
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VINOGROUND: TODAY’S LMMS DON’T UNDERSTAND
SHORT COUNTERFACTUAL VIDEOS
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Paper under double-blind review

Positive: Moonwalk from left to right.

Negative: Moonwalk from right to left.

Figure 1: (Left) An example data point from the spatial category. Both videos last less than 10
seconds. Each data point contains two pairs of video-caption pairs counterfactual to each other.
(Right) Models perform significantly poorer than humans, performing better on the text score metric
than on the video score metric, as defined in Section 4.1.

ABSTRACT

There has been growing sentiment recently that modern large multimodal models
(LMMs) have addressed most of the key challenges related to short video com-
prehension. As a result, both academia and industry are gradually shifting their
attention towards the more complex challenges posed by understanding long-form
videos. However, is this really the case? Our studies indicate that LMMs still lack
many fundamental reasoning capabilities even when dealing with short videos.
We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark
encompassing 1000 short and natural video-caption pairs. We demonstrate that
existing LMMs severely struggle to distinguish temporal differences between differ-
ent actions and object transformations. For example, the best model o3 only obtains
∼50% on our group score metric, showing a large gap compared to the human
baseline of ∼90%. All open-source multimodal models and CLIP-based models
perform much worse, producing mostly random chance performance. Through
this work, we shed light onto the fact that temporal reasoning in short videos is a
problem yet to be fully solved. We will publicly share our benchmark.

1 INTRODUCTION

Large multimodal models (LMMs) have become very competitive in not only image comprehension
but also short video comprehension. Proprietary models such as o3 (OpenAI, 2025a), GPT-4.1 (Ope-
nAI, 2025b) and Gemini-2.5-Pro (Gemini Team, 2025) as well as open-source models like Qwen2.5-
VL-72B (Bai et al., 2025) and InternVL3-78B (Zhu et al., 2025) demonstrate strong performance in
summarizing a short video’s contents and answering questions regarding its details. Recent SoTA rea-
soning models such as o3 and Gemini-2.5-Pro show powerful multimodal reasoning capabilities over
images and videos alike. This has led many researchers to believe that short video comprehension has
mostly been solved, and consequently, the community’s focus has been increasingly trending toward
creating models that understand longer-form videos that are 10s of seconds or even minutes long.
Our study, however, indicates that existing models are far from being capable of fully understanding
short videos that are just a few seconds long, especially when there is dense temporal information.
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As demonstrated in Wu (2024) and Mangalam et al. (2023), for many existing video benchmarks like
EgoSchema (Mangalam et al., 2023), ActivityNet-QA (Yu et al., 2019), MSVD and MSRVTT (Xu
et al., 2017), the performance of most modern LMMs does not vary significantly with number of
sampled frames. In fact, it is often the case that an LMM only needs to see a single frame to produce a
correct response. This ‘single-frame bias’ (Lei et al., 2023) reduces the video comprehension problem
into the much easier image comprehension problem, essentially discarding the temporal aspect of a
video. Researchers have also proposed harder temporal counterfactual benchmarks (Li et al., 2024c;
Wang et al., 2023; Mangalam et al., 2023; Saravanan et al., 2024; Liu et al., 2024b; Shangguan et al.,
2025; Hong et al., 2025) in order to better evaluate an LMM’s temporal understanding capabilities.
Existing counterfactual datasets test a model’s ability to distinguish slight changes from a video’s
original (positive) caption to the new (negative) caption by asking the model to match the video with
the correct caption. However, they either do not contain any negative videos corresponding to the
negative caption, or simply swap the order of two unrelated videos to form the positive and negative
videos, making it easy to distinguish the negative pair from the original positive pair due to the videos’
unnaturalness. Hence, these benchmarks may be inflating the performances of modern LMMs in
understanding short videos.

In this paper, we introduce Vinoground, a temporal counterfactual LMM evaluation benchmark
composed of 1000 short and natural video-caption pairs. Vinoground is a challenging benchmark
aimed to expose the incapabilities of state-of-the-art models in understanding temporal differences
between different actions (e.g., “the man eats then watches TV” vs. “the man watches TV then
eats”) and object transformations (e.g., “water turning into ice” vs. “ice turning into water”). In
each pair of captions, the positive and negative are the same in word composition but different in
order. Our work is inspired by Winoground (Thrush et al., 2022), a challenging counterfactual
benchmark for visio-linguistic compositional reasoning in images. In Winoground, a model must
correctly match two images with their corresponding captions, where both captions use the same
set of words, but are rearranged to describe each image (e.g., “some plants surrounding a lightbulb”
vs. “a lightbulb surrounding some plants”). This evaluates whether a model effectively encodes the
text and images, paying attention to their compositional structures, and whether it can integrate and
synthesize information across both modalities. Our benchmark’s name changes the ‘W’ to a ‘V’ for
“video”, and further employs temporal counterfactuals to emphasize this unique element in video
data. We use text score, video score, and group score to evaluate a model’s ability to choose the right
caption for a video, to choose the right video for a caption, and to match both positive and negative
video-caption pairs correctly, respectively. These measure a model’s textual, visual, and temporal
reasoning capabilities in a balanced manner. Most of our videos are less than 10 seconds long, yet we
find a very large performance gap between an average human and today’s best models. An example
can be found in Figure 1. We purposely focus on short videos as they efficiently expose deficiencies
in temporal reasoning without the cost of long video curation and evaluation. Additionally, they
prevent failures from being misattributed to limited context windows to process long videos rather
than poor temporal understanding. If LMMs cannot handle short videos, tackling long ones is futile.

In sum, our main findings and contributions are:

• Existing benchmarks fail to fully expose LMMs’ incapability in temporal reasoning.
• We introduce Vinoground, the first temporal and natural counterfactual evaluation benchmark for

evaluating video understanding models using only short videos.
• Modern SoTA LMM performance is subpar when it comes to temporal reasoning in short video

comprehension tasks; most models perform at random-chance level on video score and even worse
on group score, both being significantly lower than text score.

• We categorize our data into 3 major categories, ‘object’, ‘action’, and ‘viewpoint’, as well as 4 minor
categories, ‘interaction’, ‘cyclical’, ‘spatial’, and ‘contextual’, in order to dissect each model’s
capabilities for each of these categories. We find that existing models are decent at analyzing video
frames at coarse-level but tend to miss fine-grained details.

• Short video comprehension is a problem that is far from being solved.
• Finally, Vinoground is comparable in scale to previous influential benchmark-only efforts like

Winoground (Thrush et al., 2022) but demonstrably more challenging. Our benchmark is specif-
ically designed for evaluation, and thus does not include training data. We believe Vinoground
will provide a solid foundation for future research to develop and test better models facilitated by
Vinoground’s design philosophy and methodological rigor as demonstrated in Appendix N.
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2 RELATED WORK

Counterfactual Reasoning. Counterfactual reasoning (Morgan & Winship, 2015) in the context
of computer vision typically involves curating negative images and captions by manipulating the
original data and observing how the outcome changes (Hendricks et al., 2018; Yeh et al., 2019; Goyal
et al., 2019; Verma et al., 2020; Guo et al., 2023; Zhang et al., 2021; Thrush et al., 2022; Le et al.,
2023; Zhang et al., 2024a). The idea is that a model should understand cause and effect and be able
to make predictions in unseen situations. For evaluation, curating meaningful and hard negatives is
important. Winoground (Thrush et al., 2022) is a pioneering benchmark for counterfactual reasoning
where each data point contains two images and two corresponding captions. Given an image, a
vision-language model is asked to find the matching caption from the provided two options, and
vice versa. COCO-Counterfactual (Le et al., 2023) explores simple linguistic rules to generate
negative captions and uses an image editing model to produce negative images. We introduce a
novel benchmark with counterfactuals that are temporal, an attribute specific to the video modality.

Figure 2: The performances of Qwen2-VL-72B on
Vinoground and other temporal benchmarks. We can see
that Vinoground is the most challenging benchmark.

Single-Frame Bias and Temporal Reasoning.
An important aspect of video data is its tem-
porality, i.e., how events change as time pro-
gresses. Modern LMMs sample frames and
treat the video as a set of images, both during
training and evaluation. Benchmarks such as
EgoSchema (Mangalam et al., 2023), MSVD
and MSRVTT (Xu et al., 2017) exhibit a ‘single-
frame bias’ (Lei et al., 2023) where only one
video frame is needed for a model to predict cor-
rectly, as a model’s performance does not vary
significantly as the number of frames sampled
increases (Wu, 2024; Mangalam et al., 2023).
To better evaluate a model’s temporal under-
standing capabilities, researchers have devel-

oped datasets such as YouCook2 (Zhou et al., 2018), ActivityNet-QA (Yu et al., 2019) and COIN (Lin
et al., 2022), which mainly involve procedural activities that often have a specific temporal depen-
dency (e.g., if a video shows a person washing and slicing apples, and then baking an apple pie, a
model would easily predict that “bake it to make a pie before washing the apple” is a wrong caption
even without looking at the video). In contrast, Vinoground also includes actions that are entirely un-
related, such as “people are talking before drinking” vs “people are drinking before talking”, making
it more challenging for models to infer answers based solely on textual cues. MVBench (Li et al.,
2024b) also includes temporal data that involves 20 different subcategories of temporal reasoning.
However, even with this coverage, it does not contain any negatives like ours, reducing their difficulty
since they do not contain any counterfactual examples. Beyond the absence of negative videos,
NExT-QA (Xiao et al., 2021), ACQUIRED (Wu et al., 2023), and Causal-VidQA (Li et al., 2022)
include temporally rich questions but mixes event inference (e.g. “what-if” questions) with temporal
reasoning. In contrast, Vinoground isolates pure temporal reasoning by presenting events e.g., A and
B explicitly and asking about their order—removing confounding factors like causality or inference.

Table 1: Comparison between Vinoground and other tempo-
ral datasets. Ours is the only one possessing natural negative
videos that are counterfactual and mostly shorter than 10s.

Negative Counter- Short Natural
Dataset Videos factual (Avg ≤10s) Videos

Paxion ✓ ✓ ✗ ✗
NExT-QA ✗ ✓ ✗ ✓
MVBench ✗ ✗ ✗ ✓

EgoSchema ✗ ✓ ✗ ✓
VITATECS ✗ ✓ ✗ ✓
VELOCITI ✓ ✗ ✓ ✓

TempCompass ✓ ✓ ✗ ✗
TOMATO ✗ ✓ ✓ ✗

MotionBench ✗ ✗ ✓ ✓
Vinoground (Ours) ✓ ✓ ✓ ✓

Temporal Counterfactuals. Recent
benchmarks combine counterfactuals with
temporal reasoning. EgoSchema (Man-
galam et al., 2023) introduces long-form
videos where each video has 1 positive cap-
tion and 4 negative captions to choose from,
while VITATECS (Li et al., 2024c) intro-
duces temporal counterfactual data where
a word or phrase is swapped/replaced from
the positive caption to form the negative
caption. However, neither has any negative
videos and thus do not fully evaluate an
LMM’s dense temporal reasoning capabil-
ities like we do. VELOCITI (Saravanan
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et al., 2024) introduces positive/negative videos as a part of their intra-video association benchmark
by clipping random portions in the same video, and asking the model to distinguish between the
events. These videos, however, are not truly counterfactual pairs as different clips within the same
movie are not guaranteed to have a positive-negative relation. TempCompass (Liu et al., 2024b)
includes videos that tests a model’s ability to differentiate the order of events, but the videos are
either concatenations of two completely unrelated videos with drastic frame changes in between the
events, or reversed in time and thus impossible to happen in real life, and do not belong to the true
data distribution. LMMs tend to do much better when it comes to such videos when compared to our
benchmark’s more natural negative videos, as shown in Fig. 2.

Similar to TempCompass, Paxion (Wang et al., 2023) uses reversed videos and caption edits (e.g.,
word swaps), which are often synthetically unnatural and detectable by models. Also, Paxion’s pertur-
bations are limited to captions, whereas Vinoground includes true negative videos, further increasing
task difficulty. TOMATO (Shangguan et al., 2025) also partially incorporates generated/edited videos
that are unnatural and do not have any negative videos. MotionBench (Hong et al., 2025), similarly,
only uses positive videos. We summarize the comparisons between other temporal benchmarks and
Vinoground in Table 1, demonstrating how Vinoground is the only benchmark unifying the four
qualities, making it the most novel temporal reasoning benchmark. We provide further explanation of
how Vinoground eliminates the confounder of static, atemporal reasoning in Appendix N.1.

3 VINOGROUND

In this section, we introduce our data curation and categorization process. In order to curate
Vinoground’s video-caption pairs, we first explain how we generate the required captions in Sec-
tion 3.1, how we find the corresponding videos in Section 3.2, and finally the details of categorizing
the videos in Section 3.3. An illustration of the overall process can be found in Appendix A.

3.1 GENERATING COUNTERFACTUAL CAPTIONS

The first step in curating our data is to find counterfactual caption pairs. We want to ensure that the
captions we curate are of high-quality and temporal in nature. While human annotation is a possible
solution, it is costly and difficult to scale up. Instead, we leverage a SoTA LLM, specifically the
GPT-4 (OpenAI, 2024b) model, as it is much cheaper, follows the multiple requirements we impose,
and guarantees that there are no duplicate candidates. We require our caption pairs to be composed of
the exact same words, only permuted into different orders. We also want to avoid candidates that
could easily be solved by looking at a single frame of the video such as “a man is waving at a woman”
vs. “a woman is waving at a man”. Hence, we ask GPT-4 to create temporal counterfactuals that
require one to process and understand the entire video, and in particular, understand the order of
events in which they happen, such as “a man waves at a woman before he talks to her” vs. “a man
talks to a woman before he waves at her”. We will later showcase in Section 4.3 that we can already
expose LMMs greatly with such videos (i.e., by swapping the order of two events), making more
complicated scenarios unnecessary. We include the detailed prompt fed to GPT-4 in Appendix E.

3.2 VIDEO CURATION

After curating counterfactual caption candidates, we gather corresponding videos for those captions.
We utilize the VATEX (Wang et al., 2019) dataset, which contains 5 distinct captions for each
maximum 10-second long video. We only use the val and test subsets of VATEX to make sure none
of Vinoground is ever used as training data. This results in a pool of 9000 videos and 45000 captions.

We retrieve potential matches in VATEX according to the generated caption candidates. We leverage
sentence transformers (Song et al., 2020), which are good at summarizing sentence-level information
into feature vectors, to extract the features of both our GPT-generated captions and VATEX’s captions.
We subsequently use the Faiss library (Douze et al., 2024) to efficiently index and retrieve the
top 20 most similar VATEX captions for each GPT-4 generated caption. We manually examine if
any retrieved caption is a good match, and if its corresponding video reflects the caption as well.
The primary criterion during manual review is straightforward: Does the caption accurately and
unambiguously describe the video content? While this process does involve some degree of semantic
judgment—as is inevitable in aligning language and vision—we mitigate subjectivity by (1) cross-
validating questionable cases, and (2) filtering out ambiguous matches. We also ensure that only

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

caption/video pairs where multiple authors independently agree are retained. The quality of the
dataset yielded under this process can be justified by our human performance (Table 3). For some
cases where none of the retrieved captions are a good match, we search YouTube with the caption
candidate to find a matching video.

In the end, we curate 500 counterfactual pairs of video-caption pairs (1000 video-caption pairs in
total) for evaluation. Each video-caption pair is provided in the form of the original YouTube ID,
the clip’s starting and ending timestamps, and the corresponding caption. We also put Vinoground
through 3 rounds of human evaluation by the authors, making sure that the pair of captions truly
contain the same word composition and that the video clips indeed reflect their respective captions.

3.3 CATEGORIZATION

Table 2: The number of data points in Vinoground assigned
under each category, separated by major and minor groups.
All 500 pairs have one and only one major category assigned
to them, while minor category assignments are content-based.

Major Object Action Viewpoint Total

Count 160 257 83 500

Minor Interaction Cyclical Spatial Contextual

Count 73 111 103 63

Finally, we want to be able to evaluate
LMMs in a fine-grained manner on mul-
tiple aspects represented by our dataset.
Hence, we categorize Vinoground accord-
ing to the unique characteristics discovered
through the data curation process. We re-
port the number of counterfactual data pairs
assigned under each category in Table 2.
We define each category as follows.

We divide Vinoground into 3 major cate-
gories: object, action, and viewpoint. Each counterfactual pair must be in one and only one of the
three major categories.

• Object requires LMMs to detect changes in the status of one specific object, such as “water
turning into ice” vs. “ice turning into water.” This category is similar to the “Reversing” category in
TempCompass (Liu et al., 2024b) that evaluates a model’s ability to detect attribute and directional
changes. While TempCompass reverses positive videos in time to create negatives and thus can be
unnatural, we curate real, natural videos that correspond to the negative captions.

• Action, on the other hand, simply asks models to distinguish the order in which two or more
different actions happened, e.g. “the man eats and then watches TV” vs. “the man watches TV and
then eats.” The two actions need not be correlated at all, and thus less logical comprehension is
necessary for a correct prediction.

• Viewpoint specifically describes changes in the camera angle, perspective, or focus within the
video, such as “a person films the car in front of him before he films himself” vs. “a person films
himself before he films the car in front of him.” The change in viewpoint is usually accompanied
by a drastic difference in between the frames, whereas other events most likely happen within the
same context or background.

We also introduce 4 minor categories: interaction, cyclical, spatial, and contextual. Some pairs
belong to a multitude of these minor categories, while some do not belong to any.

• Interaction involves videos where a human changes their way of interacting with an object in the
course of the video, e.g. “the calligrapher writes with his pen before he dips it into the ink” vs. “the
calligrapher dips his pen into the ink before he writes with it.”

• Cyclical tests a model’s ability to identify either procedural temporal activities or two actions that
are dependent on each other. The calligrapher example earlier is also cyclical as the person repeats
the procedure “write, dip, write, dip...”, and the action “dip” happens as a result of “write” in the
positive, while “write” is enabled after “dip” in the negative. In contrast, the “action” category can
involve completely unrelated actions.

• Spatial It has been shown that LMMs struggle to distinguish physical locations between objects
in image-caption pairs (Zhang et al., 2024a). We want to further evaluate this deficiency when
it comes to temporal understanding as well. Thus, this category involves object movements and
requires positional understanding, such as “the man ran from left to right” vs. “the man ran from
right to left.” Note that this does not include movement of the background; e.g., when the camera is
moving along with the object in question, which belongs to the next category.

• Contextual requires LMMs to understand changes in the background or general information of
entire video frames. An example is the pair “the biker rides down the street before he goes down
the stairs” vs. “the biker goes down the stairs before he rides down the street” where the camera that
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records the videos is strapped on the biker’s forehead, making the background the only changing
aspect. One cannot infer positional changes only by observing object movements like the “spatial”
category, but instead must focus on the background as the object in question can appear motionless
due to the camera moving along with the object.

We provide in-depth analysis of models’ performances on our benchmark based on the above
categories in Section 4.4.2. A detailed teaser can be found in Appendix M.

4 EXPERIMENTS

In this section, we evaluate state-of-the-art vision-language models on our benchmark. We first
describe the models and evaluation metrics in Section 4.1; then we explain our experimental setup,
including prompting methods and human studies, in Section 4.2; we analyze the performances of the
models in Section 4.3, and provide further ablation studies in Section 4.4.

4.1 MODELS AND EVALUATION METRICS

We evaluate both CLIP-based (Radford et al., 2021) and large generative models, both proprietary and
open-source. The exact list of models we evaluate can be found in Table 3. CLIP-based models use
contrastive learning between videos and captions, while text-generation LMM models use next-token
prediction to generate a response. Due to the different nature of the CLIP-based vs. LMM methods,
we introduce our metrics in different fashions accordingly.

We use C to denote captions and V to denote videos. For each positive and negative set of counterfac-
tual video-caption pairs, (Ci, Vi) and (C ′

i, V
′
i ), ∀i ∈ {1, 2, ..., 500}, we ask CLIP-based models to

compute a similarity score e between not only the correct pairs but also the incorrect pairs (Ci, V
′
i ) and

(C ′
i, Vi) (identical to Winoground (Thrush et al., 2022)). For generative LMMs, we can only provide

inputs (e.g., 2 captions and 1 video) to the model and ask it to choose between the captions/videos.

We first evaluate the text score st where the model is presented with both positive and neg-
ative captions but only one of the videos, forming the triplets (Ci, C

′
i, Vi) and (Ci, C

′
i, V

′
i ).

For each triplet, the model is then asked to choose the caption that describes the contained
video. We denote the score function of a model response given any triplet as s; for instance,

s(Ci, C
′
i, Vi) =


1 if LMM chooses Ci or

e(Ci,Vi)
> e(C′

i
,Vi)

for CLIP-based

0 otherwise

s(Ci, C
′
i, V

′
i ) =


1 if LMM chooses C′

i or
e(C′

i
,V ′

i
) > e(Ci,V

′
i
) for CLIP-based

0 otherwise

Then the text score for the given counterfactual pair (Ci, Vi) and (C ′
i, V

′
i ) is:

st(Ci, C
′
i, Vi, V

′
i ) = s(Ci, C

′
i, Vi) ∧ s(Ci, C

′
i, V

′
i )

where ∧ is the logical and operator; i.e., st is 1 only if both triplets are correct. This exposes the
models when they guess randomly.

Similarly, for video score sv, the model is presented with one caption and both positive and neg-
ative videos, forming triplets (Ci, Vi, V

′
i ) and (C ′

i, Vi, V
′
i ). For each triplet, the model is asked

to choose the video that is described by the caption. In this case, the response scoring becomes:

s(Ci, Vi, V
′
i ) =


1 if LMM chooses Vi or

e(Ci,Vi)
> e(Ci,V

′
i
) for CLIP-based

0 otherwise

s(C
′
i, Vi, V

′
i ) =


1 if LMM chooses V ′

i or
e(C′

i
,V ′

i
) > e(Ci,V

′
i
) for CLIP-based

0 otherwise

Then the video score is:

sv(Ci, C
′
i, Vi, V

′
i ) = s(Ci, Vi, V

′
i ) ∧ s(C ′

i, Vi, V
′
i )

We also include a group score metric sg:

sg(Ci, C
′
i, Vi, V

′
i ) = st(Ci, C

′
i, Vi, V

′
i ) ∧ sv(Ci, C

′
i, Vi, V

′
i )

sg serves as the ultimate test for a model to demonstrate its temporal reasoning capabilities in both
the textual and visual domains, as both st and sv must be 1. For all three metrics, we report the mean
over all test instances. We include an illustration of the metrics in Appendix B.
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4.2 EXPERIMENTAL SETUP

Since for each pair of counterfactuals, we have 2 text-score questions and 2 video-score questions, we
have 2000 questions in total. To evaluate CLIP-based models, we use the evaluation code provided by
the authors to calculate video-caption embeddings and similarity scores. Evaluating text-generative
models is slightly more complicated. We first introduce the different prompts we use. For text score,
we provide the model with the video and the two corresponding captions, and prompt “⟨video⟩ Which
caption best describes this video? A. {Caption 1}, B. {Caption 2}”. For video score, however, since
some LMMs only support 1 video input, we concatenate the positive and negative videos into a single
video with a 2 second black screen in between, easily identifiable by evaluated models.

Table 3: Results for different models and number of
sampled frames. Performances significantly better than
random chance are bolded. There are four groups sepa-
rated by double lines: random chance and human perfor-
mance, proprietary text-generative models, open-source
text-generative models, and CLIP-based models from
top to bottom. The best performances of proprietary and
open-source models are highlighted in red.

Model # Fr st sv sg

Random Chance N/A 25.0 25.0 16.7

Prolific Human All 93.4 94.0 90.0
32 91.4 90.8 85.2

Proprietary Large Multimodal Models

o3 (OpenAI, 2025a) 32 72.8 72.2 56.6
GPT-4.1 (OpenAI, 2025b) 32 69.1 48.6 38.5
o4-mini (OpenAI, 2025a) 32 58.2 40.9 28.5
GPT-4o (CoT) 32 59.2 51.0 35.0
GPT-4o (OpenAI, 2024a) 32 54.0 38.2 24.6
GPT-4o 0 10.0 24.6 2.0
Gemini-2.5-Pro (Gemini Team, 2025) 1fps 65.0 62.4 49.0
Gemini-2.5-Flash (Gemini Team, 2025) 1fps 60.0 54.2 41.8

Open-Source Large Multimodal Models

InternVL3-78B (Zhu et al., 2025) 32 66.2 48.8 36.2
InternVL3-8B (Zhu et al., 2025) 32 48.0 28.2 14.6
Qwen2.5-VL-72B (Bai et al., 2025) 32 59.4 41.0 29.6
Qwen2.5VL-7B (Bai et al., 2025) 32 47.6 34.4 19.2
InternVL2.5-78B (Chen et al., 2025) 32 58.0 40.6 27.6
InternVL2.5-8B (Chen et al., 2025) 32 46.6 28.2 14.4
Qwen2-VL-72B (CoT) 32 53.0 26.6 15.2
Qwen2-VL-72B (Wang et al., 2024) 32 50.4 32.6 17.4
LLaVA-Video-72B (Zhang et al., 2024c) 64 49.2 34.0 20.2
LLaVA-Video-7B (Zhang et al., 2024c) 64 42.4 30.0 17.0
VideoLLaMA3 (Zhang et al., 2025) 16 47.4 30.4 15.6
Apollo-7B (Zohar et al., 2024) 4 43.8 30.2 17.2
VideoLLaMA2-72B (Cheng et al., 2024) 8 36.2 21.6 8.4
MiniCPM-2.6 (Yao et al., 2024) 16 32.6 29.2 11.2
Aria (Li et al., 2025) 32 34.8 28.8 12.0
InternLM-XC-2.5 (CoT) 1fps 30.8 28.4 9.0
InternLM-XC-2.5 (Zhang et al., 2024b) 1fps 28.8 27.8 9.6
Video-LLaVA-7B (Lin et al., 2024) 8 24.8 25.8 6.6
LLaVA-NeXT-34B (CoT) 32 25.8 22.2 5.2
LLaVA-NeXT-34B (Liu et al., 2024a) 32 23.0 21.2 3.8

CLIP-based Models

VideoCLIP (Xu et al., 2021) 60 17.0 2.8 1.2
LanguageBind (Zhu et al., 2024) 8 10.6 5.0 1.2
ImageBind (Girdhar et al., 2023) 20 9.4 3.4 0.6

When sampling N frames, we make sure we
sample (N − 1)/2 frames from the positive and
negative video fragments and at least 1 frame
of black screen in between. More details can
be seen in Appendix L. For the sake of con-
sistency, we provide all models with the con-
catenated video, regardless of how many videos
they can actually take as input. We then prompt
the model with “⟨video⟩ Which video segment
matches this caption? Note: The video contains
two segments separated by a 2-second black
frame. Caption: {Caption}. A. First segment
(before black frame), B. Second segment (af-
ter black frame)” to choose between the two
video segments. For text score, we shuffle the
caption orders so that both answer choices “A”
and “B” have 50% probability as ground truths.
For video score, we concatenate videos in ran-
dom orders while also making sure both answer
choices appear evenly. We also report the results
with respect to the number of frames sampled by
the model from the video, if supported, to eval-
uate the effect of temporality in Section 4.4.1.
All experiments are done with 4xA100-80GBs.

In addition, we use Prolific (https://www.
prolific.com) to evaluate human perfor-
mance and find that our dataset is fairly easy
for an average human to complete with high
accuracy. Prolific is a platform similar to Ama-
zon MTurk which recruits workers to complete
tasks such as data annotation. The interface we
present to the workers is in Appendix H. To filter
out unfaithful workers, we first employ a qual-
ification process by sampling 10 video-question
pairs from TempCompass (Liu et al., 2024b) that
are of the event order category, which contains
concatenated videos with no correlation, such as
“a man lifts weights in a gym, then a cat plays on
the grass”. Such examples are easy enough for
an average human to obtain 100% accuracy. We
ask the workers the 10 beginner-level questions
first, and they are qualified only if they answer every question correctly. This process results in 170
qualified workers (demographics included in Appendix H).

We conduct human evaluation under two settings. First, the Prolific workers are provided the full
videos with audio. We want to create another environment where the workers see the same input as
the models. Hence, we uniformly sample 32 frames from each video and concatenate them into a new
10-second video with no audio. The results for the two settings are also compared in Section 4.4.1.
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Each question is answered by 10 unique workers. For the 10 answers from a single question, we
calculate the average human response by taking the mode of the 10 answers. We then report the
mean over all the questions as the final result.

4.3 MAIN RESULTS

Table 3 presents the results. (Appendix K presents more detailed results, as we only include
each model’s best performances here.) First, all CLIP-based models (VideoCLIP, LanguageBind,
ImageBind) perform much worse than random chance, suggesting that contrastive learning does not
provide models with enough knowledge of temporality. Among text-generative models, o3 performs
best, achieving 56.6% on the group score metric. Reasoning models or the use of Chain-of-Thought
(CoT) prompting (Wei et al., 2022) further outperforms the performance of non-reasoning models,
especially for GPT-4o where on the video score metric it improves by 12.8% and 10.4% on group
score. We include the full CoT prompt and parsing process in Appendix F. Amongst the open-
source models, InternVL3-78B performs best, matching the scores of closed-source model GPT-4.1,
achieving third best amongst all evaluated models. Using CoT on open-source models, however,
helps much less, especially if they perform at near chance level. Given the fact that many models
perform at or worse than random chance, and even the best model has a 40% gap with humans on the
group score metric, it is evident that dense temporal reasoning is still very challenging for LMMs.
We further provide failure case analysis for some of GPT-4o’s responses in Appendix I.

Similar to Winoground (Thrush et al., 2022), we find that for models that perform better than chance
level, their text score is significantly higher than video score, while group score is the lowest amongst
all three. Fig. 1 also demonstrates this pattern, reflecting models’ strengths at identifying textual
rather than visual/temporal differences. For example, GPT-4o’s video score (38.2%) is significantly
lower compared to its text score (54.0%). Many open-source models only have non-random outcomes
on the text score but equal or lower than random chance on video and group scores.

Human evaluators perform significantly better than any model, with scores around 90%. This
indicates that Vinoground can be tackled relatively easily within human capacity. When the human
evaluators are provided with 32-frame videos, the scores decrease by a few points, but are still much
higher than those of any model. We emphasize yet again the huge gap between human group score
and the best model o3’s group score of 56.6%.

Finally, we report results for GPT-4o with 0 sampled frames as a control to measure text bias. For the
text score, we hypothesize that the model will select the more likely caption in the absence of visual
input, and for the video score, we hypothesize it will choose an answer at random—both of which are
observed in practice. The below-chance text score of 10.0% suggests a systematic language bias in
GPT-4o, where it tends to prefer one caption over the other (if it did so consistently, the score would
drop to 0). Our balanced scoring method—computing both s(Ci, C

′
i, Vi) and s(Ci, C

′
i, V

′
i )—prevents

models from achieving high scores purely through such biases. This stands in contrast to benchmarks
such as VITATECS (Li et al., 2024c) and EgoSchema (Mangalam et al., 2023), which lack negative
videos and therefore allow models to succeed simply by exploiting caption likelihood.

Overall, even the strongest models show limited performance on dense temporal reasoning, despite
being evaluated on short videos (under 10 seconds). This highlights that short video comprehension
in LMMs remains far from human-level intelligence. We discuss further insights on model design
and data utilization strategies in Appendix N.4.
4.4 IN-DEPTH ANALYSIS OF PERFORMANCE VARIATIONS

4.4.1 FRAMES SAMPLED

We evaluate Vinoground’s temporal understanding requirements by varying the number of frames
sampled. If a dataset suffers from single-frame bias, model performance should remain largely
unchanged when comparing 1 frame to multiple frames. However, as shown in Table 4 (with
additional results in Appendix K), performance consistently improves with more frames, indicating
that full video context is necessary to solve the task.

Interestingly, oversampling can degrade performance: for GPT-4o, the 64-frame variant performs
5% worse across all three metrics compared to the 32-frame variant. We hypothesize that current
models struggle to filter redundant information and to separate signal from noise when overloaded
with visual tokens. Appendix G provides further analysis in comparison to prior work, highlighting
key differences in temporal behavior and model limitations.
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Table 4: Performance of selected models with
different # of frames sampled. Those significantly
higher than random chance are highlighted, with
the best performance of each model highlighted
in red. Having more frames can improve perfor-
mance, yet too many frames can also worsen it.

Model # Fr st sv sg

Prolific Human All 93.4 94.0 90.0
32 91.4 90.8 85.2

GPT-4o 64 49.0 34.8 19.0
32 54.0 38.2 24.6
8 53.6 31.4 20.6
1 28.2 28.0 10.0

LLaVA-OneVision-72B 64 46.2 31.8 18.6
32 48.4 35.2 21.8
16 47.2 33.8 20.4
8 46.8 29.8 19.0
4 40.4 24.8 13.0
2 33.4 25.2 10.2

Note that for our video score metric to function as in-
tended, a model must sample at least one frame from
each video, and at least one black frame in between.
This means that the number of frames sampled must
be no fewer than 3. We hence gray out the video score
and group score performances of models sampled at
1 or 2 frames and only focus on their text scores.

Finally, for human evaluators, the ‘All’ group per-
forms better than the 32 frame group, which indicates
that humans can answer Vinoground questions better
when the full videos are shown. In contrast, modern
LMMs generally lack the ability to process inputs of
an entire video without coarse sampling of frames.
This suggests that further research into creating mod-
els that can handle more frames will be an important
research direction for temporal reasoning.

4.4.2 CATEGORY

Figure 3: Group score of selected models per category. Models do
better on contextual & viewpoint, worse on others.

Fig. 3 shows results per category as
defined in Section 3.3. Interestingly,
many models perform significantly
better on the viewpoint and contextual
categories, while being significantly
worse on other categories. Here, we
only report the group score for a se-
lected set of models due to space. See
Appendix J for the full results.

Both viewpoint and contextual bring
forth drastic changes in between the
video frames whenever the events
change, as contextual involves background changes that occupy most of the frame while in view-
point, as the camera angle changes, the entirety of the video frame changes as well. On the other
hand, interaction and cyclical not only require a model to have strong logical understanding of the
connection between events, but also the ability to focus on small temporal changes for the different
actions involved. Spatial, as previously hypothesized, also poses a difficult challenge for models in
understanding changes in object location. Overall, today’s models are much better at understanding
coarse-level information over a set of frames in their entirety than understanding fine-grained details
from a part of each video frame. This also demonstrates how fine-grained comprehension is also
crucial for dense temporal reasoning. We further explain the novelty of this finding in Appendix N.3.

5 CONCLUSION

We introduced Vinoground, a novel temporal counterfactual benchmark encompassing 1000 short
and natural video-caption pairs. We demonstrated that existing video LMMs are quite incapable in
terms of temporal reasoning, even for short (<10s) videos. While an average human can easily and
accurately complete our benchmark, the best model, o3, performs much worse, and most models
barely perform better than random chance. Our work demonstrates that there is much more to do
still in the area of short video comprehension. We believe Vinoground can serve as an important
checkpoint in evaluating a model’s true performance for temporal understanding of short videos.

Limitations. One cannot fully analyze the behavior of proprietary models included in this paper due
to the lack of access to their raw weights, such as o3, GPT-4.1, and the Gemini series.
Reproducibility Statement. We attach the dataset in the submission’s supplementary materials. We
will also publicly release it with the evaluation code upon the paper’s acceptance.
Ethics Statement. All videos are sourced from publicly available academic datasets (VATEX) and
platforms (YouTube). We will make the dataset and our code publicly available to ensure transparency.
LLM Usage. Gemini-2.5-Pro is used to polish only an insignificant portion of the paper’s writing.
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Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5):726–742, 2021.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
tion tuning with synthetic data, 2024c. URL https://arxiv.org/abs/2410.02713.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Sto-
ica. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in neural information
processing systems (NeurIPS), 2023.

Luowei Zhou, Chenliang Xu, and Jason J. Corso. Towards automatic learning of procedures from
web instructional videos. In Proceedings of the Association for the Advancement of Artificial
Intelligence (AAAI), 2018. URL https://arxiv.org/abs/1703.09788.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Wang HongFa, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, Cai Wan Zhang, Zhifeng Li, Wei Liu, and Li Yuan. Languagebind:
Extending video-language pretraining to n-modality by language-based semantic alignment. In
Proceedings of the International Conference on Learning Representations (ICLR), 2024.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Internvl3:
Exploring advanced training and test-time recipes for open-source multimodal models, 2025. URL
https://arxiv.org/abs/2504.10479.

Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch,
Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, Serena Yeung-Levy, and Xide Xia.
Apollo: An exploration of video understanding in large multimodal models, 2024. URL https:
//arxiv.org/abs/2412.10360.

APPENDIX

A DATA CURATION PROCESS

We include an overall illustration of the data curation process in Figure 4.

B METRICS ILLUSTRATION

We visualize our text and video score metrics in Figure 5. This shows the 4 possible questions that
can be derived from one counterfactual data point in the dataset.
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Figure 4: The data curation process.
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Figure 5: Visualization of the text and video score metrics.

C RANDOM CHANCE PERFORMANCE

We set the random chance performance for text, video, and group score as 25%, 25%, and 16.67%.
It is intuitive to understand the setup for both text and video score since there are two questions
in the same counterfactual pair for each metric, and the probability of guessing correctly is 50%
each. For the counterfactual pair (Ci, C

′
i, Vi, V

′
i ), a model can only produce six possible permu-

tations of video-caption matchings: {(Ci, Vi), (C
′
i, V

′
i )}, {(Ci, Vi), (Ci, V

′
i )}, {(Ci, Vi), (C

′
i, Vi)},

{(Ci, V
′
i ), (C

′
i, V

′
i )}, {(C ′

i, Vi), (C
′
i, V

′
i )}, and {(C ′

i, Vi), (Ci, V
′
i )}. This is why the random chance

performance for group score is 1/6 ≈ 16.7%.

D HUMAN PERFORMANCE

The 90% group score is because of human error, not because of data quality issues. Upon carefully
examining the error cases, we find no particular pattern or poor quality examples. On the other
hand, Panko (2008) shows how humans have a 5% error rate even for the simple task of entering
spreadsheets, which closely models the human text and video scores 93% and 94%. Since group
score is a composite metric of both, the combined correctness is 0.95 · 0.95 = 0.9025, which matches
our human group score performance. This confirms the high-quality of Vinoground.
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E CAPTION CURATION PROMPT

The prompt we give GPT-4 to generate potential caption candidates is: “I am trying to find videos
that have appropriate temporal counterfactuals; e.g., I want to find video pairs that can be described
with the following captions: “a man eats then watches TV” vs “a man watches TV then eats”; “the
old man is working hard before the young man is playing” vs “the young man is working hard before
the old man is playing”. Note that for both elements of the same pair, they use the exact same words.
Give me 10 examples.” Then in the same conversation, we prompt the model “give me 10 different
ones” until we have 500 pairs of candidates.

F COT PROMPT AND PARSING

For chain-of-thought prompting, we simply add “please think step by step” at the end of our questions
(as mentioned in Section 4.2). We then use GPT-4 as the judge with the prompt: “Please parse the
following model response into either A or B. If the model response is just A or B, then it denotes the
model answer, just output it. The model response starts after ====, and end before ====):\n====
⟨MODEL RESPONSE⟩ ====\nProvide output your answer as a single character (A or B): ”

G COMPARISON WITH PRIOR AND CONCURRENT ANALYSES ON IMPACT OF
NUMBER OF FRAMES SAMPLED

Our work provides a more nuanced analysis of the relationship between temporal sampling and
model performance, extending the findings of prior studies. For instance, while Lei et al. (2023)
effectively demonstrates a single-frame bias, our analysis in Section 4.4.1 reveals a more complex
relationship. We show that for each model, there is an optimal range for the number of sampled
frames; performance degrades not only when too many frames are used, but also when too few are
sampled.

Furthermore, we offer a complementary perspective to the work of Du et al. (2024). Their results
primarily illustrate a performance increase with up to 128 frames. In contrast, our findings highlight
significant performance degradation with as few as 32 or 64 frames for certain models. To cleanly
isolate the impact of temporal sampling density, our analysis in Section 4.4.1 varies only the number
of frames. This controlled approach allows us to more directly attribute performance changes to the
sampling rate.

In summary, our analysis moves beyond identifying single-frame bias to reveal a more granular,
model-dependent relationship between frame count and performance, offering a precise investigation
into the effects of temporal sampling.

H PROLIFIC SURVEY INTERFACE AND WORKER DEMOGRAPHICS

We first upload all the videos to Google Drive and embed them into our surveys using Qualtrics.
The 2000 questions from Vinoground are split into 50 surveys, with each survey having 40 random
questions. We then distribute our surveys on Prolific where we pay everyone who completed a survey
$2, or $0.05 per question. The interface is illustrated in Figure 7.

Out of the 170 qualified workers, 91 were male and 79 were female; 13 were students, 119 were
non-students, and 38 have no data/did not consent to provide information; 69 were full-time working,
22 were part-time working, 20 were not in paid work (e.g. homemaker, retired or disabled), 17 were
unemployed, and 42 have no data/did not consent to provide information; all of the 170 workers were
fluent in English; we report the histogram of workers’ ages in Figure 8.

I ANALYSIS OF SELECTED FAILURE CASES OF GPT-4O

Here we analyze 3 example failure cases of GPT-4o on our benchmark. One can find the corresponding
video clips from the supplementary materials. Extracted frames for video 8 neg are shown in Figure 6.
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Figure 6: For this video, GPT-4o summarizes the video’s event in the exact opposite order of the
video itself, indicating its lack of understanding temporal dynamics between the frames.

For video 8 neg, the model response is: “a box with a lid placed on top of it → The hand interacts
with the lid → The hand lifts the lid off the box → The hand moves the lid to the side of the box →
the lid placed to the side of the box. Based on this sequence, the man moved the lid from the top of
the box to the side”. In this response, the model summarized the video’s event in the exact opposite
order of the video itself, indicating its lack of understanding temporal dynamics between the frames.

For video 248 pos, the model’s response is: “the man is seen using the machine from left to right →
the man continues moving the machine towards the right → the man is seen moving the machine
back towards the left. Based on this analysis, the man first uses the machine from left to right and
then goes from right to left.” In this analysis, the model also reported the order of events in their exact
opposite, but note the fact that here the model specifically failed to understand spatial movements as
well.

For video 361 neg, the model response is: “two scallops on a grill, with the one on the left being
more prominently visible → the camera appears to shift focus slightly, but the scallop on the left
remains the primary focus → the camera seems to zoom in or shift slightly, but it does not distinctly
pan from one scallop to the other. Since the video does not show a clear pan from one scallop to
the other, neither caption A nor B describes the video.” In this response, the model ignores huge
frame shifts that is easily identifiable by the human eye. This shows how models can fail even with
coarse-grain large frame changes.
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Figure 7: The Qualtrics survey that Prolific workers see.

Figure 8: Distribution of Prolific workers’ ages.
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J FULL CATEGORICAL RESULTS

Here we include the selected top-6 strongest models we evaluated and report their results by category
in Tables 5 and 6. We also include the text and video score bar plots in Figures 9 and 10. We can see
that the general trend is the same as reported in Section 4.4.2, where models perform much better on
contextual and viewpoint, and worse on other categories.

Table 5: The best performances of proprietary models grouped by category. Significantly high
performances are highlighted in blue, while significantly low performances are highlighted in red.

GPT-4o Gemini-1.5-Pro Claude 3.5 Sonnet

category text video group text video group text video group

all 54.00 38.20 24.60 35.80 22.60 10.20 32.80 28.80 10.60

object 52.50 35.62 20.62 36.25 25.62 12.50 30.00 25.00 7.50
action 47.47 35.41 20.23 30.74 22.18 8.56 27.63 28.79 9.34

viewpoint 77.11 51.81 45.78 50.60 18.07 10.84 54.22 36.14 20.48

interaction 50.68 42.47 21.92 30.14 27.40 10.96 20.55 21.92 5.48
cyclical 39.64 41.44 18.92 22.52 19.82 4.50 27.03 25.23 7.21
spatial 47.57 30.10 17.48 37.86 24.27 9.71 31.07 20.39 5.83

contextual 53.97 49.21 33.33 38.10 31.75 11.11 52.38 28.57 15.87

Table 6: The best performances of selected open-source models grouped by category. Significantly
high performances are highlighted in blue, while significantly low performances are highlighted in
red.

LLaVA-OneVision-72B Qwen2-VL-72B InternLM-XC-2.5

category text video group text video group text video group

all 48.40 35.20 21.80 50.40 32.60 17.40 28.80 27.80 9.60

object 42.50 33.75 17.50 46.88 33.75 18.12 28.75 28.12 12.50
action 42.80 31.91 17.90 44.75 28.79 12.06 25.68 29.96 8.56

viewpoint 77.11 48.19 42.17 74.70 42.17 32.53 38.55 20.48 7.23

interaction 36.99 36.99 16.44 34.25 31.51 6.85 23.29 36.99 6.85
cyclical 36.04 29.73 14.41 36.94 32.43 11.71 18.92 36.04 7.21
spatial 37.86 25.24 10.68 53.40 31.07 17.48 23.30 29.13 8.74

contextual 57.14 31.75 20.63 49.21 39.68 22.22 26.98 26.98 11.11
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Figure 9: Text score bar plot based on category grouped by model.

Figure 10: Video score bar plot based on category grouped by model.

K FULL RESULTS ON EVALUATED MODELS

Due to the extensive number of models evaluated and different number of frames sampled as
hyperparameters, we include the full results of our evaluation that are not mentioned in the main
paper in Tables 7 and 8.
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Table 7: The full evaluation results based on model type, frames sampled, and the metrics aforemen-
tioned. Only the model settings that are not mentioned in the main paper are listed here. Performances
significantly better than random chance are bolded.

Model Frames Text Video Group

OpenAI o1 OpenAI (2024c) 32 59.1 50.5 36.0
Gemini-2.0-Thinking (Google, 2025) 32 39.0 31.2 14.6

Gemini-1.5-Pro (CoT) 1fps 37.0 27.6 12.4
Gemini-1.5-Pro (Gemini Team, 2024) 1fps 35.8 22.6 10.2

Claude 3.5 Sonnet (CoT) 4 39.4 27.0 13.6
Claude-3.5-Sonnet 16 30.0 22.6 8.4

8 32.2 25.4 9.4
4 32.8 28.8 10.6
2 29.4 24.0 8.4
1 26.2 30.0 10.8

Qwen2-VL-72B 32 50.4 32.6 17.4
8 37.4 23.0 7.8
4 26.2 23.8 6.2
2 15.6 24.4 4.0

Qwen2-VL-7B (Wang et al., 2024) 32 40.0 26.4 11.8
16 36.8 25.8 10.2
8 27.6 23.4 7.8
4 22.2 22.8 5.6
2 21.4 25.8 5.2
4fps 40.2 32.4 15.2
2fps 34.8 27.4 10.6
1fps 26.8 26.6 7.6
0.5fps 23.2 19.6 4.8

MiniCPM-2.6 32 28.4 27.0 9.4
16 32.6 29.2 11.2
8 33.4 25.6 9.0
4 25.8 27.4 8.6
2 22.8 23.2 4.6
1 27.0 27.0 8.0

LLaVA-NeXT-Video-34B (Liu et al., 2024a) 32 23.0 21.2 3.8
16 21.0 21.8 4.4
8 21.2 22.0 5.2
4 16.6 21.6 3.4
2 15.4 21.6 2.2
1 13.2 21.8 2.0

LLaVA-NeXT-Video-7B (Liu et al., 2024a) 32 21.8 25.6 6.2
16 22.2 25.6 6.4
8 21.8 25.6 6.4
4 21.8 25.6 6.4
2 21.2 25.4 6.0
1 22.4 25.6 6.4

Phi-3.5-Vision (Microsoft, 2024) 32 22.0 21.2 4.8
16 24.0 22.4 6.2
8 21.8 21.2 5.0
4 21.2 22.8 5.6
2 20.4 21.6 3.8
1 22.6 22.8 3.8
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Table 8: Continuation of Table 7.

Model Frames Text Video Group

MA-LMM-Vicuna-7B (He et al., 2024) 32 22.4 25.6 6.8
16 22.0 26.0 6.0
8 23.0 26.0 6.4
4 23.8 25.6 6.8
2 23.8 25.6 6.8

VideoLLaMA3 64 46.2 29.8 17.0
32 47.4 29.2 15.0
16 47.4 30.4 15.6
8 43.4 28.6 12.0
4 38.8 24.6 8.8
2 35.6 22.8 7.4
1 22.8 22.4 6.2

LLaVA-Video-72B-Qwen2 128 45.2 28.8 16.4
64 49.2 34.0 20.2
32 48.4 33.2 20.0
8 44.0 27.6 16.0
4 37.2 23.0 10.2
2 31.4 23.6 9.4
1 25.2 26.8 8.0

LLaVA-Video-7B-Qwen2 128 41.4 27.6 14.0
64 42.4 30.0 17.0
32 40.8 30.4 15.4
16 36.8 28.0 13.0
8 33.6 25.6 11.4
4 29.0 24.6 10.0
2 27.0 23.6 6.2
1 27.8 22.4 6.4

Aria 32 34.8 28.8 12.0
16 32.4 27.6 9.4

InternVideo2.5-8B 64 36.0 28.2 11.0
32 35.0 29.0 11.4
16 30.6 25.6 8.6
8 23.4 25.0 6.0
4 17.4 25.2 3.6

Apollo-7B 64 41.5 31.5 17.5
32 44.3 28.5 15.8
16 43.6 28.8 16.6
8 42.6 28.4 14.2
4 43.8 30.2 17.2

InternVideo2.5-8B (Wang et al., 2025) 32 35.0 29.0 11.4
LLaVA-NeXT-7B (CoT) 32 21.8 26.2 6.8
LLaVA-NeXT-7B (Liu et al., 2024a) 32 21.8 25.6 6.2
M3 (Cai et al., 2024) 6 21.2 25.8 6.8
Vicuna-7B-v1.5 (Zheng et al., 2023) N/A 22.2 25.6 6.4
VTimeLLM (Huang et al., 2024) 100 19.4 27.0 5.2

LLaVA-OneVision-Qwen2-7B (Li et al., 2024a) 64 40.2 28.6 12.6
32 42.0 28.4 12.8
16 41.6 29.4 14.6
8 36.0 26.80 12.40
4 29.2 28.0 10.0
2 25.8 22.6 6.8
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L VIDEO LENGTHS AND THE USE OF BLACK FRAMES

We report the video length distribution of our benchmark in Figure 11. We also report that out of
the 1000 videos in Vinoground, there are a total of 992 videos with length ≤ 20 seconds, and 930 of
them are ≤ 10 seconds.

Figure 11: Video length distribution of Vinoground.

We show another histogram regarding—in all 500 concatenated videos for the video score metric—
how much of each video is composed of black frames in Figure 12. We can see that for the majority,
black frames only consist of less than two-tenths of the videos. This ensures that data loss due to
sampling black frames is kept at a minimum.

Figure 12: The portion of black frames in each concatenated video for video score questions.
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M DETAILED CATEGORICAL TEASER

The baby plays before he drinks water. The baby drinks water before he plays.

Fire turns into thin air. Thin air turns into fire.

Camera angle from 45 degrees behind to the right side. Camera angle from the right side to 45 degrees behind.

The man writes before he dips his pen in the ink. The man dips his pen in the ink before he writes.

The watermelon is cut then turned. The watermelon is turned then cut.

Moonwalk from left to right. Moonwalk from right to left.

From landed to flying. From flying to landed.

Object

Action

Viewpoint

Interaction

Cyclical

Spatial

Contextual

Figure 13: Examples of Vinoground video-caption pairs under each category.
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N BENCHMARK DESIGN PHILOSOPHY AND ANALYSIS

This section provides further details on the design principles of Vinoground, discusses the implications
of our task formulation, and offers insights for future research derived from our findings.

N.1 ISOLATING TEMPORAL REASONING VIA COUNTERFACTUAL PAIRS

A core design principle of Vinoground is the use of counterfactual pairs to isolate temporal reasoning
from static, atemporal cues. This addresses a common confound where models can achieve high
performance on temporal tasks by relying on object recognition alone. For instance, without a
counterfactual setup, a model tasked with ”a person moves from left to right” might succeed simply
by identifying person and moves, ignoring the directional dynamics.

Our approach, which we term “Looking Similar, Happening Differently,” holds the core semantic
elements (objects, actions, and caption vocabulary) constant across a pair while altering only the
temporal sequence of events. In the same way that Singh et al. (2024) uses counterfactual audio
to ensure true audiovisual synchronization, Vinoground uses counterfactual videos to ensure true
visio-linguistic temporal reasoning. By presenting two distinct temporal realities for the same set
of elements, our benchmark compels models to move beyond static analysis and engage with the
dynamic progression of events over time.

N.2 PROBING IMPLICIT TEMPORAL LOCALIZATION

While Vinoground is formatted as a multiple-choice task, its design inherently probes a model’s
ability to perform temporal localization. To correctly distinguish between ”the cat moves before the
person touches it” and ”the person touches the cat before it moves,” a model must implicitly localize
the events ”the cat moves” and ”the person touches” within the video’s timeline. Without the capacity
to identify when these events occur relative to one another, a model cannot succeed.

This formulation demonstrates that even without explicit localization annotations, a significant
gap exists between state-of-the-art models and the near-perfect human baseline. This highlights a
fundamental weakness in the temporal reasoning capabilities of current video LLMs, regardless of
the specific task format.

N.3 A NOVEL CATEGORICAL ANALYSIS FOR THE TEMPORAL DOMAIN

Our primary contribution is the rigorous extension of fine-grained analysis to the temporal domain of
video-language models. While the concept of models excelling at coarse-level tasks but failing at
fine-grained details is known in image understanding, Vinoground provides the first comprehensive
empirical evidence of this phenomenon in temporal reasoning, utilizing a benchmark of counterfactual,
natural, and short-form videos.

Our design uniquely challenges models to discriminate between subtle temporal differences that other
benchmarks might miss. This is underscored by the performance of leading models like GPT-4o,
which achieves a 75.5% text score on the image-based Winoground benchmark but only 59.2% (with
CoT) on Vinoground. This drop confirms that fine-grained temporal understanding in videos is
substantially more challenging than in static images. Our analysis, therefore, offers novel insights
into precisely how and where modern models fall short, guiding future development toward more
nuanced temporal cognition.

N.4 INSIGHTS FOR FUTURE MODEL DEVELOPMENT

The results from Vinoground offer valuable insights for the community. Our analysis in Table 3
reveals a significant performance gap between contrastive, CLIP-style models and text-generative
Video LLMs, which we attribute to two main factors:

• Richer Feature Representation: Video LLMs utilize thousands of visual tokens, en-
abling a more detailed representation of temporal dynamics compared to the single-vector
embeddings of CLIP-style models. The superior performance of Video-LLaVA over Lan-
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guageBind, despite both using the same video encoder, suggests that the learning paradigm
and architectural integration are critical.

• Scale and Learning Objectives: The larger scale and richer pretraining of the language
models in Video LLMs likely contribute to their stronger baseline understanding of tempo-
rality. Furthermore, the shift from contrastive learning objectives to visually conditioned
next-word prediction appears to better facilitate temporal understanding.

Based on these findings, we identify promising directions for future work:

• Architectural Improvements: Incorporating hierarchical temporal modeling or specialized
cross-modal attention mechanisms could more effectively capture sequential dependencies
and causality.

• Data and Learning Strategies: Developing pretraining datasets with more counterfactual
examples could mitigate existing static biases. Fine-tuning LLMs on datasets that explicitly
emphasize temporality remains a key avenue for improvement.
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