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Abstract

Speech Language Models (SLMs) aim to learn
language from raw audio, without textual re-
sources. Despite significant advances, our cur-
rent models exhibit weak syntax and semantic
abilities. However, if the scaling properties of
neural language models hold for the speech
modality, these abilities will improve as the
amount of compute used for training increases.
In this paper, we use models of this scaling
behavior to estimate the scale at which our cur-
rent methods will yield a SLM with the English
proficiency of text-based Large Language Mod-
els (LLMs). We establish a strong correlation
between pre-training loss and downstream syn-
tactic and semantic performance in SLMs and
LLMs, which results in predictable scaling of
linguistic performance. We show that the lin-
guistic performance of SLMs scales up to three
orders of magnitude more slowly than the per-
formance of text-based LLMs. Additionally,
we study the effects of coarser speech tokeniza-
tion, and the benefits of synthetic data designed
to boost semantic understanding.

1 Introduction

Inspired by the remarkable ability of preschool
children to learn language from raw sensory in-
puts, Lakhotia et al. (2021) introduced in their
seminal paper the textless NLP (Natural Language
Processing) project. The project aimed to lever-
age advances in self-supervised speech representa-
tion learning for unsupervised unit discovery (Hsu
etal., 2021; Chung et al., 2021) and generative neu-
ral language models (Brown et al., 2020; Devlin
etal., 2019) to jointly learn the acoustic and linguis-
tic characteristics of a language from audio alone,
without access to textual supervision (e.g. lexicon
or transcriptions). They formalized this goal in
the task of Generative Spoken Language Modeling
(GSLM), in which a language model is trained on
sequences of self-supervised learned speech units.

Despite a significant body of research on these
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Figure 1: Speech Language Models test loss curves for
all our different runs. Axes are in logarithmic scale. The
envelope of minimal loss per FLOP (black dots) follows
a power law (dashed line).

speech-based language models (SLMs) (Lakhotia
et al., 2021; Kharitonov et al., 2022; Borsos et al.,
2023; Hassid et al., 2023), they are still far from
matching the syntactic and semantic abilities of
text-based systems (Hassid et al., 2023). Therefore,
the promise of textless NLP is yet to be realized.
However, if the scaling laws of text-based neural
language models (Kaplan et al., 2020; Hoffmann
et al., 2022) hold for the speech modality, we can
expect those abilities to improve as the amount of
compute used for training increases.

In this work, we apply recently proposed models
of the scaling behavior of neural language models
to SLMs, and use them to estimate the scale at
which our current methods will scale to match the
linguistic performance of Large Language Models
(LLMs), generative text-based systems that have
achieved remarkably strong performance across
a wide range of NLP applications (Brown et al.,
2020). The main contributions of this work are:

* We trained over 50 SLMs with different pa-
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Figure 2: Downstream linguistic performance scaling with compute for LLMs and SLMs. Axes are in logarithmic
scale. Syntactic (BLIMP) and semantic (Topic Cloze and Story Cloze) metrics follow a power law before starting to
saturate. Linguistic performance scales up to three orders of magnitude more slowly in SLMs relative to LLMs.

rameters and data budgets. We show that the
test loss of SLMs follows scaling power laws
as those observed in text-based LLMs (Fig-
ure 1). We use the method from Hoffmann
et al. (2022) to model the scaling behavior of
SLMs.

* We establish a strong correlation between the
test loss of neural LMs and the downstream
metrics commonly used to evaluate their syn-
tactic and semantic abilities. Therefore, the
linguistic performance of LMs follows simi-
lar scaling laws (Figure 2). We leverage this
insight to estimate the scale at which SLMs
will match the linguistic proficiency of LLM:s.

* We note that SLMs likely require more context
than fits in our models to acquire the semantic
understanding measured by our metrics from
commonly used speech datasets. Accordingly,
we propose a new speech dataset to boost se-
mantic understanding in SLMs. Specifically,
we synthesized a spoken version of the Tiny
Stories dataset (Eldan and Li, 2023), and show
that its use during pre-training improves se-
mantic downstream performance.

Based on our previous observation, we studied
the use of unigram tokenization to shorten
sequences and pack more information in the
context window of our models. However, our
results suggest that a coarser tokenization is
detrimental to SLM performance scaling.

2 Background

2.1 Generative spoken language modeling

We follow the GSLM framework from Lakhotia
et al. (2021). The general GSLM pipeline is com-
posed of three separately trained models: (i) a

speech tokenizer, (ii) a language model, and (iii) a
vocoder (token-to-waveform) module. In the fol-
lowing, we provide background for the speech tok-
enizer and LM, as these are the components we use
in this work. For details about the vocoder please
refer to Lakhotia et al. (2021).

Speech tokenizers transform raw speech wave-
forms into discrete representations. A speech en-
coder is used to extract continuous representations
which are then transformed into discrete sequences
through vector quantization. Formally, let X € R
denote the domain of audio samples, a waveform is
therefore a sequence of samples x = (1, ..., z7),
where r; € X forall 1 < ¢t < T. An encoder
F : X™ — R? transforms windows of samples
of width m into d dimensional continuous frame
representations. Applying F' to = yields a sequence
of frame representations z = (z1, ..., zv), where
usually 7" < T'. Afterwards, a k-means algorithm
(MacQueen, 1967) is applied over the encoder out-
puts to generate a sequence of discrete speech to-
kens u = (uq,...,ur ), where u; € {1,..., K}
for 1 <7 <T’, and K is the vocabulary size.

Language models aim to learn the joint proba-
bility of token sequences P(wq, ..., w,). By the
chain rule of probability, the probability of a se-
quence can be computed as a product of its condi-
tional probabilities:

n
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P(wi, ..., wy)

Neural LMs, parameterized by 6, are neural
networks that model the conditional probabilities
Py(w;|M (w1, ..., w;—1)), where M is a represen-
tation of the previous tokens. The network is opti-
mized to minimize the negative log-likelihood of
observed ground truth sequences:
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Nowadays, the network is typically a transformer
(Vaswani et al., 2017). LLMs are large transformer
LMs trained on large text corpora (billions of pa-
rameters and tokens). SLMs are neural LMs ap-
plied to speech tokens wu.

2.2 Scaling laws for neural language models

The performance of deep learning models often
behaves predictably as a function of model size,
dataset size, and compute (Hestness et al., 2017).
Kaplan et al. (2020) showed that the loss of large
neural LMs scales with a power-law behavior.
Building upon their work, Hoffmann et al. (2022)
proposed a parametric function to model the loss of
neural LMs (Equation 2) trained for a single epoch:
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, where N is the number of parameters of the model
and D is the number of training tokens. The first
term is the loss for an ideal LM, and should cor-
respond to the entropy of the distribution of token
sequences. The second term captures the approx-
imation error that results from using a neural net-
work with N parameters to approximate the ideal
generative process. The final terms captures the
fact that the model is not trained to convergence, as
a finite number of optimization steps are performed
on a sample of size D from the real distribution.

Given a set of neural LM training runs yield-
ing a set of (L, N, D) tuples, we can empirically
estimate the constants £, A, B, « and 8 by min-
imizing the error between the predicted loss and
observed loss:

E,A,J.B,a,ﬁ Z G
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, where G is some error function.

3 Experiments

3.1 Setup

3.1.1 Models and training

We adhere to the framework described in section
2.1. For the speech tokenizer, we use a pre-trained
HuBERT model (Hsu et al., 2021) with frame-rate
of 25 Hz as the speech encoder F', and a vocabulary

SIZE LAYERS MODEL DIM. HEADS
20M 6 512 8
85M 12 768 12
155M 12 1024 16
309M 24 1024 16
823M 16 2048 32

Table 1: Models description.

size of K = 500. This setup reports the best per-
formance among publicly available models (Hassid
et al., 2023). For the SLMs we use the Llama archi-
tecture (Touvron et al., 2023) with context window
of 2050 tokens. Table 1 describes the model sizes
used in our experiments. For the LLMs, we use the
Pythia suite of pre-trained LLMs (Biderman et al.,
2023).

All SLMs are optimized using AdamW
(Loshchilov and Hutter, 2019) with weight decay
of 0.1, maximum learning rate of 5e-4, cosine
learning rate schedule, and a warm-up initial stage
of max(100, 0.01 njzers) steps, where n¢ers is the
number of training steps, and varies for each exper-
iment according to the desired data budget. We use
batch sizes of 64, 128, 256 and 512 for the mod-
els with 20M, 85M, 155M and 309M, and 828M
parameters, respectively.

To fit the scaling law from Equation 3 we follow
Hoffmann et al. (2022) and use the Huber loss
(Huber, 1964) with § = 0.03 as error function.

3.1.2 Evaluation

We use the SBLIMP task (Nguyen et al., 2020)
to measure syntactic performance. In SBLIMP,
the network is presented with a matched pair of
speech segments, grammatical and ungrammatical
sentences. The objective is to assign higher proba-
bility to the grammatical sentence.

To evaluate semantic understanding we use the
spoken STORYCLOZE benchmark from (Hassid
etal., 2023), a spoken version of the StoryCloze tex-
tual benchmark (Mostafazadeh et al., 2016), which
consists of 4k five-sentence commonsense stories.
In StoryCloze, the model receives as input the first
four sentences of a story, and has to assign higher
probability to the correct final sentence than to an
adversarial negative sample. The spoken bench-
mark comes in two versions: Story Cloze and Topic
Cloze. The difference between them lies in how the
negative sample is generated. Spoken Story Cloze
uses the same samples as the textual benchmark,
which require commonsense reasoning to distin-



HUBERT
DATASET HOURS TOKENS UNIGRAM
LIBRISPEECH 960 67M 38M
LIBRILIGHT 53K 3.74B 2.11B
SWC 1K 32M 19M
TEDLIUM 1.6K 0.11B 67M
PEOPLE 7K 0.48B 0.29B
VoX POPULI 24K 1.64B 1.08B
STINYSTORIES 72K 4.82B 2.71B
ToTAL 160K 10.89B 6.31B

Table 2: Datasets statistics.

guish from the real ending. Topic Cloze measures
the ability of the model to stay on topic. In this
setup, the negatives are randomly sampled from the
whole dataset.

3.1.3 Training data

We use a collection of publicly available speech
datasets for training: LibriSpeech (Panayotov et al.,
2015), LibriLight (Kahn et al., 2020), SWC (Bau-
mann et al., 2019), Tedlium (Hernandez et al.,
2018), People (Galvez et al., 2021), and Vox Populi
(Wang et al., 2021b). We hypothesize that the se-
mantic understanding that tasks such as Story Cloze
measure is hard to acquire from these datasets.
Consider for instance the audiobooks in Libri-
Light. The data has long-range dependencies span-
ning multiple pages, whereas our SLMs can ingest
roughly a dozen sentences of spoken text in their
context window. Other datasets consist of too small
fragments of audio that lack meaningful causal
structure. This led us to propose a new speech
dataset: STINYSTORIES, a spoken version of the
Tiny Stories dataset (Eldan and Li, 2023), a syn-
thetic text corpus of short stories designed to boost
commonsense reasoning in neural LMs. We synthe-
sized STINYSTORIES using the single-speaker TTS
system provided by Wang et al. (2021a). STINYS-
TORIES consists of full stories with causal structure
that fit within the context window of our SLMs.

We do not include samples from STINYSTORIES
in our test set, as we intend to use our test loss as
measure of the quality with which SLMs model nat-
ural language, not synthetic one. For other datasets
we use the defined held-out sets for testing. In cases
where a held-out set is not defined, we randomly
sampled 1% of the data to serve as test set. See
Table 2 for dataset sizes.

3.2 Results

3.2.1 Gains from sTinyStories

In order to determine if STINYSTORIES mean-
ingfully contributes to the semantic understand-
ing of SLMs, we compare the performance on
Topic Cloze and Story Cloze of models trained
on one epoch of the union of LibriSpeech and Lib-
riLight, against models trained on an equivalent
amount of STINYSTORIES tokens. Figure 3 shows
the obtained results. Models trained on STINYS-
TORIES consistently outperform those trained on
audiobooks across all model scales. However,
the performance gain could be explained by the
match between the speakers used to synthesize both
STINYSTORIES and Story Cloze, as they were both
synthesized using the same single-sepaker TTS sys-
tem. In order to discard this factor, we synthesize
a multi-speaker version of the Story Cloze bench-
mark using the Bark TTS ! and repeat the evalua-
tions. The results depicted in Figure 3 show that
even with mismatched train and test speakers using
STINYSTORIES yields performance gains.

3.2.2 Scaling laws

For each model size, we train multiple SLMs with
different data budgets, ranging from 600M to 10B
tokens. The resulting learning curves are presented
in Figure 1 as a function of compute, and show that
the envelope of minimal loss per FLOP follows a
power-law.

We analyze the relationship between the up-
stream test loss and downstream performance met-
rics for our trained SLMs and the LLMs in the
Pythia suite. Figure 4 illustrates the obtained re-
sults. Syntactic and semantic downstream metrics
before saturation are strongly correlated with the
upstream test loss in both LLMs and SLMs. There-
fore, the envelope of maximum downstream per-
formance per FLOP also follows a power-law, as
depicted in Figure 2.

We fit the function from Equation 3 to our data
using the procedure described in section 2.2. We
present the empirically fit scaling law parameters
and compare them to the ones obtained for text by
Hoffmann et al. (2022) in Table 3.

Equation 3 can be used to determine the optimal
N and D to minimize L for a given compute bud-
get C. Hoffmann et al. (2022) obtain N, oc C*
and D,y o< C", where a = 0%5 and b = 04‘%,3 For
both text and speech a = b =~ 0.5, indicating that

"https://github.com/suno-ai/bark
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Figure 3: Gains from synthetic data on downstream
semantic performance of SLMs. Pre-training on sTinyS-
tories yields consistent improvements on semantic un-
derstanding relative to pre-training on audiobooks (Lib-
riSpeech plus LibriLight). Performance gains hold for
mismatched train and test speakers.

as compute increases, model size and data should
be increased in equal proportions for optimal per-
formance.

3.2.3 Unigram tokenization

As mentioned in section 3.1.3, we believe that
the limited context window of SLMs hinders their
ability to model the long-range dependencies in
language required for causal reasoning. Moti-
vated by this belief, we apply unigram tokenization
to shorten the length of speech token sequences.
We use the SentencePiece tokenizer (Kudo and
Richardson, 2018) with a vocabulary size of 5000.
We choose the vocabulary size on the scale of previ-
ous works that have used similar tokenization strate-
gies (Chang et al., 2023). The resulting dataset
sizes after compression are presented in Table 2.
We train a set of Speech LMs on the compressed
datasets, with model sizes up to 309M parame-
ters and data budgets ranging from 74M to 6.31B
tokens. We analyze the scaling behavior of the

E A B « B

TEXT 1.69 406.4 410.7 0.34 0.28
SPEECH 1.73  13.92 39.80 0.25 0.24
SPEECH

(UNIGRAM) 1.42 3.85 8.90 0.15 0.16

Table 3: Scaling law parameters fit to Equation 3 for
different language tokenizations.

upstream and downstream metrics and compare
it with SLMs trained on raw HuBERT speech to-
kens in Figure 5. SpeechLMs trained on unigram
compressed speech tokens show better upstream
scaling with compute, but worse downstream scal-
ing. Notably, the performance on the StoryCloze
benchmark does not seem to scale with compute.
We also fit the function from Equation 3 to our
obtained results. The obtained scaling law parame-
ters are presented in Table 3. As before, for a given
compute budget, model size and amount of data
should scale equally for optimal performance.

4 Related work

Previous works have studied the scaling behavior
of neural networks on speech applications. Droppo
and Elibol (2021) showed that acoustic models
trained with an auto-predictive coding loss fol-
low similar power-laws to those observed in neural
LMs. Aghajanyan et al. (2023) used the scaling
laws from Hoffmann et al. (2022) to model the scal-
ing behavior of the upstream loss of neural LMs on
multiple modalities, including speech. They used
a speech tokenizer with higher framerate (50 Hz)
and vocabulary size (K = 2000) than the one we
used (Section 3.1.1). Such fine-grained tokeniz-
ers capture a lot of the paralinguistic information
in speech (Nguyen et al., 2023). Therefore, their
speech tokens can be considered almost a different
modality. In this work, we focus on the linguis-
tic content of the signal. As reported by (Hassid
et al., 2023), our speech tokenizer performs best
on downstream linguistic applications, and is there-
fore a more suitable choice to study the scaling
behavior of the linguistic performance of SLMs.
This paper is perhaps most closely related to the
work of Hassid et al. (2023). We largely follow
their setup in terms of model architecture and eval-
uation metrics. They showed that linguistic down-
stream performance of SLMs improves with scale,
but did not characterize their scaling behavior. To
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the best of our knowledge, we are the first to char-
acterize the upstream and downstream linguistic
performance of SLMs. Furthermore, we compare
their scaling behavior with the one of text-based
LLM:s.

5 Discussion

Our work showed that the upstream and down-
stream linguistic performance of our current meth-
ods for GSLM scales predictably with compute.
This suggests that with sufficient computational
resources, the goal of the textless NLP project
of achieving neural LMs trained exclusively on
speech that match the linguistic proficiency of their
text-based counterparts is achievable. However,
the cost of such models could be prohibitive, as
we estimate that they will require up to three or-
ders of magnitude more compute than a text-based
LLM to achieve equivalent performance. In this re-
gard, recent methods that leverage transfer learning
from text-based LLMs (Hassid et al., 2023; Zhang
et al., 2023; Nguyen et al., 2024) are likely to be
a better choice to achieve highly performant gen-
erative speech models. It remains to be seen how
knowledge transfer from LLMs performs when the

speech data is in a different language than the one
the LLM was trained on. If there is no significant
cross-lingual knowledge transfer between text and
speech modalities, SLMs could still be an attractive
choice for low-resource languages.

We explored the use of synthetic data and coarser
tokenization to increase the semantic abilities of
SLMs. Our synthetic dataset improved seman-
tic performance, but using a coarser tokenization
led to overall degradation of downstream perfor-
mance. We do not have yet an hypothesis for why
coarser tokens degrade performance, as this seems
counter-intuitive, and contradicts the findings on
other speech applications (Chang et al., 2023). We
leave this as an interesting issue to address in fu-
ture work. Moreover, we believe that working on
methods that allow to increase the information den-
sity per context-window of SLMs is a promising
research area that could improve their ability to
model long range dependencies, and likely their
scaling behavior.

6 Conclusions

We have trained a large set of SLMs of different
sizes and on different data budgets. Using the col-



lected data from those experiments, we studied
the scaling properties of their upstream and down-
stream performance using recently proposed mod-
els of scaling laws for neural LMs. We showed
that the pre-training loss and downstream linguistic
performance of SLMs and LLMs is highly cor-
related, and that they both scale predictably ac-
cording to power-laws. This predictable behavior
allowed us to compare the scaling properties of
SLMs and LLMs, from which we established that
the linguistic abilities of SLMs scale up to three
orders of magnitude more slowly than those of
LLMs. Additionally, we proposed a new speech
dataset, STINYSTORIES, and showed that its use
during pre-training improves downstream semantic
performance in SLMs. Finally, we explored the
use of coarser speech tokenizations as a method to
increase the ability of SLMs to model long-range
dependencies. However, our results suggest that
this is detrimental to downstream performance.
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