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ABSTRACT

Applying adaptive methods directly to distributed minimax problems can result in
non-convergence due to inconsistency in locally computed adaptive stepsizes. To
address this challenge, we propose DAS2C, a Distributed Adaptive method with
time-scale Separated Stepsize Control for minimax optimization. The key strat-
egy is to employ an adaptive stepsize control protocol involving the transmission
of two extra (scalar) variables. This protocol ensures the consistency among step-
sizes of nodes, eliminating the steady-state errors due to the lack of coordination of
stepsizes among nodes that commonly exists in vanilla distributed adaptive meth-
ods, and thus guarantees exact convergence. For nonconvex-strongly-concave dis-
tributed minimax problems, we characterize the specific transient times that ensure
time-scale separation of stepsizes and quasi-independence of networks, leading to
a near-optimal convergence rate of Õ

(
ϵ−(4+δ)

)
for any small δ > 0, matching that

of the centralized counterpart. To the best of our knowledge, DAS2C is the first
distributed adaptive method guaranteeing exact convergence without requiring to
know any problem-dependent parameters for nonconvex minimax problems.

1 INTRODUCTION

Distributed optimization has seen significant research progress over the last decade, resulting in
numerous algorithms (Nedic and Ozdaglar, 2009; Yuan et al., 2016; Lian et al., 2017; Pu and Nedić,
2021). However, the traditional focus of distributed optimization has primarily been on minimization
tasks. With the rapid growth of machine learning research, various applications have emerged that go
beyond simple minimization, such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014; Gulrajani et al., 2017), robust optimization (Mohri et al., 2019; Sinha et al., 2017), adversary
training of neural networks (Wang et al., 2021), fair machine learning (Madras et al., 2018), just to
name a few. These tasks typically involve a minimax structure as follows

min
x∈X

max
y∈Y

f (x, y) ,

where X ⊆ Rp, Y ⊆ Rd, and x, y are the primal and dual variables to be learned, respectively. One
of the simplest yet effective methods for tackling minimax problems is Stochastic Gradient Descent
Ascent (GDA) (Dem’yanov and Pevnyi, 1972; Nemirovski et al., 2009) which alternately performs
stochastic gradient descent for the primal variable and stochastic gradient ascent for the dual vari-
able. This approach has demonstrated its effectiveness in solving minimax problems, especially for
convex-concave objectives (Hsieh et al., 2021; Daskalakis et al., 2021; Antonakopoulos et al., 2021),
i.e., the function f(·, y) is convex for any y ∈ Y , and f(x, ·) is concave for any x ∈ X .

Adaptive gradient methods, such as AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba, 2014),
and AMSGrad (Reddi et al., 2018), are often integrated with GDA to effectively solve minimax prob-
lems with theoretical guarantees in convex-concave settings (Diakonikolas, 2020; Antonakopoulos
et al., 2021; Ene and Lê Nguyen, 2022). These adaptive methods are capable of adjusting stepsizes
based on historical gradient information, making it robust to hyper-parameters tuning and can con-
verge without requiring to know problem-dependent parameters (a characteristic often referred to
as being ”parameter-agnostic”). However, in the nonconvex regime, it has been shown by Lin et al.
(2020); Yang et al. (2022b) that it is necessary to have a time-scale separation in stepsizes between
the minimization and maximization processes to ensure the convergence of GDA and GDA-based
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adaptive algorithms. In particular, the stepsize ratio between primal and dual variables needs to be
smaller than a threshold depending on the properties of the problem such as the smoothness and
strong-concavity parameters (Li et al., 2022; Guo et al., 2021; Huang et al., 2021), which are often
unknown or difficult to estimate in real-world tasks like training deep neural networks.

Applying GDA-based adaptive methods into decentralized settings poses additional challenges due
to the presence of inconsistency in locally computed adaptive stepsizes. In particular, it has been
shown that the inconsistency of stepsizes can result in non-convergence in federated learning with
heterogeneous computation speeds (Wang et al., 2020; Sharma et al., 2023). This is mainly due
to the lack of a central node coordinating the stepsizes of nodes in distributed settings, making it
difficult to converge, as observed in minimization problems (Liggett, 2022; Chen et al., 2023b). As
a result, the design of an adaptive minimax method capable of satisfying the time-scale separation
requirement and being parameter-agnostic in fully distributed settings remains an open question.

Contributions. In this paper, we aim to propose a distributed adaptive method for solving
nonconvex-strongly-concave (NC-SC) minimax problems. The contributions are three folds:

• We construct counterexamples showing that directly applying adaptive methods designed
for centralized problems might lead to inconsistencies in locally computed adaptive step-
sizes, resulting in non-convergence in distributed settings. To tackle this issue, we propose
the first distributed adaptive minimax method, named DAS2C, that incorporates an efficient
stepsize control mechanism to maintain consistency across local stepsizes, which involves
transmission of merely two extra (scalar) variables. The proposed algorithm exhibits time-
scale separation in stepsizes and parameter-agnostic capability.

• Theoretically, we prove that DAS2C is able to achieve a near-optimal convergence rate
of Õ

(
ϵ−(4+δ)

)
with any small δ > 0 to find an ϵ-stationary point for distributed NC-SC

problems. For comparison, we also prove the existence of a constant steady-state error in
both the lower and upper bounds when directly applying a centralized adaptive algorithm
without the stepsize control mechanism. Moreover, we characterize the specific transient
times that ensure time-scale separation and quasi-independence of network respectively.

• We conduct extensive experiments on real-world datasets to verify our theoretical findings
and the effectiveness of DAS2C on a variety of tasks, including the robust neural network
training and optimizing Wasserstein GANs. In all tasks, we show the superiority of DAS2C
comparing to several vanilla distributed adaptive methods across various graphs, initial
stepsizes and data distributions (see also additional experiments in Appendix A).

1.1 RELATED WORKS

Distributed nonconvex minimax methods. In the realm of federated learning, Deng and Mah-
davi (2021) introduce Local SGDA algorithm combining FedAvg/Local SGD with stochastic GDA
and show an Õ

(
ϵ−6
)

sample complexity for NC-SC objective functions. Sharma et al. (2022)
provide improved complexity result of Õ

(
ϵ−4
)

matching that of the lower bound (Li et al., 2021;
Zhang et al., 2021a) for both NC-SC and nonconvex-Polyak-Lojasiewicz (NC-PL) settings. Yang
et al. (2022a) combine Local SGDA with stochastic gradient estimators to eliminate the data het-
erogeneity. More recently, Zhang et al. (2023a) adopt compressed momentum methods with Local
SGD to increase the communication efficiency of the algorithm. For decentralized nonconvex mini-
max problems, Liu et al. (2020) study the training of GANs using decentralized SGDA (D-SGDA)
and provide non-asymptotic convergence with fixed stepsizes. Tsaknakis et al. (2020) propose a
double-loop D-SGDA algorithm with gradient tracking techniques (Pu and Nedić, 2021) and achieve
Õ
(
ϵ−4
)

sample complexity. There are also methods that integrate variance reduction techniques to
achieve a faster convergence rate (Zhang et al., 2021b; Chen et al., 2022; Xian et al., 2021; Tarzanagh
et al., 2022; Wu et al., 2023; Gao, 2022; Zhang et al., 2023b), but they require more memory for
lager batch-size or full gradient. However, all the above-mentioned methods use a fixed or uniformly
decaying stepsize requiring the prior knowledge of smoothness and concavity.

(Distributed) adaptive minimax methods. For centralized nonconvex minimax problems, Yang
et al. (2022b) show that, even in deterministic settings, GDA-based methods necessitate the time-
scale separation of the stepsizes for primal and dual updates. Many attempts have been made for
ensuring the time-scale separation requirement (Lin et al., 2020; Yang et al., 2022c; Boţ and Böhm,
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2023; Huang et al., 2023). However, these methods typically come with the prerequisite of having
knowledge about problem-dependent parameters, which can be a significant drawback in practical
scenarios. To this end, Yang et al. (2022b) introduce a nested adaptive algorithm named NeAda that
incorporates an inner loop to effectively maximize the dual variable, yielding parameter-agnosticism
and best-known sample complexity of Õ

(
ϵ−4
)
. More recently, Li et al. (2023) introduce TiAda,

a single-loop parameter-agnostic adaptive algorithm for nonconvex minimax optimization which
employs separated exponential factors on the adaptive primal and dual stepsizes, improving upon
NeAda on the noise-adaptivity and not requiring mini-batch. There has been few works dedicated to
adaptive minimax optimization in federated learning settings. For instance, Huang (2022) introduce
a federated adaptive algorithm that integrates the stepsize rule of Adam with full-clients participa-
tion, resembling the centralized counterpart. Ju et al. (2023) study a federated Adam algorithm for
fair federated learning where the objective function is properly weighted to account for heteroge-
neous updates among nodes. To the best of our knowledge, it is still unknown how one can design
an adaptive minimax method capable of fullfiling the time-scale separation requirement and being
parameter-agnostic in fully distributed settings.

Notations. Throughout this paper, we denote by E [·] the expectation of a stochastic variable, ∥·∥
the Frobenius norm, ⟨·, ·⟩ the inner product of two vectors, ⊙ the Schur product (entry wise), ⊗ the
Kronecker product. We denote by 1 the all-ones vector, I the identity matrix and J = 11T /n the
averaging matrix with n dimension. For a vector or matrix A and constant α, we denote Aα the
entry-wise exponential operations. We denote Φ (x) := f (x, y∗ (x)) as the primal function where
y∗ (x) = argmax

y∈Y
f (x, y), and PY (·) as the projection operation onto set Y .

2 DISTRIBUTED ADAPTIVE MINIMAX METHODS

We consider the distributed minimax problem collaboratively solved by a set of agents over a com-
munication network. The overall objective of the agents is to solve the following finite-sum problem:

min
x∈Rp

max
y∈Y

f (x, y) =
1

n

n∑
i=1

(fi(x, y) := Eξi∼Di
[Fi (x, y; ξi)]). (1)

where fi : Rp+d → R is the local private loss function accessible only by the associated node
i ∈ N = {1, 2, · · · , n}, Y ⊂ Rd is closed and convex, and ξi ∼ Di denotes the data sample locally
stored at node i ∈ N with distribution Di. We consider a graph G = (V, E), here, V = {1, 2, ..., n}
represents the set of agents, and E ⊆ V × V denotes the set of edges consisting of ordered pairs
(i, j) representing the communication link from node j to node i. For node i, we define Ni = {j |
(i, j) ∈ E} as the set of its neighboring nodes. Before proceeding to the discussion of distributed
algorithms, we first introduce the following notations for brevity:

xk := [x1,k, x2,k, · · · , xn,k]T ∈ Rn×p, yk := [y1,k, y2,k, · · · , yn,k]T ∈ Rn×d,

where xi,k ∈ Rp, yi,k ∈ Y denote the primal and dual variable of node i at each iteration k, and

∇xF (xk,yk; ξ
x
k ) :=

[
· · · ,∇xFi

(
xi,k, yi,k; ξ

x
i,k

)
, · · ·

]T ∈ Rn×p,

∇yF (xk,yk; ξ
y
k) :=

[
· · · ,∇yFi

(
xi,k, yi,k; ξ

y
i,k

)
, · · ·

]T
∈ Rn×d,

are the corresponding partial stochastic gradients with i.i.d. samples ξxk , ξ
y
k in a compact form.

In what follows, we will first explain the pitfalls of directly applying centralized adaptive algorithms,
and then introduce our newly proposed solution to address the challenge.

2.1 NON-CONVERGENCE OF NAIVE DISTRIBUTED ADAPTIVE METHODS

In centralized settings, designing parameter-agnostic adaptive methods for nonconvex-strongly-
concave minimax problems is already challenging and demands careful considerations. In fact, sim-
ply employing adaptive methods such as AdaGrad and Adam can lead to convergence issues (Yang
et al., 2022b). To the best of our knowledge, TiAda (Li et al., 2023) is the SOTA algorithm that
achieves near-optimal rates with both parameter and noise adaptivity. Similar to extending SGD

3



Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

y

stationary points
D-SGDA
D-TiAda
DAS2C

(a) trajectory

0 2000 4000 6000 8000 10000
Iterations

10−5

10−3

10−1

101

103

||∇
xf
(x
,y

)||
2

D-SGDA
D-TiAda
DAS2C

(b) convergence of ∥∇xf (x, y)∥2

0 2000 4000 6000 8000 10000
Iterations

10−8

10−6

10−4

10−2

100

In
co

ns
ist

en
cy

 ζ
2 v

D-SGDA
D-TiAda
DAS2C

(c) convergence of ζ2v

Figure 1: Comparison among D-SGDA, D-TiAda and DAS2C for NC-SC quadratic objective func-
tion (5) with n = 2 nodes and γx = γy . In (a), it shows the trajectories of primal and dual variables
of the algorithms, the points on the black dash line are stationary points of f . In (b), it shows the
convergence of ∥∇xf (xk, yk)∥2 over the iterations. In (c), it shows the convergence of the incon-
sistency of stepsizes, ζ2v defined in (7), over the iterations. Notably, ζ2v fails to converge for D-TiAda
and ζ2v = 0 for non-adaptive D-SGDA.

into distributed settings (Nedic and Ozdaglar, 2009), TiAda can be adapted for distributed scenar-
ios, which we will refer to as D-TiAda with the following update rules:

xk+1 =W
(
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k )
)
, (2a)

yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

, (2b)

where γx and γy are the stepsizes, W is a doubly-stochastic weight matrix induced by graph G, and

V −α
k+1 = diag

{
v−α
i,k+1

}n

i=1
, vi,k+1 = max

{
mx

i,k+1,m
y
i,k+1

}
,

U−β
k+1 = diag

{
u−β
i,k+1

}n

i=1
, ui,k+1 = my

i,k+1,
(3)

where mx
i,k+1 = mx

i,k +
∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2 , my
i,k+1 = my

i,k +
∥∥∥∇yFi

(
xi,k, yi,k; ξ

y
i,k

)∥∥∥2
are the locally computed gradient norm information. TiAda employs a maximum operator in the
preconditioner for x, specifically in the definition of vi,k, as well as different stepsize decay rates,
i.e., 0 < β < α < 1, for the two variables. Such design allows automatic balancing the stepsizes of x
and y and achieves the desired time-scale separation without requiring any knowledge of parameters.

However, in the distributed setting, such naive extension may fail to converge to a stationary point
because vi,k and ui,k can be inconsistent due to the difference of local objective functions fi, In
particular, we can rewrite the vanilla algorithm (2) above in the sense of average system of primal
variable as below,

x̄k+1 = x̄k − γxv̄−α
k

1T

n
∇xF (xk,yk; ξ

x
k )︸ ︷︷ ︸−

adaptive descent

γx

(
ṽ−α
k+1

)T
n

∇xF (xk,yk; ξ
x
k )︸ ︷︷ ︸

inconsistancy

, (4)

where

x̄k :=
1T

n
xk, v̄k :=

1

n

n∑
i=1

vi,k,
(
ṽ−α
k

)T
:=
[
· · · , v−α

i,k − v̄
−α
k , · · ·

]
.

It is evident that, in comparison to centralized adaptive methods, an unexpected term on the right-
hand side (RHS) arises due to inconsistencies, namely, ṽk. This term introduces inaccuracies in the
directions of gradient descent, degrading the optimization performance. The following theorem pro-
vides an explicit lower bound consisting a constant steady-state-error regarding the non-convergence
of D-TiAda, whose proof can be found in Appendix B.4.
Theorem 1. There exists a distributed minimax problem in the form of Problem (1) and certain
initialization such that after running D-TiAda with any 0 < β < 0.5 < α and γx, γy > 0, it holds
that for any t = 0, 1, 2, . . . , we have

∥∇xf(xt, yt)∥ = ∥∇xf(x0, y0)∥ and ∥∇yf(xt, yt)∥ = ∥∇yf(x0, y0)∥,
where ∥∇xf(x0, y0)∥ and ∥∇yf(x0, y0)∥ can be arbitrarily large depending on the initialization.
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Remark 1. The counterexample we constructed consists of three nodes, forming a complete graph.
Without the stepsize control, TiAda will remain stationary, and the iterates will not progress if ini-
tiated along a specific line. In this counterexample, the only stationary point is at (0, 0), but points
along the line (c.f., Eq. (70)) can be positioned arbitrarily far away from this stationary point.

Apart from the counterexample discussed in Theorem 1, where the iterates are stationary, we also
experimentally observe the non-convergence for moving iterates of D-TiAda, D-SGDA, and D-
AdaGrad (naively applying AdaGrad for each node) even in a simpler scenario involving only two
connected agents. This is illustrated in Figure 1 and the functions are as depicted as follows.

f1 (x, y) = −
9

20
y2 +

3

5
y − x+ xy − 1

2
x2, f2 (x, y) = −

9

20
y2 +

3

5
y − x+ 2xy − 2x2. (5)

It is not difficult to see that the points on the line 3y = 5x + 2 are stationary points of f (x, y) =
1/2 (f1 (x, y) + f2 (x, y)). It follows from Figure 1(a) and 1(b) that D-SGDA does not converge to
a stationary point because of the lack of time-scale separation, and D-TiAda also fails to converge
due to stepsizes inconsistency, as shown in Figure 1(c). In contrast, the utilization of the stepsize
control protocol in DAS2C ensures convergence to a stationary point, with the inconsistency in
stepsizes gradually diminishing. These two motivating examples effectively highlight the challenges
associated with applying minimax algorithms to distributed scenarios.

2.2 DAS2C: A NEW ALGORITHM DESIGN WITH STEPSIZE CONTROL

To address the issue of inconsistent stepsizes across different nodes, we design the following dis-
tributed adaptive minimax optimization algorithm with stepsize control protocol, termed DAS2C,
which allows us to asymptotically track the centralized adaptive stepsize in a decentralized man-
ner over networks. The pseudo-code for the algorithm is summarized in Algorithm 1, and can be
rewritten in a compact form as follows

mx
k+1 =W (mx

k + hx
k) , (6a)

my
k+1 =W (my

k + hy
k) , (6b)

xk+1 =W
(
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k )
)
, (6c)

yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

, (6d)

where mx
k and my

k denote the accumulation of historical gradients with

hx
k =

[
· · · , ∥gxi,k∥2, · · ·

]T ∈ Rn, hy
k =

[
· · · , ∥gyi,k∥

2, · · ·
]T
∈ Rn,

and Vk and Uk are diagonal matrices with vi,k = max
{
mx

i,k,m
y
i,k

}
, ui,k = mx

i,k, where the
maximization operator is used to achieve time-scale separation as suggested in TiAda (Li et al.,
2023). Note that we also provide a variant of DAS2C with coordinate-wise adaptive stepsizes in
Algorithm 2, along with its convergence analysis in Appendix B.6.

3 CONVERGENCE ANALYSIS

In this section, we introduce the main convergence results for the proposed DAS2C algorithm and
compare it with D-TiAda to show the effectiveness of the proposed stepsize control protocol. To
this end, we define the following metrics to evaluate the level of inconsistency of stepsizes among
nodes, which are ensured to be bounded with Assumption 4.

ζ2v := sup
k>0

{(
v−α
i,k − v̄

−α
k

)2
/
(
v̄−α
k

)2}
, ζ2u := sup

k>0

{(
u−β
i,k − ū

−β
k

)2
/
(
ū−β
k

)2}
, i ∈ [n] , (7)

where ūk := 1/n
∑n

i=1 ui,k.

3.1 ASSUMPTIONS

We consider the NC-SC setting of Problem (1) with the following assumptions that are commonly
used in the existing works (c.f., Remark 2).
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Algorithm 1 Distributed Adaptive Time-Scale Separated Stepsize Control Method (DAS2C)
Initialization: xi,0 ∈ Rp, yi,0 ∈ Y , buffers mx

i,0 = my
i,0 = c > 0, stepsizes γx, γy > 0,

exponential factors 0 < β < α < 1 and weight matrix W .
1: for iteration k = 0, 1, · · · , each node i ∈ [n], do
2: Sample i.i.d. gxi,k = ∇xFi

(
xi,k, yi,k; ξ

x
i,k

)
, gyi,k = ∇yFi

(
xi,k, yi,k; ξ

y
i,k

)
.

3: Accumulate gradient norm: mx
i,k+1 = mx

i,k + ∥gxi,k∥2, m
y
i,k+1 = my

i,k + ∥gyi,k∥2.

4: Compute the ratio: ψi,k+1 = (mx
i,k+1)

α/max
{
(mx

i,k+1)
α, (my

i,k+1)
α
}
⩽ 1.

5: Update primal and dual variables locally:

xi,k+1 = xi,k − γxψi,k+1

(
mx

i,k+1

)−α
gxi,k, yi,k+1 = yi,k − γy(my

i,k+1)
−βgyi,k.

6: Communicate adaptive stepsizes and decision variables with neighbors:{
mx

i,k+1,m
y
i,k+1, xi,k+1, yi,k+1,

}
←
∑
j∈Ni

Wi,j

{
mx

j,k+1,m
y
j,k+1, xj,k+1, yj,k+1,

}
.

7: Projection of dual variable on to set Y: yi,k+1 ← PY (yi,k+1).
8: end for

Assumption 1 (µ-strong concavity in y). Each objective function fi (x, y) is µ-strongly concave in
y, i.e., ∀x ∈ Rp, ∀y, y′ ∈ Y and µ > 0,

fi (x, y)− fi (x, y′) ⩾ ⟨∇yfi (x, y) , y − y′⟩+
µ

2
∥ y − y′∥2 . (8)

Assumption 2 (Joint smoothness). Each objective function fi (x, y) is L-smooth ∀x ∈ Rp, y ∈ Y ,
i.e., ∀x, x′ ∈ Rp and ∀y, y′ ∈ Y , there exists a constant L such that

∥∇zfi (x, y)−∇zfi (x
′, y′)∥2 ⩽ L2

(
∥x− x′∥2 + ∥y − y′∥2

)
, for z ∈ {x, y} . (9)

Furthermore, fi is second-order Lipschitz continuous for y, i.e.,∥∥∇2
zyfi (x, y)−∇2

zyfi (x
′, y′)

∥∥2 ⩽ L2
(
∥x− x′∥2 + ∥y − y′∥2

)
, for z ∈ {x, y} . (10)

Assumption 3 (Interior optimal point). For all x ∈ Rp, y∗(x) is in the interior of Y .

Assumption 4 (Stochastic gradient). For i.i.d. sample ξi, the stochastic gradient of each i is unbi-
ased, i.e., ∀x ∈ Rp, y ∈ Y , Eξi [∇zFi (x, y; ξi)] = ∇zfi (x, y), for z ∈ {x, y}, and there exists a
constant C > 0 such that ∥∇zFi (x, y; ξi)∥ ⩽ C.

Remark 2. Assumption 1 does not require the convexity in x and the objective function thus can
be nonconvex. Assumption 2 and 3 ensure that y∗(·) is smooth (c.f., Lemma 3), which is essential
for achieving (near) optimal convergence rate (Chen et al., 2021; Li et al., 2023). Assumption 3
also ensures that ∇yf (x, y

∗ (x)) = 0. This is important for AdaGrad-based methods to maintain
stepsizes near y∗ (x) without being excessively small which otherwise lead to slow convergence.
Assumption 4 on bounded stochastic gradient is widely used for establishing convergence rates of
adaptive methods (Zou et al., 2019; Kavis et al., 2022; Chen et al., 2023a), and it can be satisfied
in many tasks such as neural networks with rectified activation (Dinh et al., 2017) and GANs with
projections on the critic (Gulrajani et al., 2017). To the best of our knowledge, for stochastic NC-SC
minimax optimization, no existing parameter-agnostic method achieves a near-optimal convergence
rate while also eliminating the bounded gradient assumption. In fact, this challenge persists even in
stochastic minimization with strongly-convex objectives (Orvieto et al., 2022).

Now, we make the following assumption to ensure the connectivity of the graph. Note that the weight
matrix is not required to be symmetric thus the graph can be direct, e.g., direct ring and exponential
graphs (Ying et al., 2021), which is more general than (Lian et al., 2017; Borodich et al., 2021).

Assumption 5 (Graph connectivity). The weight matrixW induced by graph G is doubly stochastic,
i.e., W1 = 1,1TW = 1T and ρW := ∥W − J∥22 < 1.

6



Under review as a conference paper at ICLR 2024

3.2 MAIN RESULTS

We begin by demonstrating in the following lemma that the inconsistency terms, as described in (4),
exhibit asymptotic convergence in the case of the proposed DAS2C algorithm. In contrast, these
terms remain non-vanishing for D-TiAda (c.f., Lemma 11).

Lemma 1 (Convergence of inconsistency terms). Suppose Assumption 1-5 hold. For the proposed
DAS2C in Algorithm 1, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k )

∥∥∥∥∥
2
 ⩽

√√√√ 1

n1−α

(
4ρW

(1− ρW )
2

)α
(1 + ζv) ζvC

2−α

(1− α)Kα
,

1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ũ−α
k+1

)T
nū−α

k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
 ⩽

√√√√ 1

n1−β

(
4ρW

(1− ρW )
2

)β
(1 + ζu) ζuC

2−β

(1− β)Kβ
.

(11)

where
(
ũ−β
k

)T
:=
[
· · · , u−β

i,k − ū
−β
k , · · ·

]
. The proof of Lemma 1 can be found Appendix B.3.

We are now ready to present the key convergence results in terms of the primal function Φ (x) :=
f (x, y∗ (x)) with y∗ (x) = argmax

y∈Y
f (x, y), whose proofs can be found in Appendix B.5.

Theorem 2. Suppose Assumption 1-5 hold. Let 0 < α < β < 1 and the total iteration satisfy

K = Ω

(
max

{
1,

(
γ2xκ

4/γ2y
)1/(α−β)

,
(
1/ (1− ρW )

2
)max{1/α, 1/β}

})
, (12)

where κ := L/µ, to ensure time-scale separation and quasi-independence of network. For DAS2C,

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
= Õ

(
1

K1−α
+

1

(1− ρW )
α
Kα

+
1

K1−β
+

1

(1− ρW )Kβ

)
. (13)

Remark 3 (Near-optimal convergence). Theorem 2 implies that if the total number of iterations sat-
isfies the conditions (12), the proposed DAS2C algorithm converges to a stationary point exactly for
Problem 1 with an Õ

(
ϵ−(4+δ)

)
sample complexity for any small δ > 0 with α = 0.5 + δ/ (8 + 2δ)

and β = 0.5− δ/ (8 + 2δ). It is worth to note that this rate is near-optimal comparing to the best-
known result Õ

(
ϵ−4
)

(Li et al., 2021; Yang et al., 2022b) for centralized minimax problems, and
recovers the centralized TiAda algorithm (Li et al., 2023) as special case, i.e., letting ρW = 0.

Remark 4 (Parameter-agnostic property and transit times). The above results show that DAS2C is
parameter-agnostic without requiring to know any problem-dependent parameters. Furthermore,
we characterize the specific transient times (c.f., (12)) that ensure time-scale separation and quasi-
independence of network in the sense of α, β < 1, respectively. Indeed, we can see that if α and β
are close to each other, the time required for time-scale separation to occur increases significantly,
which has been observed in TiAda. If α or β approaches 0, the transition time for achieving quasi-
independence of the network will also increase. These observations highlight the importance of
trade-offs between the convergence rate and the required duration of the transition phase.

For comparison, we also derive an upper bound for D-TiAda as follows. Together with the lower
bound in Theorem 1, we demonstrate that without the stepsize control, the inconsistencies between
local stepsizes prevent D-TiAda to converge in the distributed setting.

Corollary 1. Under the same conditions of Theorem 2. For D-TiAda algorithm, we have

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
= Õ

(
1

K1−α
+

1

(1− ρW )
α
Kα

+
1

K1−β
+

1

(1− ρW )Kβ

)
+ Õ

((
ζ2v + κ2ζ2u

)
C2
)
.

(14)
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Figure 2: Performance comparison of algorithms on quadratic functions over exponential graphs
with node counts n = {50, 100} and different initial stepsizes (γy = 0.1).

4 EXPERIMENTS

In this section, we conduct experiments to validate the theoretical findings and demonstrate the
effectiveness of the proposed algorithm on real-world machine learning tasks. We compare the
proposed DAS2C with the distributed variants of AdaGrad (Duchi et al., 2011), TiAda (Li et al.,
2023) and NeAda (Yang et al., 2022b), namely D-AdaGrad, D-TiAda and D-NeAda, respectively.
These experiments run across multiple nodes with different communication topologies, and we con-
sider heterogeneous distributions of local objective functions/datasets. For example, each node can
only access samples with a subset of labels on MNIST and CIFAR-10 datasets, which is a common
scenario in decentralized and federated learning tasks (Sharma et al., 2023; Huang et al., 2022).
The experiments cover three main tasks: synthetic function, robust training of the neural network,
and training of Wasserstein GANs (Heusel et al., 2017). More experimental details and additional
experiments under other settings can be found in Appendix A.

Synthetic example. We consider a distributed minimax problem with the following NC-SC local
objective functions over exponential networks with n = 50 (ρw = 0.71) and n = 100 (ρw = 0.75).

fi (x, y) = −
1

2
y2 + Lixy −

L2
i

2
x2 − 2Lix+ Liy, (15)

where Li ∼ U (1.5, 2.5). The local gradient of each node is computed with an additive N (0, 0.1)
Gaussian noise. For both D-TiAda and DAS2C, we set the parameters as follows: α = 0.6 and β =
0.4. It follows from Figure 2 (a) and 2 (b) that the proposed DAS2C algorithm outperforms other
distributed adaptive methods for both initial stepsize settings, especially in cases with a favorable
initial stepsize ratio, as illustrated in plots (b) and (d) where γx/γy = 0.2. Similar observation can
be found in Figure 2 (c) and 2 (d), demonstrating the effectiveness of DAS2C.

Robust training of neural networks. Next, we consider the task of robust training of neural net-
works, in the presence of adversarial perturbations on data samples (Sharma et al., 2022; Deng and
Mahdavi, 2021). The problem can be formulated as min

x
max

y
1/n

∑n
i=1 fi (x; ξi + y)− η ∥y∥2,

where x denotes the parameters of the model, y denotes the perturbation and ξi denotes the data
sample of node i. If η is large enough, the problem is NC-SC. We conduct experiments on MNIST
dataset over different networks, e.g., ring graph, exponential (exp.) graph (Ying et al., 2021) and
dense graph with n/2 edges for each node. We consider a heterogeneous scenario in which each
node possesses only two distinct classes of labeled samples, resulting in heterogeneity among the
local datasets across nodes, while the data is i.i.d within each node.

In Figure 3, we compare DAS2C with D-AdaGrad, D-TiAda and D-NeAda, using adaptive stepsizes
in AdaGrad (first row) and Adam (second row, name suffixed with Adam) respectively, it can be
observed from the first three columns that the proposed DAS2C outperforms the others on three
different graphs and it is not very sensitive to the graph connectivity (i.e., ρW ), demonstrating the
quasi-independence of network as indicated in Theorem 2. It should be noted that Adam-like al-
gorithms fluctuate more in the later stages of optimization as the gradient norm vanishes, leading
to the inevitable increase of the Adam stepsize as the optimization process approaches convergence
(Kingma and Ba, 2014). In plots (d) and (h), we further demonstrate the efficient scalability of
DAS2C with respect to the number of nodes, while keeping a constant batch size of 64 for each
node. This showcases the algorithm’s ability to handle larger-scale distributed scenarios effectively.
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Figure 3: Comparison of the algorithms on training robust CNN on MNIST dataset. The first shows
the results of AdaGrad-like stepsize, and the second row is for Adam-like stepsize. For the first three
columns, we compare the algorithms on different graphs with n = 20. For the last column we show
the scalability of DAS2C in terms of number of nodes. Initial stepsizes are set as γx = 0.01, γy =
0.1 for AdaGrad-like stepsize, and γx = 0.1, γy = 0.1 for Adam-like stepsize.
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Figure 4: Training GANs on CIFAR-10 dataset over exponential graphs with n = 10 nodes using
different initial stepsizes.

Generative Adversarial Networks. We further illustrate the effectiveness of DAS2C on another
popular task of training GANs, which has a generator and a discriminator used to generate and dis-
tinguish samples respectively (Goodfellow et al., 2014). In this experiment, we train Wasserstein
GANs (Gulrajani et al., 2017) on CIFAR-10 dataset in decentralized setting where each discrimina-
tor is 1-Lipschitz and has access to only two classes of samples. We compare the inception score of
DAS2C with D-Adam and D-TiAda adopting Adam-like stepsizes in Figure 4. It can be observed
from the figure that DAS2C achieves higher inception scores in three cases with different initial
stepsizes, and has a small score loss as the initial step size changes. We believe that this example
shows the great potential of DAS2C in solving real-world problems.

5 CONCLUSION

We introduced a new distributed adaptive minimax method, DAS2C, designed to tackle the issue
of non-convergence in nonconvex-strongly-concave minimax problems caused by locally computed
adaptive stepsize inconsistencies. Vanilla distributed adaptive methods could suffer from such in-
consistencies, as highlighted by the carefully designed counterexamples for demonstrating their
potential non-convergence. In contrast, our proposed method employs an efficient adaptive stepsize
control protocol that guarantees stepsize consistency among nodes, effectively eliminating steady-
state errors. Theoretically, we showed that DAS2C can achieve a near-optimal convergence rate
of Õ

(
ϵ−(4+δ)

)
with any small δ > 0. Extensive experiments on real-world datasets have been

conducted to validate our theoretical findings across various scenarios.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Antonakopoulos, K., Belmega, V. E., and Mertikopoulos, P. (2021). Adaptive extra-gradient meth-
ods for min-max optimization and games. In ICLR 2021-9th International Conference on Learn-
ing Representations, pages 1–28.

Borodich, E., Beznosikov, A., Sadiev, A., Sushko, V., Savelyev, N., Takáč, M., and Gas-
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A ADDITIONAL EXPERIMENTS

In this section, we provide detailed experimental settings and perform additional experiments on the
task of training robust neural networks with different choices of hyper-parameters. All experiments
are deployed in a server with Intel Xeon E5-2680 v4 CPU @ 2.40GHz and 8 Nvidia RTX 3090
GPUs, and implemented using distributed communication package torch.distributed in PyTorch 2.0,
where each process serves as a node, and we use inter-process communication to mimic commu-
nication between nodes. We adapt code from (Yang et al., 2022b; Li et al., 2023) to decentralized
settings. We use α = 0.6 and β = 0.4 for all tasks.

A.1 EXPERIMENTAL DETAILS

Communication topology. For the experiments in the main-text, we utilize three commonly used
communication topologies: indirect ring, exponential graph and dense graph. Indirect ring is a
sparse graph in which each node is sequentially connected to form a ring, with only two neighbors
per node. Exponential graph (Ying et al., 2021) is a directed graph where each node is connected
to nodes at distances of 20, 21...2log(n). Exponential graphs achieve a good balance between the
degree and connectivity of the graph. Dense graph is a indirect graph where each node is connected
to nodes at distances of 1, 2, 4, ..., n. We also consider directed ring and fully connected graphs,
which are more sparsely and densely connected, respectively, in the additional experiments.

Robust training of neural network. In this task, we train CNNs with three convolutional layers
and one fully connected layer on MNIST dataset containing 10 class images. Each layer adopts
batch normalization and ELU activation. The total batch size is 1280, and the batch size of each
node during training is 1280/n. For Adam-like algorithms, we set the first and second moment
parameters as β1 = 0.9, β2 = 0.999 respectively. Since NeAda is a double-loop algorithm, for fair
comparison, we implement D-AdaGrad and D-Adam using 15 iterations of inner loop in this task.

Generative Adversarial Networks. In this task, we train Wasserstein GANs on CIFAR-10 dataset,
where the model we use for discriminator is a four layer CNN, and for generator is a four layer
CNN with transpose convolution layers. The total batch size is 1280, and the batch size of each
node during training is 128 with 10 nodes. For Adam-like algorithms, we use β1 = 0.5, β2 = 0.9.
To obtain the inception score, we use 8000 artificially generated samples to feed the previously
trained inception network.
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Figure 5: Train CNN on MNIST with n = 20 nodes over directed ring and fully connected graphs.
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Figure 6: Train CNN on MNIST with n = 20 nodes with different initial stepsizes γx and γy .

0 1000 2000 3000 4000
# Gradient calls

10−1

100

101

||∇
xf

(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
DAS2C

(a) exp.

0 1000 2000 3000 4000
# Gradient calls

10−1

100

101

||∇
xf

(x
,y

)||
2

D-AdaGrad
D-NeAda
D-TiAda
DAS2C

(b) dense

0 1000 2000 3000 4000 5000 6000
# Gradien  calls

10−1

100

101

||∇
xf

(x
,y

)||
2

D-Adam
D-NeAda-Adam
D-TiAda-Adam
DAS2C-Adam

(c) exp.

0 1000 2000 3000 4000 5000 6000
# Gradien  calls

10−1

100

101

||∇
xf

(x
,y

)||
2

D-Adam
D-NeAda-Adam
D-TiAda-Adam
DAS2C-Adam

(d) dense

Figure 7: Train CNN on MNIST with n = 20 nodes over exponential and dense graphs where each
node has 4 sample classes.
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Figure 8: Train CNN on MNIST with n = 40 nodes over exponential and dense graphs.

A.2 ADDITIONAL EXPERIMENTS ON ROBUST TRAINING OF NEURAL NETWORK.

In this part, we conduct additional experiments on robust training of CNNs on MNIST dataset
considering a variety of settings. We compare the convergence performance of DAS2C with D-
AdaGrad, D-TiAda and D-NeAda using adaptive stepsizes in AdaGrad and Adam. Unless other-
wise specified, the total batch-size is set to 1280; the initial stepsizes for x and y are assigned as
γx = 0.01, γy = 0.1 for AdaGrad-like algorithms, and γx = γy = 0.1 for Adam-like algorithms.
Specifically, we consider two extra graphs that are more sparse and more dense, respectively in
Figure 5, e.g., directed ring and fully-connected (fc) graphs. We use more initial stepsizes settings
for x and y respectively in Figure 6. Further, we consider another data distribution where each
node has data from 4 of the 10 classes in Figure 7. Finally we perform a comparison experiment
with 40 nodes. Under all settings, the proposed DAS2C outperforms the others, demonstrating the
superiority of DAS2C.
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B PROOF OF THE MAIN RESULTS

We recall here some notations used in the main text. The averaged variables and the inconsistency
are defined as follows:

x̄k :=
1T

n
xk, v̄k :=

1

n

n∑
i=1

vi,k,
(
ṽ−α
k

)T
:=
[
· · · , v−α

i,k − v̄
−α
k , · · ·

]
,

ȳk :=
1T

n
yk, ūk :=

1

n

n∑
i=1

ui,k,
(
ũ−β
k

)T
:=
[
· · · , u−β

i,k − ū
−β
k , · · ·

]
.

The heterogeneity of stepsizes is defined as:

ζ2v := sup
k>0

{(
v−α
i,k − v̄

−α
k

)2
/
(
v̄−α
k

)2}
, ζ2u := sup

k>0

{(
u−β
i,k − ū

−β
k

)2
/
(
ū−β
k

)2}
, i ∈ [n] .

Proof Sketch. The convergence analysis of the main results in Theorem 2 mainly relays on the
analysis of the average system as shown in (4), and the difference between the distributed system
and the average system. In general, under the Assumption 1-5, we first give a telescoped descent
lemma from 0 to K − 1 iterations in Lemma 5, which is upper bounded by several key error terms:

• S1 := 1
nK

∑K−1
k=0 E

[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]
: The asymptotically decaying terms by

adopting adaptive stepsize;

• S2 := 1
nK

∑K−1
k=0 E

[
∥xk − 1x̄k∥2 + ∥yk − 1ȳk∥2

]
: The consensus error of x and y be-

tween the distributed system and the average system;

• S3 := 1
K

∑K−1
k=0 E [f (x̄k, y

∗ (x̄k))− f (x̄k, ȳk)]: the optimality gap in dual variable y;

• S4 := 1
K

∑K−1
k=0 E

[∥∥∥∥ (ṽ−α
k+1)

T

nv̄−α
k+1

∇xF (xk,yk; ξ
x
k )

∥∥∥∥2
]

: The inconsistency of stepsize of x;

Next, we prove that these terms are convergent in Lemma 6-10 and Lemma 1 respectively. Finally,
these results are integrated into the descent lemma thus completing the proof. We note that the proof
is not trivial in the sense that these terms are coupled and therefore need to be carefully analyzed.
This proof can also be adapted to analyze the coordinate-wise adaptive stepsize variant of DAS2C
as explained in Appendix B.6, which is of independent interest.

B.1 SUPPORTING LEMMAS

In this section, we provide several supporting lemmas that have been shown in the existing literature,
which are essential to subsequent convergence analysis.

Lemma 2 (Lemma A.2 in Yang et al. (2022b)). Let {xt}T−1
t=0 be a sequence of non-negative real

numbers, x0 > 0 and α ∈ (0, 1). Then we have,(
T−1∑
t=0

xt

)1−α

⩽
T−1∑
t=0

xt(∑t
k=0 xk

)α ⩽
1

1− α

(
T−1∑
t=0

xt

)1−α

. (16)

When α = 0, we have
T−1∑
t=0

xt(∑t
k=0 xk

)α ⩽ 1 + log

(∑T−1
t=0 xt
x0

)
. (17)

Lemma 3. Under Assumption 1, 2 and 3. Define Φ (x) := f (x, y∗ (x)) as the envelope function
and y∗ (x) = argmax

y∈Y
f (x, y). Then, we have,

1) Φ (·) is LΦ-smooth with LΦ = L (1 + κ), and ∇Φ (x) = ∇xf (x, y
∗ (x)) (Lemma 4.3 in

Lin et al. (2020));
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2) y∗ (·) is κ-Lipschitz and L̂-smooth with L̂ = κ (1 + κ)
2(Lemma 2 in Chen et al. (2021)).

Lemma 4. Let A,B ∈ Rn×p be matrices with the same dimension. By the definitions of Frobenius
norm and Schur product, we have

1) ∥A⊙B∥2 ⩽ ∥A∥2 ∥B∥2;

2)
∥∥∥1T

n A⊙B
∥∥∥2 ⩽ 1

n ∥A∥
2 ∥B∥2;

3) For a vector a ∈ Rn,
∥∥a1T

p ⊙B
∥∥2 = ∥diag (a)B∥2 ⩽ ∥a∥2 ∥B∥2.

B.2 KEY LEMMAS

In this subsection, we give the key lemmas to help the analysis of the main results. For simplicity,
we define ∆k := ∥xk − 1x̄k∥2+ ∥yk − 1ȳk∥2 as the consensus error for primal and dual variables.
Then, we have the following lemmas.

Lemma 5 (Descent lemma). Suppose Assumption 1-5 hold. we have

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
⩽

8C2α (Φmax − Φ∗)

γxK1−α
− 4

K

K−1∑
k=0

E
[
∥∇xf (x̄k, ȳk)∥2

]
+ 8γxLΦ

(
1 + ζ2v

) 1

nK

K−1∑
k=0

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

︸ ︷︷ ︸
S1

+ 8L2 1

nK

K−1∑
k=0

E [∆k]︸ ︷︷ ︸
S2

+ 8κL
1

K

K−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]︸ ︷︷ ︸
S3

+ 16
1

K

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k )

∥∥∥∥∥
2


︸ ︷︷ ︸
S4

.

(18)
where κ := L/µ is the condition number of the function in y, Φmax = max

x
Φ (x) , Φ∗ = min

x
Φ (x).

Proof. By the smoothness of Φ given in Lemma 3, i.e.,

Φ (x̄k+1)− Φ (x̄k) ⩽ ⟨∇Φ (x̄k) , x̄k+1 − x̄k⟩+
LΦ

2
∥x̄k+1 − x̄k∥2 ,

and noticing that the scalar v̄k, ūk are random variables, we have

E

[
Φ (x̄k+1)− Φ (x̄k)

γxv̄
−α
k+1

]

⩽ −E
[〈
∇Φ (x̄k) ,

1T

n
∇xF (xk,yk; ξk)

〉]
− E

[〈
∇Φ (x̄k) ,

(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k )

〉]

+
γxLΦ

2
E

 1

v̄−α
k+1

∥∥∥∥∥
(
v̄−α
k+11

T

n
+

(
ṽ−α
k+1

)T
n

)
∇xF (xk,yk; ξ

x
k )

∥∥∥∥∥
2
 .

(19)
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Then, we bound the inner-product terms on the RHS. Firstly,

− E
[〈
∇Φ (x̄k) ,

1T

n
∇xF (xk,yk; ξ

x
k )

〉]
= −E

[〈
∇Φ (x̄k) ,

1T

n
∇xF (xk,yk)−

1T

n
∇xF (1x̄k,1ȳk) +

1T

n
∇xF (1x̄k,1ȳk)

〉]
⩽

1

4
E
[
∥∇Φ (x̄k)∥2

]
+ E

[∥∥∥∥1T

n
∇xF (xk,yk)−

1T

n
∇xF (1x̄k,1ȳk)

∥∥∥∥2
]

+
1

2

(
E
[
∥∇Φ (x̄k)−∇xf (x̄k, ȳk)∥2

]
− E

[
∥∇Φ (x̄k)∥2

]
− E

[
∥∇xf (x̄k, ȳk)∥2

])
⩽ −1

4
E
[
∥∇Φ (x̄k)∥2

]
+
L2

n
E [∆k] +

L2

2
E
[
∥ȳk − y∗ (x̄k)∥2

]
− 1

2
E
[
∥∇xf (x̄k, ȳk)∥2

]
.

(20)

wherein the last inequality we have used the smoothness of the objective functions. Then, for the
second inner-product in (19), using Young’s inequality we have

− E

[〈
∇Φ (x̄k) ,

(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k )

〉]

⩽
1

8
E
[
∥∇Φ (x̄k)∥2

]
+ 2E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k )

∥∥∥∥∥
2
 . (21)

Then, for the last term on the RHS of (18), recalling the definition of stepsize inconsistency in (7),
we have

γxLΦ

2
E

 1

v̄−α
k+1

∥∥∥∥∥
(
v̄−α
k+11

T

n
+

(
ṽ−α
k+1

)T
n

)
∇xF (xk,yk; ξ

x
k )

∥∥∥∥∥
2


⩽
γxLΦ

(
1 + ζ2v

)
n

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]
.

(22)

Plugging the obtained inequalities into (18) and telescoping the terms, we get

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
⩽ 8

K−1∑
k=0

E
[
Φ (x̄k)− Φ (x̄k+1)

γxv̄
−α
k

]
− 4

K−1∑
k=0

E
[
∥∇xf (x̄k, ȳk)∥2

]
+ 4L2

K−1∑
k=0

E
[
∥ȳk − ȳ∗∥2

]
+

8L2

n

K−1∑
k=0

E [∆k]

+
8γxLΦ

(
1 + ζ2v

)
n

K−1∑
k=0

E
[
v̄−α
k ∥∇xF (xk,yk; ξ

x
k )∥

2
]

+ 16

K−1∑
k=0

E

∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk; ξ
x
k )

∥∥∥∥∥
2
.

(23)
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Now it remains to bound the first term on the RHS of the above inequality. We have

K−1∑
k=0

E

[
Φ (x̄k)− Φ (x̄k+1)

γxv̄
−α
k+1

]

=

K−1∑
k=0

E

[
Φ (x̄k)

γxv̄
−α
k

− Φ (x̄k+1)

γxv̄
−α
k+1

+ Φ (x̄k)

(
1

γxv̄
−α
k+1

− 1

γxv̄
−α
k

)]

⩽ E
[
Φmax

γxv̄
−α
0

− Φ∗

γxv̄
−α
K

]
+

K−1∑
k=0

E

[
Φmax

(
1

γxv̄
−α
k+1

− 1

γxv̄
−α
k

)]

⩽
(Φmax − Φ∗)

γx
E [v̄αK ]

⩽
(Φmax − Φ∗)

(
KC2

)α
γx

,

(24)

wherein the last inequality we have used Assumption 4. Noticing that E
[
∥ȳk − y∗ (x̄k)∥2

]
⩽

2
µE [f (x̄k, y

∗ (x̄k))− f (x̄k, ȳk)], we thus complete the proof.

Next, we try to bound the last four terms S1-S4 in (18) respectively. For S1, we have the asymptotic
convergence for both primal and dual variables in the following lemma.

Lemma 6. Suppose Assumption 1-5 hold. We have

1

nK

K−1∑
k=0

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]
⩽

C2−2α

(1− α)Kα
, (25)

and

1

nK

K−1∑
k=0

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξ

y
k)∥

2
]
⩽

C2−2β

(1− β)Kβ
. (26)

Proof. With the help of Lemma 2 and Assumption 4, taking the primal variable x as an example,
noticing that vi,0 > 0, we have

1

K

K−1∑
k=0

E
[
v̄−α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

=
1

K

K−1∑
k=0

1

n

n∑
i=1

∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2
v̄αk+1

⩽
1

K

K−1∑
k=0

1

n

n∑
i=1

∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2(∑k
t=0

1
n

∑n
j=1

∥∥∇xFj

(
xj,t, yj,t; ξxj,t

)∥∥2)α
⩽

1

1− α
1

K

(
K−1∑
k=0

1

n

n∑
i=1

∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥2)1−α

⩽
C2−2α

(1− α)Kα
.

The similar result can be obtained for dual variable y and we thus complete the proof.

Next, we bound the the consensus error term S2 in the following lemma.
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Lemma 7. Suppose Assumption 1-5 hold. We have

1

K

K∑
k=0

E [∆k] ⩽
2E [∆0]

(1− ρW )K

+
8nρW γ2x

(
1 + ζ2v

)
(1− ρW )

2

(
C2−4α

(1− 2α)K2α
Iα<1/2 +

1 + log vK − log v1

Kv̄2α−1
1

Iα⩾1/2

)
+

8nρW γ2y
(
1 + ζ2u

)
(1− ρW )

2

(
C2−4β

(1− 2β)K2β
Iβ<1/2 +

1 + log uK − log v1

Kū2β−1
1

Iβ⩾1/2

)
,

(27)

where I[·] ∈ {0, 1} is the indicator for specific condition, and the initial consensus error ∆0 can be
set to 0 with proper initialization.

Proof. Firstly, for the primal variables, we have

E
[
∥xk+1 − 1x̄k+1∥2

]
= E

[∥∥W (
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k )
)
− J

(
xk − γxV −α

k+1∇xF (xk,yk; ξ
x
k )
)∥∥2]

⩽
1 + ρW

2
E
[
∥xk − 1x̄k∥2

]
+

2γ2x (1 + ρW ) ρW
1− ρW

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

+
2γ2x (1 + ρW ) ρW

1− ρW
E
[∥∥(V −α

k+1 − v̄
−α
k+1I

)
∇xF (xk,yk; ξ

x
k )
∥∥2] .

(28)

Then, by the definition of ζv in (7), we have

E
[∥∥(V −α

k+1 − v̄
−α
k+1I

)
∇xF (xk,yk; ξ

x
k )
∥∥2] ⩽ ζ2vE

[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]
, (29)

and thus
K−1∑
k=0

E
[
∥xk+1 − 1x̄k+1∥2

]
⩽

2

1− ρW
E
[
∥xk − 1x̄k∥2

]
+

8γ2xρW
(
1 + ζ2v

)
(1− ρW )

2

K−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]
.

(30)

Then, we bound the last term on the RHS of the above inequality by Lemma 6. For the case α < 1/2,
by Assumption 4 we have

K−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

=

K−1∑
k=0

n∑
i=1

E


∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2
v̄2αk+1

 ⩽
n
(
KC2

)1−2α

(1− 2α)
;

(31)

for the case α ⩾ 1/2, with the help of Lemma 2, we have
K−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

=

K−1∑
k=0

n∑
i=1

E


∥∥∥∇xFi

(
xi,k, yi,k; ξ

x
i,k

)∥∥∥2
v̄k+1 · v̄2α−1

k+1

 ⩽
n (1 + log vT − log v1)

v̄2α−1
1

.

(32)

For the dual variable, we have

yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

=Wyk + γy∇yĜ
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where

∇yĜ =
1

γy

(
PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
−Wyk

)
.

Then, using Young’s inequality with parameter λ, we have

E
[
∥yk+1 − 1ȳk+1∥2

]
= E

[∥∥∥Wyk + γy∇yĜ− J
(
Wyk + γy∇yĜ

)∥∥∥2]
⩽ (1 + λ) ρWE

[
∥yk − Jyk∥

2
]

+

(
1 +

1

λ

)
E
[∥∥∥PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
−Wyk

∥∥∥2]
⩽

1 + ρW
2

E
[
∥yk − Jyk∥

2
]

+
1 + ρW
1− ρW

E
[∥∥∥PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
−Wyk

∥∥∥2] .
Noticing that Wyk = PY (Wyk) holds for convex set Y , we get

E
[
∥yk+1 − 1ȳk+1∥2

]
⩽

1 + ρW
2

E
[
∥yk − Jyk∥

2
]

+
1 + ρW
1− ρW

E
[(∥∥∥PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))
− PY (Wyk)

∥∥∥)2]
⩽

1 + ρW
2

E
[
∥yk − Jyk∥

2
]
+

1 + ρW
1− ρW

E
[∥∥∥γyU−β

k+1∇yF (xk,yk; ξ
y
k)
∥∥∥2]

⩽
1 + ρW

2
E
[
∥yk − Jyk∥

2
]
+

4γ2y
(
1 + ζ2u

)
(1− ρW )

E
[
ū−2β
k+1 ∥∇yF (xk,yk; ξ

y
k)∥

2
]
,

where we have used the non-expansiveness of projection operator. Then, we have

K−1∑
k=0

E
[
∥yk − 1ȳk∥2

]
⩽

2

1− ρW
E
[
∥y0 − Jy0∥

2
]
+

8γ2y
(
1 + ζ2u

)
(1− ρW )

2

K−1∑
k=0

E
[
ū−2β
k+1 ∥∇yF (xk,yk; ξ

y
k)∥

2
]
.

Similar to the primal variable, we can bound the last term above, which completes the proof.

Finally, we need to bound the term S3 i.e., the optimality gap in dual variable. The intuition of the
proof relies on the adaptive two time-scale protocol, that is, for given α and β, we try to find the
threshold value of the iterations k0, after which the inner sub-problem can be well solved (faster) to
ensure that the computation of outer sub-problem can be solved accurately (slower). In specific, we
suppose ūk ⩽ G hold for k = 0, 1, · · · , k0 − 1, then the analysis is divided into two phases.
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Lemma 8 (First phase). Suppose Assumption 1-5 hold. If ūk ⩽ G, k = 0, 1, · · · , k0 − 1, we have
k0−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]

⩽
k0−1∑
k=0

E [S1,k] +
γ2xκ

2
(
1 + ζ2v

)
G2β

nµγ2y

k0−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

+
γy
(
1 + ζ2u

)
n

k0−1∑
k=0

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n

k0−1∑
k=0

E
[
∥xk − 1x̄k∥2

]

+
4

µ

k0−1∑
k=0

E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ C

k0−1∑
k=0

E

[√
1

n
∥yk − 1ȳk∥2

]
,

(33)

where

S1,k :=
1− 3µγyū

−β
k+1/4

2γyū
−β
k+1n

∥yk − 1y∗ (x̄k)∥2 −
∥yk+1 − 1y∗ (x̄k+1)∥2(
2 + µγyū

−β
k+1

)
γyū

−β
k+1n

. (34)

Proof. Firstly, we use Young’s inequality with parameter λk,
1

n
∥yk+1 − 1ȳ∗ (x̄k+1)∥2

⩽
(1 + λk)

n
∥yk+1 − 1y∗ (x̄k)∥2 +

(
1 +

1

λk

)
∥y∗ (x̄k)− y∗ (x̄k+1)∥2 .

(35)

Recalling that yk+1 = PY

(
W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
))

, we further define

ŷk+1 =W
(
yk + γyU

−β
k+1∇yF (xk,yk; ξ

y
k)
)
.

Then, for the first term on the RHS of (35), by the non-expansiveness property of projection operator
PY(·) (c.f., Lemma 1 in (Nedic et al., 2010)), we have

1

n
∥yk+1 − 1y∗ (x̄k)∥2

⩽
1

n
∥ŷk+1 − 1y∗ (x̄k)∥2 −

1

n
∥yk+1 − ŷk+1∥2

⩽
1

n
∥yk − 1y∗ (x̄k)∥2 +

γ2y
n

∥∥∥U−β
k+1∇yF (xk,yk; ξ

y
k)
∥∥∥2

− 1

n

n∑
i=1

2
〈
γyū

−β
k+1g

y
i,k, yi,k − y

∗ (x̄k)
〉
− 1

n

n∑
i=1

2
〈
γy

(
u−β
i,k+1 − ū

−β
k+1

)
gyi,k, yi,k − y

∗ (x̄k)
〉
,

(36)
wherein the last inequality we have used the fact ∥W∥22 ⩽ 1. Then, multiplying by 1/

(
γyū

−β
k+1

)
on

both sides of (35) we get
1

nγyū
−β
k+1

∥yk+1 − 1y∗ (x̄k)∥2

⩽
1 + λk

λkγyū
−β
k+1

∥ȳ∗ (x̄k)− ȳ∗ (x̄k+1)∥2

+ (1 + λk)

(
1

nγyū
−β
k+1

∥yk − 1y∗ (x̄k)∥2 +
γy

nū−β
k+1

∥∥∥U−β
k+1∇yF (xk,yk; ξ

y
k)
∥∥∥2)

− (1 + λk)

(
1

n

n∑
i=1

2
〈
gyi,k, yi,k − y

∗ (x̄k)
〉
− 1

n

n∑
i=1

2

〈(
u−β
i,k+1 − ū

−β
k+1

ū−β
k+1

)
gyi,k, yi,k − y

∗ (x̄k)

〉)
.

(37)
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For the inner-product terms on the RHS, taking expectation on both sides, we have

1

n

n∑
i=1

E
[
−2
〈
gyi,k, yi,k − y

∗ (x̄k)
〉]

=
1

n

n∑
i=1

E [−2 ⟨∇yfi (x̄k, yi,k) , yi,k − y∗ (x̄k)⟩]

+
1

n

n∑
i=1

E [−2 ⟨∇yfi (xi,k, yi,k)−∇yfi (x̄k, yi,k) , yi,k − y∗ (x̄k)⟩]

⩽
1

n

n∑
i=1

E
[
−2 (fi (x̄k, y∗ (x̄k))− fi (x̄k, yi,k))− µ ∥yi,k − y∗ (x̄k)∥2

]
+

1

n

n∑
i=1

E
[
8

µ
∥∇yfi (xi,k, yi,k)−∇yfi (x̄k, yi,k)∥2 +

µ

8
∥yi,k − ȳ∗ (x̄k)∥2

]

⩽ E [−2 (f (x̄k, y∗ (x̄k))− f (x̄k, ȳk))] +
1

n

n∑
i=1

E [−2 (fi (x̄k, ȳk)− fi (x̄k, yi,k))]

+
8κL

n

n∑
i=1

E
[
∥xi,k − x̄k∥2

]
− 7µ

8n

n∑
i=1

E
[
∥yi,k − y∗ (x̄k)∥2

]
,

(38)

where we have used Young’s inequality and strongly-concavity of fi, and

1

n

n∑
i=1

E

[
−2

〈(
u−β
i,k+1 − ū

−β
k+1

ū−β
k+1

)
gyi,k, yi,k − y

∗ (x̄k)

〉]

⩽
1

n

n∑
i=1

E

 8

µ

∥∥∥∥∥
(
u−β
i,k+1 − ū

−β
k+1

ū−β
k+1

)
gyi,k

∥∥∥∥∥
2

+
µ

8
∥yi,k − y∗ (x̄k)∥2

. (39)

For the consensus error of dual variable on objective function, using strongly-concavity of fi and
Jensen’s inequality, we have

1

n

n∑
i=1

−2 (fi (x̄k, ȳk)− fi (x̄k, yi,k))

⩽
1

n

n∑
i=1

2 ⟨∇yfi (x̄k, ȳk) , yi,k − ȳk⟩ −
µ

n
∥yk − 1ȳk∥2

⩽ 2C
1

n

n∑
i=1

∥yi,k − ȳk∥ ⩽ 2C

√
1

n
∥yk − 1ȳk∥2.

(40)

Letting λk = µγyū
−β
k+1/2, we get

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽ E

1− 3µγyū
−β
k+1/4

2γyū
−β
k+1n

∥yk − 1y∗ (x̄k)∥2 −
∥yk+1 − 1y∗ (x̄k+1)∥2(
2 + µγyū

−β
k+1

)
γyū

−β
k+1n


+
γ2xκ

2
(
1 + ζ2v

)
G2β

nµγ2y
E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

+
γy
(
1 + ζ2u

)
n

n∑
i=1

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n
E
[
∥xk − 1ȳk∥2

]

+
4

µ
E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+ CE

[√
1

n
∥yk − 1ȳk∥2

]
.

(41)
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By the κ-smoothness of y∗, we have

∥y∗ (x̄k+1)− y∗ (x̄k)∥2

⩽ κ2 ∥x̄k+1 − x̄k∥2

= κ2

∥∥∥∥∥γxv̄−α
k+1

1T

n
∇xF (xk,yk; ξk)− γx

(
ṽ−α
k+1

)T
n

∇xF (xk,yk; ξ
x
k )

∥∥∥∥∥
2

⩽
2γ2xκ

2
(
1 + ζ2v

)
v̄−2α
k+1

n
∥∇xF (xk,yk; ξ

x
k )∥

2
.

(42)

Telescoping the obtained terms from 0 to k0 − 1 and noticing that ūk ⩽ G for k ⩽ k0 − 1 we
complete the proof.

For the second phase, i.e., k ⩾ k0, we have the following lemma.

Lemma 9 (Second phase). Suppose Assumption 1-5 hold. If ūk ⩽ G, k = 0, 1, · · · , k0−1, we have

K−1∑
k=k0

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽
K−1∑
k=k0

E [S1,k] +
8γ2xκ

2
(
1 + ζ2v

)
µγ2yG

2α−2β

K−1∑
k=k0

∥∇xf (x̄k, ȳk)∥2

+

(
8γ2xκ

2L2
(
1 + ζ2v

)
nµγ2yG

2α−2β
+

4κL

n

)
K−1∑
k=k0

E [∆k]

+
γy
(
1 + ζ2u

)
n

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+ C

K−1∑
k=k0

E

[√
1

n
∥yk − 1ȳk∥2

]

+
γ2x
(
1 + ζ2v

)
γy v̄

α−β
1

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
K−1∑
k=k0

E

[
v̄−α
k+1

n
∥∇xF (xk,yk; ξ

x
k )∥

2

]

+
2γxκ (1 + ζv)C

2

µγy v̄α1
E
[
ūβK

]
+

4

µ

K−1∑
k=k0

E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
.

(43)

Proof. Firstly, by the non-expansiveness of projection operator, we have

∥yi,k+1 − y∗ (x̄k+1)∥2

⩽ ∥ŷi,k+1 − y∗ (x̄k+1)∥2 − ∥yi,k+1 − ŷi,k+1∥2

= ∥ŷi,k+1 − y∗ (x̄k)∥2 + ∥y∗ (x̄k+1)− y∗ (x̄k)∥2

− 2 ⟨ŷi,k+1 − y∗ (x̄k) , y∗ (x̄k+1)− y∗ (x̄k)⟩
= ∥ŷi,k+1 − y∗ (x̄k)∥2 + ∥y∗ (x̄k+1)− y∗ (x̄k)∥2

− 2 (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (x̄k+1 − x̄k)T

− 2 (ŷi,k+1 − y∗ (x̄k))T
(
y∗ (x̄k+1)− y∗ (x̄k)−∇y∗ (x̄k) (x̄k+1 − x̄k)T

)
.

(44)
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Then, for the first inner-product term on the RHS, letting ∇xF̃k = ∇xF (xk,yk; ξk) −
∇xF (xk,yk), we get

− 2 (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (x̄k+1 − x̄k)T

= 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (∇xF (xk,yk))
T

(
1v̄−α

k+1

n
+

ṽ−α
k+1

n

)

+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)

⩽ 2γxκ ∥ŷi,k+1 − y∗ (x̄k)∥

∥∥∥∥∥(∇xF (xk,yk))
T

(
1v̄−α

k+1

n
+

ṽ−α
k+1

n

)∥∥∥∥∥
+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)

(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(45)

wherein the last inequality we have used the fact that y∗ is κ-Lipschitz. Then, using Young’s in-
equality with parameter λk, we get

− 2 (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k) (x̄k+1 − x̄k)T

⩽ λk ∥ŷi,k+1 − y∗ (x̄k)∥2

+
2γ2xv̄

−2α
k+1 κ

2

λk

∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
nv̄−α

k+1

∇xF (xk,yk)

∥∥∥∥∥
2


+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃k

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(46)

For the second inner-product term on the RHS, noticing that y∗ is L̂ = κ (1 + κ)
2 smooth given in

Lemma 3, we have

2 (ŷi,k+1 − y∗ (x̄k))T
(
y∗ (x̄k)− y∗ (x̄k+1) +∇y∗ (x̄k) (x̄k+1 − x̄k)T

)
⩽ 2 ∥ŷi,k+1 − y∗ (x̄k)∥ ∥y∗ (x̄k)− y∗ (x̄k+1) +∇y∗ (x̄k) (x̄k+1 − x̄k)∥2

⩽ 2 ∥ŷi,k+1 − y∗ (x̄k)∥
L̂

2
∥x̄k+1 − x̄k∥2

⩽ γ2xL̂ ∥ŷi,k+1 − y∗ (x̄k)∥

∥∥∥∥∥
(
v̄−α
k+11

T

n
+

(
ṽ−α
k+1

)T
n

)
∇xF (xk,yk; ξ

x
k )

∥∥∥∥∥
2

⩽ γ2xL̂ ∥ŷi,k+1 − y∗ (x̄k)∥
2v̄−2α

k+1

(
1 + ζ2v

)
C

n
∥∇xF (xk,yk; ξ

x
k )∥

⩽ τγ2xv̄
−2α
k+1

(
1 + ζ2v

)
C2L̂ ∥ŷi,k+1 − y∗ (x̄k)∥2 +

γ2xv̄
−2α
k+1

(
1 + ζ2v

)
L̂

τn
∥∇xF (xk,yk; ξ

x
k )∥

2
,

(47)
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wherein the last inequality we have used Young’s inequality with parameter τ . Plugging the obtained
inequalities into (44), we get

∥yi,k+1 − y∗ (x̄k+1)∥2

⩽
(
1 + λk + τγ2xv̄

−2α
k+1

(
1 + ζ2v

)
C2L̂

)
∥ŷi,k+1 − y∗ (x̄k)∥2

+
γ2xv̄

−2α
k+1

(
1 + ζ2v

)
n

(
2κ2 +

L̂

τ

)
∥∇xF (xk,yk; ξk)∥2

+
2γ2xv̄

−2α
k+1 κ

2
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∥∥∥∥1T

n
∇xF (xk,yk)

∥∥∥∥2 +
∥∥∥∥∥
(
ṽ−α
k+1

)T
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k+1

∇xF (xk,yk)

∥∥∥∥∥
2


+ 2γx (ŷi,k+1 − y∗ (x̄k))T ∇y∗ (x̄k)
(
∇xF̃

)T (1v̄−α
k+1

n
+

ṽ−α
k+1

n

)
.

(48)

Set the parameters for Young’s inequalities we used as follows,

λk =
µγyū

−β
k+1

4
, τ =

µγy v̄
2α−β
0

4γ2x (1 + ζ2v )C
2L̂
, (49)

we get

∥yi,k+1 − y∗ (x̄k+1)∥2

⩽
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2

)
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)
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1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
0
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∥∥∥∥∥
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(50)

Recalling that

1

n

n∑
i=1

E

[
1

γyū
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∥∥∥∥∥ ũ−β
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,
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multiplying by 2

(2+µγyū
−β
k+1)γyū

−β
k+1

on both sides of (50), we obtain that
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E
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nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+CE

[√
1

n
∥yk − 1ȳk∥2
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(
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(51)

Telescoping the terms, we get

K−1∑
k=k0

E [f (x̄k, ȳ
∗ (x̄k))− f (x̄k, ȳk)]

⩽
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K−1∑
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E
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k+1 ∥∇yF (xk,yk; ξk)∥2

]
+

4κL

n

K−1∑
k=k0

E
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4

µ
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∥∥∥∥∥
2
+ C

K−1∑
k=k0

E

[√
1

n
∥yk − 1ȳk∥2

]
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(52)

Next we need to further bound the sums of term E [S2,k], E [S3,k] and E [S4,k] respectively.

K−1∑
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E [S2,k]

⩽
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E
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n
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∥∥∥∥∥
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∥∥∥∥∥
2
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⩽
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E
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(53)
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then

K−1∑
k=k0

E [S3,k]

⩽
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E
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∥∇xF (xk,yk; ξ
x
k )∥

2

]

⩽
γ2x
(
1 + ζ2v

)
γy v̄

α−β
1

(
κ2 +

2γ2x
(
1 + ζ2v
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(54)

for the term S4,k, we denote

ek :=
γx

γyū
−β
k+1

(
1

n
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n
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ṽ−α
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)
,

then we have

|ek| ⩽
γxκ

γyū
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1

n
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)∥∥∥∥∥
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1
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M

,
(55)

where we have used the Lipschitz continuity of y∗ given in Lemma 3 and Assumption 4. Then,
noticing that E

[
∇xF̃k

]
= 0, we obtain
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k=k0

E
[
ekv̄

−α
k+1

]

= E
[
ek0

v̄−α
k0+1

]
+

K−1∑
k=k0+1

E
[
ekv̄

−α
k

]
︸ ︷︷ ︸
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]
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(56)

Therefore combining the obtained inequalities, we complete the proof.

Now, it remains to bound term S1,k.

Lemma 10. Suppose Assumption 1-5 hold. We have

K−1∑
k=0

E [S1,k] ⩽
1

2γyū
−β
1 n

∥y0 − 1y∗ (x̄0)∥2 +
(
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)2+ 1
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2µ3+ 1
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2+ 1
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1

. (57)
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Proof. Firstly, we have
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−β
k+1n

∥yk − 1y∗ (x̄k)∥2 −
∥yk+1 − 1y∗ (x̄k+1)∥2(
2 + µγyū
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(58)

Next, we show that the term 1

2γyū
−β
k+1

− 1

2γyū
−β
k

− µ
8 is positive for only a constant number of times.

If the term is positive, noticing that
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(59)

wherein the last inequality we used Bernoulli’s inequality. Then we have the following two condi-
tions,  1

n ∥∇yF (xk,yk; ξk)∥2 ⩾
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which implies that we have at most the following iteration(
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µγy

) 1
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µγyū
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1
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when the term is positive. Furthermore, when the term is positive, it is also upper bounded,(
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and we have
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(63)

which completes the proof.

In this part, we bound the term of inconsistency of stepsizes S3, which is crucial for the convergence
of the proposed algorithm with stepsize control. The formal lemma is given in Lemma 1 in the main
text, we give the proof as below.

B.3 PROOF OF LEMMA 1

Proof of Lemma 1. By the definition of vi,k in (3), we have

E
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Noticing that |v̄
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By Lemma 6, we get

1
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(66)

Next, for the term of inconsistency of the stepsize ∥vk − 1v̄k∥2, we consider two cases since the
max operator we used. At iteration k, for the case mx

k ⩾ my
k, we have

E
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]
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⩽
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(67)

where we set ∥mx
0 − 1m̄x

0∥
2
= 0; for the case mx

k <my
k, with ∥my
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0∥

2
= 0,

E
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]
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Combining these two cases, and using Lemma 6 and the fact ∥vα
k − 1v̄αk ∥

2 ⩽ ∥vk − 1v̄k∥2α for
α ∈ (0, 1), we complete the proof.

We further give the following lemma to show that the inconsistency of stepsize remains uniformly
bounded for the vanilla D-TiAda algorithm (2).

Lemma 11 (Inconsistency for D-TiAda). Suppose Assumption 1-5 hold. For D-TiAda, we have
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(69)

Proof. By the definition of inconsistency of stepsizes in (7) and Assumption 4 on bounded gradient,
we immediately get the result.
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B.4 PROOF OF THEOREM 1

Proof of Theorem 1. Consider a complete graph with 3 nodes where the functions corresponding to
the nodes are:

f1(x, y) = −
1

2
y2 + xy − 1

2
x2,

f2(x, y) = f3(x, y) = −
1

2
y2 − (1 +

1

a
+

1

b
)xy − 1

2
x2,

where

a = 2
−1

2α−1 and b = 2
−1

2β−1 .

Notice that the only stationary point of f(x, y) = (f1(x, y) + f2(x, y) + f3(x, y))/3 is (0, 0). We
denote gxi,k = ∇xfi(xk, yk) and gyi,k = ∇yfi(xk, yk).

Now we consider points initialized in line

y = − 1 + a

a+ a
b

x, (70)

where we have

gx1,0 = y0 − x0 = −2ab+ a+ b

ab+ a
x0

gx2,0 = gx3,0 = −
(
1 +

1

b
+

1

a

)
y0 − x0 =

2ab+ a+ b

a2(b+ 1)
x0

gy1,0 = x0 − y0 =
2ab+ a+ b

ab+ a
x0

gy2,0 = gy2,0 = −2ab+ a+ b

ab(b+ 1)
x0.

Note that by our assumptions of the range of α and β, we have a < b, so we have
|gx1,0| = |g

y
1,0| and |gx2,0| > |g

y
2,0|,

which means gradient of x would be chosen in the maximum operator in the denominator of TiAda
stepsize for x. Therefore, after one step, we have

x1 = x0 − ηx
(

gx1,0(
|gx1,0|2

)α +
gx2,0(
|gx2,0|2

)α +
gx3,0(
|gx3,0|2

)α
)

︸ ︷︷ ︸
=0

y1 = y0 − ηy
(

gy1,0(
|gy1,0|2

)β +
gy2,0(
|gy2,0|2

)β +
gy3,0(
|gy3,0|2

)β
)

︸ ︷︷ ︸
=0

.

Next, we will use induction to show that x and y will stay in x0 and y0 for any iteration. Assume for
all iterations k in 1, . . . , t, xk = x0 and yk = y0, then we have in next step

xt+1 = xt − ηx
(

gx1,0(
t · |gx1,0|2

)α +
gx2,0(

t · |gx2,0|2
)α +

gx3,0(
t · |gx3,0|2

)α
)
.

Note that gx1,0 = −a · gx2,0, then we get

xt+1 = xt − ηx
(

−p · gx2,0
tα · a2α · |gx2,0|2α

+
2gx2,0

tα · |gx2,0|2α

)

= xt −
gx2,0

tα · |gx2,0|2α
(
2− a1−2α

)︸ ︷︷ ︸
=0 (by definition of a)

= xt.

Similarly, we can show that yt+1 = yt. Therefore all iterates will stay at (x0, y0) if initialized at line
y = − ab+b

ab+ax. The initial gradient norm can be arbitrarily large by picking x0 to be large.
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B.5 PROOF OF THEOREM 2

Proof of Theorem 2. Combining the results in Lemma 8, 9 and 10, we get
K−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]

=

k0−1∑
k=0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)] +

K−1∑
k=k0

E [f (x̄k, y
∗ (x̄k))− f (x̄k, ȳk)]

⩽
1

2γyū
−β
1 n

E
[
∥y0 − 1y∗ (x̄0)∥2

]
+

(
4βC2

)2+ 1
1−β

2µ3+ 1
1−β γ

2+ 1
1−β

y ū2−2β
1

+
2γ2xκ

2
(
1 + ζ2v

)
G2β

nµγ2y

k0−1∑
k=0

E
[
v̄−2α
k+1 ∥∇xF (xk,yk; ξ

x
k )∥

2
]

+
γy
(
1 + ζ2u

)
n

K−1∑
k=0

E
[
ū−β
k+1 ∥∇yF (xk,yk; ξk)∥2

]
+ C

K−1∑
k=0

E

[√
1

n
∥yk − 1ȳk∥2

]

+
4

µ

K−1∑
k=0

E

∥∥∥∥∥ ũ−β
k+1

nū−β
k+1

∇yF (xk,yk; ξ
y
k)

∥∥∥∥∥
2
+

8γ2xκ
2
(
1 + ζ2v

)
µγ2yG

2α−2β

K−1∑
k=k0

∥∇xf (x̄k, ȳk)∥2

+

(
8γ2xκ

2L2
(
1 + ζ2v

)
nµγ2yG

2α−2β
+

4κL

n

)
K−1∑
k=0

E [∆k] +
2γxκ (1 + ζv)C

2

µγy v̄α1
E
[
ūβK

]
+
γ2x
(
1 + ζ2v

)
γy v̄

α−β
1

(
κ2 +

2γ2x
(
1 + ζ2v

)
C2L̂2

µγy v̄
2α−β
1

)
K−1∑
k=k0

E

[
v̄−α
k+1

n
∥∇xF (xk,yk; ξ

x
k )∥

2

]
.

(71)

Letting the dividing point between the two phase in Lemma 8 and 9 satisfy

G =

(
16
(
1 + ζ2v

)
γ2xκ

4

γ2y

) 1
2α−2β

, (72)

then, plugging above inequality into (18) in Lemma 5, with the help of Lemma 6-10 and Lemma 1,
we can get the following result,

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
⩽ E0 + EG + EW +

8C2α (Φmax − Φ∗)

γxK1−α

+
16γxκ

3 (1 + ζv)C
2+2β

γy v̄α1K
1−β

+
8κLγy

(
1 + ζ2u

)
C2−2β

(1− β)Kβ

+

(
γxLΦ +

κ3Lγ2x

γy v̄
α−β
1

+
2γ4xκ

2
(
1 + ζ2v

)
C2L̂2

γ2y v̄
3α−2β
1

)
8
(
1 + ζ2v

)
C2−2α

(1− α)Kα

+

√√√√ 1

n1−α

(
4ρW

(1− ρW )
2

)α
16 (1 + ζv) ζvC

2−α

(1− α)Kα

+

√√√√ 1

n1−β

(
4ρW

(1− ρW )
2

)β
32κ2 (1 + ζu) ζuC

2−β

(1− β)Kβ

+ 8κLC

√√√√8ρW γ2y (1 + ζ2u)

(1− ρW )
2

(
C2−4β

(1− 2β)K2β
Iβ<1/2 +

1 + log uK − log v1

Kū2β−1
1

Iβ⩾1/2

)
,

(73)
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Algorithm 2 DAS2C with coordinate-wise adaptive stepsize
Initialization: xi,0, yi,0 ∈ Rp, buffers mx

i,0,m
y
i,0 > 0, stepsizes γx, γy > 0 and 0 < β < α < 1.

1: for iteration k = 0, 1, · · · , each node i ∈ [n], do
2: Sample i.i.d ξxi,k and ξyi,k, compute:

gxi,k = ∇xfi
(
xi,k, yi,k; ξ

x
i,k

)
, gyi,k = ∇yfi

(
xi,k, yi,k; ξ

y
i,k

)
.

3: Update local gradient sums with Schur product:

mx
i,k+1 = mx

i,k + gxi,k ⊙ gxi,k, m
y
i,k+1 = my

i,k + gyi,k ⊙ g
y
i,k

4: Compute the ratio between two gradient sums:

ψi,k+1 =
∥∥mx

i,k+1

∥∥2α /max

{∥∥mx
i,k+1

∥∥2α ,∥∥∥my
i,k+1

∥∥∥2α} ⩽ 1.

5: Update primal and dual variables locally:

xi,k+1 = xi,k − γxψi,k+1

(
mx

i,k+1

)−α ⊙ gxi,k,

yi,k+1 = yi,k − γy
(
my

i,k+1

)−β

⊙ gyi,k.

6: Communicate parameters over network:{
mx

i,k+1,m
y
i,k+1, xi,k+1, yi,k+1,

}
←
∑
j∈Ni

Wi,j

{
mx

j,k+1,m
y
j,k+1, xj,k+1, yj,k+1,

}
.

7: Projection of dual variable on to set Y: yi,k+1 ← PY (yi,k+1).
8: end for

where L̂ = κ (1 + κ)
2
, LΦ = L (1 + κ), and

E0 :=
4κL

γyū
−β
1 nK

E
[
∥y0 − 1y∗ (x̄0)∥2

]
+

4κ2
(
4βC2

)2+ 1
1−β

µ2+ 1
1−β γ

2+ 1
1−β

y ū2−2β
1 K

,

EG :=
16γ2xκ

4
(
1 + ζ2v

)
G2β

γ2y

(
C2−4α

(1− 2α)K2α
Iα<1/2 +

1 + log vK − log v1

Kv̄2α−1
1

Iα⩾1/2

)
,

EW :=
32
(
8κL+ 3L2

)
ρW γ2x

(
1 + ζ2v

)
(1− ρW )

2

(
C2−4α

(1− 2α)K2α
Iα<1/2 +

1 + log vK − log v1

Kv̄2α−1
1

Iα⩾1/2

)
+

32
(
8κL+ 3L2

)
ρW γ2y

(
1 + ζ2u

)
(1− ρW )

2

(
C2−4β

(1− 2β)K2β
Iβ<1/2 +

1 + log uK − log v1

Kū2β−1
1

Iβ⩾1/2

)
.

Let the total iterationK satisfy the conditions in (12) such that the termsEG andEW are dominated,
we thus complete the proof.

B.5.1 PROOF OF COROLLARY 1

Proof of Corollary 1. With the help of Lemma 11, we can directly adapt the proof of Theorem 2 to
get the result in (14).

B.6 EXTEND THE PROOF TO COORDINATE-WISE STEPSIZE

In this subsection, we show how to extend our convergence analysis of DAS2C to the coordinate-
wise adaptive stepsize (Zhou et al., 2018) variant. We first present this variant in the Algorithm 2,
which can be rewritten in a compact form with the Schur product denoted by ⊙.
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mx
k+1 =W (mx

k + hx
k) , (74a)

my
k+1 =W (my

k + hy
k) , (74b)

xk+1 =W
(
xk − γxV −α

k+1 ⊙∇xF (xk,yk; ξk)
)
, (74c)

yk+1 = PY

(
W
(
yk + γyU

−β
k+1 ⊙∇yF (xk,yk; ξk)

))
, (74d)

where

hx
k =

[
· · · , gxi,k ⊙ gxi,k, · · ·

]T ∈ Rn×p, hy
k =

[
· · · , gyi,k ⊙ g

y
i,k, · · ·

]T
∈ Rn×d,

and the matrices Uα
k and V β

k are redefined as follows:

V −α
k =

[
· · · , v−α

i,k , · · ·
]T
, [vi,k]j = max

{[
mx

i,k

]
j
,
[
my

i,k

]
j

}
, j ∈ [p] ,

U−β
k =

[
· · · , u−β

i,k , · · ·
]T
, [ui,k]j =

[
mx

i,k

]
j
, j ∈ [d]

(75)

where [·]j denotes the j-th element of a vector.

Recalling the definitions of inconsistency of stepsize in (7), we give the following notations:

Ṽk = Vk − v̄k11T
p , v̄k =

1

np

n∑
i=1

p∑
j

Vij , v̄i,k =
1

p

p∑
j

Vij , v̄j,k =
1

n

n∑
i=1

Vij ,

Ũk = Uk − ūk11T
p , ūk =

1

nd

n∑
i=1

d∑
j

Uij , ūi,k =
1

d

d∑
j

Uij , ūj,k =
1

n

n∑
i=1

Uij ,

(76)

and

ζ2V = sup
k⩾0

{∥∥V −α
k − v̄−α

k 11T
p

∥∥2
np
(
v̄−α
k

)2
}
, ζ̂2v = sup

k⩾0


∥∥∥V −α

k − (VkJp)
−α
∥∥∥2

np
(
v̄−α
k

)2
 ,

ζ2U = sup
k⩾0


∥∥∥U−β

k − ū−β
k 11T

d

∥∥∥2
nd
(
ū−β
k

)2
 , ζ̂2u = sup

k⩾0


∥∥∥U−β

k − (UkJd)
−β
∥∥∥2

nd
(
ū−β
k

)2
 .

According to the two definitions of inconsistency of stepsize for Option I and II, we can give the
following lemma to show their difference.
Lemma 12 (Inconsistency, coordinate-wise). Suppose Assumption 1-5 hold. For the proposed
DAS2C algorithm, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k )

∥∥∥∥∥
2


⩽ 2 (1 + ζv) ζv

√√√√ 1

n1−α

(
4C2ρW

(1− ρW )
2

)α
C2−2α

(1− α)Kα
+ 2npζ̂2vC

2

(77)

and
1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nū−α
k+1

Ũ−α
k+1 ⊙∇yF (xk,yk; ξ

y
k)

∥∥∥∥∥
2


⩽ 2 (1 + ζu) ζu

√√√√ 1

n1−β

(
4C2ρW

(1− ρW )
2

)β
C2−2β

(1− β)Kβ
+ 2ndζ̂2uC

2.

(78)
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In contrast, for D-TiAda, we have

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k )

∥∥∥∥∥
2
 ⩽ pζ2V C

2,

1

K

K−1∑
k=0

E

∥∥∥∥∥ 1T

nū−α
k+1

Ũ−β
k+1 ⊙∇yF (xk,yk; ξ

y
k)

∥∥∥∥∥
2
 ⩽ dζ2UC

2.

(79)

Proof. For the coordinate-wise stepsize, with the help of Lemma 4, we have

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k )
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2


= E
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V −α
k+1 − (Vk+1J)

−α
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k+111

T
p
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x
k )

∥∥∥∥∥
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

⩽ 2E
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nv̄−α
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(Vk+1J)
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k+111

T
p

)
⊙∇xF (xk,yk; ξ

x
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∥∥∥∥∥
2


+ 2E
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nv̄−α
k+1

(
V −α
k+1 − (Vk+1J)

−α
)
⊙∇xF (xk,yk; ξ

x
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2
 .

(80)

For the first term in the last line, by Lemma 4, we have

E
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x
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2


⩽ E

[
1
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)2 ∥∥∇xfi
(
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x
i,k

)∥∥2] .
(81)

which is a similar term with Option I and is convergent. Then, for the second part,

E

∥∥∥∥∥ 1T

nv̄−α
k+1

(
V −α
k+1 − (Vk+1J)
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)
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2


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[
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x
k )∥

2
]
.

(82)

where the term ζ̂2v cannot be guaranteed to be convergent because the step size between the different
dimensions of each node is inconsistent and uncontrolled. Noticing that for D-TiAda,

E

∥∥∥∥∥ 1T

nv̄−α
k+1

Ṽ −α
k+1 ⊙∇xF (xk,yk; ξ

x
k )
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2
 ⩽

1

n
E

∥∥∥∥∥ Ṽ −α
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2

∥∇xF (xk,yk; ξ
x
k )∥

2

 ⩽ pζ2V C
2,

(83)
Using Lemma 1, we complete the proof.

Theorem 3. Suppose Assumption 1-5 hold. Let 0 < α < β < 1 and the total iteration satisfy

K = Ω

max

1,

(
γ2xκ

4

γ2y

) 1
α−β

,

(
1

(1− ρW )
2

)max{ 1
α , 1β}


 .
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to ensure time-scale separation and quasi-independence of network. For DAS2C with coordinate-
wise adaptive stepsize, we have

1

K

K−1∑
k=0

E
[
∥∇Φ (x̄k)∥2

]
= Õ

(
1

K1−α
+

1

(1− ρW )
α
Kα

+
1

K1−β
+

1

(1− ρW )Kβ

)
+O

(
n
(
pζ̂2v + κ2dζ̂2u

)
C2
)
.

(84)

Proof. With the help of Lemma 12 and the obtained result (73) in the proof of Theorem 2, we can
derive the convergence results for DAS2C with coordinate-wise adaptive stepsize.

Remark 5. In Theorem 3, we show that there is a steady-state error in the upper bound of the
coordinate-wise variant of DAS2C depending on the number of nodes and the problem’s dimension.
However, it’s worth noting that the coordinate-wise scheme exhibits strong performance in numer-
ous real-world experiments, particularly for high-dimensional problems (Li et al., 2023) at the cost
of increased communication overhead. The observed gap between the theoretical analysis and ex-
perimental results can be attributed to our assumption of bounded gradients (c.f., Assumption 4 ,
i.e., ∥∇zfi (x, y; ξi)∥2 ⩽ C), which hides the information about the dimension of the problem. We
believe an interesting direction for future work is to find effective ways to close the gap.
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