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Frequency-Aware GAN for Imperceptible Transfer Attack
on 3D Point Clouds

Anonymous Author(s)

ABSTRACT
With the development of depth sensors and 3D vision, the vulnera-
bility of 3D point cloud models has garnered heightened concern.
Almost all existing 3D attackers are deployed in the white-box
setting, where they access the model details and directly optimize
coordinate-wise noises to perturb 3D objects. However, realistic
3D applications would not share any model information (model pa-
rameters, gradients, etc.) with users. Although a few recent works
try to explore the black-box attack, they still achieve limited attack
success rates (ASR) and fail to generate high-quality adversarial
samples. In this paper, we focus on designing a transfer-based black-
box attack method, called Transferable Frequency-aware 3D GAN,
to delve into achieving a high black-box ASR by improving the ad-
versarial transferability while making the adversarial samples more
imperceptible. Considering that the 3D imperceptibility depends on
whether the shape of the object is distorted, we utilize the spectral
tool with the GAN design to explicitly perceive and preserve the
3D geometric structures. Specifically, we design the Graph Fourier
Transform (GFT) encoding layer in the GAN generator to extract
the geometries as guidance, and develop a corresponding Inverse-
GFT decoding layer to decode latent features with this guidance to
reconstruct high-quality adversarial samples. To further improve
the transferability, we develop a dual learning scheme of discrimi-
nator from both frequency and feature perspectives to constrain the
generator via adversarial learning. Finally, imperceptible and trans-
ferable perturbations are rapidly generated by our proposed attack.
Experimental results demonstrate that our attack method achieves
the highest transfer ASR while exhibiting stronger imperceptibility.

CCS CONCEPTS
• Security and privacy; • Computing methodologies→ Com-
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Figure 1: Illustation of our motivation. We propose to design
a generative model to generate high-quality 3D adversarial
objects by perceiving the 3D geometric characteristics with
spectral information. We also design an adversarial learning
scheme to improve the transferability of adversarial samples.

1 INTRODUCTION
Deep Neural Networks (DNNs) are known to be vulnerable to adver-
sarial examples [9, 40], which are indistinguishable from legitimate
ones by adding trivial perturbations but often lead to incorrect
model prediction. Many efforts have been made into attacks on the
2D image field [6, 22, 30, 44], which often add imperceptible pixel-
wise noise on images to deceive the DNNs. However, in addition
to image-based 2D attacks, 3D point cloud attacks are also crucial
in various safety-critical applications such as autonomous driving
[4, 14, 55], robotic grasping [46, 62], medical data analysis [38], and
face challenges in realistic scenarios.

Mainstream 3D point cloud attack methods can be roughly
divided into two categories: gradient search-based and gradient
optimization-based approaches. The gradient search-based works
[50, 52, 53, 61] identify critical points from point clouds and modify
(add or delete) them to distort the most representative features
for misclassification. While the gradient optimization-based works
[2, 11, 26, 29, 43, 49, 58] follow the C&W framework [9] to learn
to perturb xyz coordinates of each point and generate adversar-
ial samples in an end-to-end manner. Although the above works
have achieved high attack success rates, most of them are simply
deployed in the white-box setting where the attackers have the
full knowledge of victim models including network structure and
weights. This setting makes the attacks less practical since most
real-world 3D applications will not share their model details with
users. Recently, a few works [11, 18, 63] propose to tackle 3D at-
tacks in the black-box setting without using prior model knowledge.
However, these works simply utilize geometric distance losses or ad-
ditional shape knowledge to implicitly constrain the perturbations,
failing to properly keep the original 3D object shape and resulting
in irregular surfaces or outliers. Therefore, their generated adversar-
ial point clouds are often easily perceivable by humans. Moreover,
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these attacks tend to overfit the target network and hardly remain
malicious once they are transferred to attack a different victim
model.

To this end, in this paper, we focus on addressing the challenging
black-box 3D attack from two aspects: improving the adversarial
robustness and the imperceptibility of the attack method. Firstly, to
improve the adversarial robustness, we aim to force the adversarial
point clouds to successfully attack different unknown 3D models.
This inspires us to develop a transfer-based attack method, which
learns to generate the most harmful noise and make them resist
against unknown distortions in unseen models. In this manner,
the attack method can achieve high black-box attack success rates.
Secondly, to improve the imperceptibility, instead of relying on
implicit geometric constraints, we follow the existing generative
models, e.g., generative adversarial network (GAN), to explicitly
perceive the 3D shape-aware latent characteristics and construct
natural/stealthy 3D objects. By carefully guiding the generative
model to encode and decode the 3D geometries, it can well generate
realistic 3D object shapes. With further adversarial learning design,
the generated point cloud can be adversarial to the targets.

Based on the above considerations, we propose a novel Trans-
ferable Frequency-aware 3D GAN Attack method, which utilizes
spectral tools to explicitly perceive the 3D geometries and encode
them in the GAN structure for preserving the 3D structure dur-
ing the object construction. Specifically, as shown in Figure 1, our
GAN-based architecture consists of two components: a frequency-
aware generator and a frequency-aware discriminator. We first
convert the encoded point-level coordinate/spatial features into the
spectral frequencies via graph fourier transform (GFT), then fuse
them for feature processing in the frequency-aware generator. This
GFT will lead to a compact representation of the geometric data in
the spectral domain [15, 16, 34], which is effective in comprehend-
ing the shape information of the whole point cloud. During latent
feature encoding and decoding in the generator, we perform skip
connections of high-frequency features from GFT-based encoder
to the IGFT-based decoder of the generator to preserve the detailed
geometric contexts of point cloud for making it imperceptible. By
using the discriminator to prompt the generator to produce realistic
adversarial point clouds, we can improve the imperceptibility of
the generated adversarial samples. To further improve the transfer-
ability, we extend the traditional discriminator into a dual-branch
scheme, which not only utilizes the spatial features to distinguish
the point clouds, but also utilizes low-frequency and high-frequency
spectral filters to provide additional spectral feature types for ad-
versarial learning. This can train the perturbations to resist possible
distortions when transferred to attack unknown models. An ad-
ditional frozen feature discriminator is also introduced to extract
intermediate layer features to maximize feature similarity. In this
manner, our proposed attack is able to generate imperceptible 3D
adversarial objects with high transferability.

Our main contributions are summarized as follows:

• We make the attempt to improve both the transferabil-
ity and imperceptibility of black-box attacks on 3D point
clouds. To perceive and preserve the geometric character-
istics of 3D objects, we develop a frequency-aware GAN
model to construct stealthy adversarial point clouds.

• In the GAN-based architecture, we carefully construct a
frequency-aware generator with GFT and IGFT designs to
perceive and preserve the 3D geometrics for improving the
imperceptibility. We also design a dual scheme of discrimi-
nator in both spectral and feature contexts to adversarially
train the generator for improving the transferability.

• Extensive experiments demonstrate that our attack method
achieves the highest transfer attack success rate while ex-
hibiting stronger imperceptibility.

2 RELATEDWORK
3D point cloud attacks. Following previous studies on the 2D
image field, many works [43, 50, 52, 53, 60, 61, 63] adapt adver-
sarial attacks into the 3D vision community [3, 10, 31, 32, 45, 47,
51, 54, 56, 59]. [52] proposes point generation attacks by adding a
limited number of synthesized points/clusters/objects to a point
cloud. [53] utilizes gradient-guided attack methods to explore point
modification, addition, and deletion attacks. Their goal is to add
or delete key points, which can be identified by calculating the
label-dependent importance score referring to the calculated gradi-
ent. Recently, more works [26, 43, 58] adopt point-wise perturba-
tion by changing their xyz coordinates, which are more effective
and efficient. [26] modifies the FGSM strategy to iteratively search
the desired pixel-wise perturbation. [43] adapts the C&W strategy
to generate adversarial examples on point clouds and proposes a
perturbation-constrained regularization. Besides, [18, 42] propose
the query-based black-box attack approach to generate impercepti-
ble perturbations. Several works [7, 20, 23, 35] attack point clouds
in the feature space and target at perturbing less points with lighter
distortions for an imperceptible adversarial attack. However, the
generated adversarial point clouds of all above methods often result
in messy distribution or outliers, which are easily perceivable by
humans. Meanwhile, these methods tend to overfit the target net-
work, resulting in poor transferability when attacking the victim
models.
Generative models. Mainstream generative models mainly in-
clude generative adversarial networks (GAN) and diffusion models,
which have been widely applied in various point cloud fields, in-
cluding point cloud generation [1, 28, 36, 41], upsampling [27, 33],
adversarial attack [11, 63], adversarial defense [39, 57], etc. The
GAN models consist of a generator and a discriminator, and the
two networks are updated alternatively in an adversarial manner.
Unlike GANs, diffusion models gradually introduce noise into the
data and then learn how to reverse diffusion process to generate
examples. [1] is the first to construct GAN based on a pre-trained
auto-encoder to synthesize point clouds indistinguishable from
real data. [28] proposes a probabilistic generative model for point
clouds by exploiting the reverse diffusion Markov chain to model
the distribution of points. [11, 63] train the generator to learn the
adversarial distribution and produce adversarial examples by opti-
mizing target loss and GAN loss. [39, 57] utilize diffusion models
to restore the perturbed point clouds under various distortions to a
clean distribution. Although both models can achieve better per-
formance in terms of generation quality, diffusion models generate
datas more slowly than GANs because they require a multi-step
iterative process to gradually reduce noise.
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Figure 2: Overview of our proposed frequency-aware GAN for imperceptible transfer attack.

3 METHOD
3.1 Problem Definition
Generally, a point cloud consists of an unordered set of points 𝑷 =

{𝒑𝑖 }𝑛𝑖=1 ∈ R
𝑛×3 sampled from the surface of a 3D object or scene,

where each point 𝒑𝑖 ∈ R3 is a vector that contains the coordinates
(𝑥,𝑦, 𝑧) of point 𝑖 , and 𝑛 is the number of points. In this paper, we
mainly focus on attacking the basic point cloud classification task.
Given a point cloud 𝑷 as input, a learned classifier 𝑓 (·) predicts a
vector of confidence scores 𝑓 (𝑷 ) ∈ R𝐶 . The final predicted label
is 𝑦 = 𝐹 (𝑷 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[𝐶 ] 𝑓 (𝑷 )𝑖 ∈ 𝑌,𝑌 = {1, 2, 3, ...,𝐶} that
represents the class of the source 3D object underlying the point
cloud, where𝐶 is the number of classes. To attack such classification
model, the general objective is to find a perturbation 𝚫 ∈ R𝑛×3
that generates an adversarial example as ˜𝑷 , which misguides the
predicted result from the ground truth label 𝑦 to the other label.
We use the 𝑙𝑝 norm to regularize the perturbation 𝚫 to the range
𝜖 and formulate the adversarial attack with misclassification loss
𝐿𝑚𝑖𝑠 as the following optimization problem:

max
𝚫

𝐿𝑚𝑖𝑠 (𝐹 (˜𝑷 ), 𝑦), 𝑠 .𝑡 .| |𝚫| |𝑝 ≤ 𝜖. (1)

3.2 Overview of Our Attack
GAN-based architecture. Previous 3D adversarial attacks gen-
erally follow the gradient-based and optimization-based methods,
requiring access to the architecture and parameters of the target
model, and rely on implicit geometric constraints that limit the

quality of adversarial examples. Besides, their optimization pro-
cess is also time-consuming and can only optimize perturbation for
one specific sample each time. Fortunately, the type of GAN-based
method can generate adversarial point clouds that approximate the
source point clouds distribution and geometries through adversarial
learning, and can quickly generate perturbation for any point cloud
after only one training. However, existing GAN attack LG-GAN
[63] not only has problems with the loss of details and deformation
of adversarial point clouds, resulting in perturbation visible to the
human eyes, but also fails to consider the characteristic of attack
transferability. Therefore, we propose a new frequency-aware GAN
architecture, to generate more difficult imperceptible and trans-
ferable adversarial samples. As shown in Figure 2, our proposed
GAN-based architecture has two components: a frequency-aware
generator𝐺 and a dual discriminator 𝐷 . The core is the adversarial
training between 𝐺 and 𝐷 . 𝐺 tries to generate realistic adversarial
point clouds to fool 𝐷 , while 𝐷 tries to distinguish the generated
adversarial point clouds from the source point clouds.
Our pipeline. In this paper, we propose a frequency-aware GAN
attack method to generate adversarial point clouds with high im-
perceptibility and transferability. As shown in Figure 2, to improve
the imperceptibility, we develop a frequency-aware generator con-
sisting of a GFT-based encoder and a IGFT-based decoder. The
encoder extracts high-level feature representation of point clouds,
while the decoder maps the feature representation to generate new
point clouds. We perform spectral tools of Graph Fourier Trans-
form (GFT) on the encoded features to obtain frequency features for

3
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perceiving the 3D geometric characteristic, which can be divided
into low-frequency (LF) and high-frequency (HF) components. We
then use these frequency features to preserve the geometric topol-
ogy by utilizing high-frequency components skip-connections to
the decoder to provide more fine-grained geometric guidance for
perturbation. To further improve the transferability, we propose a
dual discriminator consisting of a frequency-aware discriminator
and a feature discriminator. The frequency-aware discriminator
is trained to distinguish samples via the low-frequency features
and high-frequency features, so that adversarial samples can be
trained to be no longer over-fitting to models that solely rely on
single spatial features. The feature discriminator directly uses an
encoding model to extract features of the intermediate layer for
sample distinguishing. By forcing the generator against both two
discriminators from different aspects, the generated adversarial
samples can achieve high robustness and attack success rate to
unknown 3D models.

3.3 Improving Imperceptibility with
Frequency-aware Generator

The role of the generator is to learn to produce an adversarial point
cloud that is as similar as possible to the source point cloud distribu-
tion. On this basis, we hope that the generator can further improve
the imperceptibility of adversarial point clouds, allowing them to
have more fine-grained details of class-related geometric character-
istics and not be deformed. To address this issue, we propose a new
frequency-aware generator 𝐺 , breaking the limitation of previous
generators only being set in the data domain. In particular, during
the generator learning, we additionally extract the spectral frequen-
cies of the source point cloud to explicitly explore and capture
its geometric structure. Specifically, the spectral domain explicitly
reveals the geometric structures from basic shapes to fine details
via different frequency bands [13]: the low-frequency components
in the frequency domain represent basic shapes, while the high-
frequency components encode find-grained details. Therefore, by
combining both spatial and frequency features in 𝐺 with skip con-
nections of the high-frequency components, we are able to guide
the generator to comprehend both the semantics and geometrics of
the original 3D object for generating imperceptible adversarial sam-
ples. The architecture of the frequency-aware generator is shown
in the upper of Figure 2.
Encoder with GFT-based design.We first introduce the designed
GFT-based encoder that encodes both spatial and spectral represen-
tations for perceiving the object geometrics. Specifically, to extract
high-level representations of point clouds, this encoder utilizes
four feature extraction layers (FE), each of which consists of an
EdgeConv layer of DGCNN [47] and a graph fourier transform
(GFT) [17] layer. We employ the EdgeConv layer to extract the
spatial features of point cloud 𝑷 = {𝒑𝑖 }𝑛𝑖=1. In the i-th layer, Edge-
Conv uses local structure information to calculate the edge feature
set 𝑆 of each point, and aggregates the features in each set into a
new representation of the point. The final spatial representation
𝑷𝑖𝑠𝑝𝑎 ∈ R𝑛×𝑚 of points is obtained by:

𝑷𝑖𝑠𝑝𝑎 =𝑚𝑎𝑥 𝑗 :(𝑙, 𝑗 ) ∈𝑆 {𝑅𝑒𝐿𝑈 (𝜽𝑚 · (𝒑𝑙 − 𝒑 𝑗 ) + 𝝋𝑚 · 𝒑 𝑗 )},
𝑗 = {1, 2, ..., 𝑛},

(2)

where𝑚 is the feature dimension of the output, 𝜽𝑚 and 𝝋𝑚 are the
weight of filters.

In addition to extracting the spatial features, we also design
spectral neural modules to encode frequency features for perceiving
the geometric characteristics. Given a point cloud 𝑷 , we construct
a K-nearest-neighbor (KNN) graph for 𝑷 , and calculate Laplacian
matrix [37] as 𝑳. 𝑳 admits an eigen-decomposition 𝑳 = 𝑼𝚲𝑼𝑇 ,
where 𝑼 = [𝒖1, ..., 𝒖𝑛] is an orthonormal matrix containing the
eigenvectors 𝒖𝑖 which is called the graph fourier basis, and 𝚲 =

𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑛) consists of eigenvalues (i.e. frequencies) {𝜆1 = 0 ≤
𝜆2 ≤ ... ≤ 𝜆𝑛}. The coordinates of points in 𝑷 are treated as graph
signals, and its GFT coefficient vector 𝑷 is defined as [12]:

𝑷 = 𝜙𝐺𝐹𝑇 (𝑷 ) = 𝑼𝑇 𝑷 . (3)

In the i-th layer, we utilize the GFT layer to convert the output
𝑷𝑖𝑠𝑝𝑎 of the EdgeConv layer into frequency features as 𝑷

𝑖
𝑓 𝑟𝑒 =

𝜙𝐺𝐹𝑇 (𝑷𝑖𝑠𝑝𝑎). We then perform tenor addition on the spatial features
and frequency features to preserve the geometric topology and
semantics as 𝑷𝑖+1𝑠𝑝𝑎 = 𝑷𝑖𝑠𝑝𝑎 + 𝑷

𝑖
𝑓 𝑟𝑒 . Finally, the features of each FE

layer are concatenated to obtain the high-level global features as:

𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 = 𝑐𝑜𝑛𝑣 ( [𝑷1𝑠𝑝𝑎, 𝑷2𝑠𝑝𝑎, 𝑷3𝑠𝑝𝑎, 𝑷4𝑠𝑝𝑎]) . (4)

Decoder with IGFT-based design. To generate adversarial point
clouds with fine-grained details of class-related geometric char-
acteristics and less noise, we put the high-frequency components
of the GFT-based encoder into the decoder via skip connections,
thus making the adversarial samples less distinguishable by human
eyes. This IGFT-based decoder also mainly contains four feature
reconstruction layers (FR), each of which consists of the conv layer
and the IGFT layer. Specifically, in the i-th FR layer, the global
features generated by the encoder are reconstructed using conv
layer to obtain features as 𝑨 = 𝑐𝑜𝑛𝑣𝑖 (𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔). The IGFT layer
performs the high-frequency components from the 4 − 𝑖 + 1 layer
of the encoder to obtain features as 𝑩 = 𝜙𝐼𝐺𝐹𝑇 ((𝑷

4−𝑖+1
𝑓 𝑟𝑒 )𝐻𝐹 ). The

IGFT is defined as:

𝑷 = 𝜙𝐼𝐺𝐹𝑇 (𝑷 ) = 𝑼𝑷 . (5)

These two features are combined as 𝑨 + 𝑩 and sent to the FR layer.
Finally, the fully connected layer is utilized to generate perturbation
for the point cloud.

3.4 Improving Transferability with Dual
Discriminator

To improve the transferability of adversarial samples, we aim to
build a powerful discriminator. Through alternate training of the
generator and the discriminator, GAN finally reaches a balance,
which is that the generator generates sufficiently realistic adversar-
ial point clouds, while the discriminator has difficulty distinguishing
the adversarial point clouds from the source point clouds. The in-
sight is that, if the generated adversarial point clouds can fool a
powerful discriminator model, they can also fool other unknown 3D
classification models. Therefore, in this section, we propose a dual
discriminator consisting of a frequency-aware discriminator 𝐷𝜓

and a feature discriminator 𝐷𝛾 , to push the whole GAN generating
transferable adversarial samples. This discriminator will assist in
improvement from two aspects: (1) enriching the feature types in
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spectral frequency representations instead of only relying on spa-
tial features; (2) learning to distinguish the feature similarity from
the intermediate layer. The architecture of the dual discriminator
is shown in the bottom of Figure 2.
Frequency-aware discriminator. We propose a novel frequency-
aware discriminator that can learn not only spatial features, but also
low-frequency and high-frequency spectrum domain representa-
tions to better distinguish point clouds, and enrich the feature types
to improve transferability. This discriminator consists of three mod-
ules with a similar architecture but different inputs. The modules
contain multi-layer perceptrons (MLPs) and two GFT layers. The
MLPs module 𝑓𝑝𝑐 (·) takes point cloud as input to extract spatial
features. The low-pass GFT module 𝑓𝑙 𝑓 (·) first utilizes a low-pass
filter to obtain low-frequency (LF) points, which are then used as
input to extract the low spectral frequency representations. Sim-
ilarly, the high-pass GFT module 𝑓ℎ𝑓 (·) utilizes a high-pass filter
to obtain high-frequency (HF) points, and extracts high spectral
frequency features.

We first define the graph filter as follows to allow or suppress
the passage of frequency components:

𝑷 ′ = 𝐻 (𝜆)𝑷 = 𝑼


ℎ(𝜆1)

. . .

ℎ(𝜆𝑛)

 𝑼
𝑇 𝑷 , (6)

whereℎ(𝜆𝑖 (𝑖 = 1, 2, ..., 𝑛)) denote the frequency response of a graph
filter. The low-pass filter ℎ(𝜆𝑖 ) is as follows:

ℎ(𝜆𝑖 ) =
{
1, 𝑖 < 𝑏,

0, 𝑖 ≥ 𝑏.
(7)

In contrast, the high-pass filter ℎ(𝜆𝑖 ) is as follows:

ℎ(𝜆𝑖 ) =
{
0, 𝑖 < 𝑏,

1, 𝑖 ≥ 𝑏.
(8)

Here, 𝑏 is the dividing point between low-frequency band and high-
frequency band. Referring to the previous work [25], we set 𝑏 = 100
in the experiments.

Specifically, the source point cloud 𝑷 and adversarial point cloud
˜𝑷 are respectively input into the low-pass filter and high-pass filter
to get LF points (𝑷 ′)𝐿 ,(˜𝑷

′)𝐿 and HF points (𝑷 ′)𝐻 , (˜𝑷 ′)𝐻 . Then the
point clouds, LF points and HF points are input into the correspond-
ing modules to get their respective spatial and spectral features.
Finally, all types of features are concatenated to form the input fed
into the final discriminant vector, and the corresponding confidence
values are generated through three FC layers as:

𝐷𝜓 (𝑷 ) = 𝐹𝐶 ( [𝑓𝑝𝑐 (𝑷 ), 𝑓𝑙 𝑓 ((𝑷 ′)𝐿), 𝑓ℎ𝑓 ((𝑷 ′)𝐻 ]), (9)

𝐷𝜓 (˜𝑷 ) = 𝐹𝐶 ( [𝑓𝑝𝑐 (˜𝑷 ), 𝑓𝑙 𝑓 ((˜𝑷
′)𝐿), 𝑓ℎ𝑓 ((˜𝑷

′)𝐻 )]). (10)
Feature discriminator. Further, we construct a feature discrim-
inator to make a distinction between source point clouds and ad-
versarial point clouds from the perspective of feature similarity.
The intermediate features extracted by different models during
classification show strong similarities. This inspires us to utilize a
frozen discriminator as the feature extractor to guide the frequency-
aware generator to produce transferable adversarial point clouds
via a feature distance loss. Specifically, the feature discriminator
is a pre-trained classifier. We respectively input the point cloud

𝑷 and ˜𝑷 into the 𝐷𝛾 , extract the corresponding features 𝒓𝑜𝑟𝑖 and
𝒓𝑎𝑑𝑣 from intermediate layer outputs of 𝐷𝛾 , calculate the distance
between 𝒓𝑜𝑟𝑖 and 𝒓𝑎𝑑𝑣 , and optimize the generator by maximizing
the distance to destroy feature similarity.

3.5 Objective Loss Function
Adversarial Loss. The goal of the 𝐷𝜓 is to correctly differentiate
between the source point cloud 𝑷 and the adversarial point cloud ˜𝑷 ,
while the goal of the𝐺 is to fool 𝐷𝜓 . That is, adversarial loss 𝐿𝑑𝑖𝑠 of
𝐷𝜓 is to maximize the probability that the 𝐷𝜓 identifies 𝑷 as true
and ˜𝑷 as false. On the contrary, adversarial loss 𝐿𝑔𝑒𝑛 of the 𝐺 is to
maximize the probability that the 𝐷𝜓 identifies ˜𝑷 as true. Based on
this and previous work [41], we adopt the following adversarial
loss:

𝐿𝑑𝑖𝑠 (𝑷 , ˜𝑷 ) = −E𝑷∼P𝑷 [𝐷𝜓 (𝑷 )] + E
˜𝑷∼P

˜𝑷
[𝐷𝜓 (˜𝑷 )], (11)

𝐿𝑔𝑒𝑛 (˜𝑷 ) = −E
˜𝑷∼P

˜𝑷
[𝐷𝜓 (˜𝑷 )], (12)

where P𝑷 is the distribution of 𝑷 and P
˜𝑷 is the distribution of 𝑃 .

Reconstruction Loss. As with the adversarial loss objective, to
make ˜𝑷 similar to 𝑷 , we adopt the L2-norm distance as reconstruc-
tion loss 𝐿𝑟𝑒𝑐 [63]:

𝐿𝑟𝑒𝑐 (𝑷 , ˜𝑷 ) =
√√ ∑︁

𝒑𝑖 ∈𝑷 ,˜𝒑𝑖 ∈˜𝑷

(𝒑𝑖 − ˜𝒑𝑖 )2 . (13)

Feature Loss. We introduce feature loss 𝐿𝑓 𝑒𝑎 by maximizing the
distance between features 𝒓𝑜𝑟𝑖 and 𝒓𝑎𝑑𝑣 from intermediate layer
outputs of𝐷𝛾 to optimize the𝐺 . This makes the adversarial features
far away from the clean features, and the final classification is biased
towards another category. Mathematically, the 𝐿𝑓 𝑒𝑎 is defined as
follows:

𝐿𝑓 𝑒𝑎 (𝒓𝑜𝑟𝑖 , 𝒓𝑎𝑑𝑣) = −||𝒓𝑜𝑟𝑖 − 𝒓𝑎𝑑𝑣 | |22 . (14)
In summary, both generator 𝐺 and discriminator 𝐷𝜓 are opti-

mized during training using the above losses as:

𝐿𝐺 = 𝐿𝑔𝑒𝑛 +𝑤𝑟𝑒𝑐𝐿𝑟𝑒𝑐 +𝑤 𝑓 𝑒𝑎𝐿𝑓 𝑒𝑎, (15)

𝐿𝐷 = 𝐿𝑑𝑖𝑠 , (16)
where𝑤𝑟𝑒𝑐 and𝑤 𝑓 𝑒𝑎 are the weight factors.

3.6 Iterative Learning Generator and
Discriminator

In our attack method, the frequency-aware generator and the dual-
discriminator utilize the adversarial learning process to improve
their respective performance, prompting the generation of adver-
sarial samples. Specifically, by minimizing the loss functions, we
iteratively update the parameters 𝜼 of the frequency-aware genera-
tor 𝐺 and the parameters 𝜻 of the frequency-aware discriminator
𝐷𝜓 via gradient descent. Prior to this, we use random mask pro-
posed by [48] to screen out meaningless perturbation points. This
mask 𝑀 is the same size as the perturbation and consists of 0 or
1. We perform matrix multiplication of the mask with the pertur-
bation to randomly discard the perturbation points. The overall
training procedure of our model is summarized in Algorithm 1.
During the inference, we directly utilize the generator𝐺 to quickly
create imperceptible and transferable adversarial point cloud.
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Table 1: Comparative results on the perturbation sizes of adversarial point clouds generated by different attack methods across
different 3D classification models under 100% ASR.

Setting Attack Methods PointNet PointNet++ DGCNN PCT
𝐷ℎ 𝐷𝑐 𝐷𝑛𝑜𝑟𝑚 𝐷ℎ 𝐷𝑐 𝐷𝑛𝑜𝑟𝑚 𝐷ℎ 𝐷𝑐 𝐷𝑛𝑜𝑟𝑚 𝐷ℎ 𝐷𝑐 𝐷𝑛𝑜𝑟𝑚

White-Box

FGSM [53] 0.1853 0.1326 0.7936 0.2275 0.1682 0.8357 0.2506 0.1890 0.8549 0.2478 0.1815 0.8493
PGD [30] 0.1322 0.1329 0.7384 0.1623 0.1138 0.7596 0.1546 0.1421 0.7756 0.1625 0.1388 0.7541
AdvPC [11] 0.0343 0.0697 0.6509 0.0429 0.0685 0.6750 0.0148 0.0623 0.6304 0.0369 0.0625 0.6806
3D-ADV [52] 0.0105 0.0003 0.5506 0.0381 0.0005 0.5699 0.0475 0.0005 0.5767 0.0237 0.0007 0.6011
LG-GAN [63] 0.0362 0.0347 0.7184 0.0407 0.0238 0.6896 0.0348 0.0119 0.8527 0.0312 0.0419 0.9416
GeoA [49] 0.0175 0.0064 0.6621 0.0357 0.0198 0.6909 0.0402 0.0176 0.7024 0.0428 0.0217 0.7350

Black-Box SI-Adv [18] 0.0431 0.0003 0.9351 0.0444 0.0003 1.0857 0.0336 0.0004 0.9081 0.0518 0.0004 0.9741
Transfer-based
Black-Box Ours 0.0223 0.0003 0.8952 0.0190 0.0006 0.9757 0.0177 0.0005 0.9561 0.0194 0.0005 0.8436

4 EXPERIMENTS
4.1 Dataset and 3D Models
Dataset.We use ModelNet40 [51] in our experiments to evaluate
the attack performance. ModelNet40 consists of 12,311 CADmodels
from 40 object categories, in which 9,843 models are intended for
training and the other 2,468 for testing. Following the settings of
previous work [13, 24, 49], we uniformly sample 1024 points from
the surface of each object and scale them into a unit ball.
3D Models. Following previous works, we select four commonly
used point cloud classification networks in 3D computer vision
community as the feature discriminator and the victim models, i.e.,
PointNet [31], PointNet++ [32], DGCNN [47] and PCT [10]. We
generate the adversarial point clouds over each of them, and further
evaluate the transferability of our proposed attack among them.

Algorithm 1 Training of the proposed frequency-aware GAN
Require: The source point clouds 𝑷 , pre-trained feature discrimi-

nator𝐷𝛾 , the number of iteration𝑇 , andmaximumperturbation
magnitude 𝜖 .

Ensure: Frequency-aware generator 𝐺
1: Initialize the frequency-aware generator𝐺 and the frequency-

aware discriminator 𝐷𝜓 .
2: for 𝑖 = 1, . . . ,𝑇 do
3: Get batches of source point clouds 𝑷
4: Get the adversarial perturbations 𝚫 = 𝑐𝑙𝑖𝑝 (𝐺 (𝑷 )) which is

restricted to a range of [−𝜖, 𝜖]
5: Get the adversarial point clouds with random mask ˜𝑷 =

𝑷 +𝑀 × 𝚫
6: Get the confidence values 𝐷𝜓 (𝑷 ), 𝐷𝜓 (˜𝑷 )
7: Get intermediate feature maps 𝒓𝑜𝑟𝑖 and 𝒓𝑎𝑑𝑣 with 𝐷𝛾

8: Calculate loss of 𝐷𝜓 :
9: 𝐿𝐷 = −E𝑷∼P𝑷 [𝐷𝜓 (𝑷 )] + E

˜𝑷∼P
˜𝑷
[𝐷𝜓 (˜𝑷 )]

10: Update 𝜻 ← min𝐿𝐷
11: Calculate reconstruction loss 𝐿𝑟𝑒𝑐 with L2-norm distance
12: Calculate feature loss 𝐿𝑓 𝑒𝑎 = −||𝒓𝑜𝑟𝑖 − 𝒓𝑎𝑑𝑣 | |22
13: Calculate distinction loss 𝐿𝑔𝑒𝑛 = −E

˜𝑷∼P
˜𝑷
[𝐷𝜓 (˜𝑷 )]

14: Calculate loss of 𝐺 :
15: 𝐿𝐺 = 𝐿𝑟𝑒𝑐 + 𝐿𝑓 𝑒𝑎 + 𝐿𝑔𝑒𝑛
16: Update 𝜼 ← min𝐿𝐺
17: return 𝐺

4.2 Experimental Settings
Evaluation Metrics. To quantitatively evaluate the effectiveness
of our proposed attack, we measure the generated adversarial ex-
amples by the attack success rate (ASR), L2-norm distance 𝐷𝑛𝑜𝑟𝑚

[5], Chamfer distance 𝐷𝑐 [8] and Hausdorff distance 𝐷ℎ [19].
Implementation Details.We train the model for 100 epochs using
the Adam [21] optimizer with a batch size of 32, and the learning
rate of 𝐺 and 𝐷𝜓 are both 0.0001. We set K = 10 to build a KNN
graph and set the perturbation threshold as 𝜖 = 0.16. The weight of
reconstruction loss𝑤𝑟𝑒𝑐 is set to 1. The weight of the feature loss
𝑤 𝑓 𝑒𝑎 and the intermediate layer are different due to the different
models used by the feature discriminator. In PointNet, PointNet++,
DGCNN, and PCT, 𝑤 𝑓 𝑒𝑎 is set to 9, 10, 4, 15 respectively, and in-
termediate layer is set to 6th, 5th, 8th, 9th. All experiments are
implemented on a single NVIDIA RTX 5000 GPU.

4.3 Evaluation on the Imperceptibility
Comparison with existing methods. To investigate the imper-
ceptibility of our attack, we measure the perturbation sizes of dif-
ferent adversarial point clouds required to achieve 100% of attack
success rate with three evaluation metrics. As shown in Table 1, our
attack achieves smaller perturbation sizes than the black-box model
and achieves very competitive results with white-box models. Com-
pared with methods such as 3D-ADV [52] that modify a few points,
our method has a slightly higher 𝐷𝑛𝑜𝑟𝑚 because we use GAN to
conduct global perturbations. Perturbing each point can alter the
distance to the original point, thereby increasing the 𝐷𝑛𝑜𝑟𝑚 value
for precise point-to-point distance measurement as the number of
perturbed points increases. However, our attack performs better in
𝐷𝑐 and 𝐷ℎ since we utilize the spectral tool to capture and preserve
the geometric structures of the point cloud.
Visualization results. We provide visualization on adversarial
samples generated by our attack, LG-GAN [63] and SI-Adv [18]
in Figure 3. Compared to LG-GAN, our adversarial samples have
less shape distortion. Besides, our method also mitigates detail loss
and the outlier points, thereby generating imperceptible adversarial
samples. More visualizations are in the supplementary.

4.4 Evaluation on the Transferability
To investigate the transferability of our attack, we first utilize the
feature discriminator as the white-box model. Then we craft ad-
versarial samples on different feature discriminator and test them
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Figure 3: Visualization results of adversarial samples.

Table 2: The transfer-based attack success rates (%) on four
models by various attacks.
White-Box

Target Model
Attack
Methods

Black-Box Victim Model
PointNet PointNet++ DGCNN PCT

PointNet

FGSM 100.0 3.9 0.6 3.7
LG-GAN 98.3 11.6 14.5 12.9
SI-Adv 100.0 7.1 14.1 8.5
Ours 100.0 84.4 68.4 71.2

PointNet++

FGSM 3.2 100.0 5.6 10.0
LG-GAN 10.2 93.5 9.1 18.4
SI-Adv 21.4 94.4 10.5 17.1
Ours 62.4 100.0 70.8 73.2

DGCNN

FGSM 3.6 7.2 100.0 8.9
LG-GAN 5.9 17.5 97.3 14.2
SI-Adv 15.8 11.4 100.0 25.4
Ours 55.2 73.6 100.0 78.4

PCT

FGSM 9.1 7.6 12.3 100.0
LG-GAN 17.6 24.3 27.8 100.0
SI-Adv 27.9 18.4 31.7 95.1
Ours 72.4 81.6 74.4 100.0

Table 3: The attack success rates (%) on PointNet++ by various
attacks under defense.

Defense
Attack None FGSM LG-GAN SI-Adv Ours

No Defense 0.0 100.0 100.0 100.0 100.0
SRS 0.9 9.7 38.5 70.1 73.2
SOR 0.6 6.3 64.2 78.9 79.6

on the four models we consider. The corresponding transfer-based
attack success rates are shown in Table 2. We can observe that the
ASRs of all attack methods are very close to 1 when the black-box
victim model is the same as the white-box target model. When the
victim model is different from the target model, we can find that

Table 4: The average runtime for generating an adversarial
sample on PointNet by various attacks.

Attack Methods FGSM LG-GAN SI-Adv Ours
Runtime 0.082s 0.04s 0.58s 0.006s

our attack achieves higher ASRs than other methods. The main
reason is that, the proposed dual-branch discriminator from both
frequency and feature perspectives through adversarial learning en-
courages the genarator to produce the most harmful perturbations,
which can resist possible distortions when transferred to attack
unknown models.

4.5 Evaluation on Existing Point Cloud Defense
To evaluate the robustness of our attack against different adversarial
defenses, we conduct the experiments on two widely used defense
methods: Simple Random Sampling (SRS) [53] and Statistical Outlier
Removal (SOR) [64]. As shown in Table 3, (1) the ASRs on clean data
is equal or close to 0 perhaps due to the modification of point clouds
by the defense methods. (2) The FGSM attack has lower ASRs since
it shifts points along xyz directions without any constraint of the
length. This easily results in uneven local distribution and outliers.
(3) Our method achieves better ASRs than other attacks under the
defenses. This is because the adversarial sample we generate is
highly similar to the original one in both geometric topology and
point distributions. Meanwhile, our attack alleviates the outlier
point problems.

4.6 Evaluation on the Runtime
We assess the average runtime required to generate an adversarial
point cloud in the inference phase across various attack methods.
As shown in Table 4, our method demonstrates a quicker execution
compared to others. The FGSM attack accesses the target model for
one forward-propagation and one back-propagation processes. The
generator architecture of LG-GAN based on PointNet++ is more
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Table 5: Comparison with baseline diffusion model on
transfer-based attack success rates (%) and runtime (s). Target
model: PointNet.
Methods PointNet PointNet++ DGCNN PCT Runtime
Diffusion 76.2 19.1 34.8 35.7 0.81
Ours 100 84.4 68.4 71.2 0.006

Table 6: Effects of GFT and IGFT ablation in the frequency-
aware generator on imperceptibility on PointNet.

GFT IGFT
𝐷ℎ 𝐷𝑐 𝐷𝑛𝑜𝑟𝑚high-frequency low-frequency

✓ ✓ × 0.0223 0.0003 0.8952
✓ × ✓ 0.0272 0.0009 1.4143
✓ ✓ ✓ 0.0263 0.0006 1.1975
✓ × × 0.0276 0.0005 1.1085
× × × 0.0506 0.0019 1.9649

Table 7: Sensitivity on hyper-parameter 𝑏 on PointNet.

Metric
Variant

𝑏 = 50 𝑏 = 100 𝑏 = 200 𝑏 = 400

𝐷ℎ 0.0243 0.0223 0.0228 0.0238
𝐷𝑐 0.0004 0.0003 0.0004 0.0004
𝐷𝑛𝑜𝑟𝑚 0.9607 0.8952 0.9011 0.8988

complex than ours. The SI-Adv attack requires multiple queries
to the target model. While our attack only performs one forward-
propagation process on generator to create an adversarial sample.

4.7 Comparison with Diffusion Model
GANs and diffusion models are both generative models designed to
learn from training data and generate new data samples. Currently,
there is no research on point cloud adversarial attack based on
diffusion model. Therefore, we conduct a comparative analysis with
the baseline diffusion model. As show in Table 5, our attack employs
the GAN-based approach, which not only achieves superior ASRs
but also accelerates the generation of adversarial examples.

4.8 Ablation Study
The influence of frequency features and skip connections
in frequency-aware generator. To verify the effect of these fac-
tors in making the adversarial samples imperceptible, we evaluate
five ablations in frequency-aware generator: (1) our method; (2) re-
placing high-frequency (HF) skip connections with low-frequency
(LF) skip connections; (3) using HF and LF skip connections; (4)
removing HF skip connections; (5) removing the GFT and HF skip
connections. As show in Table 6, our method achieves the smallest
perturbations than other strategies in all metrics. This is because
the frequency features perceive the geometric topology and their
high-frequency components can encode find-grained details well.
The influence of dual discriminator. To verify the impact that
the feature discriminator and the frequency-aware discriminator
work together to improve the transferability, we design four abla-
tions in dual discriminator: (1) only the feature discriminator 𝐷𝛾 ;
(2) only the the frequency-aware discrimintor 𝐷𝜓 ; (3) neither 𝐷𝛾

nor 𝐷𝜓 ; (4) both 𝐷𝛾 and 𝐷𝜓 . As show in Figure 4, the dual-branch
strategy realizes the highest ASRs since we construct a powerful

PointNet++ DGCNN PCT
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Figure 4: Effects of each component in the dual discriminator
on transferability. The white-box target model is PointNet
and the x-axis is the black-box victim models.

1 2 3 4 5 6 7
0

20

40

60

80

100

Layer Depth

A
tta

ck
Su

cc
es
sR

at
e
(%
)

PointNet to PointNet++
PointNet to DGCNN
PointNet to PCT

Feature Discriminator: PointNet

1 2 3 4 5 6
0

20

40

60

80

100

Layer Depth

A
tta

ck
Su

cc
es
sR

at
e
(%
)

PointNet++ to PointNet
PointNet++ to DGCNN
PointNet++ to PCT

Feature Discriminator: PointNet++
Figure 5: Effects of feature layer selection on transferability.

discriminator to adversarially train the generator from frequency
and feature perspectives.
The influence of intermediate layer selection in feature dis-
criminator. Using features of different depths to optimize the
generator produces adversarial samples that have different ASRs
when attacking the black-box victim models. Based on the experi-
mental results in Figure 5, we select the optimal intermediate layer
for each feature discriminator to extract the features.
Sensitivity on hyper-parameter 𝑏. The hyper-parameter 𝑏 rep-
resents the dividing point between the low-frequency band and the
high-frequency band. First, it is used in frequency-aware generator
to improve imperceptibility and we verify its impact in Table 7.
When 𝑏 is set to 100, our attack achieves the smallest perturbations.
Futhermore, 𝑏 is also used in frequency discriminator, so we per-
form ablation to test its impact on transferability. The results are in
the supplementary.

5 CONCLUSIONS
In this paper, we propose a novel Transferable Frequency-aware 3D
GAN method, to attack the 3D models in a challenging transferable
black-box setting. Specifically, we utilize the spectral tool in the
GAN architecture with GFT and IGFT layer designs to perceive and
preserve the geometric structures of the 3D point cloud to improve
imperceptibility. Besides, we also develop a dual learning scheme
of discriminator from both frequency and feature perspectives to
constrain the generator via adversarial learning. In this manner, our
proposed attack method is able to generate imperceptible 3D adver-
sarial objects with high transferability. Experiments demonstrate
the effectiveness of the proposed attack.
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