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ABSTRACT

Meta-gradients provide a general approach for optimizing the meta-parameters of
reinforcement learning (RL) algorithms. Estimation of meta-gradients is central
to the performance of these meta-algorithms, and has been studied in the setting
of MAML-style short-horizon meta-RL problems. In this context, prior work has
investigated the estimation of the Hessian of the RL objective, as well as tackling
the problem of credit assignment to pre-adaptation behavior by making a sampling
correction. However, we show that Hessian estimation, implemented for example
by DiCE and its variants, always add bias and can also add variance to meta-
gradient estimation. DiCE-like approaches are therefore unlikely to lie on Pareto
frontier of the bias-variance tradeoff and should not be pursued in the context of
meta-gradients for RL. Meanwhile, the sampling correction has not been studied
in the important long-horizon setting, where the inner optimization trajectories
must be truncated for computational tractability. We study the bias and variance
tradeoff induced by truncated backpropagation in combination with a weighted
sampling correction. While prior work has implicitly chosen points in this bias-
variance space, we disentangle the sources of bias and variance and present an
empirical study which relates existing estimators to each other.

1 INTRODUCTION

Recently, meta-gradients have been used for adapting the hyperparameters of state-of-the-art pol-
icy gradient RL algorithms online (Flennerhag et al., 2021), as well as for learning black-box RL
algorithms from scratch (Oh et al., 2020). The estimation of meta-gradients is central to the perfor-
mance of these algorithms, but has received little focused study. Deriving unbiased estimators of
meta-gradients is more involved than for standard policy gradients because the meta-parameters af-
fect the data distribution used for computing the meta-gradient. Al-Shedivat et al. (2017) present an
unbiased meta-gradient estimator that correctly accounts for the changes in the data distribution, by
making a sampling correction which is added to the direct meta-gradient. However, their derivation
and experiments are limited to MAML-style meta-RL algorithms (Finn et al., 2017), which learn
the initialization of a policy such that it may achieve good performance after a small number of
policy gradient updates. Further work studying meta-gradient estimation for meta-RL is also largely
restricted to this context.

Computing the meta-gradient requires differentiating through the agent’s parameter update, which
may itself include an estimated policy gradient. The correct meta-gradient of a standard policy
gradient update can be computed by straightforward backpropagation of a surrogate loss, as is typical
in RL. However, Foerster et al. (2018) and a number of subsequent works (Rothfuss et al., 2018;
Liu et al., 2019; Farquhar et al., 2019; Mao et al., 2019; Tang et al., 2021) have claimed that an
estimate of the expected policy Hessian should be included in the meta-gradient estimator, and
provide methods for calculating such an estimate or reducing its variance. In this work, we present
the surprising result that using an estimate of the expected Hessian in the meta-gradient estimator
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actually adds bias, which can degrade performance. Such a term could only be used if the agent
made an expected policy gradient update, rather than the sampled update which must be taken using
finite data. This focus on estimating expected Hessians may have distracted the community from the
real challenges in meta-gradient estimation that arise in the long-horizon setting, where the sampling
correction has not been addressed.

In the short-horizon setting, where the sampling correction has been previously explored, the meta-
learning algorithm can afford to consider the whole optimization trajectory of the inner learning
problem. Due to computational constraints, in a long-horizon setting, the inner loop must be trun-
cated to a small fraction of the full optimization trajectory. As a result, neither the direct meta-
gradient nor the sampling correction may be calculated exactly. It is therefore unclear how the
truncated sampling correction affects the bias and variance of the meta-gradient estimation. Previ-
ous works (Xu et al., 2018; 2020; Oh et al., 2020) have simply opted for truncated meta-gradient
estimators without sampling correction, without mention of this potential source of bias. While im-
pressive results have been achieved with these estimators, they are biased due to both truncation and
the lack of sampling correction. In this paper, we study the bias-variance tradeoff arising from these
two approximations, and how bias and variance may be traded off by varying the truncation horizon
and the weight given to the sampling correction. We find that while the sampling correction does
not uniformly reduce the bias of the truncated estimators, it nevertheless results in convergence to
better local optima. The cost of using the sampling correction is increased variance.

Our contributions can be summarized as follows. (1) We show mathematically why using the ex-
pected policy Hessian estimator is in error, and demonstrate that the resulting bias harms perfor-
mance in practice. (2) We characterize the bias-variance tradeoff due to a truncated optimization
horizon and the sampling correction in an empirical study, relating existing approaches to each other
and showing how to interpolate between them.

2 BACKGROUND

We assume that the RL algorithm is learning a control policy in a Markov decision process (MDP)
defined by a tuple (S,A, p0, p, r, γ), where S is the space of states,A the space of actions, p0(s0) the
distribution over initial states, p(st+1|st, at) the conditional probability distribution of the next state
given a state and an action, r(st, at) the reward function for the transition, and γ ∈ (0, 1] a discount
factor. A trajectory τ = (s0, a0, s1, a1, . . . , sH , aH) ∈ T , is a sequence of states and actions of
length H sampled from the dynamics defined by the MDP and the policy, where the horizon H may
be infinite. T is the space of trajectories. The probability of sampling τ is given by

p(τ ; θ) = p0(s0)

H∏
t=0

π(at|st; θ)p(st+1|st, at), (1)

where π(at|st; θ) is the policy parametrized by θ ∈ Rdθ .

The objective of an RL algorithm is to train a policy, that maximizes the expected discounted sum
of rewards when interacting with the environment

J(θ) = Eτ∼p(τ ;θ)

[
H∑
t=0

γtr(st, at)

]
. (2)

For brevity we write R(τ) =
∑H
t=0 γ

tr(st, at), where st and at come from τ . In our derivations
we use the Monte Carlo returnR(τ) for simplicity, but in practical algorithms it is usually replaced
by an estimated return or advantage to reduce variance.

A policy gradient algorithm updates the parameter by gradient ascent on the policy gradient given
by

∇θJ(θ) = Eτ∼p(τ ;θ)

[
H∑
t=0

∇θ log π(at|st; θ)R(τ)

]
. (3)
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Typically, the expectation in equation 3 cannot be evaluated exactly and is instead approximated
from samples by

∇θJ(θ,D) =
1

|D|
∑
τ∈D

H∑
t=0

∇θ log π(at|st; θ)R(τ), (4)

where D ∈ T N is a tuple of N trajectories collected with the policy parametrized by θ also known
as a batch. The probability of the batch is p(D; θ) =

∏
τ∈D p(τ ; θ).

Meta-gradients come into play in the meta-learning problem of optimizing the parameters η of an
update function Ψ(η, θi,Di) : Rdη ×Rdθ × T N → Rdθ , which computes an updated set of param-
eters for a policy. For example, a simple update function is

θi+1 = Ψlr(η, θ
i,Di) = θi + η∇θiJ(θi,Di), (5)

where the meta-parameter is the learning rate of a stochastic policy gradient update. In general, the
meta-parameters can appear in any term in the update function. The update functions we consider
in this paper use policy gradients to update the parameters but other types of update functions may
be considered as well. Meta-gradients are often computed in a setting where the policy is updated
K times using the update function and the meta-parameters are optimized to maximize return with
each of the K + 1 policies. The objective for such K-step meta-gradient is given by

JK(η) =

K∑
k=0

E{Di∼p(Di|θi)}k−1
i=0

[
Eτ∼p(τ |θk)

[
R(τ)

]]
, (6)

where the outer expectation is taken over data sampled with all of the policies along the update
trajectory because each θk depends on all of the previous data through the update function. Note
that by setting the returns of the trajectories for k < K equal to zero, this objective generalizes the
MAML-style objective, which only considers the return of the final Kth policy.

3 RELATED WORK

The estimation of meta-gradients has been studied in the context of short-horizon multi-task meta-
RL algorithms. In MAML (Finn et al., 2017), the initialization of an agent is learned such that its
performance after a few policy gradient updates is maximized. Al-Shedivat et al. (2017), derive an
unbiased meta-gradient estimator for learning the initialization and extend it to a continuous adapta-
tion setting. A similar derivation is followed by Stadie et al. (2018), where the improved exploratory
behavior of the initial policy in the MAML-algorithm is considered additional motivation for using
the unbiased estimator. Fallah et al. (2020) study the convergence properties of the unbiased meta-
gradient estimator. Learning the initialization necessitates considering the full optimization horizon.
In contrast, in the truncated setting which we also consider in this paper, the last batch of experi-
ence in a truncation window has no special significance over the earlier ones. Therefore, instead of
optimizing the returns at the end of the optimization trajectory as is done in MAML, it makes sense
to optimize the returns throughout the lifetime of the agent as done by Antoniou et al. (2018); Chen
et al. (2016); Andrychowicz et al. (2016).

Many estimators of the expected Hessian have been developed and applied primarily in the MAML
framework. DiCE (Foerster et al., 2018) shows that backpropagating through a stochastic policy
gradient update does not result in an estimator of the expected Hessian and proposes a modified
surrogate objective, which gives such estimates via backpropagation. ProMP (Rothfuss et al., 2018)
further develops the Hessian estimation strategy and derives a lower-variance estimate. Loaded
DiCE (Farquhar et al., 2019) derives a new expression of the DiCE objective compatible with value
function approximators and introduces a hyperparameter for trading off bias and variance. Liu
et al. (2019) and Mao et al. (2019) introduce control variates to reduce the variance of the expected
Hessian estimators. Tang et al. (2021) propose a unifying framework for the Hessian estimation
problem from the perspective of off-policy evaluation. All of these works consider applications
of their Hessian estimators to the MAML-style meta-RL setting. However, we show that besides
having high variance, these Hessian estimators add bias to the meta-gradient estimate.

Other parts of the learning algorithms have been optimized via meta-gradients besides the initial-
ization. The objective function of the policy is learned by MetaGenRL (Kirsch et al., 2019) for a
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DDPG-like (Lillicrap et al., 2015) algorithm. LPG (Oh et al., 2020) learns the full objective func-
tion for an actor-critic-style learner. MODAC (Veeriah et al., 2021) uses meta-gradients for option
discovery. Zheng et al. (2020) learn intrinsic rewards with meta-gradients. Meta-gradients have
also been used to improve the performance of deep RL algorithms in the single-task setting. Xu
et al. (2018) tune the parameters of return estimates in A2C with a meta-gradient. STAC (Zahavy
et al., 2020) follows a similar idea applying it to the hyperparameters of Impala (Espeholt et al.,
2018). BMG (Flennerhag et al., 2021) uses the same meta-parameterization as Zahavy et al. (2020)
but improves the meta-gradient estimation to achieve the state-of-the-art model-free performance on
Atari. Our investigations are directed at improving meta-gradient in the truncated meta-optimization
setting, which is used by these algorithms.

Outside of reinforcement learning, meta-optimization has been an active area of study as well. Wu
et al. (2018) focus on the bias from a short optimization horizon. Metz et al. (2019) investigate the
optimization landscape of learned optimizers in supervised learning. For a small number of meta-
parameters, forward-mode gradient computation can be used to overcome the memory constraint due
to the long optimization horizon Franceschi et al. (2017). These lessons from supervised learning
apply to RL as well and along with our findings should be taken into consideration when using
meta-gradients.

4 REVIEW OF UNBIASED META-GRADIENTS

A general unbiased meta-gradient estimator for a K-step sequence of updates was first shown by
Al-Shedivat et al. (2017); we present a similar derivation here for convenience. For a sequence of
K parameter updates the Kth parameter is given by

θK = θ0 +

K−1∑
i=0

Ψ(η, θi,Di), (7)

where Di are data sampled from the environment. Because the Di are random variables, the pa-
rameters θi for i > 0 are random variables too. They depend on the initial parameters θ0, the
meta-parameter η, and the data. The meta-gradient estimator for the objective in equation 6 on the
sequence of updates in equation 7 can be derived as follows:

∇ηJK(η) = ∇η
K∑
k=0

E{Di∼p(Di|θi)}k−1
i=0

[
Eτ∼p(τ |θk) [R(τ)]

]

=

K∑
k=0

E {Di}k−1
i=0

τ∼p(τ |θk)

[( k−1∑
j=0

∇ηθj∇θj log p(Dj |θj)

sampling correction

+ ∇ηθk∇θk log p(τ |θk)

direct meta-gradient

)
R(τ)

]
, (8)

where the ∇ηθk ∈ Rdη×dθ denotes the derivative of the sequence of updates resulting in policy
parameters θk with respect to the meta-parameters. A more detailed derivation is provided in Ap-
pendix A. Following from the additive sequence of updates in equation 7, ∇ηθk further expands
as

∇ηθk = ∇ηθ0 +

k−1∑
i=0

(
∇ηΨ(η, θi,Di) +∇ηθi∇θiΨ(η, θi,Di)

)
, (9)

where ∇ηθ0 can be non-zero when the initial parameters are being meta-learned, as is the case for
MAML.

The∇ηθk∇θk log p(τ |θk) terms in equation 8 are the product of the derivative of the kth policy pa-
rameter with respect to the meta-parameters and the standard policy gradient. The terms of the sum∑k−1
j=0 ∇ηθj∇θj log p(Dj |θj) give the sampling correction that assigns credit from the experience

collected with the updated policy directly to the earlier policies. These latter terms are missing from
the original MAML derivation (Finn et al., 2017) as shown by Al-Shedivat et al. (2017). They are
also omitted in most other meta-gradient algorithms (Xu et al., 2018; Oh et al., 2020; Zheng et al.,
2018; Flennerhag et al., 2021).
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4.1 VARIANCE DUE TO THE SAMPLING CORRECTION

The sampling correction terms are of the form ∇ηθj∇θj log p(Dj |θj)R(τ), where log p(Dj |θj) =∑
τ∈Dj log p(τ |θj). The sum over the batch elements results from the fact that every trajectory

in the batch is upstream of the reward in the unrolled computation graph. In normal RL, only the
samples from a given trajectory are upstream of a particular reward. Nonetheless, a discount factor
is typically used to downweight the credit assigned to temporally distant actions, reducing variance
but introducing bias with respect to the undiscounted objective. Similarly, we may downweight the
sampling correction terms to trade off bias and variance in meta-gradient meta-RL. We find that this
is important in practice due to the counterintuitive growth of the variance of these terms with the
inner-loop batch size. Note that the variance of the meta-gradient estimate will of course still be
reduced by increasing the outer-loop’s meta-batch size.

To enable this bias-variance tradeoff for the sampling correction terms, we use a coefficient λ. The
meta-gradient estimator estimated from samples is given by

JK(η) ≈
K∑
k=0

1

|D|

(
λ

k−1∑
j=0

∇ηθj∇θj log p(Dj |θj)
∑
τ∈Dk

R(τ) +
∑
τ∈Dk

∇ηθk∇θk log p(τ |θk)R(τ)

)
.

(10)

The sampling correction coefficient is related to the λ hyperparameter of E-MAML (Stadie et al.,
2018), but we do not separately divide by the batch size, which is done in implementations of E-
MAML though not motivated in the paper. Therefore, the meta-gradient estimator is unbiased when
our λ = 1.0. We investigate the bias-variance tradeoff induced by this λ in Section 6.

4.2 META-GRADIENT ESTIMATORS FOR THE EXPECTED POLICY GRADIENT

An expression for the meta-gradient without the sampling correction, used by most meta-gradient
algorithms, can be derived by substituting the stochastic policy gradient in the update function with
the expected policy gradient given by equation 3. In that case, there is no dependency between
the policy θk and the data sampled with earlier policies because when the policy is updated using
the expected policy gradient, θk becomes a deterministic function of η and θ0. Therefore, we no
longer get the sampling correction terms that consider how η affects the distribution of data. The
meta-gradient for the expected update case is given by

∇ηJ ′K(η) = ∇η
K∑
k=0

Eτ∼p(τ ;θk)
[
R(τ)

]
=

K∑
k=0

Eτ∼p(τ ;θk)
[
∇ηθk∇θk log p(τ ; θk)R(τ)

]
. (11)

Algorithms that estimate this by computing inner-loop updates and the meta-gradient from samples
are biased because they ignore the sampling correction terms.

5 ESTIMATORS FOR THE EXPECTED POLICY HESSIAN

Often, computing an unbiased meta-gradient estimator requires computing second order derivatives
of the inner loop objective. As pointed out by Foerster et al. (2018), computing the second order
derivatives of an expected policy gradient objective is a more involved process than the correspond-
ing computation for a sampled policy gradient objective. In this section, we look at estimators for
second order derivatives of policy gradient objectives.

Assuming that the update function uses some form of policy gradient, the term ∇θkΨ(η, θk,Dk) in
equation 9 includes the Hessian of the policy gradient objective. Using the stochastic policy gradient
in the update function makes it a deterministic function of its inputs, for which the correct Hessian is
easy to compute with reverse mode automatic differentiation offered by machine learning packages
(e.g., (Paszke et al., 2019; Bradbury et al., 2018)) by backpropagating through the computation
graph resulting from the sequence of updates given by equation 7. However, assuming (typically
incorrectly) that the inner update uses the expected policy gradient, computing an unbiased estimator
of the meta-gradient requires more work. Developing unbiased estimators of the Hessian of the
expected policy gradient has been a popular research direction within meta-RL (Rothfuss et al.,
2018; Liu et al., 2019; Farquhar et al., 2019; Mao et al., 2019; Tang et al., 2021). As we show next,
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inclusion of the Hessian of the expected policy gradient in the meta-gradient estimator is an involved
process with a questionable payoff as it leads to bias in practice and requires changes to how the
update function itself is computed.

The expected Hessian of the policy gradient objective in equation 2 can be derived as follows

∇2
θJ(θ) = ∇θEτ∼p(τ ;θ)[∇θ log π(τ ; θ)R(τ)] = ∇θ

∫
p(τ ; θ)∇θ log π(τ ; θ)R(τ)dτ (12)

= Eτ∼p(τ ;θ)
[(
∇θ log π(τ ; θ)∇θ log π(τ ; θ)> +∇2

θ log π(τ ; θ)

)
R(τ)

]
. (13)

Estimating the expectation from samples we are left with the two terms

∇2
θJ(θ) ≈ 1

|D|
∑
τ∈D

(
∇θ log π(τ ; θ)∇θ log π(τ ; θ)> +∇2

θ log π(τ ; θ)

)
R(τ). (14)

In contrast, when the update function uses the stochastic policy gradient estimate given by 4, the
Hessian is the following

∇2
θJ(θ,D) =

1

|D|
∑
τ∈D
∇2
θ log π(τ ; θ)R(τ). (15)

The term ∇θ log π(τ ; θ)∇θ log π(τ ; θ)>R(τ) ∈ Rdθ×dθ does not appear in this stochastic Hessian.
Although including estimates of the expected Hessian is motivated by removing bias, in the typical
case where the update function uses a stochastic policy gradient, it actually adds bias because the
true stochastic Hessian does not have the extra term. It is also known to have high variance (Rothfuss
et al., 2018). Consequently, we argue that developing meta-gradient algorithms based on them is not
the best use of resources. We will illustrate the bias and variance resulting from using this estimator
in practice in Section 7.

6 SAMPLING CORRECTIONS IN A TRUNCATED OPTIMIZATION SETTING

Meta-gradients can be used in practice for optimizing meta-parameters of large scale deep RL al-
gorithms. In these algorithms, the policy learning may take tens of thousands of update steps to
converge. Unfortunately, due to memory constraints, constructing a computation graph containing
the data and parameters quickly becomes infeasible as the update horizon grows. To reduce the
memory requirement it is common to truncate the update horizon, which introduces bias. This ap-
proach has been employed successfully in many practical meta-learning algorithms, e.g., (Xu et al.,
2018; Zahavy et al., 2020; Oh et al., 2020). We know that an unbiased meta-gradient estimator can
be computed using the sampling correction in the untruncated setting. To the best of our knowledge
none of the algorithms using truncated backpropagation employ any form of the sampling correction,
and it is not known how the sampling correction works in the truncated setting.

The truncated meta-gradient estimator is commonly implemented by approximating the estimator
in equation 10 by sampling a window shorter than K update steps and limiting backpropagation
to that window. Truncating the backpropagation changes the derivatives of the meta-parameters in
equation 9, making this estimator biased. Since the sampling correction terms are a product of the
derivative of the meta-parameters in equation 9 and the gradient of the log probability of a batch, they
also become biased when the estimate of the derivative of the meta-parameters is biased. Because of
the complex dynamics of the optimization process, we have no reason to believe that the bias from
truncating the backpropagation decreases monotonically with the truncation length. Therefore, it is
possible that using the sampling correction on a truncated meta-gradient estimator increases rather
than decreases the bias.

In addition to changing the derivatives, approximation of the sum of all of the terms in equation 10
with a sum of the terms in a shorter window causes bias by modifying the surrogate loss even
before backpropagation. If the windows are sampled i.i.d. during the agent’s lifetime, the bias
from this effect changes monotonically with the sampling correction coefficient λ, although it may
increase or decrease depending on the problem setting if the derivatives are also truncated. If the
i.i.d. assumption is violated, the bias could change non-monotonically with λ. We investigate the
effect of sampling correction on the truncated estimators empirically in Section 7.
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Figure 1: Comparing meta-gradient estimators in the bandit setting. In all figures, on the axes are
the meta-parameters corresponding to the learning rate at different stages of the bandit lifetime, the
background shows the average return with a meta-parameter value sampled at the center of the cell,
the crosses show the nine initial meta-parameter values, and the lines terminating in circles show the
trajectories the parameters take during meta-training.
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Figure 2: The panel on the left shows the bias and variance estimates for different meta-gradient
estimators in the bandit setting averaged over multiple meta-parameter initializations sampled near
the local optimum. The error bars show the standard deviation of the bias when computed across
bootstrap samples of the initializations. The panel on the right shows the learning curves for the
meta-gradient estimators in the bandit setting. The shading of the learning curves shows the standard
error across random seeds.

The sampling correction coefficient λ was introduced to trade off bias and variance, but it is only
one possible scheme. We consider an alternative weighting using exponential discounting motivated
by analogy to the usual discounting procedure in RL. The exponentially discounted meta-gradient
estimator is expressed as follows
K∑
k=0

1

|D|

( k−1∑
j=0

αk−j∇ηθj∇θj log p(Dj |θj)
∑
τ∈Dk

R(τ) +
∑
τ∈Dk

∇ηθk∇θk log p(τ |θk)R(τ)

)
, (16)

where α is a meta-discount factor. Analogously to discounting in RL, the weights on the sampling
correction terms become exponentially smaller the further back along the update trajectory they are
from the return at k. Unlike in standard RL, the discount on the sampling correction term uniformly
weights all of the terms in a batch, because all the data in the batch arrives to the update Ψ(η, θ,D)
simultaneously. We will compare this variance reduction scheme with the uniform weighting in
Section 7.

7 EXPERIMENTS

We conduct experiments in a bandit setting to investigate the bias and variance of the different
estimators and how they affect meta-learning performance. In the experiments, agents are trained
with REINFORCE on bandits with randomly sampled arm rewards. Each agent collects 30 batches
of experience during its lifetime and is updated on each batch except the last one, which is used only
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to compute the meta-gradient. The meta-learning problem is to set a learning rate parameter for the
first eight updates and another for the remaining updates such that the total reward achieved by the
agent during its lifetime is maximized. The meta-parameters are optimized over multiple parallel
lifetimes and updated after the lifetimes have concluded. After the lifetimes have concluded, the
agent is reset and new lifetimes are sampled. Intuitively, the problem is to meta-learn an optimal
trade-off of exploration and exploitation for the given distribution of bandit tasks. Implementation
details and hyperparameters can be found in the appendix B.

7.1 SAMPLING CORRECTION AND DICE IN PRACTICE

In this experiment, we investigate how the different meta-gradient estimators perform in an untrun-
cated setting. In figure 1, we compare five different meta-gradient estimators in the bandit setting by
training the learning rate parameters starting from nine initializations. Meta-learning curves in the
same setting are shown in figure 2. In the meta-learning curves, all algorithms start from the same
initialization. The finite differences gradient estimator converges to the local optimum. The naive
estimator does not use the sampling correction, which leads to bias, causing the meta-parameters
move away from the local optimum. The sampling corrected gradient estimator is unbiased, and
converges to the same local optimum as the finite differences estimator. The gradients of the sam-
pling corrected estimator are similar enough to the finite differences gradient in this setting that their
respective learning curves are almost identical. We use DiCE (Foerster et al., 2018) to represent the
category of meta-gradient estimators which use an estimate of the expected Hessian in the meta-
gradient. Since the bandit problem does not have a time dimension, some of the methods developed
for reducing variance of the expected Hessian estimator, including the low variance curvature es-
timator (Rothfuss et al., 2018) and Loaded DiCE (Farquhar et al., 2019), simply reduce to DiCE.
Using DiCE does not stop the meta-optimization from escaping the local optimum, demonstrating
that the DiCE meta-gradient is not unbiased by itself. Using DiCE with the sampling corrected
meta-gradient estimator converges to a worse local optimum than without DiCE, demonstrating that
using the expected Hessian estimator still leads to bias. Additionally, gradient estimation using
DiCE suffers from high variance even in the absence of a time dimension.

7.2 BIAS-VARIANCE TRADEOFF OF THE TRUNCATED ESTIMATORS

We investigate the bias-variance tradeoffs possible for truncated sampling corrected estimators. In
this experiment, the truncated meta-gradient estimators are computed by randomly sampling a win-
dow of one or a few updates during the lifetime and restricting the backpropagation along the update
trajectory to that window. The objective of the agent is the same as before, i.e., the average life-
time return, which is approximated with the average return within the truncation window. There
are two caveats to this experiment setting as an approximation of the truncated optimization in a
long-horizon setting. One is that, due to the strategy of sampling a fixed window length during the
lifetime, the number of times each update index appears in the window is not uniform. These edge
effects result in bias in the truncated estimators that would be negligible in a longer-horizon setting.
The other is that in a larger-scale long-horizon setting, it may be impractical to sample the truncation
windows i.i.d. without updating η, which could change how the bias behaves.

In figure 2, we show the bias and variance of estimators with multiple truncation window lengths and
sampling correction coefficients. The bias is estimated by computing the average Euclidean distance
to the true meta-gradient (computed to high precision with finite differences) at 25 points around the
local optimum of the problem shown in figure 1. The error bars show the standard deviation of the
bias estimated with 10k bootstrap samples from the 25 meta-parameter points, to reflect how much
the bias varies across the meta-optimisation landscape. We know the variance increases with both
the sampling correction coefficient and truncation length, so we omit the error bars for variance for
clarity. Because the sampling correction coefficient and truncation window length change the meta-
gradient magnitude, while its direction may be more important for meta-optimisation in practice, we
also present the same data in figure 5 using cosine similarity as the bias measurement.

Effect of truncated backpropagation. Figure 2 shows that the general trend is for the bias to
decrease with increased truncation length. However, for the zero sampling correction coefficient the
standard deviation of the bias overlaps the mean between multiple truncation lengths suggesting that
increasing the truncation length may sometimes increase bias.
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Figure 3: Meta-learning curves for the meta-gradient estimators in the bandit setting with truncated
meta-optimization horizons. The shading of the curves shows the standard error across seeds.

Effect of sampling correction with the truncated estimator. The monotonic change in the bias
due to the sampling correction coefficient discussed in Section 6 is confirmed by the ordering of
the mean bias for each truncation length, i.e., even if the bias increases for a subset of the sampling
points and decreases for another subset, the mean should always be either increasing or decreasing
with the coefficient for a monotonic bias. We find that for some of the points in the set of 25 meta-
parameter values, the bias grows with the sampling correction coefficient. The bias getting larger or
smaller depending on the sampling point is reflected in the large standard deviation of the bias of
the truncated estimators.

Variance of the estimators. The variance of the meta-gradient estimators grow rapidly with the
sampling correction coefficient. Especially the variance of the unbiased estimator is multiple orders
of magnitude higher than that of the naive estimator. Part of this is explained by the naive estimator
having an order of magnitude smaller norm than the true gradient. In figure 5, we show that the
exponential discounting of the sampling correction terms results in a similar bias-variance tradeoff
to the simpler sampling correction coefficient. Therefore, at least in this bandit setting, exponential
discounting does not seem to have an advantage over using the coefficient.

7.3 META-LEARNING USING SAMPLING CORRECTED TRUNCATED ESTIMATORS

In the previous experiment, we found that the bias of the truncated meta-gradient estimator may
increase with the sampling correction coefficient under some conditions. To investigate how using
the sampling correction with the truncated estimator works in practice, we train the meta-parameters
of the bandits with the different estimators. We train the meta-parameters for 200k steps using the
Adam optimizer (Kingma & Ba, 2014). The meta-learning curves shown in figure 3 suggest that
the higher sampling correction values asymptote to better local optima. Therefore, even though the
sampling correction may sometimes increase bias of the truncated estimators it can still lead to better
meta-learning performance in practice. We confirm that using Adam does not change the ordering
of the results by repeating the experiment with SGD, with results shown in figure 4.

8 CONCLUSION

In this paper, we investigated the estimation of meta-gradients in meta-RL. We showed that, un-
like claims in prior work, using an estimator of the expected Hessian in the meta-gradient estimator
always adds bias, and is likely to also increase variance. Further, we discussed the sampling cor-
rection needed for unbiased meta-gradient estimates, and described how it may be employed in the
truncated optimization setting. In doing so, we explored the space of bias-variance tradeoffs that
can be made in meta-gradient estimation. We found that applying the sampling correction to trun-
cated meta-gradients leads to convergence to better local optima in our setting, although it increases
variance and does not decrease the bias of the truncated gradient estimator in all cases. While these
findings can guide researchers to optimize the bias-variance tradeoff for their setting, work remains
to be done in extending the investigation to the full RL setting with a time dimension in the inner
loop, and developing better meta-gradient estimators that reduce both the bias and variance of the
naive estimator.
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A DERIVATION OF THE UNBIASED META-GRADIENT

More detailed derivation of the unbiased meta-gradient estimator is given by

∇ηJK(η) = ∇η
K∑
k=0

E{Di∼p(Di|θi)}k−1
i=0

[
Eτ∼p(τ |θk) [R(τ)]

]

= ∇η
K∑
k=0

∫
R(τ)p(τ |θk)

k−1∏
i=0

p(Di|θi)dDidτ (17)

=

K∑
k=0

∫
R(τ)

(
∇ηθk∇θk log p(τ |θk)

+

k−1∑
j=0

∇ηθj∇θj log p(Dj |θj)
)
p(τ |θk)

k−1∏
i=0

p(Di|θi)dDjdτ (18)

=

K∑
k=0

E {Di}k−1
i=0

τ∼p(τ |θk)

[( k−1∑
j=0

∇ηθj∇θj log p(Dj |θj)

sampling correction

+ ∇ηθk∇θk log p(τ |θk)

direct meta-gradient

)
R(τ)

]
.

(19)

B BANDIT SETTINGS

In this section we describe the details of the bandit experiments. The experiments are conducted
in a multi-armed bandit setting. The bandits have 30 arms with the arm means sampled from
exp(Uniform(−100, 1)). The reward for each pull is computed by adding noise sampled from
Gaussian with standard deviation 2 to the arm mean. The policy is parametrized as a softmax over
a randomly initialized vector of logits. The inner learning problem is learning the policy for the
bandit and the outer problem is to learn a learning rate schedule for the inner learner. The inner
loop uses a simple policy gradient algorithm (Williams, 1992). The inner loop updates the policy
for 29 update steps sampling 30 batches of experience in total. Each update in the inner loop is
computed on ten samples from the bandit. The outer loop updates the learning rate schedule with
the meta-gradient computed by sampling from an expression similar to 8. The outer loop objective
used in practice considers the return in each batch sampled from the bandit instead of the last one
alone. When truncation is applied, the inner loop is run as before but the outer loop only considers
returns within the truncation window and only backpropagates gradients within the window. The
meta-parameter is a two-dimensional array, from which the learning rate is computed by choosing
one of the two values according to the index of the update on the inner loop lifetime and applying
the softplus function. The first 8 updates correspond to the first dimension of the meta-parameter
and the rest to the second. The meta-gradient is computed across multiple inner learning problems
in parallel. For computing one meta-gradient update with the untruncated inner loop, inner batch
size × lifetime length × parallel runs samples from the bandit are used. All the updates are com-
puted with stochastic gradient descent. The hyperparameters of the experiments in each figure are
summarized in 1.

C ADDITIONAL EXPERIMENTAL RESULTS

The meta-gradient estimators are compared in terms of cosine similarity in the left panel of figure 5.
The two weighting schemes for the sampling correction are compared in the right panel of figure 5.
Learning curves for the truncated meta-gradient estimators using SGD as the optimizer are shown in
figure 4. The large error in the curves for the higher truncation lengths are due to some of the seeds
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Hyperparameter Value

Shared hyperparameters
inner batch size 10
lifetime length 30

optimizer SGD

Figure 1 parallel runs 1000
outer loop updates 100000

Figure 2 right panel

parallel runs 1000
outer loop updates 100000
outer learning rate 0.01

number of random seeds 10

Figure 3

parallel runs 1000
outer loop updates 200000
outer learning rate 0.001

number of random seeds 5
optimizer ADAM

Figure 4, truncation lengths 1 and 8

parallel runs 1000
outer loop updates 500000
outer learning rate 0.05

number of random seeds 5

Figure 4, truncation lengths 22 and 29

parallel runs 1000
outer loop updates 500000
outer learning rate 0.005

number of random seeds 5

Figure 2 left panel, and figure 5 parallel runs 2000
outer loop samples 1000

Table 1: Bandit hyperparameters for each experiment
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Figure 4: Learning curves for the meta-gradient estimators in the bandit setting with truncated meta-
optimization horizons using SGD as the optimizer. The shading of the curves shows the standard
error across random seeds.

becoming unstable during training and deviating far from the optimal region in a single gradient
step. This effect can be reduced in practice by using adaptive optimizers such as Adam and gradient
clipping.
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Figure 5: On the left, the bias and variance of meta-gradient estimators in the bandit setting with
negative cosine similarity estimate of the bias. Negative cosine similarity is shown instead of cosine
similarity to keep the bias axis consistent with figure 2, that is, bias grows toward the right edge of
the figure. On the right, the bias and variance of two different weighting schemes for the sampling
correction terms are explored.
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