order of the
points in the measurement set, the rows of the score permute in the same manner. Similarly, the mea-
surement sets can be of different sizes, implying score vectors/matrices of different dimensionalities.

Aiming to embed these properties into a parametric model of the prior marginal scores, we use a
transformer encoder architecture (Vaswani et al., 2017), that takes as an input a measurement set
X e RIM(X)*k of I points and corresponding query function values h* € RIm)*E and performs
attention over the second dimension, i.e., the k£ columns corresponding to measurement points. Our
score network model is denoted as s, (h*, X) with trainable parameters ¢ and outputs an estimate

of the score, i.e., s4(h*, X) — Vpxp(h*), a matrix of the same size as the query function values.
The model is permutation equivariant w.r.t. the columns corresponding to measurement points and
supports inputs/outputs for varying measurement set sizes k. We schematically illustrate the score
network architecture in Figure 4 and provide details in Appendix A.3.

We train the score network with a modified version of the score matching loss (Hyvérinen & Dayan,
2005; Song et al., 2020). This loss minimizes the Fisher divergence between the data-generating pro-
cess marginals and our score network, based on samples X, ..., £X from the data-generating process
marginals. In contrast to the standard score matching loss, our modified loss takes the dependence
of stochastic process marginals on their measurement sets into account. It uses an expectation over
randomly sampled measurement sets, similar to the functional approximate inference in Section 3.

n

£(0)i= Bx | 3 (1(Texso(85.0) + 515X, X)) @

i=1

As noted previously, our meta-training data only provides noisy function evaluations for a lim-
ited, exogenously given, set of input locations per task f;. The input locations X? per task might
even differ in number and be non-overlapping. Thus, we do not have access to the function values
fX ..., X for arbitrary measurement sets X which we require for our score matching loss in (2). In
the following section, we discuss how to resolve this problem.

5.2 INTERPOLATING THE DATASETS ACROSS X

In our meta-learning setup (see Section 4.1), we only receive noisy function evaluations y? in m;
locations X? for each meta-training task. However, to minimize the score matching loss in (2), we
need the corresponding function values in arbitrary measurement locations in the domain X'.

Hence, we interpolate each dataset D; by a regression model. Importantly, the regression model
should be able to quantify the epistemic uncertainty that stems from having observations at only a
finite subset of points X C X. While a range of method could be used, we employ a Gaussian
Process (GP) with Matérn—5/2 kernel or a Bayesian neural network (BNN) based on Monte Carlo
dropout (Gal & Ghahramani, 2016) for this purpose. We fit the respective Bayesian model indepen-
dently on each dataset D; which gives us a posterior p(fX|X, XP yP) over function values f* for

K3
arbitrary measurement sets X. In Appx. A.4 we provide more details on how we fit each model.

While we could simply use posterior mean values for computing the score matching loss in 2, this

would not reflect the epistemic interpolation uncertainty. Instead, for each task, we sample function
values £X ~ p(fX|X,XP,yP) from the corresponding posterior and use them as an input to the
score matching loss in (2). Correspondingly, the score matching loss modifies to

1

~ n ~ 1 ~
£(6) == Ex | = Y Eypxix xPy?) [tr(V§3(S¢(fi)(,X))+2||S¢(fiX7X)|§H NG
i=1

The further a measurement point z is away from the closest point in XP, the higher is the
(epistemic) uncertainty of the corresponding function value f;(z). By sampling from the posterior,
in expectation, the loss in (3) effectively propagates the interpolation uncertainty into the score
matching procedure, preventing over-confident score estimates for areas of the domain A with

scarce data. This is illustrated in Appx. D, Figure 6.

5.3 PREVENTING META-OVERFITTING OF THE PRIOR SCORE NETWORK

The final challenge we need to address is over-fitting to the meta-training tasks (Yin et al., 2020;
Rothfuss et al., 2021a). As we only have meta-training data {D;,}?_,, corresponding to n functions

Algorithm 1 MARS: Meta-Learning the Data-Generating Process Score

Input: datasets Dy, ..., D,,, measurement point distribution v, step size 7
Initialize score network parameters ¢
fori=1,...,ndo

fit GP or BNN on D;, obtain posterior p(f;|XP, yP)

K2
while not converged do
iid

X ~ v /I sample measurement set
fori=1,...,ndo

£X ~ p(fX|X, XP yP) /I sample function values from posterior marginal
L(}) LN (tr(V§xs¢(fiX, X)) + %||S¢(f3(, X)||§> // score matching loss
o +— ¢+ nVWﬁ(qﬁ) // score network gradient update

Output: trained score network s

fi drawn from the data-generating stochastic process, i.e., we only have n samples for estimation of
marginal scores Vi,x In p(h®), making us prone to overfitting the prior score network. If we per-
formed functional BNN inference with such an overfitted score estimate, the BNN’s posterior predic-
tions are likely to be over-confident and too biased towards the functions seen during meta-training.

To counteract the tendency to overfit, we regularize the score network via spectral normalization
(Miyato et al., 2018) of the linear layers in the transformer encoder blocks. Spectral normalization
controls the Lipschitz constant of the neural network layers by dividing their weight matrix W by
its spectral norm ||W||, i.e., re-parametrizing the weights as W := W /||W||. Hence, by applying
spectral normalization, we bias our score network towards smoother score estimates corresponding
to marginal distributions p(h*) with higher entropy. Empirically we find that spectral normal-
ization effectively combats meta-overfitting and prevents the estimated prior score from inducing
over-confident posterior predictions when employed in functional BNNs. In our experiments, we
examined several other regularization methods, e.g., gradient penalties (Gulrajani et al., 2017) or a
spectral regularization penalty in the loss, but found spectral normalization to work the best.

5.4 THE FULL MARS ALGORITHM
We now summarize our meta-learning algorithm MARS. It consists of two stages:

Stage 1: Meta-Learning the Prior Score Network. After initializing the parameters of the score
network, we fit a GP or BNN to each of the n meta-training datasets D;. Then, we train the score
network by stochastic gradient descent on the modified score matching loss L:(cé) in (3). In each
iteration, we first sample a measurement set X i.i.d. from the measurement distribution v = U (22),
chosen as uniform distribution over the hypercube X C X conservatively covering the data in X.
Based on the measurement set, we sample a vector of functions values fix from the corresponding
GP or BNN posterior marginals p(fix X, XR yiD)7 i =1, ...,n. Based on these samples, we form an
empirical estimate ﬁ(gf)) of the score matching loss and perform a gradient update step on the score

network parameters ¢. This is repeated till convergence and summarized in Alg. 1. Depending on
whether we use a GP or BNN as interpolator, we refer to our method as MARS-GP or MARS-BNN.

Stage 2: Functional BNN Inference with the Prior Score Network. When concerned with a target
learning task with a training dataset D* = (X2, yP), we can infuse the meta-learned inductive bias
into the BNN inference by using the prior score network s4 from Stage 1 for the approximate
inference. In particular, we can either perform functional VI (Sun et al., 2019) or fSVGD (Wang
etal., 2019), using the score network s, (h*, X) predictions as swap-in replacement for the marginal
scores Vix In p(hX) of a user-specified stochastic process prior. In our experiments, we use fSVGD
(see Section 3) as functional approximate inference method. The resulting fSVGD BNN inference

procedure with our meta-learned priors score network is summarized in Alg. 2 in Appx. A.

6 EXPERIMENTS

We provide a detailed benchmark comparison with existing meta-learning methods, demonstrating
that MARS: (i) achieves state-of-the-art performance in terms of predictive accuracy, (ii) yields

—-== true fun
—— pred mean /) 7
6 O train data
pred std

-2 0 2 4 4 -2 0 2 4 -2 0 2 4

(a) Vanilla BNN (b) fBNN with GP prior (c) MARS (ours)

Figure 1: BNN posterior predictions with (a) zero-centered Gaussian prior on the NN parameters 6
(b) Gaussian process prior and (c) meta-learned MARS prior scores.

‘ SwissFEL Physionet-GCS ~ Physionet-HCT Berkeley-Sensor ~ Argus-Control
Vanilla GP 0.876 £0.000 2240 £0.000 2.768 £ 0.000 0.258 £0.000 0.026 & 0.000
Vanilla BNN 0.529 £0.022 2.664 +0.274 3.938 + 0.869 0.151 £0.018 0.016 & 0.002
MAML 0.730 £0.057 1.895+0.141 2.413+0.113 0.121 £ 0.027 0.017 £ 0.001
BMAML 0.577 £0.044 1.894 £0.062 2.500 £ 0.002 0.222£0.032 0.037 £ 0.003
NP 0.471 £0.053 2.056 £0.209 2.594 +0.107 0.173 £0.018 0.020 £ 0.001
PACOH-GP 0.376 = 0.024 1.498 +0.081 2.361 + 0.047 0.197 £0.058 0.016 £ 0.005
PACOH-NN 0.437 £0.021 1.623 £0.057 2.405+0.017 0.160 £0.070 0.018 £ 0.002
MARS-GP (ours) 0.391 £0.011 1.471£0.083 2.309 + 0.041 0.116 £ 0.024 0.013 £ 0.001
MARS-BNN (ours) | 0.407 £0.061 1.307 £0.065 2.248 & 0.057 0.113 £0.015 0.017 £ 0.003

Table 1: Meta-Learning benchmark results in terms of the test RMSE. Reported are the mean and
standard deviation across five seeds. MARS consistently yields the most accurate predictions.

well-calibrated uncertainty estimates. In a comprehensive ablation study, we shed more light on the
central components of MARS and provide empirical support for our design decisions.

6.1 EXPERIMENT SETUP

Environments. We consider five realistic meta-learning environments for regression. The first
environment corresponds to data of different calibration sessions of the Swiss Free Electron Laser
(SwissFEL) (Milne et al., 2017). Here, a task requires predicting the laser’s beam intensity based
on undulators parameters. We also consider electronic health measurements (PhysioNet) from in-
tensive care patients (Silva et al., 2012), in particular, the Glasgow Coma Scale (GCS) and the
hematocrit value (HCT). Here, each task correspond to a patient. We also use the Intel Berkeley Lab
temperature sensor dataset (Berkeley-Sensor) (Madden, 2004), requiring auto-regressive prediction
of temperature measurements of sensors in different locations of the building. Finally, the Argus-
Control environment requires predicting the total variation of a robot from its target position based
on its PID controller parameters (Rothfuss et al., 2022). Here, tasks correspond to different step
sizes between the source and target location. See Appendix B for details.

Baselines. As non-meta-learning baselines, we use a Vanilla GP with RBF kernel and a Vanilla BNN
with a zero-mean, spherical Gaussian prior and SVGD inference (Liu & Wang, 2016). To compare
to previous meta-learners, we report results for model agnostic meta-learning (MAML) (Finn et al.,
2017), Bayesian MAML (BMAML) (Yoon et al., 2018) and neural processes (NPs) (Garnelo et al.,
2018). In addition, we include PACOH (Rothfuss et al., 2021a) which performs hierarchical Bayes
inference to meta-learn a GP prior (PACOH-GP) or prior over NN parameters (PACOH-NN).

6.2 EMPIRICAL BENCHMARK STUDY

Qualitative illustration. Fig. 1 illustrates the posterior predictions of a) a BNN with Gaussian Prior
in the parameter space, b) a functional BNN with GP prior (Wang et al., 2019) and c) a fBNN trained
with the meta-learned MARS-GP marginal scores. For the meta-training we use n = 20 tasks with
each m = 8 data points, generated from a student-t process with sinusoidal mean function 2z +
5sin(2x). Similar to previous work (e.g., Fortuin et al., 2022) we observe that weight-space BNN
priors provide poor inductive bias and yield grossly over-confident uncertainty estimates. Approach-
ing the BNN inference problem in the function space (see Fig 1b) results in much better uncertainty
estimates. In this case, however, the uninformative GP prior does not result in accurate mean predic-
tions. Finally, the meta-learned scores in the function space provide useful inductive biased towards
the linear+sinusoidal data-generating pattern while yielding tight but reliable confidence intervals.

| SwissFEL

Physionet-GCS

Physionet-HCT

Berkeley-Sensor

Argus-Control

Vanilla GP 0.135 +0.000 0.268 +0.000 0.277 £ 0.000 0.119 £0.000 0.090 £ 0.000
Vanilla BNN 0.085 £0.008 0.277 £0.013 0.307 £ 0.009 0.206 £ 0.025 0.104 £ 0.005
BMAML 0.115£0.036 0279 £0.010 0.423 + 0.106 0.154 £0.021 0.068 & 0.005
NP 0.131 £0.056 0.299 £0.012 0.319 + 0.004 0.140 £0.035 0.094 + 0.015
PACOH-GP 0.038 £ 0.006 0.262 £ 0.004 0.296 + 0.003 0.251 £0.035 0.102 £ 0.010
PACOH-NN 0.037 £ 0.005 0.267 = 0.005 0.302 £ 0.003 0.223 £0.012 0.119 £ 0.005
MARS-GP (ours) 0.035 £0.002 0.263 +0.001 0.136 + 0.007 0.080 £ 0.005 0.055 + 0.002
MARS-BNN (ours) | 0.054 +0.009 0.268 + 0.023 0.231 £ 0.029 0.078 £ 0.020 0.076 £ 0.031

Table 2: Meta-learning benchmark results in terms of the calibration error. Reported are the mean
and standard deviation across five seeds. MARS provides the best-calibrated uncertainty estimates.

Estimator \ SwissFEL Physionet-GCS ~ Physionet-HCT Berkeley-Sensor ~ Argus-Control
MARS-GP 0.391 +0.011 1.471 +0.083 2.309 + 0.041 0.116 + 0.024 0.013 + 0.001
SSGE score estimates | 0.449 +0.027 3.292 +0.562 2.784 £ 0.257 1.105 £ 0.562 0.030 = 0.003
No spectral reg. 0.420 + 0.060 2208 +0.338 2.560 + 0.341 1.734 £ 0.169 0.014 £ 0.001
No GP sampling 0471 £0.059 2994 +0.363 5.995 £+ 1.108 1.253 +0.112 0.073 £ 0.003

Table 3: Ablation study results for MARS components in terms of the RMSE.

MARS provides accurate predictions. We perform a comprehensive benchmark study with the
environments and baselines introduced in Sec. 6.1. Table 1 reports RMSE on unseen meta-test tasks.
Both MARS-GP and MARS-BNN yield substantial improvements in the RMSE compared to the
non-meta-learning baselines and significantly outperforms all other meta-learning baselines in most
environments. This shows that MARS can acquire valuable inductive biases from data reliably. We
hypothesize that MARS performs substantially better than PACOH-NN, which meta-learns restric-
tive diagonal Gaussian priors over O since it has much more flexibility in expressing prior knowl-
edge about the data-generating process. In the majority of environments, MARS also outperforms
PACOH-GP which meta-learns a GP prior. In contrast to Gaussian marginals, MARS can meta-learn
any stochastic process marginal, and, thus has much more flexibility to express inductive bias.

MARS yields well-calibrated uncertainty estimates. We hypothesize that by performing
meta-learning in the function space, we avoid the pitfalls of NN over-parametrization, which
often lead to over-confidence. To investigate the quality of uncertainty estimates, we compute the
calibration error, which measures how much the predicted confidence regions deviate from the
actual frequencies of test data in the respective regions. We list the results in Table 2!. While, in
most cases, still better than the baselines, the uncertainty estimates MARS-BNN are on average
worse than those of MARS-GP. This is not surprising as the MC-dropout uncertainty estimates
are typically not as reliable as those of a GP. MARS-GP consistently yields the best-calibrated
uncertainty estimates and, for some environments, reduces the calibration error by more than 30 %
compared to the next best baseline. This provides further evidence for the soundness and efficacy
of our function space approach to meta-learning. Finally, the superior calibration performance
suggests that the spectral regularization, together with the posterior uncertainty sampling in Sec. 5,
effectively prevents meta-overfitting and accounts for epistemic uncertainty.

6.3 ABLATION STUDY

We empirically investigate the algorithm components introduced in Sec. 5 and provide supporting
empirical evidence for our design decisions. First, we perform a quantitative ablation study where
we vary/remove components of our algorithm. We consider MARS-GP with 1) nonparametric score
estimator SSGE (Shi et al., 2018) instead of the parametric score network + score matching from
Sec. 5.1, 2) without spectral regularization, and 3) without GP posterior sampling, i.e., using the
GP posterior mean instead of samples for the score matching. Table 3 and 4 report the quantitative
results of this ablation experiment. In the following, we discuss the three aspects separately:

Parametric score matching outperforms nonparametric score estimation. In Sec. 5.1 we have
introduced a parametric score network which we train with the score matching loss. Alternatively,
for each measurement set X, we could apply the nonparametric score estimator SSGE (Shi et al.,
2018) to the function values X, ..., £X, sampled from the posteriors, and directly use the resulting

R A

"Note that we omit MAML since it does not provide uncertainty estimates.

Estimator | SwissFEL Physionet-GCS Physionet-HCT Berkeley-Sensor ~ Argus-Control

MARS-GP 0.035 £ 0.002 0.263 +£0.001 0.136 £ 0.007 0.080 & 0.005 0.055 + 0.002
SSGE score estimates | 0.151 £0.001 0.249 +0.002 0.246 £ 0.007 0.232 +£0.010 0.210 = 0.011
No spectral reg. 0.233 £0.041 0.265 £0.012 0.244 + 0.009 0.192 £ 0.018 0.187 +0.028
No GP sampling 0.204 £0.013 0.225+0.021 0.237 £0.018 0.141 +£0.029 0.216 £ 0.066

Table 4: Ablation study results for MARS components in terms of the calibration error.

2.0 2.0 N 0.14
15 1.5 \U 012
\
1.0 1.0 N
s 0.10
=< 05 =< 05
= = = 0.08
2 o0 2 o0 2
= = 0.06
B -0.5 = -05
0.04
-1.0 -1.0
-1.5 -1.5 0.02
-2.0 = -2.0 0.00
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
(a) SSGE vs. score network (b) spectral regularization (c) Corresponding density

Figure 2: (a) Underconfident MARS and overconfident SSGE score predictions on ten samples from
a Gaussian. (b) Score estimates of MARS with and without regularization on ten function samples
from a zero mean GP with SE kernel. (c) Numerically integrated score predictions corresponding
to the scores in (b). Overall, SSGE and MARS w/o regularization overfit and underestimate the
variance, whereas spectral normalization biases MARS towards higher entropy.

score estimates during the fSVGD posterior inference in (1). This produces score estimates *ad-hoc’
and does not require us to train an explicit score network. In contrast, our score network is a global
function that explicitly considers the measurement set and thus can exploit similarity structure across
X, which SSGE cannot. To SSGE we also cannot simply add inductive bias towards higher entropy
as we do through spectral normalization. Overall, the experiment results in Table 3 and 4 suggest
that instantiating our general approach with SSGE performs worse than MARS. We can also observe
this visually in Fig. 2a, where we plot the score estimate of MARS and SSGE for a GP marginal
where the true score is known. While the MARS score network slightly overestimates the variance
of true generative-process marginal, SSGE implicitly underestimates the prior variance, leading to
over-confident predictions. Finally, Table 7 in Appx. D quantitatively shows that the MARS score
network provides the most accurate estimates compared to a variety of nonparametric estimators.

Spectral normalization prevents meta-overfitting. In Sec. 5.3, we added spectral normalization
to our score network. Here, we empirically investigate what happens when we remove the spectral
normalization from MARS. Figure 2b and 2c illustrate how our score network over-fits and
under-estimates the true data-generating variance when we do not use spectral regularization.
Quantitatively, we observe substantial increases in calibration errors and a consistent worsening of
the predictive accuracy. Overall, this highlights the empirical importance of spectral normalization
for preventing meta-overfitting and biasing the score estimates toward higher entropy.

Accounting for epistemic uncertainty of the GP interpolators is crucial. In MARS, we in-
terpolate each dataset with a GP or BNN and, when performing score estimation, use samples
from the posterior marginals to account for the epistemic uncertainty of the interpolation. Here,
we empirically study what happens if we ignore the epistemic uncertainty and take each GP’s mean
predictions. When doing so, we observe detrimental effects on the RMSE and calibration error
in the majority of the environments in Table 3 and 4. This affirms that propagating the epistemic
uncertainty of the interpolation into the score estimates is a critical component of MARS.

7 CONCLUSION

We have introduced a novel meta-learning approach in the function space that estimates the score
of the data-generating process marginals from a set of related datasets. When facing a new learning
task, we use the meta-learned score network as a source of prior for functional approximate BNN
inference. By representing inductive bias as the score of a stochastic process, our approach is versa-
tile and can seamlessly acquire/represent complex prior knowledge. Empirically, this translates into
strong performance when compared to previous meta-learning methods. The substantial improve-
ments of MARS in terms of the quality of uncertainty estimates open up many potential extensions
toward interactive machine learning where exploration based on epistemic uncertainty is vital.

ACKNOWLEDGMENTS

This research was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program grant agreement no. 815943 and the Swiss National
Science Foundation under NCCR Automation, grant agreement 5SINF40 180545. Jonas Rothfuss
was supported by an Apple Scholars in AI/ML fellowship. We thank Alex Hégele, Parnian Kassraie,
Lars Lorch and Danica J. Sutherland for their valuable feedback.

REFERENCES

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In
International Conference on Machine Learning, pp. 205-214. PMLR, 2018.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research,
2000.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Stéphane Canu and Alex Smola. Kernel methods and the exponential family. Neurocomputing, 69
(7-9):714-720, 2006.

Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit. In
International Conference on Machine Learning, 2016.

Brian Coyle, Daniel Mills, Vincent Danos, and Elham Kashefi. The born supremacy: quantum
advantage and training of an ising born machine. npj Quantum Information, 6(1):1-11, 2020.

Charles-Alban Deledalle, Samuel Vaiter, Jalal Fadili, and Gabriel Peyré. Stein unbiased gradient
estimator of the risk (sugar) for multiple parameter selection. SIAM Journal on Imaging Sciences,
7(4):2448-2487, 2014.

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A. Saurous. Tensorflow distributions, 2017.
URL https://arxiv.org/abs/1711.10604.

Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems,
volume 375. Springer Science & Business Media, 1996.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017.

Vincent Fortuin, Heiko Strathmann, and Gunnar Rétsch. Meta-learning mean functions for gaussian
processes, 2019. URL https://arxiv.org/abs/1901.08098.

Vincent Fortuin, Adria Garriga-Alonso, Florian Wenzel, Gunnar Ritsch, Richard Turner, Mark
van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited. In Interna-
tional Conference on Learning Representations, 2022.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050-1059,
2016.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-

proved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

10

http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1711.10604
https://arxiv.org/abs/1901.08098

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034, 2015.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

Aapo Hyvirinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adap-
tive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces. In
International Conference on Machine Learning, 2019a.

Johannes Kirschner, Manuel Nonnenmacher, Mojmir Mutny, Andreas Krause, Nicole Hiller, Ras-
mus Ischebeck, and Andreas Adelmann. Bayesian optimisation for fast and safe parameter tuning
of swissfel. In FEL2019, Proceedings of the 39th International Free-Electron Laser Conference,
pp. 707-710. JACoW Publishing, 2019b.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International conference on machine learning, pp. 2796-2804.
PMLR, 2018.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional conference on machine learning, pp. 3744-3753. PMLR, 2019.

Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Infer-
ence Algorithm. In Advances in Neural Information Processing Systems, 2016.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests.
In International Conference on Machine Learning. PMLR, 2016.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schélkopf. Amortized
inference for causal structure learning. arXiv preprint arXiv:2205.12934, 2022.

Samuel Madden. Intel Iab data. http://db.csail.mit.edu/labdata/labdata.html,
2004. Accessed: Sep 8, 2020.

Christopher J Milne, Thomas Schietinger, Masamitsu Aiba, Arturo Alarcon, Jiirgen Alex, Alexander
Anghel, Vladimir Arsov, Carl Beard, Paul Beaud, Simona Bettoni, et al. Swissfel: the swiss x-ray
free electron laser. Applied Sciences, 7(7):720, 2017.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A Simple Neural Attentive Meta-
Learner. In International Conference on Learning Representations, 7 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

11

http://github.com/deepmind/dm-haiku
http://db.csail.mit.edu/labdata/labdata.html

Tianyu Pang, Kun Xu, Chongxuan Li, Yang Song, Stefano Ermon, and Jun Zhu. Efficient learn-
ing of generative models via finite-difference score matching. Advances in Neural Information
Processing Systems, 33:19175-19188, 2020.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Anastasia Pentina and Christoph Lampert. A PAC-Bayesian bound for lifelong learning. In Inter-
national Conference on Machine Learning, 2014.

Thomas Pinder and Daniel Dodd. Gpjax: A gaussian process framework in jax. Journal of Open
Source misc, 7(75):4455, 2022. doi: 10.21105/joss.04455. URL https://doi.org/10.
21105/joss.04455.

Yunxiao Qin, Weiguo Zhang, Chenxu Zhao, Zezheng Wang, Hailin Shi, Guojun Qi, Jingping Shi,
and Zhen Lei. Rethink and redesign meta learning. arXiv preprint arXiv:1812.04955, 2018.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pp. 63-71. Springer, 2003.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2018.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. ProMP: Proximal
Meta-Policy Search. In International Conference on Learning Representations, 2019.

Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. Pacoh: Bayes-optimal
meta-learning with pac-guarantees. In International Conference on Machine Learning, pp. 9116—
9126. PMLR, 2021a.

Jonas Rothfuss, Dominique Heyn, Jinfan Chen, and Andreas Krause. Meta-learning reliable priors
in the function space. Advances in Neural Information Processing Systems, 34, 2021b.

Jonas Rothfuss, Christopher Koenig, Alisa Rupenyan, and Andreas Krause. Meta-learning priors
for safe bayesian optimization. In Conference on Robot Learning, 2022.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning, pp. 1842-1850, 2016.

Amar Shah, Andrew Wilson, and Zoubin Ghahramani. Student-t processes as alternatives to gaus-
sian processes. In Artificial intelligence and statistics, pp. 877-885. PMLR, 2014.

Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit
distributions. In International Conference on Machine Learning, pp. 4644-4653. PMLR, 2018.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In Computing
in Cardiology, 2012.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, 2017.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574-584. PMLR,
2020.

Ingo Steinwart. A sober look at neural network initializations. arXiv preprint arXiv:1903.11482,
2019.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger B. Grosse. Functional variational bayesian
neural networks. In International Conference on Learning Representations, 2019.

12

https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455

Danica J Sutherland, Heiko Strathmann, Michael Arbel, and Arthur Gretton. Efficient and princi-
pled score estimation with nystrom kernel exponential families. In International Conference on
Artificial Intelligence and Statistics, pp. 652—-660. PMLR, 2018.

Sebastian Thrun and Lorien Pratt (eds.). Learning to Learn. Kluwer Academic Publishers, 1998.
Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, 2016.

Dilin Wang, Zhe Zeng, and Qiang Liu. Stein variational message passing for continuous graphical
models. In International Conference on Machine Learning, pp. 5219-5227. PMLR, 2018.

Ziyu Wang, Tongzheng Ren, Jun Zhu, and Bo Zhang. Function space particle optimization for
bayesian neural networks. In International Conference on Learning Representations, 2019.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization. In International Conference on Learning Representations, 2020.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. Advances in neural information processing systems,
31, 2018.

Yuhao Zhou, Jiaxin Shi, and Jun Zhu. Nonparametric score estimators. In International Conference
on Machine Learning, pp. 11513-11522. PMLR, 2020.

13

A MARS IMPLEMENTATION DETAILS

This section focuses on a detailed explanation of the proposed framework. We first elaborate on the
fSVGD inference process and then provide information regarding the network architecture and the
hyperparameter configuration.

A.1 FSVGD INFERENCE

To perform approximate BNN inference with the meta-learned score network, we use functional
Stein Variational Gradient Descent (fSVGD) (Wang et al., 2018). In the following, we explain our
fSVGD implementation and how it interplays with the score network in our MARS framework.

In our context, the goal of fSVGD is to approximate the posterior p(hg|XP,yP)
p(yP|XP, hg)p(hg) over neural network mappings hy. Recall from Section 3, that XP =
{x;}7, € &A™ are the training inputs, y” = {y;}"_, € Y™ the corresponding noisy function
values for a new, unseen learning tasks. The fSVGD algorithm approximates the posterior using a
set of L NN parameter particles {01, ..., 0} where each §; corresponds to the weights and biases
of a neural network. The particles (i.e., weights and biases) are initialized based on the scheme of
Steinwart (2019) (see Appendix A.2 for details).

To make the BNN inference in the function space tractable, in each iteration, fSVGD samples a
measurement set X from a measurement distribution v and performs its particle updates based on

the posterior marginals p(h*|X, X2, yP) o« p(yP|hX”)p(h*) corresponding to X. We use a
uniform distribution over the bounded domain X as measurement distribution v and sample the L
measurement points i.i.d. from it.

For each NN particle, we compute the NN function values in the measurement points, i.e. hg% =
(hh(x1), ..., hhy(xx)), I = 1,..., L and the corresponding posterior marginal scores:

D A
Ve np(hif X, y7) « Vipe np(y®[hi) + Vi np(hgf) @)

likelihood score = S¢(h:,(z ,X)
Here, we use a Gaussian likelihood p(y?|h*”) = H?Zl N (yP; bl (z;),0?) where o2 is the like-
lihood variance. Unlike in Wang et al. (2018) where the stochastic process prior is exogenously
given, and its marginals p(h*) are approximated as multivariate Gaussians, we use our meta-learned

marginal prior scores. In particular, we use the score networks sd,(hg%, X)) output as a swap-in for

the prior score thl In ﬁ(hgﬁ). Finally, based on the score in (4) and the function values hgi, we can
(]

compute the SVGD updates in the function space, and project them back into the parameter space
via the NN Jacobian nghz)g:

L
T/ 1
6' 0" = (Voh) (7 D KiiVix Inp(hji X, X7, y) + Vix Kzi) SNE)
—— T ’
NN Jacobian =1

SVGD update in the function space

Here, v is the SVGD step size and K = [k(h)%, h%)];; is the kernel matrix between the function

values in the measurement points based on a kernel function k(-, -) : V¥ x V¥ + R. We use the RBF
kernel k(h,h') = exp ((—|/h — h'|[?)/(2(})) where ¢}, is the bandwidth hyper-parameter. The
particle update in (5) completes one iteration of fSVGD. We list the full procedure in Algorithm 2.

fSVGD hyperparameter selection. For the fBNN training using fSVGD, among other parame-
ters, we need to choose the step size -y, kernel bandwidth ¢, and likelihood standard deviation o, as
we found these three to have the most substantial impact on training dynamics. We fix the number
of particles to L = 10 and perform 10000 fSVGD update steps. We always standardize both the
input and output data based on the meta-training data’s empirical mean and standard deviation.
For the NNs, we use three hidden layers, each of size 32 and with leaky ReLU activations. To
initialize the NN weights, we use He initialization with a uniform distribution (He et al., 2015)
and the bias initializer of Steinwart (2019) (see Section A.2 for details). Generally, we choose the

14

Algorithm 2 Approximate BNN Inference with fSVGD (Wang et al., 2019)

Input: SVGD kernel function &(-, - ; £x), bandwidth ¢y, step size v
Input: dataset D* = (X2, yP) for target task, trained score network s, (-, -)
Initialize set of BNN particles {61, ..., 01}
while not converged do
X %y // sample measurement set
fori=1,...,Ldo
h% < (hj(x1), ..., hl(xi)) where X = (x1,...,x)) // compute NN function values in X

Vix np(hf| X, y7) Vix Inp(yPhX") + s4(h%,X) // posterior marginal score
6 6

o' o' — ¥ (nghgﬁ)T (i ZiLzl K“Vh; lnp(hzﬂx, yD) + Vh;(l Klz> // fSVGD update
Output: Set of BNN particles {61, ..., 0, } that approximate the BNN posterior process

-=-= true fun
—— pred mean

10 O train data
pred std

-75 =50 -25 00 25 50 75 -75 =50 -25 00 25 50 75 -75 -50 -25 00 25 5.0 7.5
X X X

(a) Data generation process (b) Constant bias initializer (c) Steinwart bias initializer

Figure 3: a) The underlying data generating process and corresponding fBNN prediction after train-
ing using the fSVGD algorithm for 2000 iterations with b) constant bias initializer, and c) Steinwart
bias initializer. With the Steinwart bias initializer, we get the desirable non-linear behavior of the
fSVGD BNN much faster.

kernel bandwidth ¢;; via a random hyper-parameter search over the values range of [0.1, 10]. When
comparing to the original fSVGD implementation with SSGE, we fix the SSGE lengthscale to 0.2
for comparability. Note that we also experimented with using the median heuristic (as proposed by
Shi et al. (2018)); however, we observed this to yield inferior performance.

A.2 BIAS INITIALIZATION

When initializing the biases to zeros or small positive constants, we find that the learned neural
network maps behave like linear functions further away from zero and that it takes many SVGD
iterations for them to assume non-linear behavior at the boundaries of the domain.

To address this issue, we use the bias initialization scheme of Steinwart (2019), which initializes the
biases in such a way that the kinks of the leaky ReLU functions are more evenly distributed across
the domain and less concentrated around zero. More specifically, we initialize each bias b; as

b; := — (w;, x}),

where w; is uniformly sampled from a sphere by taking w; = HZ—H a; ~ U(0,1). z}’s are sampled

uniformly: x} ~ U(min,, maz,), where min, and mazx, are the minimum and maximum points
in the input domain respectively.

By using Steinwart initialization, the neural networks show much more non-linear behavior after
initialization. Compared to constant bias initialization, learning non-linear functional relationships
happens much more quickly. We showcase this in Figure 3: Figure 3a displays a simple data
generation process of sinusoids of varying amplitude, frequency, phase shift, and slope. Figure 3b
displays corresponding BNN predictions after 2000 iterations with a constant bias initializer (where
the constant equals 0.01), and Figure 3c shows the result of the same training dynamics, using Stein-
wart’s bias initializer instead of the constant initializer. The BNNs with the Steinwart initialization

15

k measurement sets

uonUERY PNP0IA-100 PRIEXS.

g
2
g
:
F
g
g
:
s

NN PJEMIO-P334 3SIAN-UONISO,

Figure 4: Architecture of MARS score estimation network. From left to right: k£ measurement sets
consisting of input-output concatenations with z; € R3, f(x;) € R2,i = 1,..., k; inputs/outputs
embeddings using spectrally normalized linear layers; two identical blocks of scaled dot product at-
tention, residual layers and feed-forward position-wise NN with spectrally normalized linear layers;
the final linear layer, not spectrally normalized.

assume desirable non-linear behavior much earlier during training, thus, significantly speeding up
training. However, if trained for a large enough number of iterations, the performance of the two
networks with different bias initializations becomes much less distinct. For further details on the
implications of the Steinwart initializer on the training dynamics, we refer to Steinwart (2019).

A.3 SCORE ESTIMATION NETWORK

We now give an overview of the score estimation network. We start by providing motivation for the
required architecture, detailing the permutation equivariance properties of the network. We construct
the proposed architecture step-by-step, giving the architectural details and mentioning additional
architectural designs we experimented with. Finally, we comment on the optimization method and
acknowledge the libraries we used in our implementations.

Incorporating task invariances. The proposed network is permutation equivariant across the k
dimension: reordering the measurement inputs would result in reordering the network’s prediction
in the same manner: Formally, for any permutation 7 of the measurement set indices we have
that s, (h¥~a:), Xor(r:ay)ij +r thl:dp(hxhd),r(i)m(j). To impose permutation equivariance, we
use the self-attention mechanism (Vaswani et al., 2017). Permutation equivariance is obtained by
concatenating inputs (measurement points) and the corresponding functional evaluations (i.e., the
concatenation constructs an object corresponding to Transformer tokens), which are then embedded
and inputted to the attention mechanism. The architecture is displayed in Figure 4.

Constructing the network architecture. The core of our model is composed of two identical
blocks, each consisting of two residual layers, the first one applying multi-head self-attention and
the second one position-wise feed-forward neural network, similar to the vanilla Transformer en-
coder (Vaswani et al., 2017). Since the multi-head attention is permutation equivariant over the
measurement point (i.e., token) dimension, the representation is permutation equivariant at all
times (Lee et al., 2019). Finally, to minimize training time, we select attention embedding di-
mensions proportional to the data dimension of the environments; higher-dimensional environments
(e.g., SwissFEL, detailed in Appendix B) correspond to the higher number of attention parame-
ters/embedding dimensions and lower environments (e.g., the Sinusoid and Berkeley environment)
to lower embeddings. Furthermore, we tune the step size and report the chosen configurations under
https://tinyurl.com/376wp8xe. We describe the corresponding implementation details
in the following subsection.

Constructing the score network. We train the score network on the input/output pair concate-
nations, which are then embedded onto a higher-dimensional space. After this, we perform self-
attention. Specifically, we fix the initialization scale of self-attention weights to 2.0. As mentioned,
the size of the model and embeddings varies across meta-learning environments. Next follows a
position-wise feed-forward neural network, for which we use Exponential Linear-Unit (ELU) as the
activation, as implemented in Haiku’s vanilla Transformer encoder (Hennigan et al., 2020). After-
ward, we apply the self-attention mechanism again, following a position-wise feed-forward neural
network, after which we apply the final linear layer.

16

https://tinyurl.com/376wp8xe

Variants of the attention mechanism. We experimented with multiple variations of the attention
mechanism, all being permutation equivariant in the k£ dimension, similar to the work of Lorch et al.
(2022). We mention two other architectural designs: in the first design, rather than using the em-
beddings of the concatenation of input-output points as keys, queries, and values (as performed in
the vanilla Transformer encoder), we experimented with using the embeddings of the inputs as the
keys and queries and the embeddings of functional outputs. However, this design yields varying
performance: on several low-dimensional tasks, the performance was slightly better, whereas per-
formance on tasks with higher-dimensional inputs was substantially worse. In another attempt, we
experimented with learning different embeddings for inputs and functional outputs, which we then
concatenated and used as keys, queries, and values. The difference in performance in this method
was marginal, and we decided against it for simplicity.

Optimizer setup and employed libraries. Finally, across all experiments, we use gradient clip-
ping of the prior score together with the ADAM optimizer (Kingma & Ba, 2014), with the default
values set in Jax (Bradbury et al., 2018) and Haiku (Hennigan et al., 2020). For the gradient clip-
ping, we use values of 1., 10., or 100., depending on the task and the underlying properties of the
data generating process. For example, for the first experiment in Appendix D, larger clipping values
(50 or 100) performed better for the heavier-tailed Student’t-r process, whereas clipping at 10. re-
sulted in a good performance of the GP task. We train the score network for 20000 iterations. For
the GP and Student-f process implementations, we use GP-Jax (Pinder & Dodd, 2022), scikit-learn
(Pedregosa et al., 2011) and TensorFlow Distributions packages (Dillon et al., 2017).

A.4 INTERPOLATING THE DATASETS ACROSS X

Interpolation with Gaussian Processes. In GP regression, each data point corresponds to a
feature-target tuple z; ; = (X ;,¥i;) € R? x R. For the i-th dataset, we write D; = (X, y:),
where X; = (2;1,. .. ,x,-mLi)T andy; = (yi1,.-- 7yiﬂni)T. GPs are a Bayesian method in which
the prior P(h) = GP (h | m(x), k (z,z")) is specified by a positive definite kernel £ : X' x X — R
and a mean function m : X — R. In this section, we assume a zero mean GP and omit writing the
dependence on m(-). As the GP kernel, we use the Matérn covariance function

) ; (6)

2

I-v x—x' v x—x
o () = (]
with degree v, lengthscale ¢, and T'(-) representing the gamma function, and K, the modified Bessel
function of the second kind. We use fix the degree of the Matérn kernel to v = 5/2 and choose the
lengthscale ¢ via 4-fold cross-validation (CV) from 10 log-uniformly spaced points in [0.001, 10].
We select the lengthscale that maximizes the 4-fold CV log marginal likelihood, averaged across
the n tasks. In Alg. 3, we give the full procedure of selecting the lengthscale and fitting GPs to the
meta-training tasks.

k(x,x';0,v) =

Algorithm 3 Fitting the GPs to the meta tasks

my

Input: n datasets {D; };"_, where D; = {(xi;, yi;)} 72,
Input: set of p Matérn lengthscale value candidates £ = {/; }§=1
Input: zero-mean GP prior P(f) = GP (f | ke (x,%x’)), specified by the Matérn kernel k; :

X xX =R
fori=1,...,ndo

{GP(f | ke,)iYi—y, {score; j}i_) = CVisoua(Di, P) // cross-validation on D;
J*=argmax;_; % >, score; ; // selecting the optimal kernel parameters

Output: n GP posteriors {GP(f | k),) Hieq

Interpolation with Bayesian Neural Networks. For MARS-BNN, in order to interpolate the
datasets, we use the Monte-Carlo dropout (MC-dropout) approach by Gal & Ghahramani (2016)
which trains neural networks with dropout and also uses dropout at inference/test time to generate
random forward passes through the network.

Consider a neural network with L layers. For each layer [, let us denote as IM; the (random) weight
matrix of dimensions K; x K;_;. MC-dropout samples these weight matrices by randomly dropping

17

TOWS:

M,; = W, - diag ([Zz,j]ﬁJ

z;; ~ Bernoulli (p;) forli=1,...,L,j=1,...,K;1
given some dropout probabilities p; and trained weight matrices W as variational parameters. We
write w = {Wl}lel for the set variational parameters. The binary variable z; ; = 0 corresponds to

neuron j in layer [being dropped. We can view these random weights IM; as samples from some
variational distribution with parameters w.

For every dataset D; we fit the respective MC-dropout BNNs to the dataset D;, resulting in a set of
variational parameters w;. This yields the posterior distribution 5(f*|X, w;) over function values
£X for arbitrary measurement sets X. Sampling from 5(fX|X,w;) corresponds to a random (i.e.,
with randomly dropped neurons) forward pass with inputs X. Analogously to (3) case, the score
matching loss modifies to

L(¢) :==Ex

1 & - 1 .
EZEﬁ(f‘iX\X,wi) [tr(V§3(s¢(f3(,X)) + 2||S¢>(fzx7X)||§H : (7N
i=1

In order to approximate the inner expectation in Eqn. (7), we sample one realisation of p(fX|X, w;)
per iteration by performing a random forward pass through the BNN. We fix the dropout probabilities
of all layers p; = ... = py, = p, across all datasets to a value p, which is a tunable hyperparameter.

In the experiments, we use an fully connected neural network with 3 hidden layers of size 32 each.
As the activation, we use the leaky-relu. To train each network is we minimize the MSE and with the
Adam optimizer with weight decay.. Weights and bias initialization are set to default initializations
by Haiku (Hennigan et al., 2020), i.e., truncated normal distiribution for the weights and constant
initialization for the biases.

We fix the number of epochs to 100. The hyper-parameters are selected from the following:

* learning rate: {le=2,1e73,1e™%, 5e73,5e 4}

* weight decay: {0.,1e72,1e73,1¢7%4 573 5e~4}
* batch size: {1, 2,4, 8, 16}

* dropout: {0.1,0.25,0.5, 0.7, 0.8}

Note that for Physionet dataset, as the datasets are varying and some have less than 16 data points,
if the selected batch size is 16 and the dataset contains less than 16 points, we select the full dataset.

A.5 CHOOSING THE MEASUREMENT DISTRIBUTION v

The measurement distribution should be supported on relevant parts of the domain X’ from which
we may see queries at test time. In our experiments, we choose v = U ()E) as uniform distribution
over the hypercube X C X C R which conservatively covers the data. In particular for each
dimension £ = 1,...,d we compute the minimum and maximum value that occurs in the meta-
training data, i.e.,

k

r(nn)l = min min .’L‘E) s (k) = max max LC()
- ,J T max 0,7
i=1,...,nj=1,....m; =1,...,nj=1,....m;

and expand the respective ranges by 20% on each side
k k
‘rl(ovs)/ - r(mr)l 0.2- ((k) - xr(ni1)1)7 l‘l(ng)h - xl(fa)x +0.2- (r(rf) xr(mr)l) .
We construct the hypercube X = {xl(:vz, x}(nlg)h} S X {xl(:va, :vl(ng)h} from the Cartesian product of
the expand ranges {:cl(f\z, xl(ng)h}

B META-LEARNING ENVIRONMENTS

In the following, we provide details on the meta-learning environments used in our experiments in
Section 6. We list the number of tasks and samples in each environment in Table 5.

18

| Sinusoid SwissFEL Physionet Berkeley Berkeley* Argus-Control
n 20 5 100 10 36 20
m; 8 200 4-24 30 288 500

Table 5: Number of tasks n and samples per task m; for the different meta-learning environments.

B.1 SINUSOIDS (SYNTHETIC ENVIRONMENT)

The sinusoid environment corresponds to a simple 1-dimensional regression problem with a sinu-
soidal structure. It is used for visualization purposes in Figure 1 and Figure 3a. Each task of the
sinusoid environment corresponds to a parametric function

fa,b,c,ﬁ(-r) :ﬁ*$+a*bln(15*(gj‘—b))+c, (8)

yielding a sum of affine and a sinusoid function. Tasks differ in the function parameters (a, b, ¢, 3)
that are sampled from the task environment 7 as follows:

a~UW0.7,1.3), b~N(0,0.1%), c~N(50,0.1%), B~N(05,02%. 9)

Figure 3a displays functions f, 1 .3 with parameters sampled according to (9). To draw training
samples from each task, we uniformly sample x from ¢/ (—5, 5) and add Gaussian noise with stan-
dard deviation 0.1 to the function values f(x):

r ~U(-5,5), Y~ N(fapes(x),01?). (10)

B.2 SwissFEL

Free-electron lasers (FELs) accelerate electrons to a very high speed to generate shortly pulsed laser
beams with wavelengths in the X-ray spectrum. The X-ray pulses from the accelerator can map
nanometer-scale structures, thus facilitating molecular biology and material science experiments.
The accelerator and the electron beam line of an FEL consist of multiple magnets and other ad-
justable components, which have several parameters that experts adjust in order to maximize the
pulse energy (Kirschner et al., 2019a). Due to different operational modes, parameter drift, and
changing (latent) conditions, the laser’s pulse energy function, in response to its parameters, changes
across time. As a result, optimizing the laser’s parameters is a recurrent task.

Meta-learning setup. The meta-learning environment represents different parameter optimization
runs (i.e., tasks) on SwissFEL, an 800-meter-long free electron laser located in Switzerland (Milne
et al., 2017). The input space is 12-dimensional and corresponds to the laser parameters, whereas
the regression target corresponds to the one-dimensional pulse energy. We refer to Kirschner et al.
(2019b) for details on the individual parameters. Each optimization run consists of roughly 2000
data points generated with online optimization methods, yielding non-i.i.d. data, which becomes
successively less diverse throughout the optimization. To avoid issues with highly dependent data
points, we take the first 400 data points per run and split them into training and test subsets of size
200. As we have a total of 9 runs (tasks) available, we use 5 of them for meta-training and the
remaining 4 for meta-testing.

B.3 PHYSIONET

In the context of the Physionet competition 2012, Silva et al. (2012) have published an open-access
dataset of patient stays in the intensive care unit (ICU). The dataset consists of measurements taken
during the patient stays, where up to 37 clinical variables are measured over the span of 48 hours,
yielding a time series of measurements. The intended task for the competition was the binary clas-
sification of patient mortality. However, the dataset is also often used for time series prediction
methods due to a large number of missing values (around 80 % across all features).

Meta-learning setup. To set up the meta-learning environment, we treat each patient as a separate
task and the different clinical variables as different environments. Out of the 37 variables, we picked
the Glasgow coma scale (GCS) and hematocrit value (HCT) as environments for our study since

19

RMSE

Calib. error

Full dataset

Partial dataset

Full dataset

Partial dataset

Vanilla GP 0.276 £0.000 0.258 £ 0.000 0.109 £ 0.000 0.119 + 0.000
Vanilla BNN 0.109 £ 0.004 0.151 £0.018 0.179 £0.002 0.206 & 0.025
MAML 0.045 £ 0.003 0.121 £ 0.027 / /

BMAML 0.073 £0.014 0.222 £0.032 0.161 £0.013 0.154 £ 0.021
NP 0.079 £0.014 0.173 £0.018 0.210 + 0.000 0.140 £ 0.035
MLAP 0.050 £0.034 0.348 £0.034 0.108 £ 0.024 0.183 £ 0.017
PACOH-NN 0.130 £ 0.009 0.160 £ 0.070 0.167 £0.005 0.223 + 0.012
MARS 0.093 £0.002 0.116 £ 0.024 0.140 £ 0.002 0.080 + 0.005

Table 6: Prediction accuracy and uncertainty calibration on full and partial Berkeley-Sensor dataset.
On the full dataset, MARS performance is less competitive due to the strong auto-correlation of the
data which is not taken into account in the BNN likelihood. On the partial dataset, which has less
dependency among the data points, MARS outperforms all other meta-learning methods.

they are among the most frequently measured variables in this dataset. From the dataset, we remove
all patients where less than four measurements of CGS (and HCT, respectively) are available. From
the remaining patients, we used 100 patients for meta-training and 500 patients for meta-validation
and meta-testing. Since the number of available measurements differs across patients, the number
of training points m,; ranges between 4 and 24.

B.4 BERKELEY-SENSOR

The Berkeley dataset contains data from 46 temperature sensors deployed in different locations at
the Intel Research lab in Berkeley (Madden, 2004). The temperature measurements are taken over
four days and sampled at 10-minute intervals. Each task corresponds to one of the 46 sensors and
requires auto-regressive prediction, particularly predicting the subsequent temperature measurement
given the last ten measurements.

Meta-learning setup. The Berkeley environment, as used in Rothfuss et al. (2021a), uses 36 sen-
sors (tasks) with data for the first two days for meta-training and the last 10 for meta-testing. The
meta-training and meta-testing are separated temporally and spatially since the data is non-i.i.d.
Data are abundant, and the measurements are taken at very close intervals. Thus, the features and
the train/context data points are strongly correlated, violating the i.i.d. assumption that underlies
our factorized Gaussian likelihood and Bayes rule in Section 3, causing the BNN to over-weight the
empirical evidence and making over-confident predictions. To alleviate this problem, we subsample
the data. In particular, we randomly select 10 out of the 36 training tasks, and instead of using all
measurements, we randomly sample 30 of them. This has two effects: First, it makes the data less
dependent/correlated and thus more compatible with our Bayesian formulation. Second, we increase
the epistemic uncertainty by using less data, making the calibration metrics more meaningful. The
results reported in Section 6 correspond to the sub-sampled data.

For completeness, we also report the results for the full dataset as in Rothfuss et al. (2021a) in Table
6. Other meta-learning baselines, such as MAML or MLAP, perform better than MARS on the full
dataset since they do not explicitly use the Bayes rule with i.i.d. assumption or weight the empirical
evidence less. Note that MARS performs worse due to the Bayesian inference at meta-test time
rather than our meta-learning approach. Accounting for the strong auto-correlation of the data in
the likelihood would most likely resolve the issue. On the sub-sampled environment, MARS again
performs best.

B.5 ARGUS-CONTROL

The final environment we use in our experiments is a robot case study. In particular, it aims at tuning
the controller of the Argus linear motion system by Schneeberger Linear Technology. The goal is
to choose the controller parameters so that the position error is minimal. In our setup, each task is a
regression problem where the goal is to predict the total variation (TV) of the robot’s position error

20

signal when controlled by a PID controller in simulation. The regression features are the three PID
controller gain parameter parameters.

Meta-learning setup. Overall, the environment consists of 24 tasks, of which 20 are used for
meta-training and the remaining 4 for meta-testing. Each task corresponds to a different step size for
the robot to move, ranging from 10um to 10mm. At different scales, the robot behaves differently
in response to the controller parameters, resulting in different target functions. This presents a good
environment for transferring similarities across different scales while leaving enough flexibility in
the prior to adjust to the target function at a step size.

C EXPERIMENTAL METHODOLOGY

In the following, we describe our experimental methodology used in Section 6.

C.1 OVERVIEW OF THE META-TRAINING AND META-TESTING PHASES

Evaluating the performance of a meta-learner consists of two phases, meta-training and meta-testing.
The latter phase, meta-testing, can be further split into farget training and target testing. In particu-
lar, for MARS the phases consist of the following:

* Meta-training: The meta-training datasets Dj-, are used to train the score estimator net-
work (see Algorithm 1).

* Target training: Equipped with knowledge about the underlying data-generation process,
i.e., the score network, we perform BNN inference on a new target task with a correspond-
ing context dataset D*. In particular, we run fSVGD with the score network as a swap-in
for the marginal scores of the stochastic process prior (see Algorithm 2). As a result, we
obtain a set of NN particles that approximates the BNN posterior in the function space.

* Target testing: Finally, we evaluate the approximate posterior predictions on a test set DF
corresponding to the same target task. In particular, we compute the residual mean squared
error (RMSE) and the calibration error as performance metrics. We describe the evaluation
metrics in more detail in Section C.2.

The target training and testing are performed independently with the meta-learned score network for
each test task. The metrics are reported as averages over the test tasks.

The entire meta-training and meta-testing procedure are repeated for five random seeds that influ-
ence the score network initialization, the sampling-based estimates in Algorithm 1 as well as the
initialization of the BNN particles for target training. The reported averages and standard deviations
are based on the results obtained for different seeds.

C.2 EVALUATION METRICS

During farget-testing, we evaluate the posterior predictions on a held-out test dataset DT . Among
the methods employed in Section 6, MARS, PACOH-NN, NPs, MLAP, Vanilla BNN and Vanilla
GP yield probabilistic predictions p(y'|zt, D*) for the test points T € D*. For instance, in the
case of MARS, PACOH-NN, and Vanilla BNN where the posterior is approximated by a set of
NN particles {61, ..., 01} and we use a Gaussian likelihood, the predictive distribution is an equally
weighted mixture of Gaussians:

L
p(y'f2", D) _Eg (' e, (), %) (1n

The respective mean prediction corresponds to the expectation of p, that is § =]E(y* |z*, D*). In
the case of MAML, only the mean prediction is available.

21

RMSE

GP-2D GP-3D TP-2D TP-3D
KEF 8.836 £ 0.000 6.625 +0.000 8.852+0.000 13.694 + 0.000
NKEF 4.322+£0.000 4.402 £0.000 5.936+0.000 8.402 £ 0.000
KEF-CG IMQ* 3.009 £ 0.000 5.197 £0.000 6.093 £ 0.000 5.473 £+ 0.000
KEF-CG RBF* 1.145 £ 0.000 2.237 £0.000 2.869 £ 0.000 4.370 & 0.000
v-method IMQ* 4.682 £ 0.000 9.171 £0.000 8.019 £0.000 10.81 &£ 0.000
v-method IMQp* 4.682 £0.000 9.171 £0.000 11.53 £0.000 5.872 &£ 0.000
v-method RBF* 1.718 £ 0.000 4.035+£0.000 4.278 £0.000 5.200 £ 0.000
SSGE 1.166 £ 0.000 1.989 £0.000 1.753 £0.000 4.822 4+ 0.000
Stein estimator 0.912 £0.000 4.058 £0.000 3.519£0.000 7.251 4 0.000
MARS network 0.664 = 0.179 1.375 £0.215 1.093 = 0.241 3.199 + 0.418

Table 7: RMSE between the true and predicted scores of two/three-dimensional marginal distribu-
tions of GP and TP with an RBF kernel and a sinusoidal mean function with a linear trend. MARS
score network significantly outperforms all nonparametric score estimators. Estimators with a * cor-
respond to curl-free estimators (Zhou et al., 2020) with either an IMQ or RBF kernel.

Evaluating prediction accuracy (RMSE) Based on the mean predictions, we compute the root-
mean-squared error (RMSE)

RMSE — (yt — E(yt|at, D*))2

el “2)

>

(zt,yt)eDt

which quantifies how accurate the mean predictions are.

Evaluating uncertainty calibration (Calibration error) In addition to the prediction accuracy,
we also assess the quality of the uncertainty estimates. For this purpose, we use the concept of
calibration, i.e., a probabilistic predictor is calibrated if the predicted probabilities are consistent
with the observed frequencies on unseen test data. We use a regression calibration error similar to
Kuleshov et al. (2018) in order to quantify how much the predicted probabilities deviate from the
empirical frequencies.

Let us denote the predictor’s cumulative density function (CDF) as F(y|x,D*) =
ffoo p(g|x, D*)dy, where p(g|x, D*)dy is the predictive posterior distribution. For confidence lev-
els0 < gp < ... < qm <1, we compute the corresponding empirical frequency
H?ﬂ | F(y | x,D) < an, (xF,yf) € DTH

| DT ’

an =

based on some test dataset D, If the predictions are calibrated, we expect that G, — g, as m — oo.
Following Kuleshov et al. (2018), we define the calibration error metric as a function of the residuals

dn — 4n:
LB
calib-err = T hg_l ldn — qn| -

Note that we report the average of absolute residuals |G, — gy |, rather than reporting the average of

squared residuals |G, — qh|2, as done by Kuleshov et al. (2018). This is done to preserve the units
and keep the calibration error easier to interpret. In our experiments, we compute the empirical
frequency using M = 20 equally spaced confidence levels between 0 and 1.

C.3 HYPER-PARAMETER SELECTION
For each of the meta-environments and algorithms, we ran a separate hyper-parameter search to se-

lect the hyper-parameters. In particular, we use 30 randomly sampled hyperparameter configurations
across five randomly selected seeds and select the best-performing one in terms of either RMSE or

22

Cosine similarity

GP-2D GP-3D TP-2D TP-3D
KEF 0.475£0.000 0.410+0.000 0.532 £0.000 0.485 % 0.000
NKEF 0.556 £0.000 0.434 +£0.000 0.384 £0.000 0.318 % 0.000
KEF-CG IMQ* 0.286 £0.000 0.308 £ 0.000 0.303 £ 0.000 0.538 % 0.000
KEF-CG RBF* 0.621 £0.000 0.457 £0.000 0.479 £0.000 0.428 £+ 0.000
v-method IMQ* 0.337 £0.000 0.286 +0.000 0.251 £0.000 0.384 % 0.000
v-method IMQp* 0.337 £ 0.000 0.286 + 0.000 0.374 +0.000 0.411 £ 0.000
v-method RBF* 0.809 £0.000 0.759 £0.000 0.628 £ 0.000 0.786 % 0.000
SSGE 0.943 £ 0.000 0.601 +0.000 0.661 £+ 0.000 0.521 £ 0.000
Stein estimator 0.778 £0.000 0.851 £ 0.000 0.626 £ 0.000 0.590 % 0.000
MARS network 0.956 = 0.110 0.889 + 0.048 0.737 = 0.097 0.706 + 0.061

Table 8: Cosine Similarity between the true and predicted scores of two/three-dimensional marginal
distributions of GP and TP with an RBF kernel and a sinusoidal mean function with a linear trend.
MARS score network performs competitively to nonparametric score estimators. Estimators with a
* correspond to curl-free estimators (Zhou et al., 2020) with either an IMQ or RBF kernel.

calibration error. For the reported results, we provide the chosen hyperparameters and detailed eval-
uation results in https://tinyurl.com/376wp8xe. The code scripts for reproducing the
experimental results are provided in our repository?.

D FURTHER EXPERIMENT RESULTS

We provide further empirical evidence for the proposed method. In particular, we showcase that:

1. Our parametric score matching approach performs favorably to many nonparametric score
estimators.

2. Regularization via spectral normalization does not hinder the flexibility of the network.

3. Sampling from the GP posteriors when training the score network successfully incorporates
epistemic uncertainty in areas of the domain where meta-training data is scarce.

D.1 PARAMETRIC VS NONPARAMETRIC SCORE ESTIMATION METHODS
We start by comparing the performance of MARS to that of several nonparametric score estimators,
described in Zhou et al. (2020).

Nonparametric score estimators. There are several theoretically motivated nonparametric score
estimation methods with well-understood properties and straightforward implementations. Their
simplicity and flexibility make them a popular choice (Coyle et al., 2020; Wang et al., 2019;
Deledalle et al., 2014). KEF (Canu & Smola, 2006) performs regularized score matching inside
a kernel exponential family; this can further be efficiently approximated by the Nystrdm method
(NKEF) (Sutherland et al., 2018). Liu et al. (2016); Chwialkowski et al. (2016) propose a Stein
estimator, and Shi et al. (2018) propose Spectral Stein Gradient Estimator (SSGE) by expanding the
score function in terms of the spectral eigenbasis. Together with iterative methods (the v-method
and Landweber iteration (Engl et al., 1996)), these approaches can be naturally unified through a reg-
ularized, nonparametric regression framework (Zhou et al., 2020), in which the conjugate-gradient
version of the KEF estimator is also proposed (KEF-CG). In our evaluations, we reports results for
curl-free sccore estimators with both an inverse multiquatric (IMQ) or RBF kernel.

MARS vs nonparametric estimators. To compare the performance of MARS to nonparametric
methods, we consider score estimation of marginal distributions of Gaussian Processes (GP) (Ras-
mussen, 2003) and Student’s-¢ processes (TP) (Shah et al., 2014). In both cases, as the stochastic

*https://github.com/krunolp/mars

23

https://tinyurl.com/376wp8xe

1.0

0.5

0.0

ViIn p(x)
ViIn p(x)
o
°

-0.5

-1.0 -L0

-10 -5 0 5 10

Figure 5: Predictions of the MARS score network, trained on 45 samples from Laplace (left) and
Student’s-¢ distribution (right). The network approximates the score functions sufficiently well,
showcasing that spectral normalization of linear layers does not hinder its flexibility.

process mean function, we use the sinusoidal mean function 2z + 5sin(2x), and for the covariance
kernel, we choose the radial basis function kernel, with the lengthscale parameter set to / = 1. We
use Tensorflow Probability’s (Dillon et al., 2017) implementation of both GP and TP and set all
other parameters to their default values.

We perform four experiments, the first two on estimating the marginal scores of a GP and the
last two on the TP. In all experiments, we sample one measurement set X containing either two
(X = {x1,22}) or three points (X = {z1,x2,z3}) of dimension one, i.e., x; € R,Vi. For all ex-
periments, the z; follow a uniform distribution: for the GP experiment, ; ~ U([—5,5]) , whereas
for the TP experiment, x; ~ U([—1,1]),Vi. In the experiments with measurement sets consist-
ing of two points, the score network and the nonparametric estimators are trained on 50 samples
from the corresponding two-dimensional marginal distributions. For the measurement sets of size
3, we train the score network and nonparametric estimators on 200 samples from the corresponding
three-dimensional marginal distribution. When evaluating the performance of MARS, we take the
average performance over five different seeds after training the network for 2000 iterations in the
two-dimensional marginal case and 5000 iterations in the three-dimensional case. We measure the
quality of the score estimates via the RMSE and cosine similarity between the estimates and true
scores. The corresponding evaluation results are reported in Tables 7-8.

The RMSE measures deviations of the estimated scores in both direction and magnitude of the
gradients. For the SVGD particle estimation, it is more important that the gradients in the vector
field point in the correct direction than having the correct magnitude. Thus, we also report the
cosine similarity, which only quantifies how well the directions in the estimated vector field match
the directions in the true vector field while neglecting errors in the score magnitude. As we can see
in Table 7 and 8, MARS consistently outperforms the nonparametric score estimators. Among the
nonparametric methods, SSGE performs best on average. Hence, we use SSGE in our ablation study
in Section 6.3.

D.2 FLEXIBILITY OF THE REGULARIZED NETWORK

Recall from section 5.3 that, in order to prevent overfitting, we perform spectral normalization of the
weights of the linear layers by re-parameterizing the weights by W := W /||W||. To investigate
whether this hinders the flexibility of the network’s outputs, we visually examine the network’s
predictions on the following two tasks, in which we estimate the scores of one-dimensional Laplace
and Student’s-¢ distribution.

In order to estimate a score V, log p(x) for some unknown distribution p(x) (rather than marginal
distribution scores Vgx In p(fX) for some unknown stochastic process p(f)), we use 45 samples
X = {#1,...,x45} from: (i) one-dimensional Student’s-t distribution with v = 5 degrees of
freedom, location parameter ;1 = 0, and scale parameter o = 1, and (ii) one-dimensional standard
Laplace distribution, i.e., with location parameter ; = 0 and scale parameter o = 1.

To perform distributional score estimation, we need to make a slight modification to the original
score network architecture; rather than concatenating input-output pairs (i.e., concatenating x; and
f(x;), as shown in Fig. 4), we use only the distributional samples as inputs. To be more precise,
at every iteration, we randomly select (without replacement) k = 8 inputs {z}, ..., z},} C X, which
we input to the score network. We train the network using the regularized score matching loss, i.e.,

24

perform spectral normalization of the layers. The network is trained for 2000 iterations, using a
learning rate of 0.001. For this experiment, we set the attention embedding dimension to 32, key size
to 16, and use 8 attention heads. The remaining hyperparameters are set according to Sec. A.3. The
respective predictions are displayed in Figure 5. We observe that the score network approximates
the score functions well and that the regularization does not hinder flexibility too much.

D.3 INCORPORATING UNCERTAINTY THROUGH GP INTERPOLATION

In addition to the ablation study performed in Section 6.3, we visually investigate the implications
of sampling functions from the GP posteriors during score matching. In particular, we do so using
the sinusoid environment, detailed in Appendix B.1.

Experiment setup. In this experiment, we sample 10 functions from the environment and evaluate
each function at five randomly selected inputs in the [—5, —2] U [2, 5] range. We investigate whether
the proposed GP interpolation method promotes uncertainty in the [—2, 2] part of the domain.

In order to do so, let us recall Algorithm 1, in which we learn the trained score network s4. The
algorithm first fits a GP to each of the n datasets D, ..., D,,. Then, at every step, the algorithm
jid . .
samples a measurement set X ~ v, and then, for every dataset D; (i.e., for every collection of
input/output pairs X7, yP), the algorithm samples function values from the GP posterior marginal:
£X ~ p(fX|X,XP,yP). We compare this approach to training the score network s, on the mean
predictions of the posterior marginal p(fX|X, XP,yP), i.e., where £ = 11, 4x|x xP). In order
to distinguish between the two approaches, we denote the score network trained on the posterior

marginal mean predictions with sg, and use f,)fi = Hp(ex|x,XP 4Py as a shorthand notation for the

mean predictions of the posterior marginals. Observe that, for measurement sets X close to X7,
the samples £X and £X; will be very similar, whereas when X is far from XP, the variability of

the samples f'ZX will be much larger. In the following, we showcase that this variability successfully
incorporates uncertainty about the areas of the domain X" with little or no data.

In order to compare the two approaches, we visually compare the overall framework when the

fSVGD network is trained with sg (the score network trained on f;z(i , the GP mean predictions),

and when it is trained with s (the score network trained on f'lx, the samples from the GP posterior
marginal), as performed in the original MARS algorithm.

Empirical findings. We plot the corresponding fSVGD-BNN (fBNN) predictions, trained using
the two score networks sg and sy. Both fBNNs are fitted to four points, where inputs z1, ..., x4 are
sampled uniformly from [—5, 5] (i.e., the whole input domain), and their functional evaluations are
obtained according to the sinusoid environment.

The results are visualized in Figure 6. The first two plots on the left in Figure 6 correspond to
posterior predictions of two randomly selected GPs fitted to the meta-tasks, where no task contains
information in the [—2, 2] input range. The middle plot corresponds to the fBNN network predic-
tions, where the network was trained using the fSVGD algorithm and the score network sg. The
last plot corresponds to the fBNN network predictions, where fBNN is trained using the fSVGD
algorithm and the score network s;. We observe a clear difference between the two approaches:
MARS (trained using s,) successfully incorporates the epistemic uncertainty in the [—2, 2] part of
the input domain into the fBNN posterior, yielding less confident predictions in the area where no
data was available during meta-training. In contrast, when we use GP posterior means instead of
samples when fitting the score network, the resulting BNN predictions entirely ignore the epistemic
uncertainty that arises due to the fact that we don’t know the function values in [—2, 2]. This may
lead to overconfident posterior predictions.

D.4 COMPARISON OF INTERPOLATION METHODS
So far, we have experimented with using GPs (MARS-GP) and MC-dropout BNNs as interpolators

(MARS-BNN) and sample random random function values from the corresponding posteriors when
training our score network. In the ablation study (performed in Sec. 6.3), we also experimented with

25

-~ true fun
— pred mean
iy

-~ true fun s
— pred mean
.,y -10

Figure 6: MARS prediction on samples from the sinusoid environment, with no data in the [—2, 2]
range. Left: posterior predictions of two randomly selected GPs fitted to the meta-tasks. Middle:
fBNN predictions, fitted using s’,, the score estimation network trained on GP mean predictions.
Right: fBNN predictions, fitted using sy, the score estimation network trained on samples from
the GPs. Training fBNN with s (by sampling from the GPs) successfully incorporates uncertainty
about the [—2, 2] part of the input domain.

| SwissFEL Physionet-GCS Physionet-HCT Berkeley-Sensor ~ Argus-Control
GP mean 0.471 £0.059 2994 +£0.363 5.995+ 1.108 1253 £0.112 0.073 £ 0.003
MARS-GP 0.391 £ 0.011 1.471 £0.083 2.309 & 0.041 0.116 + 0.024 0.013 £ 0.001
determ. NN 0.380 + 0.032 2.891 £0.042 2.530 4 0.049 0.306 + 0.068 0.017 £ 0.003
NN Ensemble | 0.423 +£0.031 1.539+0.074 2.281 £0.014 0.134 £0.045 0.015 + 0.001
MARS-BNN | 0.407 +£0.061 1.307 + 0.065 2.248 +£0.057 0.113 £ 0.015 0.017 £ 0.003

Table 9: Comparison of various interpolation methods in terms of the RMSE. Reported are the mean
and standard deviation across five seeds. MARS-BNN and MARS-GP perform the best.

using GP’s mean predictions rather than sampling from the GP posterior. Here, we provide empirical
analysis of using two further interpolation methods: (i) deterministic NNs, and (ii), ensembles of
NNs in our generic MARS pproach.

Both the deterministic NN and the NN ensemble interpolators are trained similarly to the MC-
dropout BNNSs, as described in Section A.4. For the NN ensembles, we choose the number of of
ensemble members as a hyper-parameter from {5, 10,20}. In case of the deterministic NN, we do
not perform any posterior sampling in (3) and just use the NN’s predictions as function values for the
score estimation. In case of the ensemble, we randomly sample the function values corresponding
to one ore multiple ensemble member. The number of function value samples from the ensemble
is chosen as hyper-parameter and selected from {1, 2, 3,4}. The results for employing MARS with
different interpolators are reported in Table 9-10. Not surprisingly, the not accounting for epistemic
uncertainty (i.e., GP mean and deterministic NN) performs much worse in the majority of environ-
ments, in particular, w.r.t. the calibration error. Among the neural network based interpolators, the
MC-dropout BNNs consistently perform the best. This is why suggest their usage and evaluate them
in the main part of the paper.

\ SwissFEL Physionet-GCS Physionet-HCT Berkeley-Sensor ~ Argus-Control
GP mean 0.204 £0.013 0.225 £0.021 0.237 £0.018 0.141 £0.029 0.216 + 0.066
MARS-GP 0.035 £ 0.002 0.263 +£0.001 0.136 + 0.007 0.080 £ 0.005 0.055 £ 0.002
determ. NN 0.070 £0.025 0.249 + 0.014 0.233 £ 0.016 0.112 £0.022 0.088 £ 0.028
NN Ensemble | 0.081 +=0.010 0.238 £ 0.018 0.248 + 0.021 0.129 +£0.028 0.118 +0.014
MARS-BNN | 0.054 £0.009 0.268 + 0.023 0.231 £ 0.029 0.078 £ 0.020 0.076 £ 0.031

Table 10: Comparison of various interpolation methods in terms of the calibration error. Reported
are the mean and standard deviation across five seeds. MARS-GP performs best, with MARS-BNN
second best performing.

26

	Introduction
	Related Work
	Background
	Meta-Learning as Score Estimation in the Function Space
	Problem Statement: Meta-Learning
	Shortcomings of Meta-Learning Priors in the Parameter Space
	 Meta-Learning as Score Estimation on the Data-Generating Process

	The MARS meta-learning algorithm
	Parametric Score Matching for Stochastic Process Marginals
	Interpolating the Datasets across X
	Preventing Meta-Overfitting of the Prior Score Network
	The full MARS algorithm

	Experiments
	Experiment Setup
	Empirical Benchmark Study
	Ablation Study

	Conclusion
	MARS implementation details
	fSVGD inference
	Bias initialization
	Score estimation network
	Interpolating the datasets across X
	Choosing the measurement distribution

	Meta-Learning Environments
	Sinusoids (Synthetic Environment)
	SwissFEL
	PhysioNet
	Berkeley-Sensor
	Argus-Control

	Experimental methodology
	Overview of the meta-training and meta-testing phases
	Evaluation metrics
	Hyper-Parameter Selection

	Further Experiment Results
	Parametric vs Nonparametric Score Estimation Methods
	Flexibility of the regularized network
	Incorporating uncertainty through GP interpolation
	Comparison of Interpolation Methods

