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ABSTRACT
In online advertising, advertisers participate in ad auctions to ac-

quire ad opportunities, often by utilizing auto-bidding tools pro-

vided by demand-side platforms (DSPs). State-of-the-art auto-bidding

algorithms typically employ reinforcement learning (RL). However,

due to safety concerns, most current RL-based auto-bidding poli-

cies are trained in simulated systems, leading to a performance

degradation when deployed in online environments. To narrow this

gap, we can deploy multiple auto-bidding agents to run in parallel,

thereby collecting a large interaction dataset. Offline RL algorithms

can then be utilized to train a new policy. The trained policy can

subsequently be deployed for further data collection, resulting in

an iterative training framework, which we refer to as iterative

offline RL. In this work, we identify the performance bottleneck

of this iterative offline RL framework, which originates from the

ineffective exploration and exploitation caused by the inherent con-

servatism of offline RL algorithms. To overcome this bottleneck, we

propose Trajectory-wise Exploration and Exploitation (TEE), which

introduces a novel data collecting and data utilization method for

iterative offline RL from a trajectory perspective. Furthermore, to

ensure the safety of online exploration while preserving the dataset

quality for TEE, we propose Safe Exploration by Adaptive Action

Selection (SEAS). Both offline experiments and real-world exper-

iments on Alibaba display advertising platform demonstrate the

effectiveness of our proposed method.

1 INTRODUCTION
Online advertising [7] is becoming one of the major sources of

profit for Internet companies. Due to the complex online adver-

tising environments, auto-bidding tools provided by demand-side

platforms (DSPs) are commonly utilized to bid on behalf of advertis-

ers to optimize their advertising performance. Bidding for arriving

ad impressions can be viewed as a sequential decision-making prob-

lem, and thus state-of-the-art auto-bidding algorithms leverage

reinforcement learning (RL) to optimize bidding policies [4, 13, 32].

However, due to safety concerns, current RL-based auto-bidding

policies are trained in simulated environments. Policies trained

with simulation are shown suboptimal when deployed in the real-

world system [22]. Therefore, it is desirable to optimize the bidding

policy by directly interacting with the online environments. Classic

(online) RL algorithms alternate frequently between data collec-

tion and policy update, and typically require enormous samples

(i.e., transition tuples) to achieve convergence. However, collecting

transition data can be extremely time-consuming, e.g., in most RL

formulations of the auto-bidding problem [13, 32], an RL episode

corresponds to 24 hours, and thus training a policy may take a long

time. Additionally, frequent updates of online policies may cause

unstable performance and potentially risky bidding behaviours.

To address these issues, DSPs usually leverage a large number

of auto-bidding agents as parallel workers to allow for the effi-

cient collection of large amount of interaction data, and train an

auto-bidding policy on the dataset with offline RL [11, 19] — a data-

driven RL paradigm that aim to extract policies from large-scale

pre-collected datasets. The updated policy could again be deployed

for further data collection, which results in an iterative framework

for data collection and policy update. We refer to the above training

paradigm as iterative offline RL, as depicted in Figure 1. Iterative

offline RL presents a promising solution for online policy train-

ing in industrial scenarios, and similar approaches have also been

mentioned in several academic works [21, 22, 36].

To facilitate effective policy improvement for each iteration in

iterative offline RL, it is crucial for the collected datasets to encom-

pass sufficient information regarding various states and actions.

This often requires constructing an exploration policy that incor-

porates a degree of randomness, typically achieved by introducing

noise perturbation to actions [20–22]. Nonetheless, employing a

random exploration policy can adversely affect the performance

of the trained policy. This is because the introduced randomness

undermines the exploration policy’s performance, and offline RL

algorithms heavily relies on the exploration policy due to the prin-

ciple of conservatism (or pessimism) [10, 11, 16, 18, 28], which

compels the newly updated policy to be close to the exploration

policy. Even if we have collected a dataset with rich information

about the advertising environment, offline RL algorithms may not

fully exploit its potential due to the influence of low-quality actions,

resulting in the failure to learn a good policy. We demonstrate this

phenomenon in Section 4, highlighting the challenges of effective

exploration and exploitation for iterative offline RL.

In this work, we tackle the aforementioned challenges by adopt-

ing a trajectory perspective for both the exploration (data collection)

process and the exploitation (offline RL training) process. For effi-

cient exploration, we construct exploration policies by introducing

noise into the policy’s parameter space instead of the traditional

action space. This choice is motivated by our key observation that

this injection of parameter space noise (PSN) yields an exploration

dataset with a more dispersed trajectory return distribution (please

refer to Section 5.1 for details). This observation indicates that the

dataset contains a considerable number of high-return trajectories,

which are valuable for offline training. For effective exploitation, we

propose Robust Trajectory Weighting to fully exploit high-return

trajectories in the collected dataset. Specifically, instead of uni-

formly sampling the dataset during training, we assign high proba-

bility weights to high-return trajectories, thereby enhancing the

impact of high-quality behaviours on the training process and over-

coming the conservatism problem. However, the instability of the

advertising environments leads to highly stochastic trajectory re-

turns that often fail to reliably reflect the trajectory qualities. To

address this issue, we design a new trajectory quality indicator by
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approximating the expectation of the stochastic rewards, in order

to eliminate the effect of stochasticity and enhance the robustness

of the trajectory weighting method. We leverage PSN for online

exploration and utilize Robust Trajectory Weighting to compute

sampling probabilities before offline RL training, boosting the ef-

fectiveness of exploration and exploitation in iterative offline RL.

Apart from effectiveness, safety constraints must also be taken

into consideration during online exploration in real-world adver-

tising systems. Random exploration can lead to risky bidding be-

haviours, negatively impacting the performance of advertisers. The

safety of an exploration policy is captured by a performance lower

bound, which ensures that the performance drop brought by ex-

ploration is acceptable. Ensuring safe exploration often requires

imposing constraints on the original exploration policy. However,

existing safety-guaranteeing methods [22] often lack awareness of

action qualities. While they prevent dangerous behaviours, they

also restrict some high-quality actions. This may hinder the emer-

gence of high-return trajectories during exploration, and subse-

quently affect the performance of the training process. To preserve

data quality while ensuring safety, we propose SEAS, which dy-

namically determines the safe exploration action at each time step

based on the cumulative rewards up to that step and the predicted

future return. By making adaptive decisions, SEAS preserves the

quality of the collected dataset to the fullest extent, and achieves

theoretically guaranteed safety at the same time.

Main contributions of this work are summarized as follows:

• We identify and demonstrate that the performance bottle-

neck of the current iterative offline RL paradigm for auto-

bidding algorithms mainly lies in ineffective exploration

and exploitation caused by the conservatism principle of

offline RL algorithms.

• We propose TEE, a solution for effective exploration and

exploitation in iterative offline RL for auto-bidding. TEE

comprises two components: PSN for trajectory-wise explo-

ration, and a novel Robust Trajectory Weighting algorithm

for trajectory-wise exploitation.

• For safe exploration in auto-bidding, we design SEAS, which

adaptively decides the safe exploration action for each time

step based on the cumulative rewards till that step. SEAS

enjoys provable safety guarantee while sacrificing minimal

performance in policy learning when functioning together

with TEE.

• Extensive experiments in both simulated environments and

Alibaba display advertising platform demonstrate the effec-

tiveness of our solution in terms of trained policy’s perfor-

mance, as well as the safety of the training process.

2 RELATEDWORK
Reinforcement learning for auto-bidding. Bid optimization in online

advertising is a sequential decision procedure, and can be solved via

reinforcement learning techniques. Cai et. al. [4] first formulated the

auto-bidding problem as an MDP. Wu et. al. [32] and He et. al. [13]

leveraged reinforcement learning to optimize bidding policies under

various constraints. All of the above works train their RL bidding

agent in a simulated environment. Mou et. al. [22] recognized the

Figure 1: Iterative offline RL with TEE and SEAS. Compo-
nents proposed in this work are highlighted in red.

sim2real problem in auto-bidding, and designed an iterative offline

RL framework to train the bidding policy online.

Offline RL. Offline RL [11, 19, 27] (or batch RL) refers to the

problem of policy optimization utilizing only previously collected

data, without additional online interaction. Due to the distribu-

tion shift [11] problem that arises in offline RL, most algorithms

conduct conservative policy learning, which compels the learning

policy to stay close to the dataset. Various algorithms achieve this

by directly regularizing the actor [10, 11, 17, 25], learning conser-

vative value functions [18], or constraining the number of policy

improvement steps [3, 16]. However, the conservatism principle

causes the performance of trained policy to highly depend on the

dataset quality.

Dataset coverage in offline RL. Dataset coverage is a core factor
that limits the performance of offline RL algorithms. Schweighofer

et. al. [29] conducted extensive experiments to demonstrate that

dataset coverage is essential for offline RL algorithms to learn a

good policy. Prior theoretical works on offline RL [5, 28, 35] also

relied on datasets with sufficient state-action space coverage, which

is often characterized by concentrability coefficients, to produce a

strong performance guarantee.

Exploration in RL. Exploration is a crucial aspect of RL as it

allows the agent to gather information about the environment. Tra-

ditional exploration strategies induce novel behaviours by random

perturbations of actions, such as 𝜖-greedy [30] and entropy regu-

larization [31]. To generate meaningful behavioural patterns for

hard exploration tasks, several other approaches such as intrinsic

reward-based exploration [6, 24], count-based exploration [2, 23]

and PSN [9, 26] have been proposed. However, most of the existing

solutions have been proposed for the online RL paradigm, which

is substantially different from iterative offline RL where data is

collected for training offline RL algorithms.

3 PRELIMINARIES
In this work, we consider auto-bidding with budget constraint, a

sequential decision problem, where an advertiser submits bids for

incoming ad impressions, aiming to maximize the total value within

a fixed budget. For this problem, previous works [37, 38] showed

that under the second price auction [8], the optimal bid 𝑏∗ on an
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impression is given by 𝑏∗ = 𝑣/𝜆, where 𝑣 represents the impression

value (e.g. click-through rate) and 𝜆 is a scaling factor. However,

determining the optimal value of 𝜆 in real time is intractable due to

its dependence on values and costs of all impressions in the stream.

Thus, we formulate the problem of adjusting bidding parameter 𝜆 as

a Markov Decision Process (MDP), defined by a tuple (S,A, 𝑟 , 𝑝,𝛾).
In our formulation, an episode corresponds to a one-day ad cam-

paign duration, which is divided into 𝑇 time steps. At each step 𝑡 ,

the advertiser observes state 𝑠𝑡 ∈ S and takes an action 𝑎𝑡 ∈ A.

The state 𝑠𝑡 is a feature vector describing the advertising status of a

campaign, which may contain time, remaining budget, budget con-

sumption speed, and etc. The action 𝑎𝑡 is the bidding parameter 𝜆

in time step 𝑡 . The reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is the total value of impressions

won between time step 𝑡 and 𝑡 + 1, and 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) denotes the
transition probability of states. Both 𝑟 and 𝑝 are determined by the

advertising environment. The discount factor 𝛾 ∈ [0, 1] accounts
for the future rewards’ diminishing impact. A (deterministic) policy

𝜋 ∈ Π : S → A is a function defining the agent’s bidding be-

haviour. When a policy interacts with the advertising environment

over an episode, a trajectory 𝜏 = {(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 )}𝑇𝑡=0
is generated

1
,

where the initial state 𝑠0 is drawn from a probability distribution 𝜌 .

The (discounted) return of trajectory 𝜏 is 𝑅(𝜏) = ∑𝑇
𝑡=0

𝛾𝑡𝑟𝑡 . The

objective of RL is to maximize the expected return:

arg max

𝜋∈Π
𝐽 (𝜋) B E𝜏 [𝑅(𝜏)] .

In RL, the state value function of a policy 𝜋 is defined as

𝑉 𝜋 (𝑠) B E𝜋 [
𝑇∑︁
𝑢=𝑡

𝛾𝑢𝑟𝑢 |𝑠𝑡 = 𝑠], ∀𝑠 ∈ S.

Similarly, the action value function is

𝑄𝜋 (𝑠, 𝑎) B E𝜋 [
𝑇∑︁
𝑢=𝑡

𝛾𝑢𝑟𝑢 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], ∀𝑠 ∈ S, 𝑎 ∈ A .

Iterative offline RL follows a cyclical pattern of data collection

and offline policy update, repeatedly for a total of 𝐾 iterations.

Within each iteration 𝑘 ∈ [𝐾], an exploration policy 𝜋𝑘𝑒 is con-

structed based on 𝜋𝑘 . Then 𝜋𝑘𝑒 is deployed in the advertising envi-

ronment to collect interaction dataset 𝐷𝑘 = {𝜏𝑖 }𝑁𝑖=1
containing 𝑁

trajectories. An offline RL algorithm is then used to learn a policy

from 𝐷𝑘
, producing the updated policy 𝜋𝑘+1 for the subsequent

iteration.

Safety of Bidding Policies. The performance of auto-bidding

policies deployed in the advertising system must be guaranteed in

either the stages of policy deployment or policy training. There-

fore, safety of the RL training process is formally defined by a

performance lower bound:

𝐽 (𝜋𝑘𝑒 ) ≥ (1 − 𝜖) 𝐽𝑠 ,∀𝑘 = 1, · · · , 𝐾,

where 𝐽𝑠 is the performance of a known safe policy. Note that the

exploration policy 𝜋𝑘𝑒 in every iteration 𝑘 should be ensured to

be safe. To satisfy the safety constraint in the first iteration, the

training process should be initialized by a known safe (but could be

1
For simplicity, we assume all trajectories’ lengths are equal to episode length 𝑇 ,

though a campaign may exhaust its budget at certain time 𝑡0 < 𝑇 and cannot afford

any impression thereafter. In such cases, we let 𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 0, ∀𝑡0 ≤ 𝑡 ≤ 𝑇 .

Figure 2: Performance of exploration policies with different
noise scale, as well as the performance of policies trained
with IQL on datasets collected by those exploration policies.

suboptimal) policy instead of a random policy. In practice, policies

trained in a simulation [13] could serve as an initial policy.

4 PERFORMANCE BOTTLENECK OF
ITERATIVE OFFLINE RL

In this section, we present empirical observations regarding the

performance bottleneck of iterative offline RL, and also introduce

the idea of our proposedmethod. In each iteration of iterative offline

RL, the data-collection policy plays a crucial role in determining

the input dataset for the subsequent offline training process, which

in turn influences the trained policy. The data-collection process

should gather sufficient information of the underlyingMDP through

effective exploration.

A conventional approach for exploration in iterative offline RL

[21] is adding noise perturbations to actions. Concretely, an ex-

ploration policy with action space noise (ASN) is constructed as

𝜋𝐴𝑆𝑁𝑒 (𝑠𝑡 ) = 𝜋 (𝑠𝑡 ) + 𝜖𝑡 , where 𝜖𝑡 ∼ N(0, 𝜎2𝐼 ) is sampled from a

Gaussian distribution with standard deviation 𝜎 . The addition of

noise aims to achieve sufficient coverage of the state-action space.

However, a highly random policy often leads to suboptimal perfor-

mance and results in a dataset consisting primarily of low-quality

actions. Consequently, such datasets pose challenges for offline

RL algorithms to produce high-quality policies in the subsequent

training process. This is because the conservatism principle of these

algorithms drives the learned policy close to the low-performing

exploration policy.

We conduct experiments in a simulated environment (details

provided in Appendix C) to illustrate the aforementioned issue.

Based on one deterministic policy, we construct exploration policies

by adding different levels of noise perturbation on the actions.

These exploration policies are deployed in the environment to

collect interaction datasets, which are then utilized by IQL [16], an

offline RL algorithm, to train new policies. Figure 2 presents the

performances of exploration policies with varying noise scale and

performances of the trained policies. We can observe that adding a

certain amount of noise boosts the trained policy by gaining more

environment information, while an excessively noisy exploration

policy undermines the training result. Furthermore, the optimal

3
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noise scale depends on the training algorithm, making online tuning

of the noise scale impractical.

One potential method for overcoming the difficulty brought by

conservatism is to manually identify high-quality behaviours from

the noisy dataset and allow the learning algorithm to focus solely

on these behaviours. However, evaluating the quality of individual

actions within a dataset can be challenging. For one transition tuple

(𝑠, 𝑎, 𝑟, 𝑠′), a large reward 𝑟 does not necessarily indicate 𝑎 to be a

good action, due to the influence of 𝑠′ on future rewards. Hopefully,

if a full trajectory 𝜏 attains a high return, then it is reasonable

to infer that this trajectory contains high-quality behaviours. In

following sections, we present empirical findings to reveal that

employing PSN instead of ASN for exploration leads to a dataset

containing more high-return trajectories. Based on this observation,

we propose TEE for online RL in auto-bidding.

5 PROPOSED FRAMEWORK
In this section, we present our novel design on iterative offline

RL framework for auto-bidding, which comprises two key compo-

nents: TEE and SEAS. TEE is proposed to optimize the effectiveness

of exploration (i.e., data collection) and exploitation (i.e., offline

training), and SEAS is specifically developed to address the safety

concerns that may arise during the online exploration process.

5.1 Trajectory-wise Exploration
We introduce Parameter Space Noise (PSN) [9, 26] for exploration

in the iterative offline RL framework, and explain its effectiveness

from a trajectory view. PSN refers to injecting noise in an RL pol-

icy’s parameter space in order to induce exploratory behaviours.

It has brought performance gain on a wide range of control tasks

when applied to online deep RL algorithms [1, 14]. For a parame-

terized policy (e.g. a neural network) 𝜋 (𝑠 ;𝜃 ), where 𝜃 is the param-

eter vector, applying additive Gaussian noise to 𝜃 gives
ˆ𝜃 = 𝜃 + 𝜖 ,

where 𝜖 ∼ N(0, 𝜎2𝐼 ). Then the exploration policy based on PSN is

𝜋𝑃𝑆𝑁𝑒 (𝑠𝑡 ) = 𝜋 (𝑠𝑡 ;
ˆ𝜃 ). Importantly, the perturbed parameter vector

ˆ𝜃 is only sampled at the beginning of each episode and remains

fixed afterwards. This is substantially different from ASN where

independent noise is added at every time step.

We now present our key observation on datasets collected by

PSN by experiments in a simulated bidding environment (details are

provided in Appendix C).We first construct two exploration policies

with ASN and PSN based on one policy 𝜋 , and denote them by

𝜋𝐴𝑆𝑁𝑒 and 𝜋𝑃𝑆𝑁𝑒 respectively. Subsequently, two datasets𝐷𝐴𝑆𝑁
and

𝐷𝑃𝑆𝑁
of equal size are collected with 𝜋𝐴𝑆𝑁𝑒 and 𝜋𝑃𝑆𝑁𝑒 . To ensure a

fair comparison, we control the noise strength of both exploration

policies to guarantee that the average return of𝐷𝐴𝑆𝑁
and𝐷𝑃𝑆𝑁

are

equal. As shown in Figure 3, the return distribution of trajectories

in 𝐷𝑃𝑆𝑁
is more dispersed than that of 𝐷𝐴𝑆𝑁

. Specifically, 𝐷𝑃𝑆𝑁

contains high-return trajectories (e.g. trajectories with return higher
than 750) which are almost absent in 𝐷𝐴𝑆𝑁

. Additionally, Table 1

shows that the return variance of 𝐷𝑃𝑆𝑁
is consistently higher than

that of 𝐷𝐴𝑆𝑁
under different exploration degrees, indicating the

potential of extracting desirable bidding behaviours from datasets

collected by PSN policies.

The high return variance observed in PSN can be attributed to

two main factors: decoupling between the exploration policy and

Figure 3: Comparison of trajectory return distributions of
datasets collected by ASN and PSN.

Table 1: Comparison of trajectory return variances of datasets
collected by ASN and PSN.

Average Return 400 450 500 550

Return Variance of 𝐷𝐴𝑆𝑁
88.29 100.74 140.99 197.55

Return Variance of 𝐷𝑃𝑆𝑁
236.07 246.10 245.40 265.46

the base policy (i.e. the original noiseless policy 𝜋 ), and the consis-

tency of exploration behaviours. The following example provides

further explanation in the context of auto-bidding, by highlight-

ing the incapability of ASN on generating high-return trajectories.

Assume that the current policy 𝜋 is suboptimal in that it produces

relatively low bids across most states. When conducting explo-

ration based on 𝜋 , attaining high-return trajectories would require

suggesting higher bids. In this case, positive perturbations 𝜖𝑡 are

desirable when applying ASN. However, when 𝜋𝐴𝑆𝑁𝑒 (𝑠𝑡 ) is lifted,
𝜋 (𝑠𝑡+1) would become low since the base policy 𝜋 aims to maintain

the smoothness of budget consumption, thereby offsetting the effect

of high bid in step 𝑡 . The counterbalancing actions of the base pol-

icy substantially prevent ASN from effectively exploring unknown

areas. Another issue with ASN is that, since the perturbations 𝜖𝑡
of different time steps are drawn from independent probability dis-

tributions, consistently realizing positive 𝜖𝑡 throughout an entire

episode is barely possible. PSN does not suffer from those issues,

since once the exploration policy is sampled, its behaviours are not

interfered by the base policy.

PSN enables us to sample a variety of policy parameters, which

could be distributed to a great number of advertising campaigns

in a DSP to explore different bidding behaviours. These campaigns

run in parallel and collect a large dataset covering a wide range of

behaviours, thus achieving large-scale trajectory-wise exploration.

5.2 Trajectory-wise Exploitation
While PSN-based exploration policies could effectively generate

valuable high-return trajectories, their collected datasets still consist

primarily of inferior trajectories, as depicted in Figure 3. Therefore,

the trained policy’s performance is still limited by the inherent con-

servatism of offline RL. To alleviate this problem and fully exploit

4
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the dataset, we propose Robust Trajectory Weighting for trajectory-

wise exploitation.

We consider a dataset containing multiple trajectories 𝐷 =

{𝜏𝑖 }𝑁𝑖=1
, where 𝜏𝑖 = {(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 , 𝑠𝑖,𝑡+1, 𝑟𝑖,𝑡 )}𝑇𝑡=0

. Inspired by [15, 33,

34], instead of uniform sampling, we assign large sample proba-

bilities to well-performing trajectories during training. A straight-

forward way to realize this is to assign weight 𝑤𝑖 for trajectory

𝜏𝑖 based on its return 𝑅𝑖 B 𝑅(𝜏𝑖 ), as high return typically indi-

cates good behaviours. Nonetheless, two main issues arise when

applying return-based trajectory weighting in the auto-bidding

task. Firstly, due to the instability of auction environments and user

feedbacks, the reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is highly stochastic, thus a

high return might not necessarily be achieved by a good policy, but

rather a "lucky" trial that happens to obtain high rewards in most

time steps. Secondly, trajectories within the dataset may come from

different advertising campaigns, and the intrinsic characteristics of

a campaign, such as its budget level and item category, also affect

the trajectory return. Thus, directly comparing trajectories from

different campaigns by their returns is unfair.

We address the first issue by learning a reward model 𝑟 on the

dataset for predicting the expected reward of a state-action pair:

𝑟 = arg min

𝑟

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=0

(𝑟 (𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 ) − 𝑟𝑖,𝑡 )2 .

The reward model could be implemented by a neural network with

the above loss function. Then the original stochastic rewards 𝑟𝑖,𝑡
are replaced with their expectations 𝑟𝑖,𝑡 = 𝑟 (𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 ) to calculate

𝑅𝑖 =
∑𝑇
𝑡=0

𝛾𝑡𝑟𝑖,𝑡 , producing more robust quality indicators.

To deal with the second issue mentioned above, we regularize

the trajectory returns by subtracting the value of the initial state of

the trajectory, estimated as 𝑉 = arg min𝑉

∑𝑁
𝑖=1
(𝑉 (𝑠𝑖,0) − 𝑅𝑖 )2. The

initial state typically contains information (e.g. the total budget) of
the advertising campaign, therefore 𝑉 (𝑠𝑖,0) provides estimation of

the expected return of the campaign behind trajectory 𝑖 . Our final

indicator of trajectory quality is 𝐴𝑖 :

𝐴𝑖 = (𝑅𝑖 −𝑉 (𝑠𝑖,0))/𝑉 (𝑠𝑖,0), ∀1 ≤ 𝑖 ≤ 𝑁 .

The sample probability𝑤𝑖,𝑡 of transition tuple (𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 , 𝑠𝑖,𝑡+1, 𝑟𝑖,𝑡 )
is computed according to 𝐴𝑖 as follows:

𝑤𝑖,𝑡 ∝ exp(𝐴𝑖/𝛼), ∀1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑡 ≤ 𝑇,

where 𝛼 ∈ R+ is a temperature parameter, and the weights should

be normalized to ensure

∑𝑁
𝑖=1

∑𝑇
𝑡=0

𝑤𝑖,𝑡 = 1.

After computing weights for dataset 𝐷 , we could run any model-

free offline RL algorithm (e.g. CQL, IQL) using the reweighted data

sampling strategy. We provide a theoretical justification of Robust

Trajectory Weighting in Appendix A, showing how it alleviates the

problem brought by conservative algorithms.

5.3 Safe Exploration
Although TEE boosts the effectiveness of iterative offline RL, the

safety of data-collecting policies, which is of great importance

when training in real-world advertising systems, have not been

considered. In this section, we propose a novel algorithm named

SEAS to guarantee the safety of online exploration.

Algorithm 1 Safe Exploration by Adaptive Action Selection (SEAS)

1: Input: Exploration policy 𝜋𝑒 , 𝑛 distinct safe policies {𝜋𝑖𝑠 }𝑛𝑖=1

and their state-action value function {𝑄𝜋𝑖
𝑠 }𝑛

𝑖=1
, safe perfor-

mance 𝐽𝑠 and safety coefficient 𝜖 ∈ (0, 1)
2: Initialize: Sample initial state 𝑠0 ∼ 𝜌 (𝑠), 𝑡𝑒𝑚𝑝 ← 1

3: for 𝑡 = 0, 1, · · · ,𝑇 do
4: 𝑎𝑒 ← 𝜋𝑒 (𝑠𝑡 ), 𝑎𝑠 ← 𝜋

𝑡𝑒𝑚𝑝
𝑠 (𝑠𝑡 )

5: 𝑡𝑒𝑚𝑝 ← arg max𝑖 𝑄
𝜋𝑖
𝑠 (𝑠𝑡 , 𝑎𝑒 ), 𝑄𝑚𝑎𝑥 ← 𝑄𝜋

𝑡𝑒𝑚𝑝
𝑠 (𝑠𝑡 , 𝑎𝑒 )

6: if
∑𝑡−1

𝑢=0
𝑟𝑢 +𝑄𝑚𝑎𝑥 ≥ (1 − 𝜖) 𝐽𝑠 then

7: 𝑎𝑡 ← 𝑎𝑒
8: else
9: 𝑎𝑡 ← 𝑎𝑠
10: end if
11: Take action 𝑎𝑡 , observe 𝑟𝑡 , 𝑠𝑡+1
12: end for

On the problem of safe exploration in auto-bidding, Mou et.

al. [22] designed a method based on safety zone, to restrict the

exploratory actions around a safe policy. Specifically, 𝜋𝑒 (𝑠𝑡 ) ←
𝑐𝑙𝑖𝑝 (𝜋𝑒 (𝑠𝑡 ), 𝜋𝑠 (𝑠𝑡 ) − 𝜉, 𝜋𝑠 (𝑠𝑡 ) + 𝜉), where 𝜋𝑠 is a known safe policy.

Though this method is provably safe under some assumptions on

theMDP, its safety heavily relies on the radius 𝜉 which is intractable

to determine. Besides, this approach lacks awareness of the quality

of original exploration actions, and poses constraint on both bad

and good actions, thus hurting the quality of collected datasets.

SEAS mitigates these problems through an adaptive design. The

aim of SEAS is to prevent the low-performing trajectories caused

by the original exploration policy (e.g. 𝜋𝑃𝑆𝑁𝑒 ) to emerge, while

preserving the high-quality ones to the fullest extent.

The procedure of SEAS interacting with the environment for

one episode is shown in Algorithm 1. In each step, SEAS selects

between an exploratory action 𝑎𝑒 and a safe action 𝑎𝑠 according to

the condition in line 6. Note that multiple safe policies are provided

to the algorithm, and in each step the safe policy with maximum

Q value is chosen for constructing the condition. Utilizing mul-

tiple safe policies instead of one loosens the restriction in line 6,

thus better preserving exploratory actions of 𝜋𝑒 . The algorithm is

"adaptive" in the sense that its action in each step 𝑡 depends on the

rewards accumulated till time 𝑡 .

The following theorem shows that SEAS theoretically guarantees

safety for any exploration policy 𝜋𝑒 . Proof of Theorem 1 is provided

in Appendix B.

Theorem 1. For any policy 𝜋𝑒 and any 𝜖 ∈ (0, 1), given safe
policies {𝜋𝑖𝑠 }𝑛𝑖=1

that satisfy 𝐽 (𝜋𝑖𝑠 ) ≥ 𝐽𝑠 ,∀1 ≤ 𝑖 ≤ 𝑛, the expected re-
turn E𝜏 [𝑅(𝜏)] of trajectories generated by SEAS satisfies E𝜏 [𝑅(𝜏)] ≥
(1 − 𝜖) 𝐽𝑠 .

The advantages of SEAS are summarized as follows: (i) SEAS

needs only one hyperparameter 𝜖 , which is in the definition of

safety and is straightforward to set. (ii) The safety of SEAS is prov-

able without additional assumptions on the underlying MDP. (iii)

Experiments demonstrate that when functioning together with TEE,

SEAS exhibits minimal performance sacrifice compared to baseline

methods.
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5.4 Overall Framework
TEE and SEAS can be combined to form an iterative framework

for online policy training in auto-bidding. The training process is

initialized with the current policy running in the bidding system,

which is typically suboptimal but safe. In each iteration 𝑘 , we em-

ploy PSN for exploration based on the current policy 𝜋𝑘 . We pick a

large number of advertising campaigns, and independently sample

parameter vectors for different campaigns’ policies. The exploration

policies are input to SEAS to guarantee safety. A subset of previous

policies {𝜋𝜅 }𝑘−1

𝜅=1
can be utilized as safe policies for SEAS, and 𝜖 is

a pre-defined constant parameter through iterations. The Q func-

tions of safe policies for SEAS could be obtained through different

approaches. For policies trained by value-based or actor-critic RL

algorithms, we can directly query the existing value network. Alter-

natively, new value networks can be fitted on the collected datasets.

Specifically, for approximating the Q function of 𝜋𝜅 , we can per-

form SARSA-style policy evaluation on dataset 𝐷𝜅
. Although this

yields underestimated values due to exploration when collecting

𝐷𝜅
, it does not incur violation of the safety constraint. This is be-

cause Theorem 1 still holds even when the input Q functions have

underestimated values. The safe exploration policies are then dis-

tributed and deployed to multiple advertising campaigns, running

in parallel for a specific duration (e.g. one day) to collect an interac-

tion dataset 𝐷𝑘
. Subsequently, we employ an offline RL algorithm

(e.g. IQL) to perform policy training on 𝐷𝑘
, where the sampling

probabilities are computed using Robust Trajectory Weighting. The

resulting trained policy 𝜋𝑘+1 becomes the input for the subsequent

iteration, and the process continues iteratively.

6 EXPERIMENTS
We provide empirical evidence for the effectiveness of our approach

by both simulated experiments and real-world experiments on

Alibaba display advertising platform.

6.1 Overall Performance in a Simulated
Environment

A simulated advertising system is constructed for all the offline

experiments in this work. Details of the setup and hyperparameters

are provided in Appendix C. The implementation code is available

to ease reproducibility
2
.

We test the effectiveness of TEE and SEAS by combining them

with three different offline RL algorithms. We also implement three

baselines: iterative versions of IQL with and without exploration,

as well as SORL [22]. An expert policy is trained with TD3 [12],

an online RL algorithm, to serve as a performance upper bound.

Methods for comparison are listed below.

• TEE+SEAS+IQL [16] / CQL [18] / TD3BC [10]. Iterative
offline RL with the proposed TEE and SEAS, using IQL /

CQL / TD3BC as the offline RL algorithm.

• IterIQL+ASN. Iterative offline RL using IQL as the offline

RL algorithm. IQL is selected as a representative because

it is the state-of-the-art model-free offline RL algorithm.

Exploration policy 𝜋𝑘𝑒 is constructed by adding ASN on 𝜋𝑘 .

2
https://anonymous.4open.science/r/TEE/

Figure 4: Overall performance in a simulated environment.

Figure 5: Safety constraint satisfaction.

• IterIQL. Iterative offline RL using IQL as the offline RL

algorithm. No exploration noise is added, therefore 𝜋𝑘𝑒 =

𝜋𝑘 .

• SORL [22]. SORL follows the iterative offline RL frame-

work. The authors proposed V-CQL for offline policy train-

ing and designed an SER policy for safe and efficient explo-

ration.

EvaluationMetrics.We evaluate the performance of a policy in

terms of expected return. Besides, we check the safety of exploration

policy by comparing average return in the collected dataset with

the safety threshold (1 − 𝜖) 𝐽𝑠 .
Figure 4 presents the overall performance through iterations.

Our proposed framework, combined with any of the three offline

RL algorithms, substantially outperforms the baseline methods and

achieves near-expert performance in approximately 5 iterations.
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Table 2: Performance of our proposed method in real-world
experiments.

iteration BuyCnt ROI CPA ConBdg GMV

1 +1.82% +2.64% -1.81% -0.03% +2.61%

2 +2.21% +2.94% -2.14% +0.02% +2.95%

3 +2.94% +3.33% -1.78% +1.12% +4.49%

4 +3.59% +2.44% -2.60% +0.90% +3.36%

Both Iterative IQL+ASN and SORL get stuck in suboptimal poli-

cies after limited performance improvements, suffering from the

performance bottleneck we discussed in section 4. Additionally,

Iterative IQL without exploration achieves barely any performance

improvement, which demonstrates the necessity of exploration in

iterative offline RL.

We present the performance of exploration policies during the

training process in Figure 5. Combined with any offline RL algo-

rithm, our framework consistently ensures the performance of ex-

ploration policies to be above the safety threshold (1 − 𝜖) 𝐽𝑠 , which
validates the safety guarantee ability of SEAS. We also show the

results when SEAS is omitted, in which the safety constraint is

violated in early stages.

6.2 Online Experiments
We conduct real-world experiments on Alibaba display advertising

platform. In each iteration, we utilize 20000 advertising campaigns

to collect data for an epsiode, and employ IQL for offline training.

Each episode contains 48 time steps, which means that the bidding

parameter is adjusted every 30 minutes. After each policy update,

we conduct a 10-day online A/B test using 1500 campaigns.

Evaluation Metrics. The return of the trained policy acts as

our main metric of performance, and is referred to as BuyCnt in

the online experiments. Additionally, we introduce several other

metrics that are commonly used in the auto-bidding field.

• BuyCut. The total value of ad impressions won by the

advertiser. Our objective 𝐽 in the RL formulation.

• ROI. The ratio between the total revenue and the consumed

budget of the advertiser.

• CPA. Cost per aquisition, defined as the average cost for

each successfully converted impression. A smaller CPA

indicates a better performance of an auto-bidding policy.

• ConBdg. The total consumed budget of the advertiser.

• GMV. Gross Merchandise Volume, the total amount of sales

over the campaign duration.

Table 2 shows the performance of our method in each iteration,

compared with a static baseline policy trained by CQL[18] on a

pre-collected dataset. We can see that the BuyCnt of our policy

improves steadily through iterations, and our method consistently

outperforms the baseline across all metrics.

6.3 Ablation Studies
We conduct ablation studies for a deeper analysis of the how differ-

ent components work with each other in our method. Specifically,

we aim to answer the following questions: (1) Do trajectory-wise

exploration and trajectory-wise exploitation operate in close con-

junction instead of being two independent components? (2) Does

the reward model effectively reduce the influence of stochastic re-

wards in Robust Trajectory Weighting? (3) Does SEAS achieve the

theoretical safety bound in practice? (4) While achieving the same

safety bound, does SEAS sacrifices less performance than other

baseline safety-guaranteeing methods?

To answer these questions, we conduct extensive experiments

in the simulated environment described in Section 6.1.

To answer Question 1. We develop variants of TEE to delve

deeper into how trajectory-wise exploration and trajectory-wise

exploitation work together. We focus on one data-collection process

followed by one offline training process. We omit SEAS in this

experiment, to focus solely on TEE. An IQL policy is used as base

policy 𝜋 . Details of the variants are presented as follows:

• TEE. Given a policy 𝜋 , we add PSN to construct 𝜋𝑒 , then use

𝜋𝑒 to interact with the environment and collect dataset 𝐷 .

Then we train a new policy with IQL and Robust Trajectory

Weighting on dataset 𝐷 . The performance of the trained

policy is presented.

• w/o T-explore removes trajectory-wise exploration (i.e.

PSN). Instead, traditional ASN is used for 𝜋𝑒 . To ensure a fair

comparison, we control the strength of ASN to guarantee

that the average return in 𝐷 are equal to that of PSN.

• w/o T-exploit removes trajectory-wise exploitation (i.e.

Robust Trajectory Weighting). After collecting 𝐷 by PSN,

we train a new policy with uniform sampling.

• w/o TEE removes TEE. ASN is used for exploration and

uniform sampling for training.

Table 3 presents the performance of policies trained under differ-

ent settings, and their performance gain over the base policy. We

observe that TEE achieves significant performance improvement

over the base policy under various budgets, while the absence of

either component hurts its effectiveness. Interestingly, eliminating

Trajectory-wise Exploitation leads to a substantial performance

degradation. The reason behind this is that datasets collected by

PSN contains a large fraction of undesirable actions, which are imi-

tated by conservative algorithms. The above observation indicates

that Trajectory-wise Exploration and Trajectory-wise Exploitation

are inherently interconnected components, and their combination

contributes substantially to the enhancement of the algorithm’s

performance.

To answer Question 2. We test the effectiveness of reward

model in environments with different degrees of stochasticity. We

first construct simulated environments with various stochasticity

by controlling the variance of impression numbers per time step. In

each environment, we collect an exploratory dataset with the same

policy, and use two different data sampling strategies to train a

policy on the dataset: a) Our proposed robust trajectory weighting.

b) Trajectory weighting with the raw rewards 𝑟𝑖,𝑡 instead of the

reward model’s prediction 𝑟𝑖,𝑡 . We compare the performance of

trained policies, to examine how reward model benefits the trajec-

tory weighting method.

The results of the experiments are shown in Figure 6a, where

𝑅𝑟𝑜𝑏𝑢𝑠𝑡 denotes the return of policy trained with Robust Trajectory

Weighting, 𝑅𝑟𝑎𝑤 represents the return of policy trained with raw

7
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Table 3: Ablation study on TEE. The last column presents the performance improvement over base policy. Best performance of
each column is marked as bolded.

Ablation Settings

Budget

#Improve
1500 2000 2500 3000 avg

Base policy 448.39 514.89 580.18 657.96 550.36 -

TEE 490.19±13.38 569.35±5.89 634.88±31.88 671.68 ± 59.69 591.53±24.79 +7.48%
w/o T-explore 431.09 ± 11.4 520.12 ± 12.05 594.14 ± 13.46 663.18 ± 14.97 552.13 ± 7.68 +0.32%

w/o T-exploit 365.53 ± 10.55 414.21 ± 29.05 495.89 ± 39.82 571.24 ± 51.27 461.72 ± 29.96 -16.10%

w/o TEE 414.38 ± 30.74 515.66 ± 10.35 607.47 ± 8.91 678.67±17.53 554.04 ± 7.13 +0.66%

(a) Improvements of policy performance.

Degree # of Impr.

low 175

medium-low 𝑈 [144,206]
medium 𝑈 [113,237]

medium-high 𝑈 [82,268]
high 𝑈 [50,300]

(b) Settings of different en-
vironments.

Figure 6: The effectiveness of reward model in environments
with different degrees of stochasticity.

Table 4: Safety-ensuring ability of SEAS.

𝜖 0.4 0.3 0.2 0.1 0.05 0.01

1 − 𝐽 (𝜋𝑘𝑒 )/𝐽𝑠 0.202 0.137 0.039 -0.002 -0.004 -0.005

rewards, and 𝑅𝑏𝑎𝑠𝑒 the return of the data-collecting policy. Figure

6b shows the probability distributions of the impression number,

where 𝑈 [𝑎,𝑏 ] denotes a uniform distribution over [𝑎, 𝑏]. The red
line in Figure 6a indicates that the reward model is increasingly

useful as the stochasticity of the environment intensifies. Moreover,

the blue bars in the figure exhibit values lower than 1 in high

stochasticity instances, which reflects that raw stochastic rewards

could be misleading signals for trajectory weighting.

To answer Question 3.We fully evaluate the safety-ensuring

ability of SEAS by setting different values of 𝜖 and observe the

rate of performance decrease 1 − 𝐽 (𝜋𝑘𝑒 )/𝐽𝑠 , where 𝜋𝑘𝑒 is the policy

produced by SEAS.We expect the safety constraint 1− 𝐽 (𝜋𝑘𝑒 )/𝐽𝑠 ≤ 𝜖
to be satisfied. In this experiment, we take a USCB [13] policy as

the safe policy, and obtain its 𝑄 function through fitting a dataset

collected by itself.

From Table 4, we observe that SEAS consistently satisfies the

safety constraint over a wide range of input 𝜖 . Interestingly, for

small 𝜖 values, the exploration policy generated by SEAS even

outperforms the base policy.

To answer Question 4.We compare SEAS with two baseline

safety-ensuring methods in terms of performance sacrificing, while

Table 5: Different safety ensuring methods’ impact on per-
formance of trained policy. The third column presents the
performance improvement of trained policy over base policy.

Safe Exploration Methods Return #Improve

No constraint 594.25 ± 18.28 +15.16%

SEAS 572.35± 20.42 +10.92%
Small noise 528.07 ± 19.45 +2.34%

Fixed range 532.91 ± 6.74 +3.28%

ensuring safety to the same degree (𝜖 = 0.05). One USCB [13] policy

is leveraged as the safe policy. In this experiment, we start from an

IQL policy, preserve the design of TEE, and substitute SEAS with

baselines presented below. Strength of PSN is 𝜎 = 0.05.

• Small noise.We limit the strength of PSN at a low level,

by setting 𝜎 = 0.01.

• Fixed range. As proposed in [22], the safe exploratory

action𝑎𝑒 is given by𝑎𝑒 ← 𝑐𝑙𝑖𝑝 (𝜋𝑒 (𝑠𝑡 ), 𝜋𝑠 (𝑠𝑡 )−𝜉, 𝜋𝑠 (𝑠𝑡 )+𝜉).
The safe policy 𝜋𝑠 is the same as that in SEAS, and 𝜉 is set

to 0.1.

The results are presented in Table 5. We also show the result of

not imposing any safety constraint, which is a performance upper

bound. SEAS significantly outperforms the two baselines in terms of

the average return of the trained policy. This observation suggests

that the adaptive design of SEAS allows for minimal performance

sacrifice.

7 CONCLUSION
This work presents a novel iterative RL framework for auto-bidding

from a trajectory perspective, in order to boost the effectiveness

of exploration and exploitation. We also pay particular attention

on the safety of exploration in online advertisement systems and

propose SEAS. Through comprehensive experiments, our method

has been shown to be effective, achieving superior results compared

to other baselines. In future work, we plan to test the effectiveness

of TEE in other fields such as recommender systems and healthcare,

where online policy training is challenging but urgently needed.
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A THEORETICAL JUSTIFICATION OF ROBUST
TRAJECTORYWEIGHTING

We formally show that under the assumption of deterministic tran-

sition and stochastic reward, applying Robust TrajectoryWeighting

is equivalent to training offline RL on a dataset collected by a better

behaviour policy.

For a dataset 𝐷 = {𝜏𝑖 }𝑁𝑖=1
where 𝜏𝑖 = {(𝑠𝑖,𝑡 , 𝑎𝑖,𝑡 , 𝑠𝑖,𝑡+1, 𝑟𝑖,𝑡 )}𝑇𝑡=0

.

Each trajectory 𝜏𝑖 is collected by a different deterministic policy

𝜋𝑖 , as in the case of Trajectory-wise Exploration. The behaviour

policy 𝜋 of 𝐷 is then defined as sampling a policy from {𝜋𝑖 }𝑁𝑖=1

uniformly at the start of an episode, then acting according to the

sampled policy till the end of the episode. Similarly, we define a

weighted behaviour policy 𝜋 ′ as first sampling a policy from {𝜋𝑖 }𝑁𝑖=1

according to probabilities {𝑤𝑖 }𝑁𝑖=1
, then acting with it. We aim to

show that 𝐽 (𝜋 ′) ≥ 𝐽 (𝜋).
The performance 𝐽 (𝜋) could be expressed as expectation of value

function over all possible initial states:

𝐽 (𝜋) = E𝑠0∼𝜌 [𝑉 𝜋 (𝑠0)], 𝐽 (𝜋 ′) = E𝑠0∼𝜌 [𝑉 𝜋 ′ (𝑠0)] . (1)
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For any initial state 𝑠0, let 𝐺𝑠0
= {𝑖 |𝑠𝑖,0 = 𝑠0}, 𝑁𝑠0

= |𝐺𝑠0
|, we

have

𝑉 𝜋 (𝑠0) =
∑︁
𝑖∈𝐺𝑠

0

𝑉 𝜋𝑖 (𝑠𝑖,0)/𝑁𝑠0
. (2)

Similarly, for weighted behaviour policy 𝜋 ′,

𝑉 𝜋 ′ (𝑠0) =
∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖𝑉
𝜋𝑖 (𝑠𝑖,0)/

∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖 . (3)

Assuming deterministic transition and stochastic rewards of the

underlying MDP, we have 𝑉 𝜋𝑖 (𝑠𝑖,0) = 𝑅𝑖 , where 𝑅𝑖 =
∑𝑇
𝑡=0

𝛾𝑡𝑟𝑖,𝑡 is

the relabeled return in Robust Trajectory Weighting. Plugging it in

(2) and (3) gives us

𝑉 𝜋 (𝑠0) =
∑︁
𝑖∈𝐺𝑠

0

𝑅𝑖/𝑁𝑠0
, (4)

𝑉 𝜋 ′ (𝑠0) =
∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖𝑅𝑖/
∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖 . (5)

Subtracting (4) by (5),

𝑉 𝜋 ′ (𝑠0) −𝑉 𝜋 (𝑠0) (6)

=
∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖𝑅𝑖/
∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖 −
∑︁
𝑖∈𝐺𝑠

0

𝑅𝑖/𝑁𝑠0
(7)

=
1

𝑁𝑠0

∑
𝑖∈𝐺𝑠

0

𝑤𝑖
(𝑁𝑠0

∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖𝑅𝑖 − (
∑︁
𝑖∈𝐺𝑠

0

𝑤𝑖 ) (
∑︁
𝑖∈𝐺𝑠

0

𝑅𝑖 )) (8)

=
1

𝑁𝑠0

∑
𝑖∈𝐺𝑠

0

𝑤𝑖
(

∑︁
𝑖, 𝑗∈𝐺𝑠

0
,𝑖< 𝑗

(𝑤𝑖 −𝑤 𝑗 ) (𝑅𝑖 − 𝑅 𝑗 )). (9)

In (9), each term (𝑤𝑖 − 𝑤 𝑗 ) (𝑅𝑖 − 𝑅 𝑗 ) inside the summation is

non-negative, because

𝑤𝑖 = exp((𝑅𝑖/𝑉 (𝑠𝑖,0) − 1)/𝛼)/𝑍,

where 𝑍 =
∑𝑁
𝑖=1

𝑤𝑖 is a normalization term and 𝛼 ∈ R+, is non-
decreasing with respect to 𝑅𝑖 . Therefore, 𝑉

𝜋 ′ (𝑠0) −𝑉 𝜋 (𝑠0) ≥ 0 for

every initial state 𝑠0. Then applying (1) gives 𝐽 (𝜋 ′) ≥ 𝐽 (𝜋).
The above derivation also highlights the significance of our pro-

posed reward model. Relabeling rewards with the reward model’s

output makes 𝑉 𝜋𝑖 (𝑠𝑖,0) = 𝑅𝑖 , allowing us to deal with stochastic

rewards.

B PROOF OF THEOREM 1
Theorem 1. For any policy 𝜋𝑒 and any 𝜖 ∈ (0, 1), given safe

policies {𝜋𝑖𝑠 }𝑛𝑖=1
that satisfy 𝐽 (𝜋𝑖𝑠 ) ≥ 𝐽𝑠 ,∀1 ≤ 𝑖 ≤ 𝑛, the expected re-

turn E𝜏 [𝑅(𝜏)] of trajectories generated by SEAS satisfies E𝜏 [𝑅(𝜏)] ≥
(1 − 𝜖) 𝐽𝑠 .

Proof. In each time step, SEAS takes either action 𝑎𝑒 or 𝑎𝑠 . For

a trajectory 𝜏 generated by SEAS, let 𝑡0 be the last step it takes

exploratory action 𝑎𝑒 . For those trajectories where it never takes

𝑎𝑒 , set 𝑡0 to 0. Let 𝑡𝑒𝑚𝑝𝑡0
denote the value of 𝑡𝑒𝑚𝑝 at step 𝑡0. Let

1(𝜏, 𝑠, 𝑎, 𝑖) be the indicator function of 𝑠𝑡0
, 𝑎𝑡0

and 𝑡𝑒𝑚𝑝𝑡0
for trajec-

tory 𝜏 , defined as follows:

1(𝜏, 𝑠, 𝑎, 𝑖) =
{
𝛿 (𝑠 − 𝑠𝑡0

, 𝑎 − 𝑎𝑡0
), if 𝑖 = 𝑡𝑒𝑚𝑝𝑡0

0, otherwise,

where 𝛿 (·) is the Dirac delta function. Therefore

∀𝜏,
𝑛∑︁
𝑖=1

∫
S

∫
A
1(𝜏, 𝑠, 𝑎, 𝑖)𝑑𝑎𝑑𝑠 = 1. (10)

Multiply both sides of (10) by 𝑅(𝜏),

∀𝜏,
𝑛∑︁
𝑖=1

∫
S

∫
A
𝑅(𝜏)1(𝜏, 𝑠, 𝑎, 𝑖)𝑑𝑎𝑑𝑠 = 𝑅(𝜏) .

Take expectation with respect to 𝜏 on both sides,

E𝜏 [𝑅(𝜏)] =
𝑛∑︁
𝑖=1

∫
S

∫
A
E𝜏 [𝑅(𝜏)1(𝜏, 𝑠, 𝑎, 𝑖)]𝑑𝑎𝑑𝑠.

Splitting trajectory 𝜏 by 𝑡0, define 𝑅(𝜏−) =
∑𝑡0−1

𝑢=0
𝑟𝑢 , 𝑅(𝜏+) =∑𝑇

𝑢=𝑡0

𝑟𝑢 , then

E𝜏 [𝑅(𝜏)] =
𝑛∑︁
𝑖=1

∫
S

∫
A
E𝜏 [(𝑅(𝜏−) + 𝑅(𝜏+))1(𝜏, 𝑠, 𝑎, 𝑖)]𝑑𝑎𝑑𝑠

=

𝑛∑︁
𝑖=1

∫
S

∫
A
{E𝜏 [𝑅(𝜏−)1(𝜏, 𝑠, 𝑎, 𝑖)]

+ E𝜏 [𝑅(𝜏+)1(𝜏, 𝑠, 𝑎, 𝑖)]}𝑑𝑎𝑑𝑠.
For trajectory 𝜏 , since 𝑡0 is the last time it takes 𝑎𝑒 , all actions af-

ter 𝑡0 follows safe policy 𝜋
𝑡𝑒𝑚𝑝0

𝑠 . Therefore 𝐸𝜏 [𝑅(𝜏+)1(𝜏, 𝑠, 𝑎, 𝑖)] =
𝑄𝜋𝑖

𝑠 (𝑠, 𝑎)1(𝜏, 𝑠, 𝑎, 𝑖), then

E𝜏 [𝑅(𝜏)] =
𝑛∑︁
𝑖=1

∫
S

∫
A
{E𝜏 [𝑅(𝜏−)1(𝜏, 𝑠, 𝑎, 𝑖)]

+𝑄𝜋𝑖
𝑠 (𝑠, 𝑎)1(𝜏, 𝑠, 𝑎, 𝑖)}𝑑𝑎𝑑𝑠

=

𝑛∑︁
𝑖=1

∫
S

∫
A
E𝜏 [(𝑅(𝜏−) +𝑄𝜋𝑖

𝑠 (𝑠, 𝑎))1(𝜏, 𝑠, 𝑎, 𝑖)]𝑑𝑎𝑑𝑠

≥
𝑛∑︁
𝑖=1

∫
S

∫
A
E𝜏 [(1 − 𝜖) 𝐽𝑠1(𝜏, 𝑠, 𝑎, 𝑖)]𝑑𝑎𝑑𝑠

= E𝜏 [
𝑛∑︁
𝑖=1

∫
S

∫
A
(1 − 𝜖) 𝐽𝑠1(𝜏, 𝑠, 𝑎, 𝑖)𝑑𝑎𝑑𝑠]

= E𝜏 [(1 − 𝜖) 𝐽𝑠 ]
= (1 − 𝜖) 𝐽𝑠 ,

where the inequality step is by line 6 in algorithm 1, and the fol-

lowing steps are from (10) and simple algebra. □

C DETAILS OF OFFLINE EXPERIMENTS
Setup. We construct a simulated advertising system for offline

experiments. There are 30 advertisers competing for advertising

impressions. An episode corresponds to one day in simulation,

which is divided into 96 time steps. The number of impressions in

each time step is random, and follows a uniform distribution on [50,

300]. The budget of each advertiser follows a uniform distribution

on [1500, 3000]. Before an episode starts, the number of impressions

in every time step, as well as the value of each impression for

each advertiser is initialized. The state of an advertiser is three-

dimensional: [𝑡𝑖𝑚𝑒, 𝑏𝑢𝑑𝑔𝑒𝑡_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑,𝑏𝑢𝑑𝑔𝑒𝑡_𝑙𝑒 𝑓 𝑡]. The reward

of an advertiser is the total value she wins in all ad auctions during

10
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one time step. Given current states and actions of all advertisers,

the simulation returns next states and rewards. This is achieved

by simulating ad auctions for all impressions in a single time step.

For each impression, the system performs pre-ranking and ranking,

and decides the winner of the auction. The winner gets the value of

the impression, and pays for it according to the auction mechanism.

We train a bidding policy for one advertiser while keeping other

29 advertisers’ policy fixed. Therefore, the policies of other bidders

could be seen as part of the environment which is stationary. The

trained auto-bidding policy could serve for bidders with different

budgets since the information of total budget is contained in the

state representation. The implementation of the pre-ranking and

ranking(auction) part follows from that in [22], where more details

could be found.

Parameter Settings. Datasets collected in each iteration con-

sists of 100000 transition tuples. Strength of trajectory weighting 𝛼

is set to 0.1. Safety threshold 𝜖 is 0.05. PSN is implemented as fac-

torised Gaussian noise [9] with 𝜎 searched from [0.01,0.03,0.05] and

kept fixed during training. ASN is Gaussian noise with 𝜎 searched

from [0.3,0.5,1]. In the IQL algorithm, the expectile parameter is set

to 0.6 and 𝛽 is 1.25. Conservative factor is chosen as 𝛼 = 0.8 in CQL,

and 𝛼 = 2.5 in TD3+BC. Implementation of SORL is consistent with

the original paper [22] and code.
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