
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Sophia: A Scalable Stochastic Second-order Optimizer for Language Model
Pre-training

Abstract
Given the massive cost of language model pre-
training, a non-trivial improvement of the op-
timization algorithm would lead to a material
reduction on the time and cost of training.
Adam and its variants have been state-of-the-
art for years, and more sophisticated second-
order (Hessian-based) optimizers often incur too
much per-step overhead. In this paper, we pro-
pose Sophia, Second-order Clipped Stochastic
Optimization, a simple scalable second-order op-
timizer that uses a light-weight estimate of the
diagonal Hessian as the pre-conditioner. The up-
date is the moving average of the gradients di-
vided by the moving average of the estimated
Hessian, followed by element-wise clipping. The
clipping controls the worst-case update size and
tames the negative impact of non-convexity and
rapid change of Hessian along the trajectory.
Sophia only estimates the diagonal Hessian ev-
ery handful of iterations, which has negligible
average per-step time and memory overhead. On
language modeling with GPT-2 models of sizes
ranging from 125M to 770M, Sophia achieves a
2x speed-up compared with Adam in the number
of steps, total compute, and wall-clock time.

1. Introduction
Language models (LLMs) have gained phenomenal capa-
bilities as their scale grows (Radford et al., 2019; Kaplan
et al., 2020; Brown et al., 2020; Zhang et al., 2022; Touvron
et al., 2023; OpenAI, 2023). However, pre-training LLMs
is incredibly time-consuming due to the massive datasets
and model sizes—hundreds of thousands of updates to the
model parameters are required. For example, PaLM was
trained for two months on 6144 TPUs, which costed 10
million dollars (Chowdhery et al., 2022).

Adam (Kingma & Ba, 2014) (or its variants (Loshchilov &
Hutter, 2017; Shazeer & Stern, 2018; You et al., 2019)) is
the dominantly used optimizer for training LLMs. Design-
ing faster optimizers for LLMs is challenging. First, the
benefit of the first-order (gradient-based) pre-conditioner

in Adam is not yet well understood (Liu et al., 2020; Zhang
et al., 2020; Kunstner et al., 2023). Second, the choice of
pre-conditioners is constrained because we can only afford
light-weight options whose overhead can be offset by the
speed-up in the number of iterations. For example, the
block-diagonal Hessian pre-conditioner in K-FAC is pro-
hibitively expensive for LLMs (Martens & Grosse, 2015;
Grosse & Martens, 2016; Ba et al., 2017; Martens et al.,
2018). On the other hand, Chen et al. (2023) automat-
ically search among the light-weight gradient-based pre-
conditioners and identify Lion, which is substantially faster
than Adam on vision Transformers and diffusion models
but achieves limited speed-up on LLMs (Chen et al., 2023).

This paper introduces Sophia, Second-order Clipped
Stochastic Optimization, a light-weight second-order op-
timizer that uses an inexpensive stochastic estimate of the
diagonal of the Hessian as a pre-conditioner and a clipping
mechanism to control the worst-case update size. On pre-
training language models such as GPT-2, Sophia achieves
the same validation pre-training loss with 50% fewer num-
ber of steps than Adam. Because Sophia maintains almost
the memory and average time per step, the speedup also
translates to 50% less total compute and 50% less wall-
clock time (See Figure 1 (a)&(b).). Moreover, the scaling
law based on model size from 125M to 770M is in favor
of Sophia over Adam—the gap between Sophia and Adam
with 100K steps increases as the model size increases (Fig-
ure 1 (c)). In particular, Sophia on a 540M-parameter
model with 100K steps gives the same validation loss as
Adam on a 770M-parameter model with 100K steps. Note
that the latter model needs 40% more training time and
40% more inference cost.

Concretely, Sophia estimates the diagonal entries of the
Hessian of the loss using a mini-batch of examples every
k step (with k = 10 in our implementation). We consider
two options for diagonal Hessian estimators: (a) an unbi-
ased estimator that uses a Hessian-vector product with the
same run-time as a mini-batch gradient up to a constant
factor, and (b) a biased estimator that uses one mini-batch
gradient calculated with resampled labels. Both the two es-
timators only introduce 5% overheads per step (in average).
At every step, Sophia updates the parameter with an expo-
nential moving average (EMA) of the gradient divided by

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

0K 50K 100K 150K 200K
Number of Steps

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

2x Speedup

(a) GPT-2 Large (770M)
AdamW
Sophia-H

0.0 59.75 119.5 179.25 239.0
Compute / exaFLOPs

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

2x Speedup

(b) GPT-2 Medium (355M)
AdamW
Sophia-H
Sophia-G

200 400 600
Model Size / M

2.5

2.6

2.7

2.8

2.9

Va
lid

at
io

n
Lo

ss

40% More Parameters

(c) Scaling Laws
AdamW
Sophia-H

Figure 1. Sophia achieves a 2x speedup over AdamW in GPT-2 pre-training on OpenWebText. (a), (b) Comparison of the number of
steps needed to achieve the same level of validation loss on (a) GPT-2-large (770M) and (b) GPT-2-medium (355M). Across all model
sizes, Sophia achieves a 2x speedup over AdamW. (c) Validation losses of models with different sizes pre-trained for 100K steps. The
gap between Sophia-H and AdamW gets larger as models size grows. Notably, using Sophia-H on a 540M-parameter model results in
the same loss as using AdamW on a 770M-parameter model. See Section 3 for details and more results.

Algorithm 1 Hutchinson(θ)

1: Input: parameter θ.
2: Compute mini-batch loss L(θ).
3: Draw u from N (0, Id).
4: return u�∇(〈∇L(θ), u〉).

Algorithm 2 Gauss-Newton-Bartlett(θ)
1: Input: parameter θ.
2: Draw a mini-batch of input {xb}Bb=1.
3: Compute logits on the mini-batch: {f(θ, xb)}Bb=1.
4: Sample ŷb ∼ softmax(f(θ, xb)),∀b ∈ [B].
5: Calculate ĝ = ∇(1/B

∑
`(f(θ, xb), ŷb)).

6: return B · ĝ � ĝ.

Algorithm 3 Sophia
1: Input: θ1, learning rate {ηt}Tt=1, hyperparame-

ters λ, β1, β2, ε, and estimator choice Estimator ∈
{Hutchinson,Gauss-Newton-Bartlett}

2: Set m0 = 0, v0 = 0, h1−k = 0
3: for t = 1 to T do
4: Compute minibach loss Lt(θt).
5: Compute gt = ∇Lt(θt).
6: mt = β1mt−1 + (1− β1)gt
7: if t mod k = 1 then
8: Compute ĥt = Estimator(θt).
9: ht = β2ht−k + (1− β2)ĥt

10: else
11: ht = ht−1

12: θt = θt − ηtλθt (weight decay)
13: θt+1 = θt − ηt · clip(mt/max{ht, ε}, ρ)

the EMA of the diagonal Hessian estimate, subsequently
clipped by a scalar. (All operations are element-wise.) See
Algorithm 3 for the pseudo-code.

Additionally, Sophia can be seamlessly integrated into
existing training pipelines, without any special require-
ments on the model architecture or computing infrastruc-
ture. With the either of the Hessian estimators, Sophia only
require either standard mini-batch gradients, or Hessian-
vector products which are supported in auto-differentiation
frameworks such as PyTorch (Paszke et al., 2019) and
JAX (Bradbury et al., 2018).

2. Method
We will motivate the use of second-order information and
clipping in Section A. We present Sophia in detail in Sec-
tion 2.1, and the pseudo-code in Algorithm 3. We intro-
duce two choices of estimators of diagonal Hessian used in
Sophia in Section 2.2.

2.1. Sophia: Second-order Clipped Stochastic
Optimization

Adam does not sufficiently adapt to the heterogeneous cur-
vatures. On the other hand, vanilla Newton’s method has

a pre-conditioner optimal for convex functions, but is vul-
nerable to negative curvature and rapid change of Hessian.
With these insights, we design a new optimizer, Sophia,
which is more adaptive to heterogeneous curvatures than
Adam, more resistant to non-convexity and rapid change
of Hessian than Newton’s method, and also uses a low-cost
pre-conditioner.

We use θt to denote the parameter at time step t. At each
step, we sample a mini-batch from the data distribution and
calculate the mini-batch loss, denoted by Lt(θt). We de-
note by gt the gradient of Lt(θt), i.e. gt = ∇Lt(θt). Let
mt be the EMA of gradients, mt ← β1mt−1 + (1− β1)gt,
which is the numerator of the update.

EMA of diagonal Hessian estimates. Sophia uses a diag-
onal Hessian-based pre-conditioner, which directly adjusts
the update size of different parameter dimensions accord-
ing to their curvatures. We will present two options in de-
tail in Section 2.2 for estimating the diagonal Hessian ef-
ficiently. To mitigate the overhead, we only estimate the
Hessian every k steps (k = 10 in our implementation). At
time step t with t mod k = 1, the estimator returns an es-
timate ĥt of the diagonal of the Hessian of the mini-batch

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

loss.

Similar to the gradient of the mini-batch loss function, the
estimated diagonal Hessian can also have large noise. In-
spired by the EMA of moments of gradients in Adam,
we also denoise the diagonal Hessian estimates with EMA
across iterations. We update the EMA every k steps, result-
ing in the following update rule for the diagonal Hessian
estimate:

ht = β2ht−k + (1− β2)ĥt if t mod k = 1; else ht = ht−1 .

Pre-coordinate clipping. As discussed in Section A, on
nonconvex functions, vanilla Newton’s method, which uses
Hessian as the pre-conditioner, may converge to local max-
ima instead of local minima. In addition, the inaccuracy of
Hessian estimates and the change of Hessian along the tra-
jectory can make the second-order information unreliable.
To this end, we only consider the positive entries of the
diagonal Hessian and introduce per-coordinate clipping to
the update. Let clip(z, ρ) = max{min{z, ρ},−ρ} be the
clipping function with threshold ρ > 0. The update rule
can be written as:

θt+1 ← θt − ηt · clip(mt/max{ht, ε}, ρ), (1)

where ε > 0 is a very small constant to avoid dividing by 0,
and all the operations are applied element-wise. We present
the pseudo-code of the Sophia in Algorithm 3.

When any entry of ht is negative, e.g., ht[i] <
0, the corresponding entry in the pre-conditioned gra-
dient mt[i]/max{ht[i], ε} = mt[i]/ε is extremely
large and has the same sign as mt[i], and thus η ·
clip(mt[i]/max{ht[i], ε}, ρ) = ηρ · sign(mt[i]), which
is the same as stochastic momentum SignSGD. In other
words, Sophia uses stochastic momentum SignSGD as a
backup when the Hessian is negative (or mistakenly esti-
mated to be negative or very small.) We also note that the
clipping mechanism controls the worst-case size of the up-
dates in all parameter dimensions to be at most ρ, which
also improves the stability (which could be a severe issue
for second-order methods). Moreover, because for many
parameter dimensions, the clipping is not activated and
the update is automatically adjusted, our worst-case update
size ηρ can be chosen to be larger than the worst update
size η in stochastic momentum SignSGD.

Several previous works (Becker & Le Cun, 1988; Chapelle
et al., 2011; Schaul et al., 2013), including the recent
work AdaHessian (Yao et al., 2021), use diagonal Hessian
as a pre-conditioner in optimizers for training neural net-
works. However, they use more frequent Hessian estima-
tions, which leads to significant per-step computation over-
head (more than two gradient computations), most likely
because of the lack of the clipping mechanism that safe-

guards against inaccurate and changing Hessian. In gen-
eral, previous second-order optimizers do not achieve a
speed-up on large language models in wall-clock time or
total compute (Gupta et al., 2018; Yao et al., 2021) (see
more discussions in Section C).

2.2. Diagonal Hessian Estimators

We introduce two diagonal Hessian estimators, both of
which have memory and run-time costs similar to comput-
ing a gradient (up to constant factors).

Option 1: Hutchinson’s unbiased estimator. For any
loss function `(θ) on parameters θ ∈ Rd, the Hutchin-
son’s estimator (Hutchinson, 1989; Roosta-Khorasani &
Ascher, 2015; Yao et al., 2021) first draws u ∈ Rd from the
spherical Gaussian distribution N (0, Id), and then outputs
ĥ = u � (∇2`(θ)u), where � denotes the element-wise
product, and ∇2`(θ)u is the product of the Hessian with
the vector u. The Hutchinson’s estimator is an unbiased
estimator for the diagonal of the Hessian, because

E[ĥ] = diag(∇2`(θ)) . (2)

The estimator only requires a Hessian-vector product (i.e.,
∇2`(θ)u), which have efficient implementations in Py-
Torch and JAX, instead of the full Hessian matrix.

Option 2: Gauss-Newton-Bartlett (GNB) estimator. We
leverage the structure of the loss to design a biased stochas-
tic estimator for the diagonal Hessian, following Schrau-
dolph (2002); Martens (2020); Wei et al. (2020). Suppose
`(θ, (x, y)) is a loss function on an example (x, y) of the
form `(θ, (x, y)) = `ce(f(θ, x), y) where `ce is the cross-
entropy loss and f(θ, x) ∈ RV is the logits, and V is
the number of items/classes in a multi-class classification
problem (e.g., the vocabulary size in LLMs). First, the
Hessian of `(θ, (x, y)) (w.r.t to variable θ) has the well-
known Gauss-Newton decomposition (Ortega & Rhein-
boldt, 2000; Schraudolph, 2002) (which is a simple con-
sequence of the chain rule),

∇2
θ `(θ) = Jθf(θ, x)SJθf(θ, x)> + Jθθf(θ, x)[q] (3)

where Jθf(θ, x) is the Jacobian of f w.r.t to θ viewed as
a matrix in Rd×V , S = ∂2`ce(t,y)

∂t2

∣∣∣
t=f(θ,x)

∈ RV×V is

the second-order derivatives of the loss w.r.t to the logits,
q = ∂`ce(t,y)

∂t

∣∣∣
t=f(θ,x)

∈ RV is the first-order derivatives

of the loss w.r.t to the logits, and Jθθf(θ, x) is the second-
order derivatives of the multi-variate function f(θ, x) w.r.t
θ, viewed as a linear map from RV to Rd×d, where d is the
dimension of the parameter θ.

In the context of neural networks, past works have found
that the second term Jθθf(θ, x)[q] in Equation 3 is of-
ten relative smaller than the first term Jθf(θ, x) · S ·

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Jθf(θ, x)> (Sankar et al., 2021), which is often referred to
as the Gauss-Newton matrix (Dennis Jr & Schnabel, 1996;
Ortega & Rheinboldt, 2000; Schraudolph, 2002; Chen,
2011) and used as pre-conditioners in second-order opti-
mizers (Botev et al., 2017; Martens, 2020; Gargiani et al.,
2020). Following this line of work, we build an unbiased
estimator for the diagonal of the Gauss-Newton matrix,
which is a biased estimator for the diagonal of the Hessian.

We first claim that S only depends f(θ, x) but not y,
even though the loss depends on y.1 Thus, S =
∂2`ce(t,ŷ)

∂t2

∣∣∣
t=f(θ,x)

for any ŷ ∈ {1, . . . , V }, which im-

plies that S = Eŷ∼p(θ,x)

[
∂2`ce(t,ŷ)

∂t2

∣∣∣
t=f(θ,x)

]
. Because

`ce(t, y) is the negative log-probability of the probabilis-
tic model defined by the categorical distribution Cat(t)
with parameter t, by Bartlett’s second identity (Bartlett,
1953), we have that S = Eŷ∼Cat(t)

[
∂2`ce(t,ŷ)

∂t2

]
=

Eŷ∼Cat(t)

[
∂`ce(t,ŷ)

∂t
∂`ce(t,ŷ)

∂t

>]
, where the first equality

holds for t = f(θ, x) and the second equality holds for all t
by Bartlett’s second identity. Therefore, the Gauss-Newton
matrix satisfies

Jθf(θ, x) · S · Jθf(θ, x)>

= E
ŷ∼Cat(t)

[
Jθf(θ, x)

∂`ce(t, ŷ)

∂t

∂`ce(t, ŷ)

∂t

>
Jθf(θ, x)>

]
= E
ŷ∼Cat(t)

[
∇θ`ce(f(θ, x), ŷ)∇θ`ce(f(θ, x), ŷ)>

]
, (4)

which implies that diag(Jθf(θ, x) · S · Jθf(θ, x)>) =

Eŷ∼Cat(t) [∇θ`ce(f(θ, x), ŷ)�∇θ`ce(f(θ, x), ŷ)]. Hence,
the quantity `ce(f(θ, x), ŷ)�∇θ`ce(f(θ, x), ŷ) is an unbi-
ased estimator of the Gauss-Newton matrix for the Hessian
of a one-example loss `(f(θ, x), y).

Mini-batch version. Given a mini-batch of inputs
{(xb, yb)}Bb=1. The most natural way to build an estima-
tor for the diagonal of the Gauss-Newton matrix for the
Hessian of the mini-batch loss is using

1

B

B∑
b=1

∇`ce(f(θ, xb), ŷb)�∇θ`ce(f(θ, xb), ŷb) , (5)

where ŷb’s are labels sampled from the model on inputs
xb’s respectively. However, as noted by Grosse (2022), im-
plementing this estimator is inconvenient under the current
auto-differentiation frameworks, where the users only have
access to the average gradient over a mini-batch (as op-
posed to the individual ones). Fortunately, by the Bartlett’s

1Denote by p(θ, x) = softmax(f(θ, x)) ∈ RV the prob-
ability vector obtained by applying softmax on the logits. In-
deed, a simple derivation shows that S = diagonal(p(θ, x)) −
p(θ, x)p(θ, x)>, where diagonal(p(θ, x)) is the matrix with the
vector p(θ, x) residing on the diagonal.

first identity (Bartlett, 1953) (which generally holds for the
negative log-likelihood loss of any probabilistic model), we
have:

∀b, Eŷb∇`ce(f(θ, xb), ŷb) = 0 . (6)

Let L̂(θ) = 1
B

∑B
b=1 `ce(f(θ, xb), ŷb) be the mini-batch

loss on the sampled labels. Observing that ŷb’s are inde-
pendent with each other, we have

Eŷ′bs
[
B · ∇θL̂(θ)�∇θL̂(θ)

]
(7)

=Eŷ′bs

[
1

B

B∑
b=1

∇`ce(f(θ, xb), ŷb)�
B∑
b=1

∇`ce(f(θ, xb), ŷb)

]

=Eŷ′bs

[
1

B

B∑
b=1

∇`ce(f(θ, xb), ŷb)�∇`ce(f(θ, xb), ŷb)

]
.

The RHS of Equation 7 is the same as the expectation of
Equation 5, which, by Equation 4, also equals to the diag-
onal of the Gauss-Newton matrix for the mini-batch loss.
Hence, we use B · ∇θL̂(θ)�∇θL̂(θ) as the estimator.

To the best of our knowledge, this estimator of Gauss-
Newton matrix was first used in (Wei et al., 2020). Given
the use Bartlett’s identities that are central to the estimator,
we call it Gauss-Newton-Bartlett (GNB) estimator.

Comparisons of Hessian estimators. The Hutchinson’s
estimator does not assume any structure of the loss, but
requires a Hessian-vector product. The GNB estimator
only estimates the Gauss-Newton term but always gives a
positive semi-definite (non-negative) diagonal Hessian es-
timate. The PSDness ensures that the pre-conditioned up-
date is always a descent direction (Dennis Jr & Schnabel,
1996). The GNB estimator can also be easily extended to
the negative log-likelihood loss of any exponential fam-
ily distribution, and be adapted to estimating the trace of
the Gauss-Newton matrix as in Wei et al. (2020) or effi-
ciently implementing the product of Gauss-Newton matrix
with a vector. The authors suspect the GNB estimator has a
smaller variance than the Hutchinson’s estimator, but more
empirical and theoretical investigation are needed to sup-
port the hypothesis.

3. Experiments
We call the algorithm using the Hutchinson’s estimator and
the GNB estimator Sophia-H and Sophia-G, respectively.
We evaluate Sophia on auto-regressive language modeling
with GPT-2 (Radford et al., 2019) of model sizes ranging
from 125M to 770M.

3.1. Experimental Setup

Language modeling. We train autoregressive models on
OpenWebText (Gokaslan & Cohen, 2019). Following the

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

0K 25K 50K 75K 100K
Number of Steps

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss
(a) GPT-2 Small (125M)

AdamW
Lion
Sophia-H
Sophia-G

0K 25K 50K 75K 100K
Number of Steps

2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

(b) GPT-2 Medium (355M)
AdamW
Lion
Sophia-H
Sophia-G

0K 25K 50K 75K 100K
Number of Steps

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss

(c) GPT-2 Large (770M)
AdamW
Sophia-H

Figure 2. Validation loss on OpenWebText with 100K steps. (a) GPT-2 Small (125M). Adam: 2.921, Lion: 2.924, Sophia-H: 2.901,
Sophia-G: 2.895 (b) GPT-2 Medium (355M). Adam: 2.691, Lion: 2.678, Sophia-H: 2.645, Sophia-G: 2.653. (c) GPT-2 Large (770M).
Adam: 2.613, Sophia-H: 2.559.

standard protocol of GPT-2 (Radford et al., 2019), we set
the context length to 1024. We use decoder-only Trans-
formers (Vaswani et al., 2017) with 125M (small), 355M
(medium), and 770M (large) parameters. Detailed model
configurations are deferred to Section F.2.

Baselines. We mainly compare Sophia with Adam with
decoupled weight decay (AdamW) (Loshchilov & Hutter,
2017) which is the dominantly used optimizer on language
modeling tasks, and Lion (Chen et al., 2023), which is
an first-order adaptive optimizer discovered by symbolic
search. All optimizers are well-tuned. The hyperparam-
eters of AdamW on GPT-2 are already well-established
in the literature (Radford et al., 2019; Karamcheti et al.,
2021). The weight decay is set to 0.1. We use β1 = 0.9
and β2 = 0.95. For Lion, we use β1 = 0.95 and β2 = 0.98
following Chen et al. (2023). Although Chen et al. (2023)
suggests using 0.1 times the learning rate (LR) of AdamW
for vision tasks, we find out the LR should be larger on
LMs by a grid search. The LR of Sophia-H is set to the LR
of AdamW /ρ (Section F.1).

Implementation. We set batch size to 480, and use cosine
LR schedule with the final LR equal to 0.05 times the peak
LR, following Rae et al. (2021). We use the standard gra-
dient clipping (by norm) threshold 1.0. We adopt a fixed
2k steps of LR warm-up. For Sophia, we use β1 = 0.96,
β2 = 0.99, ε =1e-12 and update diagonal Hessian every 10
steps. For Sophia-H, we use ρ = 0.01, and only a subset
of 32 examples from the mini-batch to calculate the diago-
nal Hessian to further reduce overhead. For Sophia-G, we
use ρ = 0.04, and use a subset of 240 examples from the
mini-batch to calculate the diagonal Gauss-Newton. We
implement the algorithms in PyTorch (Paszke et al., 2019)
and train all the models in bfloat16. The 125M and 355M
models are trained on A5000 GPUs, while the 770M mod-
els are trained on A100 GPUs.

Evaluation. We pre-train the models with each optimizer
for 100K, 200K, or 400K steps to compare the speed. Note
that, as is standard, the LR schedule depends on the total
pre-specified target number of steps, as shown in Figure 3
(a). This makes the loss curve of the same optimizer dif-

ferent for various total numbers of steps because the LR
schedule with fewer total steps decays the LR earlier. For
example, the 200K runs in Figure 3 (b) are not the contin-
uation of the 100K runs. We primarily evaluate the models
with their log perplexity on OpenWebText.

3.2. Results

Figure 2 illustrates the validation loss curve (token-level
log perplexity) on OpenWebText with the same number
of steps (100K). Our method consistently achieves better
validation loss than AdamW and Lion. As the model size
grows, the gap between Sophia and baselines also becomes
larger. Sophia-H and Sophia-G both achieve a 0.04 smaller
validation loss on the 355M model (Figure 2 (b)). Sophia-H
achieves a 0.05 smaller validation loss on the 770M model
(Figure 2, (c)), with the same 100K steps. This is a signif-
icant improvement since according to scaling laws in this
regime (Kaplan et al., 2020) and results in Figure 3, a im-
provement in loss of 0.05 is equivalent to 2x improvement
in terms of number of steps or total compute to achieve the
same validation loss.

Sophia is 2x faster in terms of number of steps, total
compute and wall-clock time. The improvement in val-
idation loss brought by Sophia can be translated into re-
duction of number of steps or total compute. In Figure 1
(a)&(b) and Figure 3, we evaluate the optimizers by com-
paring the number of steps or total compute needed to
achieve the same validation loss level. As can be observed
in Figure 1 (a)&(b), Sophia-H and Sophia-G achieve a 2x
speedup compared with AdamW and Lion across different
model sizes.

The scaling law is in favor of Sophia-H over AdamW.
In Figure 1 (c), we plot the validation loss of models of
different sizes pre-trained for 100K steps. The gap be-
tween Sophia and AdamW grows as we scale up the mod-
els. Moreover, the 540M model trained by Sophia-H has
smaller loss than the 770M model trained by AdamW. The
355M model trained by Sophia-H has comparable loss as
the 540M model trained by AdamW.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

0K 100K 200K 300K 400K
Number of Steps

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
le

r C
oe

ffi
cie

nt
(a) Learning Rate Schedules

Total steps: 100K
Total steps: 200K
Total steps: 400K

0.0 59.75 119.5 179.25 239.0
Compute / exaFLOPs

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

2x Speedup

(b) GPT-2 Medium (355M)
AdamW, 100K
AdamW, 200K
Lion, 200K
Sophia-H, 100K
Sophia-G, 100K

0K 50K 100K 150K 200K
Number of Steps

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss

2x Speedup

(c) GPT-2 Small (125M)
AdamW, 100K
AdamW, 200K
Sophia-H, 100K
Sophia-G, 100K

Figure 3. Comparison of numbers of steps to reach the same validation loss on OpenWebText. (a) Learning rate schedules. (b) GPT2-
medium (355M). GPT2-large (770M) results are in Figure 1(a). Across all model sizes, Sophia achieve a 2x speedup over AdamW in
terms of the number of steps.

0K 25K 50K 75K 100K
Number of Steps

0
10K
20K
30K
40K
50K
60K
70K

Nu
m

be
r o

f c
lip

pe
d

st
ep

s

(a) GPT-2 Small (125M)
AdamW
Lion
Sophia

0K 25K 50K 75K 100K
Number of Steps

2.7
2.8
2.9
3.0
3.1
3.2

Va
lid

at
io

n
Lo

ss
(b) GPT-2 Medium (355M)

AdamW, w/ tricks, lr = 3e-4
Lion, w/ tricks, lr = 6e-5
Sophia, w/o tricks, lr = 3e-2
AdamW, w/o tricks, lr = 1.5e-4
AdamW, w/o tricks, lr = 3e-4
Lion, w/o tricks, lr = 3e-5

0.9 0.99 0.999
2

0.02

0.01

0.005

3.39 3.374 3.377

3.388 3.373 3.38

3.382 3.376 3.384

(c) Sensitivity to 2 and

Figure 4. Sophia improves pre-training stability and is insensitive to hyperparameters. (a) With AdamW and Lion, gradient clipping is
triggered frequently. With Sophia, gradient clipping rarely happens. (b) AdamW and Lion require the trick of re-parameterizing the
attention with a temperature that is the inverse of the layer index (Karamcheti et al., 2021). The plot shows the largest LR that AdamW
and Lion without the trick can use to be stable, which is much smaller than with the trick. In contrast, Sophia does not need this trick.
(c) Sophia is not sensitive to hyperparameter choice.

Table 1. Wall-clock time and compute.
Algorithm Model Size T(step) T(Hessian) Compute

AdamW 770M 3.25s – 2550
Sophia-H 770M 3.40s 0.12s 2708
Sophia-G 770M 3.42s 0.17s 2678
AdamW 355M 1.77s – 1195
Sophia-H 355M 1.88s 0.09s 1249
Sophia-G 355M 1.86s 0.09s 1255

3.3. Analysis

Comparison of wall-clock time and amount of compute.
We compare the total compute (TFLOPs) per step and the
wall-clock time on A100 GPUs in Table 1. We report the
average time per step (T(step)), the time spent in Hessian
computation (T(Hessian)) and the total compute follow-
ing Chowdhery et al. (2022). Since we calculate the di-
agonal Hessian estimate with a reduced batch size every 10
steps, the computation of the Hessian accounts for 6% of
the total compute, and the overall wall-clock time overhead
is less than 5% compared with AdamW. In terms of mem-
ory usage, our optimizer has two states, m and h, which
results in the same memory cost as AdamW.

Sensitivity to ρ and β2, and transferability of hyperpa-
rameters. On a 30M model, we perform a grid search to
test the sensitivity of Sophia-H to hyperparamters (Figure 4
(c)). All combinations have a similar performance, while
β2 = 0.99 and ρ = 0.01 performs the best. The hyperpa-
rameter choice is transferable across model sizes.

Training Stability. Sophia-H has better stability in pre-
training compared to AdamW and Lion. Gradient clipping
(by norm) is an important technique in language model
pre-training as it avoids messing up the moment of gra-
dients with one mini-batch gradient computed from rare
data (Zhang et al., 2020). In practice, the frequency that
gradients clipping is triggered is related to the training
stability—if the gradient is frequently clipped, the iterate
can be at a very instable state. We compare the propor-
tion of steps where gradient clipping is triggered on GPT-2
small (125M) in Figure 4 (a). Although all methods use the
same clipping threshold 1.0, Sophia-H seldomly triggers
gradient clipping, while AdamW and Lion trigger gradient
clipping in more than 10% of the steps.

A common trick of pre-training deep Transformers is scal-
ing the product of keys and values by the inverse of the
layer index as implemented by Mistral (Karamcheti et al.,
2021) and Huggingface (Wolf et al., 2020). This stabilizes
training and increases the largest possible learning rate.
Without this trick, the maximum learning rate of AdamW
and Lion on GPT-2 (355M) can only be 1.5e-4, which is
much smaller than 3e-4 with the trick (the loss will blow up
with 3e-4 without the trick). Moreover, the loss decreases
much slower without the trick as shown in Figure 4 (b).
In all the experiments, Sophia-H does not require scaling
the product of keys and values by the inverse of the layer
index.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

References
Anil, R., Gupta, V., Koren, T., and Singer, Y. Memory

efficient adaptive optimization. Advances in Neural In-
formation Processing Systems, 32, 2019.

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.
Scalable second order optimization for deep learning.
arXiv preprint arXiv:2002.09018, 2020.

Ba, J., Grosse, R., and Martens, J. Distributed second-
order optimization using kronecker-factored approxima-
tions. In International Conference on Learning Repre-
sentations, 2017.

Balles, L. and Hennig, P. Dissecting adam: The sign, mag-
nitude and variance of stochastic gradients. In Interna-
tional Conference on Machine Learning, pp. 404–413.
PMLR, 2018.

Bartlett, M. Approximate confidence intervals. Biometrika,
40(1/2):12–19, 1953.

Becker, S. and Le Cun, Y. Improving the convergence of
back-propagation learning with. 1988.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. signsgd: Compressed optimisation for
non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Botev, A., Ritter, H., and Barber, D. Practical gauss-newton
optimisation for deep learning. In International Confer-
ence on Machine Learning, pp. 557–565. PMLR, 2017.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., and Zhang, Q.
JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/
google/jax.

Braun, H. and Riedmiller, M. Rprop: a fast adaptive learn-
ing algorithm. In Proceedings of the International Sym-
posium on Computer and Information Science VII, 1992.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sas-
try, G., Askell, A., et al. Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

Broyden, C. G. The convergence of a class of double-rank
minimization algorithms 1. general considerations. IMA
Journal of Applied Mathematics, 6(1):76–90, 1970.

Chapelle, O., Erhan, D., et al. Improved preconditioner for
hessian free optimization. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, volume
201. Citeseer, 2011.

Chen, P. Hessian matrix vs. gauss–newton hessian matrix.
SIAM Journal on Numerical Analysis, 49(4):1417–1435,
2011.

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu,
Y., Pham, H., Dong, X., Luong, T., Hsieh, C.-J., et al.
Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Conn, A. R., Gould, N., and Toint, P. L. Trust-region meth-
ods, siam. MPS, Philadelphia, 2000.

Crawshaw, M., Liu, M., Orabona, F., Zhang, W., and
Zhuang, Z. Robustness to unbounded smoothness of
generalized signsgd. arXiv preprint arXiv:2208.11195,
2022.

Dennis Jr, J. E. and Schnabel, R. B. Numerical methods
for unconstrained optimization and nonlinear equations.
SIAM, 1996.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dozat, T. Incorporating nesterov momentum into adam.
2016.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Gargiani, M., Zanelli, A., Diehl, M., and Hutter, F.
On the promise of the stochastic generalized gauss-
newton method for training dnns. arXiv preprint
arXiv:2006.02409, 2020.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. In International Conference on Machine Learning,
pp. 2232–2241. PMLR, 2019.

7

http://github.com/google/jax
http://github.com/google/jax

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Gokaslan, A. and Cohen, V. Openwebtext corpus, 2019.

Grosse, R. Neural Network Training Dynamics. 2022.

Grosse, R. and Martens, J. A kronecker-factored approx-
imate fisher matrix for convolution layers. In Interna-
tional Conference on Machine Learning, pp. 573–582.
PMLR, 2016.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Pre-
conditioned stochastic tensor optimization. In Interna-
tional Conference on Machine Learning, pp. 1842–1850.
PMLR, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G., Srivastava, N., and Swersky, K. Neural net-
works for machine learning lecture 6a overview of mini-
batch gradient descent. Cited on, 14(8):2, 2012.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Izsak, P., Berchansky, M., and Levy, O. How to
train bert with an academic budget. arXiv preprint
arXiv:2104.07705, 2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Karamcheti, S., Orr, L., Bolton, J., Zhang, T.,
Goel, K., Narayan, A., Bommasani, R., Narayanan,
D., Hashimoto, T., Jurafsky, D., Manning, C. D.,
Potts, C., Ré, C., and Liang, P. Mistral – a
journey towards reproducible language model train-
ing. https://crfm.stanford.edu/2021/08/
26/mistral.html, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kunstner, F., Chen, J., Lavington, J. W., and Schmidt, M.
Noise is not the main factor behind the gap between sgd
and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Understand-
ing the difficulty of training transformers. arXiv preprint
arXiv:2004.08249, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. arXiv preprint arXiv:1711.05101, 2017.

Mai, V. V. and Johansson, M. Stability and convergence
of stochastic gradient clipping: Beyond lipschitz conti-
nuity and smoothness. In International Conference on
Machine Learning, pp. 7325–7335. PMLR, 2021.

Martens, J. New insights and perspectives on the natural
gradient method. The Journal of Machine Learning Re-
search, 21(1):5776–5851, 2020.

Martens, J. and Grosse, R. Optimizing neural networks
with kronecker-factored approximate curvature. In In-
ternational conference on machine learning, pp. 2408–
2417. PMLR, 2015.

Martens, J., Ba, J., and Johnson, M. Kronecker-factored
curvature approximations for recurrent neural networks.
In International Conference on Learning Representa-
tions, 2018.

Martens, J. et al. Deep learning via hessian-free optimiza-
tion. In ICML, volume 27, pp. 735–742, 2010.

Merity, S., Keskar, N. S., and Socher, R. Regularizing
and optimizing lstm language models. arXiv preprint
arXiv:1708.02182, 2017.

Nesterov, Y. and Polyak, B. T. Cubic regularization of new-
ton method and its global performance. Mathematical
Programming, 108(1):177–205, 2006.

OpenAI. Gpt-4 technical report. arXiv, 2023.

Ortega, J. M. and Rheinboldt, W. C. Iterative solution of
nonlinear equations in several variables. SIAM, 2000.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. arXiv preprint arXiv:1301.3584, 2013.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann,
J., Song, F., Aslanides, J., Henderson, S., Ring, R.,

8

https://crfm.stanford.edu/2021/08/26/mistral.html
https://crfm.stanford.edu/2021/08/26/mistral.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Young, S., et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:
1–67, 2020.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237,
2019.

Roosta-Khorasani, F. and Ascher, U. Improved bounds on
sample size for implicit matrix trace estimators. Founda-
tions of Computational Mathematics, 15(5):1187–1212,
2015.

Sagun, L., Bottou, L., and LeCun, Y. Eigenvalues of the
hessian in deep learning: Singularity and beyond. arXiv
preprint arXiv:1611.07476, 2016.

Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Bala-
subramanian, V. N. A deeper look at the hessian eigen-
spectrum of deep neural networks and its applications to
regularization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 9481–9488,
2021.

Schaul, T., Zhang, S., and LeCun, Y. No more pesky learn-
ing rates. In International conference on machine learn-
ing, pp. 343–351. PMLR, 2013.

Schraudolph, N. N. Fast curvature matrix-vector products
for second-order gradient descent. Neural computation,
14(7):1723–1738, 2002.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-
ference on Machine Learning, pp. 4596–4604. PMLR,
2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. arXiv preprint arXiv:1706.03762,
2017.

Wei, C., Kakade, S., and Ma, T. The implicit and ex-
plicit regularization effects of dropout. arXiv preprint
arXiv:2002.12915, 2020.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W.
Pyhessian: Neural networks through the lens of the hes-
sian. In 2020 IEEE international conference on big data
(Big data), pp. 581–590. IEEE, 2020.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. Adahessian: An adaptive second order
optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35,
pp. 10665–10673, 2021.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-
J. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962,
2019.

Zhang, J., He, T., Sra, S., and Jadbabaie, A. Why gradient
clipping accelerates training: A theoretical justification
for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? Advances in Neural Information
Processing Systems, 33:15383–15393, 2020.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language mod-
els. arXiv preprint arXiv:2205.01068, 2022.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek,
N., Papademetris, X., and Duncan, J. Adabelief opti-
mizer: Adapting stepsizes by the belief in observed gra-
dients. Advances in neural information processing sys-
tems, 33:18795–18806, 2020.

9

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Figure 5. The motivating toy example. θ[1] is the sharp dimension and θ[2] is the flat dimension. GD’s learning rate is limited by the
sharpness in θ1, and makes slow progress along θ[2]. Adam and SignGD bounce along θ[1] while making slow progress along θ[2].
Vanilla Newton’s method converges to a saddle point. Sophia makes fast progress in both dimensions and converges to the minimum
with a few steps.

A. Motivations

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

Value
100

101

102

103

104

Co
un

t
Figure 6. Histogram of positive entries of
the diagonal Hessian of a 125M-parameter
GPT-2.

Heterogeneous curvatures. The loss functions of modern deep learning prob-
lems often have different curvatures across different parameter dimensions (Sa-
gun et al., 2016; Ghorbani et al., 2019; Zhang et al., 2020; Yao et al., 2020).
E.g., on a 125M-parameter GPT-2 model, Figure 6 shows that the distribution
of positive diagonal entries of the Hessian is dispersed.

We demonstrate the limitations of Adam and GD on heterogeneous landscapes
by considering a two-dimensional loss function L(θ[1], θ[2]) = L1(θ[1]) +
L2(θ[2]) where L1 is much sharper than L2. We plot the loss landscape of
L(θ[1], θ[2]) in Figure 5.2 For simplicity, we discuss GD and deterministic ver-
sions of Adam. Recall that GD’s update in this setting is:

θ[1] ← θ[1] − η · L′1(θ[1]) and θ[2] ← θ[2] − η · L′2(θ[2]) . (8)

A common simplification of Adam that is more amenable to analysis (Balles
& Hennig, 2018; Bernstein et al., 2018; Zhuang et al., 2020; Kunstner et al., 2023) is SignGD, which dates back to
RProp (Braun & Riedmiller, 1992) that motivated RMSProp (Hinton et al., 2012) and Adam. Observe that without using
the EMA (for both the gradient and second moments of the gradient), Adam’s update is simplified to η ·∇L(θ)/|∇L(θ)| =
η · sign(∇L(θ)) (where all operations are entry-wise), which is called SignGD. Applying the update rule to our setting
gives:

θ[1] ← θ[1] − η · sign(L′1(θ[1])) and θ[2] ← θ[2] − η · sign(L′2(θ[2])) . (9)

Limitations of GD and SignGD (Adam). It is well known that the optimal learning rate of GD should be proportional
to the inverse of the curvature, that is, the Hessian/second derivative at the local minimum. More precisely, let h1 and h2

be the curvatures of L1 and L2 at the local minimum (and thus h1 � h2). The optimal learning rate for the update of
θ[1] in equation (8) is � 1/h1, which is much smaller than the optimal learning rate that the update of θ[2] needs, which is
� 1/h2. As a result, the largest shared learning rate can only be 1/h1; consequently, the convergence in θ[2] dimension is
slow as demonstrated in the brown curve in Figure 5.

The update size of SignGD is the learning rate η in all dimensions. The same update size translates to less progress in
decreasing the loss in the flat direction than in the sharp direction. As observed from the yellow curve in Figure 5, the
progress of SignGD in the flat dimension θ[2] is slow because each step only decreases the loss L2(θ[2]) slightly. On
the other hand, along the direction θ[1], the iterate quickly travels to the valley in the first three steps and then starts to
bounce. To fully converge in the sharp dimension, the learning rate η needs to decay to 0, which will exacerbate the slow
convergence in the flat dimension θ[2]. The trajectory of Adam in this example is indeed similar to SignGD, which is also
plotted as the red curve in Figure 5.

The behavior of SignGD and Adam above indicates that a more aggressive pre-conditioning is needed—sharp dimensions
should have relatively smaller updates than flat dimensions so that the decrease of loss is equalized in all dimensions. As

2Concretely, in Figure 5, L1(θ[1]) = 8(θ[1] − 1)2(1.3θ2[1] + 2θ[1] + 1) and L2(θ[2]) = 1/2(θ[2] − 4)2.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

suggested by well-established literature on second-order optimization (Boyd & Vandenberghe, 2004) for convex functions,
the optimal pre-conditioner should be the Hessian, which captures the curvature on each dimension; as in Newton’s method,
the update is the gradient divided by the Hessian in each dimension:

θ[1] ← θ[1] − η · L′1(θ[1])/h1 and θ[2] ← θ[2] − η · L′2(θ[2])/h2 . (10)

Limitations of Newton’s method. Nevertheless, Newton’s method has known limitations as well. For non-convex func-
tions, vanilla Newton’s method could converge to a global maximum when the local curvature is negative. In the blue curve
of Figure 5, Newton’s method quickly converges to a saddle point instead of a local minimum. The curvature might also
change rapidly along the trajectory, making the second-order information unreliable. To address these limitations, we pro-
pose considering only pre-conditioners that capture positive curvature, and introduce a pre-coordinate clipping mechanism
to mitigate the rapid change of Hessian (more detail in Section 2.1). Applying our algorithm on the toy case results in the
following update:

θ[1] ← θ[1] − η · clip(L
′
1(θ[1])/max{h1,ε}, ρ) and θ[2] ← θ[2] − η · clip(L

′
2(θ[2])/max{h2,ε}, ρ) , (11)

where ρ is a constant to control the worst-case update size, ε is a very small constant (e.g., 1e-12), which avoids dividing
by 0. When the curvature of some dimension is rapidly changing or negative and thus the second-order information is
misleading and possibly leads to a huge update before clipping, the clipping mechanism kicks in and the optimizer defaults
to SignGD (even though this is sub-optimal for benign situations). Numerous prior methods such as trust region (Conn
et al., 2000), backtracking line search (Boyd & Vandenberghe, 2004), and cubic regularization (Nesterov & Polyak, 2006)
also tackle the same issue of Newton’s method, but the clipping mechanism is much simpler and more efficient.

As shown in the black curve in Fig. 5, the update in equation (11) starts off similarly to SignGD due to the clipping
mechanism in the non-convex region, making descent opposed to converging to a local maximum. Then, in the convex
valley, it converges to the global minimum with a few steps. Compared with SignGD and Adam, it makes much faster
progress in the flat dimension θ[2] (because the update is bigger in dimension θ[2]), while avoiding boucing in the sharp
dimension θ[1] (because the update is significantly shrunk in the sharp dimension θ[1]).

B. Theoretical Analysis
This section provides runtime bounds for the deterministic version of Sophia that does not depend on the local condition
number (the ratio between maximum and minimum curvature at the local minimum) and the worst-case curvature (that
is, the smoothness parameter), demonstrating the advantage of Sophia in adapting to heterogeneous curvatures across
parameter dimensions.

We start with standard assumptions on the differentiability and uniqueness of the minimizer.

Assumption B.1. L : Rd → R is a twice continuously differentiable, strictly convex function with θ∗ being its minimizer.
For convenience, we denote λmin(∇2L(θ∗)) by µ.

The following assumptions state that the Hessian has a certain form of continuity—within a neighborhood of size R, the
ratio between the Hessians,∇2L(θ′)−1∇2L(θ), is assumed to be bounded by a constant 2.

Assumption B.2. There exists a constant R > 0, such that

∀θ, θ′ ∈ Rd, ‖θ − θ′‖2 ≤ R =⇒
∥∥∇2L(θ′)−1∇2L(θ)

∥∥
2
≤ 2 (12)

We analyze the convergence rate of the deterministic version of the Sophia on convex functions,

θt+1 = θt − ηV >t clip(Vt(∇2L(θt))
−1∇L(θt), ρ), (13)

where ∇2L(θt) = V >t ΣtVt is an eigendecomposition of ∇2L(θt). Here, we use the full Hessian as the pre-conditioner
because the diagonal Hessian pre-conditioner cannot always work for general functions which may not have any alignment
with the natural coordinate system. Moreover, the matrix Vt transforms (∇2L(θt))

−1∇L(θt) into eigenspace and thus
the clipping can be done element-wise in the eigenspace. We do not need the max between Hessian and ε in the original
version of Sophia because the Hessian is always PSD for convex functions. Finally, the matrix V >t transforms the update
back to the original coordinate system for the parameter update.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Theorem B.3. Under Assumption B.1 and Assumption B.2, let η = 1/2, ρ = R
2
√
d

, the update in Equation 13 reaches a

loss at most ε in T . d · L(θ0)−minL
µR2 + ln µR2

32dε steps.

The first term in the runtime bound is a burn-in time before reaching a local region, where the error decays exponentially
fast so that the runtime bound is logarithmic in 1/ε as the second term in the runtime bound shows. We remark that the
bound does not depend on the condition number (the ratio between the maximum and minimum eigenvalue of Hessian), as
opposed to the typical dependency on the maximum eigenvalue of the Hessian (or the smoothness parameter) in standard
analysis of gradient descent in convex optimization (Boyd & Vandenberghe, 2004). Moreover, even on simple quadratic
functions, the convergence rate of simplified Adam (SignGD) depends on the condition number (Appendix I.1). This
demonstrates the advantage of Sophia in adapting to heterogeneous curvatures across parameter dimensions.

C. Related work
Stochastic Adaptive First-order Optimizers in Deep Learning. The idea of adaptive first-order optimizers dates back
to RProp (Braun & Riedmiller, 1992). AdaGrad (Duchi et al., 2011) adapted the learning rate of features by estimated
geometry and assign larger learning rate to infrequent features. RMSProp (Hinton et al., 2012) generalized RProp and
is capable to work with smaller batch sizes. Adam (Kingma & Ba, 2014) improved RMSProp by introducing a running
average of gradients, and has so far become the dominant approach to solve optimization problems in deep learning,
especially for training Transformers (Vaswani et al., 2017). Many follow-up works proposed variants of Adam (Dozat,
2016; Shazeer & Stern, 2018; Reddi et al., 2019; Loshchilov & Hutter, 2017; Zhuang et al., 2020; You et al., 2019). Chen
et al. (2023) performed a search over adaptive first-order algorithms and discovered Lion, which is a improved version of
sign momentum SGD.

Second-order Optimizers in Deep Learning. Second-order optimizers are believed to have the potential to outperform
adaptive first-order optimizers. Classical second-order optimization algorithms pre-condition the gradient with curvature
information (Broyden, 1970; Nesterov & Polyak, 2006; Conn et al., 2000). Over the years, people have developed numer-
ous ways to adapt these methods to deep learning. To the best of our knowledge, Becker & Le Cun (1988) was the first
to use diagonal Hessian as the pre-conditioner. Martens et al. (2010) approximated the Hessian with conjugate gradient.
Schaul et al. (2013) automatically tuned learning rate of SGD by considering diagonal Hessian. Pascanu & Bengio (2013)
considered Gaussian Newton’s approximation of Hessian and Fisher information matrix. Martens & Grosse (2015) and
follow-up works (Ba et al., 2017; George et al., 2018; Martens et al., 2018) proposed to approximate the Hessian based
on the structure of neural networks. Yao et al. (2021) proposed to use the square root of the EMA of squared Hessian as
the pre-conditioner. Despite these progress, the de facto optimization algorithms in modern large models are Adam and its
variants. Especially previous second-order optimizers have the following limidations: (1) they have fundamental computa-
tional / memory overhead due to frequent Hessian computation, therefore they cannot achieve improvement in wall-clock
time (Martens & Grosse, 2015; Gupta et al., 2018) (2) they are difficult to implement and scale up. None of them can work
on the scale of GPT-2 (3) they depend heavily on specific model architecture or hardware structures, e.g., Anil et al. (2020)
offloads hessian computation to CPUs; George et al. (2018) needs ResNets and very large batch size to approximate the
Fisher information matrix.

Gradient Clipping. Global gradient clipping has been a standard practice in pre-training language models (Merity et al.,
2017; Radford et al., 2019; Izsak et al., 2021; Zhang et al., 2022). It helps stabilizes training and avoids the effect of rare
examples and large gradient noise. Zhang et al. (2019); Mai & Johansson (2021) showed that global gradient clipping
is faster than standard SGD when global smoothness does not hold. Zhang et al. (2020); Crawshaw et al. (2022) found
out per-coordinate gradient clipping can function as adaptivity. In addition to gradient clipping, Sophia is the first to clip
the update in second-order methods to avoid the effect of Hessian’s changing along the trajectory and the inaccuracy of
Hessian approximation.

Optimization Algorithms in LM Pre-training. Adam (Kingma & Ba, 2014) (with decoupled weight decay (Loshchilov
& Hutter, 2017)) has become the dominant approach for language model pre-training (Vaswani et al., 2017; Devlin et al.,
2018; Radford et al., 2019; Brown et al., 2020; Zhang et al., 2022; Touvron et al., 2023). Different from vision tasks
with CNNs (He et al., 2016) where models trained with SGD generalize better than models trained with Adam, Adam
outperforms SGD by a huge margin on language modeling tasks with Transformers (Anil et al., 2019; Liu et al., 2020;
Kunstner et al., 2023). Raffel et al. (2020); Chowdhery et al. (2022) trained Transformers with AdaFactor (Shazeer &
Stern, 2018), which is a low rank version of Adam. You et al. (2019) proposed to make the update of Adam proportional

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

to per-layer paramter norm to stably train LLMs.

D. Conclusion
We introduced Sophia, a scalable second-order optimizer for language model pre-training. Sophia converges in fewer steps
than first-order adaptive methods, while maintaining almost the same per-step cost. On language modeling with GPT-2,
Sophia achieves a 2x speed-up compared with AdamW in the number of steps, total compute, and wall-clock time.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

BoolQ CB COPA RTE Average45

50

55

60

65

70

Ac
cu

ra
cy

 %
Few-shot Evaluation of GPT-2 Medium (355M) on SuperGLUE

AdamW, 100K
Lion, 100K
Sophia, 100K
AdamW, 200K

BoolQ CB COPA RTE Average45

50

55

60

65

70

Ac
cu

ra
cy

 %

Few-shot Evaluation of GPT-2 Large (770M) on SuperGLUE
AdamW, 100K
Sophia, 100K
AdamW, 200K

Figure 7. Few-shot evaluation on SuperGLUE. With the same 100K steps, models pre-trained with Sophia outperforms models pre-
trained with AdamW and Lion on most tasks. Models pre-trained with Sophia for 100K steps have comparable performance as models
pre-trained with AdamW for 200K steps.

E. Additional Experiment Results
Few-shot Evaluation on Downstream Tasks (SuperGLUE). As shown in Figure 7, as expected, the improvement in
validation loss transfers to an improvement in downstream task accuracy. With the same number of steps in pre-training,
GPT-2 medium and GPT-2 large pre-trained with Sophia have better few-shot accuracy on most subtasks. Also, models
pre-trained with Sophia-H have comparable few-shot accuracy as models pre-trained with AdamW for 2x number of steps.

Dynamics of Sophia in training. We measure the `2 norm of the EMA of the diagonal Hessian ht, and the proportion of
parameters where clipping happens (that is, mt/ht is larger than ρ) during pre-training in Figure 8. After the initial stage,
the norm of the Hessian steadily grows. The proportion of parameters where clipping happens approaches 60%, which
corroborates the importance of per-coordinate clipping in the algorithm.

0K 25K 50K 75K 100K
Number of Steps

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n

Proportion of Paramters with Clipped Update
Sophia

0K 25K 50K 75K 100K
Number of Steps

0

20

40

60

80

100

No
rm

Hessian Norm
Sophia

Figure 8. Visualization of training statistics. (a) The proportion of parameters whose update is clipped. (b) `2 norm of the EMA of
Hessian ht.

Results with different number of steps. Due to space limit, runs with different number of steps and their comparison are
provided in Figure 9. Across different total number of steps, Sophia outperforms AdamW and Lion with a large margin as
the main experiments we presented in Section 3.2.

0K 100K 200K 300K 400K
Number of Steps

2.8

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss

2x Speedup

(a) GPT-2 Small (125M)
AdamW
Lion
Sophia

0K 50K 100K 150K 200K
Number of Steps

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
Lo

ss

2x Speedup

(b) GPT-2 Medium (355M)
AdamW, 100K
AdamW, 200K
Sophia, 100K
Sophia, 200K

Figure 9. Results of training for different steps.

F. Additional Experiment Details

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Table 2. Model Configurations and Peak Learning Rate.
Acronym Size d_model n_head depth AdamW lr Lion lr Sophia-H lr Sophia-G lr

– 30M 384 6 6 1e-3 3e-4 1e-1 –
Small 125M 768 12 12 6e-4 1.5e-4 6e-2 1e-5
Medium 355M 1024 16 24 3e-4 6e-5 3e-2 7.5e-6
– 540M 1152 18 30 2.5e-4 – 2.5e-2 –
Large 770M 1280 20 36 2e-4 – 2e-2 –

F.1. Hyperparamter Tuning

The hyperparameters for AdamW on GPT-2 are well-established. Most hyperparameters are used across all model sizes:
ε =1e-6, β1 = 0.9 β2 = 0.95, and λ = 0.1 (weight decay). The gradient clipping (by norm) threshold is set to 1.0. The
peak learning rate is different for different model sizes. Generally, larger models use smaller peak learning rate. For Lion,
we use β1 = 0.95 β2 = 0.98 as suggested by Chen et al. (2023). We also set λ to 0.1 and gradient clipping (by norm)
threshold to 1.0. However, the peak learning rate for Lion on language models is not established. The suggested 0.1 times
peak learning rate of AdamW in vision tasks (Chen et al., 2023) is not optimal for language modeling. We perform a grid
search of peak learning rate of Lion and provide the result in Table 2.

We use β1 = 0.96, ε =1e-12 and k = 10 for Sophia-H. We first tune ρ and β2 with grid search on a 30M model, and
directly use ρ and β2 from the 30M model on larger models. Details of this tuning is provided in Section 3.3. For Sophia-
G we use ρ = 20 and β2 = 0.99. We observe these hyperparameters choice work well across all model sizes. The
peak learning rate of Sophia-H is set to 100 times the peak learning rate of AdamW (1/ρ times the peak learning rate of
AdamW). The peak learning rate for Sophia-G is also provided in Table 2.

F.2. Model and Implementation Details

We consider three sizes of GPT-2 corresponding to small, medium, and large in Radford et al. (2019). We also introduce
a 30M model for efficient hyperparameter grid search and a 540M model for scaling law visualization. We provide the
model specifications in Table 2. We use the nanoGPT (https://github.com/karpathy/nanoGPT/) code base.
Following nanoGPT, we use GELU activations and disable bias and Dropout (Srivastava et al., 2014) during pre-training.

All models are trained on OpenWebText (Gokaslan & Cohen, 2019). The text is tokenized with the GPT-2 tokenizer (Rad-
ford et al., 2019). We use the train and validation split from nanoGPT. The training set contains 9B tokens, and the
validation set contains 4.4M tokens.

We observed AdamW and Lion does not perform well on 355M and 770M standard transformers. The iterates become
unstable when the learning rate is close to the choice of Radford et al. (2019). We introduce scaling attention by the inverse
of layer index to address this issue following Karamcheti et al. (2021); Wolf et al. (2020). Note that Sophia does not need
this trick as mentioned in Section 3.3.

We use distributed data parallel with gradient accumulation to enable a batch size of 480. All models are trained with
bfloat16. The 125M and 355M models are trained on machines with 10 A5000 GPUs, while the 770M models are trained
on an AWS p4d.24xlarge instance with 8 A100 GPUs.

F.3. Downtream Evaluation

We perform few-shot evaluation of the models on 4 subtasks of SuperGLUE. We use 2-shot prompting and greedy decod-
ing. The prompt consists of an instruction followed by two examples. The examples are sampled from the train split while
we report the accuracy on validation split averaged over 5 selection of exemplars. Prompts for each subtask are illustrated
in Figure 10.

15

https://github.com/karpathy/nanoGPT/

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

The context is a passages containing some information. Given a question about the context, use the information to
answer the question with either 'Yes' or 'No’.

Context: 3-way lamp -- The center contact of the bulb typically connects to the medium-power filament, and the
ring connects to the low-power filament. Thus, if a 3-way bulb is screwed into a standard light socket that has only
a center contact, only the medium-power filament operates. In the case of the 50 W / 100 W / 150 W bulb, putting
this bulb in a regular lamp socket will result in it behaving like a normal 100W bulb. Question: do 3-way light bulbs
work in any lamp
Answer: Yes

Context: Perfume: The Story of a Murderer (film) -- Perfume: The Story of a Murderer is a 2006 German period
psychological crime thriller film directed by Tom Tykwer and starring Ben Whishaw, Alan Rickman, Rachel Hurd-
Wood, and Dustin Hoffman. Tykwer, with Johnny Klimek and Reinhold Heil, also composed the music. The
screenplay by Tykwer, Andrew Birkin, and Bernd Eichinger is based on Patrick Süskind's 1985 novel Perfume. Set in
18th century France, the film tells the story of Jean-Baptiste Grenouille (Whishaw), an olfactory genius, and his
homicidal quest for the perfect scent. Question: is the film perfume based on a true story
Answer: No

Given a premise and a hypothesis, answer whether the
hypothesis logically follows from the premise with 'True' or
'False' or 'Neither’.

Context: B: She says that when her husband died oh, that my
uncle had said that he would never put her in a rest home. So
it's kind of, uh, I don't know. I mean, I don't think my parents
would but she is getting pretty bad like she has to have like a
little toilet right by her bed and, it's, A: Uh-huh. B: and my mom
has to take care of her pretty much so it gets, I don't know. it's a
hard decision, but I don't think I would do it to my parents
personally. Question: she would do it to her parents
Answer: No

Context: B: No, it was, I didn't like the way it ended. A: I know,
well the only reason I know whxy it ended is on Arsenio Hall
one night, Christopher Reeves told, that, you know, B: Uh-huh.
A: I can't believe they killed them. Question: they killed them
Answer: Yes

Choose the correct ending for the context.

Choice1: the woman kissed him.
Choice2: the woman made him blush.
Context: The man had lipstick on his cheek because
Answer: Choice1

Choice1: i attended a yoga class.
Choice2: i bought fruits and vegetables.
Context: I made a resolution to eat a healthy diet so
Answer: Choice2

Given a premise and a hypothesis, answer whether the hypothesis follows from the premise with 'Yes' or ‘No’.

Context: The Bank of Italy, the ultimate arbiter of Italian banking mergers, has been engulfed by scandal since
police wire taps revealed Fazio and his wife advised a local banker in a bid for Bank Antonveneta against Dutch bank
ABN AMRO.
Question: A local banker bids for Bank Antonveneta.
Answer: Yes

Context: The Statue of Liberty was reopened to the public on July 5 after its extensive refurbishing. 1986 is a
common year starting on Wednesday of the Gregorian calendar.
Question: The Statute of Liberty was built in 1986.
Answer: None

BoolQ CB

COPARTE

Figure 10. Prompts for SuperGLUE downstream evaluation.

G. Amount of compute
We train the 125M and 355M models on A5000 GPUs and the 770M models on A100 GPUs. The total amount of compute
spent on all experiments is about 6000 hours on A100s and 10000 hours on A5000s. This amounts to 4.38e21 FLOPs.

H. Limitations
Scaling up to larger models and datasets. Although Sophia demonstrates scalability up to 770M models and OpenWeb-
Text, and there is no essential constraints from further scaling up, we do not compare with AdamW and Lion on larger
models and datasets due to limited resources. We believe Sophia is faster than AdamW and Lion on larger models given
the improvement in scaling laws and better pre-training stability.

Holistic downstream evaluation. We evaluate pre-trained checkpoints on 4 SuperGLUE subtasks, which only demon-
strates the improvement in downstream performance several datasets. While a holistic evaluation of language models itself
is an open research topic, better downstream evaluation is still important. The limitation in downstream evaluation is also
due to the limited model size, because language models at this scale do not have enough capabilities such as in-context
learning, and mathematical reasoning.

Evaluation on other domains. While this paper focuses on optimizers for large language modeling, a more general
optimizer should also be evaluated in other domains such as computer vision, reinforcement learning, and multimodel
tasks. Due to the limitation of computation resources, we leave the application to other domains and models to future
works.

I. Theoretical Analyses: Details of Section B
Theorem B.3 is a direct combination of the Lemma I.10 (Descent Lemma), Lemma I.9 and Lemma I.11. In the analysis,
there will be two phases. In the first phase decrease loss to µρ2

8 in 8L(θ(0))−minL
ηµρ2 steps. In the second phase, there will be

an exponential decay of error.

Lemma I.1. Under Assumption B.1, we have that L(θ)→∞ whenever ‖θ‖2 →∞.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Proof of Lemma I.1. By convexity of L, we have ∀θ ∈ Rd with ‖θ − θ∗‖2 ≥ 1,

1

‖θ − θ∗‖2
L(θ) +

‖θ − θ∗‖2 − 1

‖θ − θ∗‖2
L(θ∗) ≥ L(θ∗ +

θ − θ∗

‖θ − θ∗‖2
) ≥ min
‖θ̄‖

2
=1
L(θ∗ + θ̄). (14)

Since L is strictly convex, ∆ , min‖θ̄‖
2
=1 L(θ∗ + θ̄)− L(θ∗) > 0. Thus we conclude that

L(θ) ≥ ‖θ − θ∗‖2 ∆ + L(θ∗) ≥ (‖θ‖2 − ‖θ
∗‖2)∆ + L(θ∗). (15)

Therefore when ‖θ‖2 →∞, L(θ)→∞ as well.

Note that we don’t assume the Hessian of loss is Lipschitz. Assumption B.2 only assumes the Hessian in a neighborhood
of constant radius only differs by a constant in the multiplicative sense.

Lemma I.2. For any θ ∈ Rd satisfying L(θ)−minL ≤ µR2

4 , it holds that ‖θ − θ∗‖2 ≤ 2
√

L(θ)−minL
µ ≤ R.

Proof of Lemma I.2. We will prove by contradiction. Suppose there exists such θ with L(θ) ≤ µR2

4 but ‖θ − θ∗‖2 >

2
√

L(θ)−minL
µ . We consider θ′ , θ∗ +

√
2L(θ)
µ · θ−θ∗

‖θ−θ∗‖2
. Since θ′ is between θ and θ∗ and that L is strictly convex, we

know that L(θ′) < L(θ). However, by Taylor expansion on function f(t) , L(θ∗ + t(θ′ − θ∗)), we have that

f(1) = f(0) + f ′(0) +
f ′′(t)

2
, for some t ∈ [0, 1]. (16)

Note that ‖θ′ − θ∗‖2 ≤ ‖θ − θ∗‖2 ≤ R, by Assumption B.2 and Assumption B.1, we have f ′′(t) = (θ′− θ∗)>∇2L(tθ′+

(1 − t)θ∗)(θ′ − θ∗) ≥ 1
2 (θ′ − θ∗)>∇2L(θ∗)(θ′ − θ∗) ≥ µ

2 ‖θ
′ − θ∗‖22 = 2(L(θ) − minL)). Also note that f(1) =

L(θ′), f(0) = L(θ∗) and f ′(0) = 0, we conclude that L(θ′)−L(θ∗) ≥ L(θ)−L(θ∗), namely (θ′) ≥ L(θ). Contradiction!

Lemma I.3. For any θ ∈ Rd satisfying that ‖∇L(θ)‖2 ≤
Rµ
2 , it holds that ‖θ − θ∗‖2 ≤

2‖∇L(θ)‖
µ ≤ R.

Proof of Lemma I.3. We will prove by contradiction. We consider function f(t) ,
〈

θ−θ∗
‖θ−θ∗‖2

,∇L(θ∗ + t · θ−θ∗
‖θ−θ∗‖2

)
〉

.

Because of the strict convexity of L, f is a strict monotone increasing function. If ‖θ − θ∗‖ > 2‖∇L(θ)‖
µ but ‖∇L(θ)‖2 ≤

Rµ
2 , then we have f(R) < f(‖θ − θ∗‖2) ≤ ‖∇L(θ)‖2. On the other hand, by Assumption B.2 and Assumption B.1,

f ′(t) ≥ µ
2 for t ∈ [0, R]. Thus f(R) ≥ f(0) +

∫ 2‖∇L(θ)‖
µ

t=0 f ′(t)dt = ‖∇L(θ)‖. Contradiction!

Lemma I.4. For any θ ∈ Rd, the following differential equation has at least one solution on interval [0, 1]:

dθ(t)

dt
= −(∇2L(θ(t)))−1∇L(θ), θ(0) = θ, (17)

and the solution satisfies that∇L(θ(t)) = (1− t)∇L(θ) for all t ∈ [0, 1] and θ(0) = θ∗.

Proof of Lemma I.4. Since ∇2L is continuous and positive definite by Assumption B.1 , (∇2L)−1 is continuous and thus
the above ODE (42) has a solution over interval [0, T) for some positive T and we let Tmax be the largest positive number
such that the solution exists (or Tmax = ∞). Now we claim Tmax ≥ 1, otherwise ‖θ(t)− θ∗‖2 must diverge to infinity
when t→ Tmax. However, for any t ≤ 1, we have

d∇L(θ(t))

dt
= −∇L(θ), (18)

which implies that∇L(θ(t)) = (1− t)∇L(θ) for all t ∈ [0, 1]. Therefore,

dL(θ(t))

dt
= −(∇L(θ(t)))>(∇2L(θ(t)))−1∇L(θ) = (1− t)(∇L(θ))>(∇2L(θ(t)))−1∇L(θ) ≤ 0. (19)

Thus L(θ(t)) ≤ L(θ(0)). By Lemma I.1, we know that ‖θ(t)‖ remains bounded for all t ∈ [0, Tmax], thus Tmax ≥ 1. Note
that θ(1) has zero gradient, θ(1) must be θ∗. This completes the proof.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Lemma I.5. For any θ ∈ Rd satisfying (1) L(θ)−minL ≤ µR2

16 or (2) ‖∇L(θ)‖2 ≤
Rµ
4 , it holds that

L(θ)−minL ≤ ∇L(θ)>(∇2L(θ))−1∇L(θ) ≤ 4(L(θ)−minL). (20)

Proof of Lemma I.5. Let {θ(t)}1t=0 be the solution of Equation 42. We know that ∇L(θ(t)) = (1 − t)∇L(θ) for all
t ∈ [0, 1] and that θ(1) = θ∗ by Lemma I.4. For case (1), by Lemma I.2, we know that for any t ∈ [0, 1], ‖θ(t)− θ∗‖2 ≤
R/2. For case (2), by Lemma I.3, we know that for any t ∈ [0, 1], ‖θ(t)− θ∗‖2 ≤ R/2. Thus in both two cases,
‖θ(t)− θ‖2 = ‖θ(t)− θ(0)‖2 =≤ ‖θ(t)− θ∗‖+ ‖θ(0)− θ∗‖ ≤ R. By Assumption B.2, it holds that

2(∇2L(θ))−1 � (∇2L(θ(t)))−1 � 1

2
(∇2L(θ))−1. (21)

for all t ∈ [0, 1]. Therefore, we have that

L(θ)−minL = L(θ(0))− L(θ(1)) =

∫ 1

t=0

(∇L(θ(t)))>(∇2L(θ(t)))−1∇L(θ)

=

∫ 1

t=0

(1− t)(∇L(θ))>(∇2L(θ(t)))−1∇L(θ). (22)

The proof is completed by plugging Equation 21 into Equation 22 and noting that
∫ 1

t=0
(1− t) = 1/2.

Lemma I.6. For any θ ∈ Rd satisfying (1) L(θ)−minL ≤ µR2

4 or (2) ‖∇L(θ)‖2 ≤
Rµ
2 , it holds that

L(θ)−minL ≤ µ−1 ‖∇L(θ)‖22 (23)

Proof of Lemma I.6. The proof of Lemma I.6 is almost the same as that of Lemma I.5 and thus omitted.

Lemma I.7. For any θ ∈ Rd satisfying L(θ)−minL ≤ µR2

16 , it holds that

∥∥(∇2L(θ))−1∇L(θ)
∥∥

2
≤

√
8(L(θ)−minL)

µ
. (24)

Proof of Lemma I.7. By Lemma I.2, we have that ‖θ − θ∗‖2 ≤ R. By Assumption B.2, we have∇2L(θ) � 1
2∇

2L(θ∗) �
µ
2 Id. By Lemma I.5, we have that

4(L(θ)−minL) ≥∇L(θ)>(∇2L(θ))−1∇L(θ) (25)

≥∇L(θ)>(∇2L(θ))−1∇2L(θ)(∇2L(θ))−1∇L(θ) (26)

≥µ
2

∥∥∇L(θ)>(∇2L(θ))−1
∥∥2

2
. (27)

This completes the proof.

Lemma I.8. For any θ ∈ Rd satisfying that
∥∥((∇2L(θ))−1∇L(θ)

∥∥
2
≤ R

2 , it holds that

L(θ)−minL ≤ ∇L(θ)>(∇2L(θ))−1∇L(θ) ≤ 4(L(θ)−minL). (28)

Proof of Lemma I.8. Let {θ(t)}1t=0 be the solution of Equation 42 and we claim that for all t ∈ [0, 1], ‖θ(t)− θ‖2 ≤ R.
Otherwise, let T be the smallest positive number such that ‖θ(T)− θ‖2 = R. Such T exists because ‖θ(t)− θ‖2 is

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

continuous in t and ‖θ(0)− θ‖2 = 0. We have that

R = ‖θ(T)− θ(0)‖2 ≤
∫ T

t=0

∥∥∥∥dθ(t)

dt

∥∥∥∥
2

dt (29)

=

∫ T

t=0

∥∥((∇2L(θ(t)))−1∇L(θ)
∥∥

2
dt (30)

≤
∫ T

t=0

∥∥(∇2L(θ(t)))−1∇2L(θ)
∥∥

2

∥∥((∇2L(θ))−1∇L(θ)
∥∥

2
dt (31)

≤2

∫ T

t=0

∥∥((∇2L(θ))−1∇L(θ)
∥∥

2
dt (32)

≤2T
R

2
= RT, (33)

which implies T = 1. Here in Equation 32, we use Assumption B.2. Thus we conclude that for all t ∈ [0, 1], ‖θ(t)− θ‖2 ≤
R. By Assumption B.2, it holds that

2(∇2L(θ))−1 � (∇2L(θ(t)))−1 � 1

2
(∇2L(θ))−1. (34)

Therefore, we have that

L(θ)−minL = L(θ(0))− L(θ(1)) =

∫ 1

t=0

(∇L(θ(t)))>(∇2L(θ(t)))−1∇L(θ)

=

∫ 1

t=0

(1− t)(∇L(θ))>(∇2L(θ(t)))−1∇L(θ). (35)

The proof is completed by plugging Equation 34 into Equation 35 and noting that
∫ 1

t=0
(1− t) = 1/2.

Lemma I.9. If ρ ≤ R
2
√
d

, then for any ∆ ≤ Rρµ
10 and any θ ∈ Rd satisfying

d∑
i=1

min{ρ
∣∣v>i ∇L(θ)

∣∣ , σ−1
i

∣∣v>i ∇L(θ)
∣∣2} ≤ ∆, (36)

where ∇2L(θ) = V >ΣV is the eigendecomposition of ∇2L(θ), vi is the ith row of V and Σ = diag(σ1, . . . , σd), it holds
that

L(θ)−minL ≤ ∆ +
25∆2

ρ2µ
(37)

In particular, if we set ∆ , µρ2

20 , we have L(θ)−minL ≤ µρ2

8 .

Proof of Lemma I.9. Let Iθ , {i ∈ [d] |
∣∣v>i ∇L(θ)

∣∣σ−1
i ≤ ρ} be the set of indices where clipping does not happen. Then

we have that ∑
i∈Iθ

σ−1
i

∣∣v>i ∇L(θ)
∣∣2 ≤ ∆ (38)

∑
i/∈Iθ

ρ
∣∣v>i ∇L(θ)

∣∣ ≤ ∆ (39)

Now we consider a new strictly convex loss function in R|Iθ|, which is L restricted on the space of {θ +
∑
i∈Iθ w[i]vi |

w ∈ R|Iθ|}, that is, Lθ(w) = L(θ +
∑
i∈Iθ w[i]vi). This new loss function Lθ clearly satisfy Assumption B.2 since it is a

restriction of L into some subspace of Rd. By Lemma I.1, we know that infw Lθ(w) can be attained and we denote it by

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

w∗. By Assumption B.1, we know that Lθ is strictly convex and thus ∇2Lθ(w) � 0, which means Assumption B.1 also
holds for Lθ.

Next we will apply Lemma I.8 on Lθ at w = 0. We use VIθ ∈ R|I|×d to denote the submatrix of V containing rows in I for
any I ⊂ [d]. One can verify by chain rule that∇Lθ(w) = VIθ∇L(θ+V >Iθw) and that∇2Lθ(w) = VIθ∇2L(θ+V >Iθw)V >Iθ .
Thus we have that

(∇2Lθ(0))−1∇Lθ(0) = VIθ (∇2L(θ))−1∇L(θ). (40)

By the definition of Iθ, we know that
∥∥VIθ (∇2L(θ))−1∇L(θ)

∥∥∞ ≤ ρ. Thus
∥∥(∇2Lθ(0))−1∇Lθ(0)

∥∥
2
≤√

d
∥∥VIθ (∇2L(θ))−1∇L(θ)

∥∥
∞ =

√
d · ρ ≤ R

2 . Thus we can apply Lemma I.8 on Lθ at w = 0 and conclude that

Lθ(0)− Lθ(w∗) ≤ ∇Lθ(0)>(∇2Lθ(0))−1∇Lθ(0) =
∑
i∈Iθ

σ−1
i

∣∣v>i ∇L(θ)
∣∣2 ≤ ∆ (41)

Thus L(θ)− L(θ + V >Iθw
∗) = Lθ(0)− Lθ(w∗) ≤ ∆.

It remains to show that L(θ + V >Iθw
∗)− L(θ∗) ≤ 25∆2

ρ2µ . To do so, our strategy is to first show that
∥∥∇L(θ + V >Iθw

∗)
∥∥

2
is

small and then to use Lemma I.6. We will use Icθ to denote the complement of Iθ in [d] and VIcθ ∈ R(d−|Iθ|)×d to denote
the submatrix of V which contains all the rows that do not belong to Iθ. Note that w∗ is the minimizer of Lθ, we know that
VIθ∇L(θ + V >Iθw

∗) = 0 and that
∥∥∇L(θ + V >Iθw

∗)
∥∥

2
=
∥∥VIcθ∇L(θ + V >Iθw

∗)
∥∥

2
.

Now we consider the following ODE

dw(t)

dt
= −(∇2Lθ(w(t)))−1∇Lθ(0), w(0) = 0. (42)

By Lemma I.4, we know this ODE has solution w(t) over interval [0, 1] with w(1) = w∗. With the same argument in the
proof of Lemma I.8, we know that ‖w(t)‖2 ≤ R for all t ∈ [0, 1]. Thus we have for any t ∈ [0, 1],∥∥∥∥VIcθ d∇L(θ + VIθw(t))

dt

∥∥∥∥
2

(43)

=
∥∥VIcθ∇2L(θ + VIθw(t))VIθ (∇2Lθ(w(t)))−1∇Lθ(0)

∥∥
2

(44)

=
∥∥VIcθ∇2L(θ + VIθw(t))VIθV

>
Iθ

(∇2L(θ + VIθw(t)))−1∇L(θ)
∥∥

2
(45)

≤
∥∥∥VIcθ√∇2L(θ + VIθw(t))

∥∥∥
F

(46)

·
∥∥∥√∇2L(θ + VIθw(t))VIθV

>
Iθ

(∇2L(θ + VIθw(t)))−1∇L(θ)
∥∥∥

2
(47)

For the first term (Equation 46), by Assumption B.2, we have that∥∥∥VIcθ√∇2L(θ + VIθw(t))
∥∥∥2

F
≤ 2VIcθ∇

2L(θ)VIcθ = 2
∑
i/∈Iθ

σi ≤ 2
∑
i/∈Iθ

v>i ∇L(θ)

ρ
≤ 2∆

ρ2
. (48)

For the second term (Equation 47), by Assumption B.2, we have that∥∥∥√∇2L(θ + VIθw(t))VIθV
>
Iθ

(∇2L(θ + VIθw(t)))−1∇L(θ)
∥∥∥2

2
(49)

≤8
∥∥∥√∇2L(θ)VIθV

>
Iθ

(∇2L(θ))−1∇L(θ)
∥∥∥2

2
(50)

=8∇L(θ)>VIθV
>
Iθ

(∇2L(θ))−1VIθV
>
Iθ
∇L(θ) (51)

=8
∑
i∈Iθ

σ−1
i

∣∣v>i ∇L(θ)
∣∣2 ≤ 8∆. (52)

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Thus we conclude that
∥∥∥VIcθ d∇L(θ+VIθw(t))

dt

∥∥∥
2
≤ 4∆

ρ , which implies that∥∥∇L(θ + V >Iθw
∗)
∥∥

2
=
∥∥VIcθ∇L(θ + V >Iθw

∗)
∥∥

2
(53)

=

∥∥∥∥VIcθ∇L(θ) +

∫ 1

t=0

VIcθ
d∇L(θ + VIθw(t))

dt
dt

∥∥∥∥
2

(54)

≤
∥∥VIcθ∇L(θ)

∥∥
2

+

∫ 1

t=0

∥∥∥∥VIcθ d∇L(θ + VIθw(t))

dt

∥∥∥∥
2

dt (55)

≤∆

ρ
+

4∆

ρ
=

5∆

ρ
. (56)

Applying Lemma I.6, we have that

L(θ + V >Iθw
∗)−minL ≤ µ−1

∥∥∇L(θ + V >Iθw
∗)
∥∥2

2
=

25∆2

ρ2µ
. (57)

This completes the proof.

Lemma I.10 (Descent Lemma). For any η, ρ > 0 with ηρ ≤ R/
√
d, θ ∈ Rd and any eigendecomposition of ∇2L(θ),

where VtV >t = Id, σt is diagonal∇2L(θ) = V >ΣV , define

θ+ , θ − ηV >clip(V (∇2L(θ))−1∇L(θ), ρ), (58)

it holds that

L(θ+)− L(θ) ≤ −(η − η2)

d∑
i=1

min{ρ
∣∣v>i ∇L(θ)

∣∣ , σ−1
i

∣∣v>i ∇L(θ)
∣∣2}, (59)

where vi is the ith row of matrix V .

Proof of Lemma I.10. Let u , clip(V (∇2L(θ))−1∇L(θ), ρ). By the definition of clip operation, we know that
∥∥V >u∥∥

2
=

‖u‖2 ≤
√
dρ. Thus we have ‖θ+ − θ‖ = η

∥∥V >u∥∥
2
≤ ηρ

√
d. Define f(t) = L(tθ+ + (1− t)θ). By Assumption B.2, we

know that f ′′(t) ≤ 2f ′′(0) for all t ∈ [0, 1] and thus

f(1) = f(0) + f ′(0) +

∫ 1

s=0

∫ s

t=0

f ′′(s)dsdt ≤ f(0) + f ′(0) + f ′′(0). (60)

It remains to show that

1. f ′(0) = −η
∑d
i=1 min{ρ

∣∣v>i ∇L(θ)
∣∣ , σ−1

i

∣∣v>i ∇L(θ)
∣∣2};

2. f ′′(0) ≤ η2
∑d
i=1 min{ρ

∣∣v>i ∇L(θ)
∣∣ , σ−1

i

∣∣v>i ∇L(θ)
∣∣2};

First, by chain rule, we have f ′(0) =
〈
∇L(θ),−ηV >u

〉
= 〈V∇L(θ),−ηu〉 = −η

〈
V∇L(θ), clip(Σ−1V∇L(θ), ρ)

〉
=

−η
∑d
i=1 min{ρ

∣∣v>i ∇L(θ)
∣∣ , σ−1

i

∣∣v>i ∇L(θ)
∣∣2}.

Second, again by chain rule, we have f ′′(0) = η2
〈
V >u,∇2L(θ)V >u

〉
= η2 〈u,Σu〉 =

∑d
i=1 |ui|

2
σi. Note that

by definition |ui| = min{
∣∣v>i ∇L(θ)

∣∣ /σi, ρ}, we have |ui|2 σi ≤ min{
∣∣v>i ∇L(θ)

∣∣ /σi, ρ} · ∣∣v>i ∇L(θ)
∣∣ /σi · σi =

min{
∣∣v>i ∇L(θ)

∣∣2 /σi, ρ ∣∣v>i ∇L(θ)
∣∣}, which completes the proof.

Lemma I.11. If ηρ ≤ R/
√
d and for some T ∈ N, L(θT)−minL ≤ µρ2

8 , then if holds that for all t ≥ T ,

1. θt+1 = θt − η(∇2L(θt))
−1∇L(θt);

2. L(θt)−minL ≤ (1− η(1− η))t−T (L(θT)−minL).

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Proof of Lemma I.11. First by Lemma I.10, we have for all t ≥ T , (θt) −minL ≤ L(θT) −minL ≤ µρ2

8 , therefore by
Lemma I.7, we have

∥∥(∇2L(θt))
−1∇L(θt)

∥∥
2
≤ ρ for all t ≥ T , which implies clipping will not happen. This completes

the proof of the first claim.

For the second claim, by Lemmas I.5 and I.10, we have that

L(θt+1)− L(θt) ≤− (η − η2)

d∑
i=1

σ−1
i

∣∣v>i ∇L(θt)
∣∣2 (61)

=− (η − η2)∇L(θt)(∇2L(θt))
−1∇L(θt) (62)

≤− η(1− η)(L(θt)−minL), (63)

which completes the proof.

I.1. Lower bound for SignGD on 2-dimensional quadratic loss

Define Lµ,β : R2 → R as a quadratic function with parameter µ, β as Lµ,β(θ) , µ
2 θ

2
[1] + β

2 θ
2
[2]. We have the following

lower bound, which shows signGD’s convergence rate has to depend on the condition number β/µ.

Theorem I.12. For any µ, β,∆, ε > 0, suppose there exist a learning rate η and a time T such that for all θ0 satisfying that
Lµ,β(θ0) ≤ ∆, signGD reaches loss at most ε at step T − 1 and T (in the sense that Lµ,β(θT) ≤ ε and Lµ,β(θT−1) ≤ ε).
Then, T must satisfy T ≥ 1

2 (
√

∆
ε −
√

2)
√

β
µ .

Proof of Theorem I.12. We consider two initialization: θ0 = (0,
√

2∆
β) and θ′0 = (

√
2∆
µ , 0), and let θt and θ′t be the

iterates under the two initializations. For each coordinate i ∈ {1, 2}, because |(θt)[i] − (θt+1)[i]| = η, we have that

|(θt)[i]|+ |(θt+1)[i]| ≥ η. Thus 2ε ≥ Lµ,β(θT) +Lµ,β(θT−1) ≥ β
2 ((θT)2

[2] + (θT−1)2
[2]) ≥

βη2

4 , which implies η ≤
√

8ε
β .

The fact that Lµ,β(θ′T) +Lµ,β(θ′T−1) ≤ 2ε implies (θ′T)[1] ≤
√

4ε
µ . Because SignGD can only move each coordinate by η

at most, we have (T − 1)η ≥
√

2∆/µ−
√

4ε
µ . Using the fact that η ≤

√
8ε
β , we have that 2(T − 1) ≥ (

√
∆
ε −
√

2)
√

β
µ ,

which completes the proof.

22

