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Abstract
DNA-Encoded Libraries (DELs) represent a trans-
formative technology in drug discovery, facilitat-
ing the high-throughput exploration of vast chem-
ical spaces. Despite their potential, the scarcity
of publicly available DEL datasets presents a bot-
tleneck for the advancement of machine learning
methodologies in this domain. To address this
gap, we introduce KinDEL, one of the largest
publicly accessible DEL datasets and the first
one that includes binding poses from molecular
docking experiments. Focused on two kinases,
Mitogen-Activated Protein Kinase 14 (MAPK14)
and Discoidin Domain Receptor Tyrosine Kinase
1 (DDR1), KinDEL includes 81 million com-
pounds, offering a rich resource for computational
exploration. Additionally, we provide comprehen-
sive biophysical assay validation data, encompass-
ing both on-DNA and off-DNA measurements,
which we use to evaluate a suite of machine learn-
ing techniques, including novel structure-based
probabilistic models. We hope that our bench-
mark, encompassing both 2D and 3D structures,
will help advance the development of machine
learning models for data-driven hit identification
using DELs.

1. Introduction
DNA-Encoded Libraries (DEL) have emerged as a powerful
tool in drug discovery, enabling highly efficient screens of
small molecule libraries against therapeutically relevant tar-
gets (Yuen & Franzini, 2017; Gironda-Martı́nez et al., 2021;
Kunig et al., 2021; Peterson & Liu, 2023). These massive
libraries are efficiently constructed through combinatorial

*Equal contribution 1Insitro, South San Francisco, CA 94080,
USA. Correspondence to: Benson Chen <benatorc@gmail.com>,
Tomasz Danel <tomek@insitro.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Step A Step B Step C

Figure 1: (Top) DELs are synthesized in a sequential man-
ner; at every step, the DNA codon specifies the next building
block (synthon) to be attached. (Bottom) An example of a
fully synthesized DEL molecule, with the building blocks
and codons colored-coded for visualizability. Typically,
there is also a linker that connects the molecule to the DNA,
which here is a 6-carbon chain.

synthesis of chemical building blocks, or synthons, with
each resulting molecule being assigned a DNA barcode (see
Figure 1). DELs are then used in selection experiments
where they are mixed with proteins of interest bound to a
matrix. Multiple rounds of washing are conducted to re-
move any weak binders, and the DNA tags of surviving
molecules are sequenced as a measure of binding affinity.
Data generated through these experiments are intrinsically
noisy with various sources of bias arising from the DEL
synthesis and selection processes, suggesting that modern
machine learning methods may be needed to learn signal
from the data. Unfortunately, there is still a lack of large,
publicly available DEL datasets and benchmarking tasks to
drive this important research area.

The growing interest in utilizing DEL data for modeling is
evidenced by the many recent efforts to advance this area
(Iqbal et al., 2024; Blevins et al., 2024; Gu et al., 2024).
One of the primary reasons for this interest is that selection
experiments using DELs alleviate some of the data limita-
tions typical of the field; most chemistry problems in the
machine learning domain lack consistent and sufficiently
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high-quality labels. In particular, DELs can contain billions
of compounds, and require fewer resources to run compared
to more traditional high-throughput screens (Peterson & Liu,
2023). However, the process of DEL synthesis and selec-
tion introduces various sources of bias that can add noise to
the observed data. For instance, DEL experiments measure
the affinity of molecules while they are attached to a DNA
barcode (hence, on-DNA binding). In contrast, during a real
therapeutic campaign, drug-like molecules are tested with-
out a DNA tag (off-DNA), meaning the DEL data is biased
by the DNA and the molecule’s attachment to it. Moreover,
uncertainties in reaction yields and biases in polymerase
chain reaction (PCR) amplification add additional noise to
the process. These difficulties have fueled an increasing
enthusiasm within the community for developing structured
computational models to more effectively interpret the data
signals.

Despite these challenges, several efforts have demonstrated
successful applications of machine learning to DEL data
(McCloskey et al., 2020). These early successes suggest that
there is still much to explore in this domain. Currently, most
methods have focused purely on discriminative modeling,
which plays a crucial role in drug discovery campaigns by
ranking prospective compounds in order to select potential
hits. These prediction methods typically utilize established
architectures, building upon both molecular fingerprints and
more sophisticated graph convolutional networks (Duve-
naud et al., 2015). More recently, efforts have been made
to pose the problem in a probabilistic manner, directly in-
corporating experimental uncertainty in the model structure
(Chen et al., 2024). These models leverage the fact that,
while individual data points may be noisy, it is generally
expected that groups of molecules with the same synthons
or substructures will show enrichment, or signal, when ana-
lyzed collectively. Additionally, DEL data can be employed
for generative modeling, providing weak supervision to nav-
igate the complex chemical landscape, which is valuable for
lead optimization steps of drug discovery.

To demonstrate the advantages of DEL data and promote
development of the methods described above, we release
KinDEL (Kinase Inhibitor DNA-Encoded Library) as li-
brary of 81 million small molecules tested against two
kinase targets, MAPK14 and DDR1. Our dataset, distin-
guished by its high consistency across experimental repli-
cates (see Appendix B), provides a large amount of super-
vised data for the machine learning community to develop
methods for solving small molecule chemistry problems in
drug discovery.

In addition to the KinDEL dataset, we provide a set of
benchmark tasks validated using biophysical assay data,
which we also release publicly. A major challenge in driv-
ing research in this area has been the dearth of benchmark

tasks to demonstrate the efficacy of using DEL data in de-
riving therapeutic insights. By releasing these benchmarks,
we aim to facilitate the comparison of various modeling
techniques currently applied to DELs. To seed these bench-
marks, we survey computational methods from the liter-
ature and build predictive models, validated through bio-
physical data from compounds independently resynthesized
both on- and off-DNA. Since DEL data primarily captures
on-DNA binding events, but our interest lies in off-DNA
binding affinity, these additional data are crucial for as-
sessing the models’ generalizability to diverse biophysical
data. Our studies show that models built on DEL data can
effectively characterize both on- and off-DNA affinities,
highlighting the usefulness of DEL data in drug discov-
ery. We hope that KinDEL serves as a public resource that
can facilitate the iterative refinement of chemical models
by providing supervised data in densely sampled chemical
spaces. Data and code for our benchmarks can be found at
https://github.com/insitro/kindel.

2. Dataset
We first introduce a high level summary of the dataset gen-
eration, and then provide an overview of the data that we
publicly release. The data generation is divided into roughly
three experimental processes, which are the synthesis of the
DEL, the subsequent selection experiments against proteins
of interest, and the biophysical assays to collect validation
data. Specific experimental details can be found in Ap-
pendix A.

2.1. Data Generation

DEL Synthesis The DEL is built as a trisynthon library
with 378 synthons in the A position, 1128 synthons in the B
position, and 191 synthons in the C position. The synthesis
is a sequential process, with each synthon specified by the
DNA tag and added one at a time. Notably, each molecule
does not have only a single encoding; instead, multiple en-
codings of DNA map to the same final molecular structure.
These redundant encodings help mitigate potential biases
during the subsequent DNA sequencing step. Rather than
counting the total number of amplified DNA associated with
a single molecule (which is subject to PCR noise), we count
the number of different redundant encodings observed for
each molecule. This library was designed to enhance scaf-
fold uniqueness and chemical diversity, thereby exploring a
broader region of chemical space. A simplified diagram of
synthesis can be found in Figure 1.

DEL Selection DEL Selection was performed by combining
the DEL with the target proteins, which were immobilized
on beads, as well as a negative control without any protein.
Multiple rounds of washes removed any weak binders in
the solution. The molecules were then extracted via elution,
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Figure 2: KinDEL data acquisition process. (a) DEL selection experiments are conducted by combining the DEL with
the protein target of interest immobilized onto Streptavidin beads. After multiple rounds of washing, the tight binders are
eluted off of the protein, and their corresponding DNA are sequenced to obtain the count data. (b) Molecules in the dataset
are represented as separate synthons A, B, and C and the combined product. The labels for each compound include the
pre-selection counts measured before panning and read counts for the targets and the matrix measured in triplicate.

and the subsequent samples were then amplified via PCR
and sequenced to obtain the count data. Each selection was
performed in triplicate with each protein. This process is
visualized in Figure 2.

Biophysical Assay Validation Additional biophysical data
on a small subset of molecules were collected both on- and
off-DNA (see Appendix C for more details on how these
molecules were selected). For on-DNA data, we use Flu-
orescence Polarization (FP), which utilizes polarized light
to quantify binding affinity by measuring the dissociation
constant (KD). For off-DNA data, we use Surface Plasmon
Resonance (SPR), which also relies on light to measure the
dissociation constant. The reason we collect both types of
data is because on-DNA KD data reveals insights about the
actual binding of the molecule in the DEL selection exper-
iment, while off-DNA KD focuses on interactions of the
molecules without a DNA barcode, which is the relevant
setting for an actual drug candidate.

2.2. Data Overview

DEL Data KinDEL contains count data for more than 81M
unique molecules used in selection experiments with two
proteins MAPK14 and DDR1. Typically, DEL experiments
are run with a negative control without the protein, so that
non-specific binding events (such as binding directly to

bead) can be captured. In our dataset we provide three (3)
replicates of data for each of the control and the protein
target conditions. As mentioned earlier, raw DNA counts
can be noisy due to PCR amplification bias (Aird et al.,
2011; Kebschull & Zador, 2015), so we use the sequence
count information as data, which measures the number of
unique DNA sequences observed for each molecule.

Pre-selection Data Additionally, we provide data about the
sequenced library itself, called pre-selection data, which
provides a rough estimate of the relative abundance of each
molecule prior to any experimental run. During the syn-
thesis of the DNA-encoded library, not all molecules are
produced in equal amounts. Variability can arise from differ-
ences in synthesis efficiency, coupling yields, or synthesis
errors. Additionally, some molecules may precipitate or
adhere to storage containers, resulting in loss and lower ob-
served counts. Due to the size of the library, it is too costly
to sequence the library deeply enough for an extremely ac-
curate pre-selection estimate. However, because there is
always some amount of synthesis noise, for instance us-
ing impure reactants or having incomplete reaction yields,
achieving a precise measurement of the pre-selection data
is not imperative. While this data is typically used to nor-
malize counts, sequencing inaccuracies can lead to error
propagation, especially for low-abundance molecules.
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Figure 3: The distributions of chemical properties in the
KinDEL dataset. These selected properties are often used to
assess the druglikeness of molecules. The light blue areas
mark the 10th and 90th percentiles computed for all the
FDA approved oral new chemical entities, as reported by
Shultz (2018). QED: quantitative estimate of druglikeness
(Bickerton et al., 2012).

Biophysical Assay Data We have collected data from 30-
50 molecules using the aforementioned biophysical assays,
FP and SPR, to validate our models. For molecules on-
DNA, we have resynthesized molecules both from within
and from outside our library. For off-DNA compounds, we
have only resynthesized molecules that are within the DEL
itself. These molecules were primarily selected from the top
hits predicted from models trained on the DEL data.

Figure 3 illustrates various properties of the molecules in
our dataset, comparing them to those of typical drug-like
molecules. From this, we can see that KinDEL is well-
posed within typical drug-like distributions according to
an analysis by (Shultz, 2018). Notably, over 30% of the
molecules in our library fall within the property ranges
of already approved drugs, as outlined by Schultz. While
certain synthon combinations may result in compounds that
fall outside these preferred ranges, DEL molecules primarily
serve to provide initial hits for drug discovery campaigns.
These initial hits undergo iterative refinement during the
hit-to-lead optimization process.

3. Benchmarking
3.1. Experimental Setup

One primary use case of DEL data is building predictive
models of binding affinity. To that end, we investigate com-
monly used models in DEL literature as benchmark models
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Figure 4: The 3D cube visualization of the dataset, where
each axis corresponds to a different synthon in the DEL.
Points in the plot are the most enriched compounds (mea-
sured using Poisson enrichment). The linear patterns can be
interpreted as enriched disynthons, i.e. combinations of two
synthons that often bind to the protein target.

and compare their performance in modeling binding affinity.
In this benchmark, all models were trained using the top
1M compounds with the highest counts from our KinDEL
dataset. We publish the full library to enable construction
of further benchmarks.

Held-out Test Set The observed count data in DEL exper-
iments are an approximation of the true on-DNA binding
affinity (KD). The count data are influenced by multiple
sources of noise (see Section 4). We ultimately wish to
rank molecules by binding affinity, so we use compounds
with measured KD (from biophysical assays) as a test set.
Performance on these compounds assesses if the models
correctly rank compounds by KD. This can be viewed as
measuring how well models can remove the noise inherent
to DELs.

For both our targets, MAPK14 and DDR1, the selected
compounds contained in the DEL library were resynthesized
on- and off-DNA to create an in-library held-out test set. For
hit finding, we would like to be able to predict off-DNA KD.
This is challenging because the DEL data comes from DNA
bound molecules, and is biased by the DNA. The on-DNA
KD more closely aligns with DEL data since the molecules
in the training data are bound to the same DNA in the same
way. A few additional compounds were added from outside
the library (and tagged with DNA) to create an additional
held-out test set that we refer to as ”Extended”. The KD

data from these biophysical assays are also released with
our dataset. A UMAP visualization of the DEL including
the in-library and external test set compounds is depicted in
Figure 5.

Data Splits We split our datasets using three strategies,
ensuring that all held-out compounds are placed in the test
set and not used for training. The first type of data split is a
random split, where a randomly selected 10% of compounds
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Figure 5: UMAP visualization of KinDEL constructed using
Tanimoto distances between compounds. The compounds
selected for the held-out testing set are depicted as orange
diamonds (in-library) and green triangles (external).
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Figure 6: Three data splitting strategies used to construct
the testing set.

are placed in the validation set, and another randomly se-
lected 10% are placed in the test set. The second type of
data split is a disynthon split, where we sample disynthon
structures (molecules with the same 2 synthons), and put all
compounds containing these sampled structures in the same
subset using the same 80-10-10 ratio between the training,
validation, and test sets. This data partitioning method is
more challenging for the machine-learning models because
some synthon combinations tend to have a binding profile
distinct from the individual synthons they consist of (see
Figure 4). The third approach is a cluster split based on
compound similarity. The details about the clustering algo-
rithm can be found in Appendix E. The types of data splits
are illustrated in Figure 6. Each dataset is split five times
for each splitting strategy, and the reported performance of
the models is aggregated over five training runs.

Evaluation Metrics Models trained on DEL data typi-
cally predict an enrichment score, which can be regarded
as a measure of binding affinity. To evaluate different base-
lines, we compare how well each method’s predicted enrich-
ment scores correlate with experimental KD values for the
molecules in the held-out test set. Since different models

are trained with different losses, this is a consistent way
to compare model performance. Here, we use Spearman
correlation, because we are primarily concerned with the
ability of a model to rank order molecules by their binding
affinity.

3.2. Benchmark Models

In this benchmark, we compare models commonly used for
DEL data in the literature. These methods follow a similar
paradigm, in which the models try to learn the protein bind-
ing signal in the target data by subtracting out noise from
the control data. Two baselines are included to gauge the
alignment in the actual data, between the DEL counts and
validation KD values. The first baseline, count enrichment,
computes an enrichment score by subtracting the average
control counts from the average target counts. The second
baseline, Poisson enrichment, computes a ratio of fitted
Poisson distributions of the target and control data (Gerry
et al., 2019).

Next, we compare ML models trained on the data to pre-
dict the aforementioned Poisson enrichment using a mean-
squared error (MSE) loss. These models include: random
forest (RF) (Breiman, 2001), XGBoost (Chen & Guestrin,
2016), k-nearest neighbors (kNN) (Fix & Hodges, 1989),
and a deep neural network (DNN) using Morgan finger-
prints (radius=2, length=2048) (Rogers & Hahn, 2010) from
RDKit (Landrum, 2010) as input features. We also tested
two molecular graph models, Graph Isomorphism Network
(GIN) (Xu et al., 2018) and Chemprop DMPNN (Heid et al.,
2023). DEL-Compose (Chen et al., 2024) is a probabilistic
model that uses Morgan fingerprints as input and predicts
the parameters of a zero-inflated Poisson distribution to max-
imize the likelihood of the observed count data. We train
two variants of DEL-Compose, one with only full molecule
structures (DEL-Compose(M)), and one with synthon struc-
tures (DEL-Compose(S)). The hyperparameters of all the
models used in this study are presented in Appendix D.

The architectures of the neural network models follow the
implementation in the original publications. The DNN archi-
tecture contains multiple linear layers with ReLU activation,
batch normalization, and dropouts after each layer except
for the last one (see Appendix D) . All neural networks were
trained using the Adam optimizer until convergence with
early stopping when the validation loss does not improve
for more than 5 epochs.

3.3. Benchmark Results

Tables 1 and 2 show the performance of various models
on MAPK14 and DDR1, respectively. The number of data
points (n) in each held-out test set is also reported in the
tables. The Counts and Poisson enrichment baselines serve
as an estimate of the alignment between DEL screening
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Table 1: Model performance evaluation for MAPK14. The test loss column contains values of the loss function computed
on test split. The performance for the on- and off-DNA “In-Library” is the negative Spearman correlation between model
predictions and experimental KD for compounds resynthesized from the DEL. The performance for on-DNA “Extended”
set includes additional compounds resynthesized on-DNA but not in the original DEL.

In-Library Extended
on-DNA off-DNA on-DNA

Spearman’s ρ ↑ Spearman’s ρ ↑ Spearman’s ρ ↑
Split Model Test Loss ↓ n = 30 n = 33 n = 41

Counts - 0.778 0.353 -
Poisson - 0.737 0.166 -

ra
nd

om

RF

M
SE

0.064 ± 0.003 0.694 ± 0.030 0.370 ± 0.111 0.453 ± 0.028
XGBoost 0.056 ± 0.002 0.477 ± 0.009 0.345 ± 0.036 0.196 ± 0.074
kNN 0.072 ± 0.002 0.649 ± 0.041 0.466 ± 0.103 0.464 ± 0.040
DNN 0.139 ± 0.010 0.582 ± 0.062 0.514 ± 0.071 0.351 ± 0.058
GIN 0.062 ± 0.004 0.511 ± 0.038 0.492 ± 0.139 0.174 ± 0.067
Chemprop 0.121 ± 0.008 0.693 ± 0.039 0.504 ± 0.093 0.462 ± 0.063
DEL-Compose(M)

N
L

L 3.017 ± 0.005 0.448 ± 0.054 0.756 ± 0.011 0.569 ± 0.048
DEL-Compose(S) 3.192 ± 0.167 0.420 ± 0.050 0.760 ± 0.018 -

cl
us

te
r

RF

M
SE

0.063 ± 0.015 0.697 ± 0.033 0.313 ± 0.071 0.472 ± 0.048
XGBoost 0.059 ± 0.013 0.486 ± 0.032 0.378 ± 0.091 0.176 ± 0.069
kNN 0.080 ± 0.018 0.575 ± 0.034 0.435 ± 0.094 0.421 ± 0.032
DNN 0.065 ± 0.011 0.565 ± 0.089 0.592 ± 0.065 0.284 ± 0.114
GIN 0.072 ± 0.015 0.411 ± 0.209 0.369 ± 0.054 0.123 ± 0.171
Chemprop 0.131 ± 0.047 0.713 ± 0.013 0.532 ± 0.070 0.485 ± 0.036
DEL-Compose(M)

N
L

L 3.038 ± 0.053 0.440 ± 0.045 0.730 ± 0.009 0.583 ± 0.032
DEL-Compose(S) 3.339 ± 0.114 0.369 ± 0.050 0.766 ± 0.012 -

di
sy

nt
ho

n

RF

M
SE

0.154 ± 0.016 0.157 ± 0.138 0.505 ± 0.062 0.302 ± 0.096
XGBoost 0.148 ± 0.015 0.377 ± 0.054 0.482 ± 0.045 0.212 ± 0.126
kNN 0.165 ± 0.014 0.402 ± 0.074 0.266 ± 0.078 0.367 ± 0.043
DNN 0.160 ± 0.017 0.275 ± 0.135 0.429 ± 0.118 0.184 ± 0.146
GIN 0.153 ± 0.011 0.090 ± 0.084 0.483 ± 0.151 -0.080 ± 0.071
Chemprop 0.216 ± 0.007 0.390 ± 0.091 0.506 ± 0.093 0.228 ± 0.121
DEL-Compose(M)

N
L

L 3.177 ± 0.028 0.120 ± 0.070 0.716 ± 0.052 0.421 ± 0.054
DEL-Compose(S) 3.351 ± 0.040 0.128 ± 0.049 0.748 ± 0.024 -

results and experimental KD computed directly from the
sequence count data, measuring how well the DEL data
itself predicts the KD in the follow-up assays. For DDR1,
we see that DEL-Compose, which views the data from a
probabilistic perspective, is the most performant model in
all but the “Extended on-DNA” set. For MAPK14, relatively
simple models (RF and kNN) perform best for the in-library
on-DNA validation while DEL-Compose performs better
off-DNA. Recall that off-DNA is the task more reflective of
the setting for selecting actual drug candidates. Interestingly,
we find that DEL-Compose rank orders the validation com-
pounds off-DNA better than using enrichment metrics of
the DEL data itself (Counts, Poisson). This is true for both
targets, and on all three splits of the data. As mentioned ear-
lier, DEL data is only indirectly correlated to off-DNA data,
so this demonstrates that these structure-based models may
have regularization properties that can denoise the DEL data.
Most models perform similarly in the cluster split compared
to the random split, indicating that the cluster split created
based on fingerprint cluster is not too much more challeng-
ing. However, we observe that almost all models perform

worse on the disynthon split compared to the random split.
In particular, this change in performance is quite signifi-
cant for the MAPK14 data, which might suggest that these
models are overfitting to certain features. The disynthon
split is a more challenging task, since we remove structures
entirely from the training data, and the models have to infer
based on chemical structures (out-of-distribution inference).
Overall, these results demonstrate that models trained on
DEL data can be used for hit selection, since models can
predict enrichment scores that correlate well with on- and
off-DNA biophysical data.

4. Discussion
Data Applicability and Limitations Our data and bench-
marking tasks were designed to evaluate the ability to pre-
dict compounds within the DEL. Although we incorporated
challenging splits of the data, such as disynthon splits, we
have not evaluated the usefulness of this particular data
for truly out-of-distribution sets. While we do include an
extended held-out set with molecules from outside of the
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Table 2: Model performance evaluation for DDR1. The test loss column contains values of the loss function computed
on test split. The performance for the on- and off-DNA “In-Library” is the negative Spearman correlation between model
predictions and experimental KD for compounds resynthesized from the DEL. The performance for on-DNA “Extended”
set includes additional compounds resynthesized on-DNA but not in the original DEL.

In-Library Extended
on-DNA off-DNA on-DNA

Spearman’s ρ ↑ Spearman’s ρ ↑ Spearman’s ρ ↑
Split Model Test Loss ↓ n = 39 n = 49 n = 54

Counts - 0.695 0.355 -
Poisson - 0.779 0.441 -

ra
nd

om

RF

M
SE

0.685 ± 0.011 0.578 ± 0.034 0.267 ± 0.022 0.608 ± 0.021
XGBoost 0.519 ± 0.011 0.553 ± 0.032 0.252 ± 0.031 0.587 ± 0.025
kNN 0.748 ± 0.010 0.599 ± 0.025 0.316 ± 0.026 0.508 ± 0.036
DNN 1.261 ± 0.057 0.703 ± 0.025 0.335 ± 0.009 0.668 ± 0.033
GIN 0.454 ± 0.012 0.572 ± 0.044 0.283 ± 0.028 0.579 ± 0.037
Chemprop 1.391 ± 0.043 0.729 ± 0.017 0.335 ± 0.004 0.680 ± 0.021
DEL-Compose(M)

N
L

L 2.873 ± 0.003 0.731 ± 0.016 0.509 ± 0.024 0.646 ± 0.024
DEL-Compose(S) 2.918 ± 0.057 0.689 ± 0.048 0.483 ± 0.044 -

cl
us

te
r

RF

M
SE

0.641 ± 0.190 0.586 ± 0.025 0.273 ± 0.017 0.615 ± 0.019
XGBoost 0.589 ± 0.164 0.569 ± 0.024 0.262 ± 0.009 0.599 ± 0.013
kNN 0.887 ± 0.189 0.581 ± 0.061 0.329 ± 0.063 0.489 ± 0.049
DNN 0.519 ± 0.150 0.708 ± 0.015 0.330 ± 0.022 0.673 ± 0.014
GIN 0.633 ± 0.142 0.524 ± 0.081 0.137 ± 0.047 0.599 ± 0.047
Chemprop 1.507 ± 0.363 0.732 ± 0.028 0.326 ± 0.014 0.690 ± 0.023
DEL-Compose(M)

N
L

L 2.891 ± 0.079 0.737 ± 0.041 0.467 ± 0.025 0.540 ± 0.037
DEL-Compose(S) 2.993 ± 0.065 0.686 ± 0.027 0.482 ± 0.019 -

di
sy

nt
ho

n

RF

M
SE

1.151 ± 0.151 0.481 ± 0.120 0.330 ± 0.081 0.557 ± 0.082
XGBoost 0.989 ± 0.131 0.523 ± 0.071 0.241 ± 0.031 0.572 ± 0.046
kNN 1.109 ± 0.088 0.663 ± 0.043 0.363 ± 0.038 0.523 ± 0.036
DNN 0.977 ± 0.104 0.572 ± 0.063 0.265 ± 0.051 0.598 ± 0.055
GIN 0.966 ± 0.090 0.410 ± 0.020 0.070 ± 0.031 0.546 ± 0.023
Chemprop 1.690 ± 0.192 0.558 ± 0.061 0.310 ± 0.038 0.579 ± 0.037
DEL-Compose(M)

N
L

L 3.184 ± 0.025 0.663 ± 0.022 0.463 ± 0.023 0.492 ± 0.049
DEL-Compose(S) 3.110 ± 0.041 0.563 ± 0.084 0.429 ± 0.069 -

DEL, this extended set is limited in size. We envision that
models trained on this data can be used to make predic-
tions for molecules from purchasable catalogues, but such
applications will require further exploration, especially be-
ing cognizant of problems in this space such as domain of
applicability (Weaver & Gleeson, 2008).

One limitation of DEL data is that it only measures on-
DNA binding events, and on- and off-DNA binding are only
loosely correlated (Hackler et al., 2019). While we have
shown in our experiments that machine learning models can
have nice regularization properties and learn some correla-
tions to off-DNA binding, DEL data needs to be combined
with additional 3-D structural data to fully understand these
different binding modalities. To that end, we also publicly
release docked 3-D poses of our library molecules to the
target proteins to aid future model development by the com-
munity (see Appendix F). Additionally, DEL screens are
sometimes run with an additional experimental condition
to distinguish potential allosteric binders from orthosteric
binders (Gironda-Martı́nez et al., 2021). This is usually

achieved by running the experiment with a known inhibitor
doped in at high concentrations. Because our data lacks this
condition, it can be difficult to discern non-specific binding
modes. We also recognize that one limitation of the dataset
is that the two targets we provide are kinases. In order to
make this dataset more broadly applicable for modeling
DEL data, we additionally release our data on another well
studied target, Bovine Carbonic Anhydrase (BCA), using
the same library.

Challenges and Future Directions DEL data is powerful
in that it specifically densely samples particular chemical
spaces, which can be leveraged to learn more powerful rep-
resentations. However, DEL data suffers from experimental
noise. In particular, there are unobserved factors such as
synthesis noise that makes it difficult to separate out sig-
nal from noise in the data (Zhu et al., 2021). Additionally,
since our observations are sequencing read counts rather
than actual binding affinity, the measurements also suffer
from PCR bias (Aird et al., 2011). While we have presented
several benchmark methods that try to learn a denoised
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enrichment from structure-based models, how best to do
this is still an open question in the field, and we hope that
our dataset release will enable the development of more
denoising methods.

Furthermore, our benchmark primarily focuses on build-
ing purely predictive models, which encapsulates most
of the published work in this field currently. However,
KinDEL holds significant potential for use in generative
frameworks. Many generative modeling approaches in the
small-molecule space lack sufficient supervised data to learn
interesting sampling distributions. However, this is exactly
the data that DEL provides, densely sampling around partic-
ular synthons or di-synthon structures. Therefore, we hope
that DEL data combined with provided docking poses can
be used to train or fine-tune generative models on specific
protein targets.

5. Related Work
5.1. Current datasets

To the best of the authors’ knowledge, only a limited num-
ber of DEL datasets have been released publicly. While
KinDEL is not the largest library tested, our dataset is
evaluated on two distinct targets in the Kinase family and
contains comprehensive and consistently replicated raw ex-
perimental data (see Appendix B) in addition to orthogonal,
non-DEL based binding affinity data for validation.

Iqbal et al. (2024) released three DEL datasets tested against
two targets, Casein Kinase 1α/δ. Their libraries span a
range of chemical size and diversity, and they demonstrated
the efficacy of a suite of machine learning methods to model
binding affinities. Like our work, they experimentally val-
idated some of their machine learning derived molecule
predictions with biophysical assay data. However, they only
tested off-DNA binding affinities, whereas we have synthe-
sized our compounds both on- and off-DNA. Having both
kinds of data is important because on-DNA data bridges
the gap between DEL data and off-DNA data. Addition-
ally, they have not investigated probabilistic models in their
benchmarking tasks, which we find to be empirically useful.

Another recent dataset release is from Leash Bio, who re-
leased their data as a Kaggle competition (Blevins et al.,
2024). Their dataset has a single DEL screened against on
three different proteins, but their data has been preprocessed
from raw count to a binary label. This process is often used
to denoise DEL data, but it removes information from the
data. We show through our experiments that it is possi-
ble to learn over discrete count data through probabilistic
approaches.

Gerry et al. (2019) and Hou et al. (2023) have released
libraries tested against well-studied targets Horseradish Per-

oxidase and members of the Carbonic Anhydrase family.
In both cases, the DELs were synthesized with specific
chemotypes known to bind to their targets. As a result,
evaluation in each is primarily limited to comparing rela-
tive enrichment for compounds containing known binders.
These papers serve as excellent case-studies but with their
targeted library construction and limited library size ∼100k
(Gerry et al., 2019) and ∼7M (Hou et al., 2023), they are
unlikely to serve as generalizable benchmarks for DEL ML
methods.

The AIRCHECK database facilitates the public release of
large-scale DEL datasets, notably including a 3-billion-
molecule library screened against WDR91 (Wellnitz et al.,
2024). However, chemical structures are masked with finger-
prints in these commercial-sized libraries, which inherently
limits the range of applicable modeling approaches.

5.2. Computational Methods on DEL Data

Computational efforts on DEL data have evolved over time.
One of the major concerns with DEL data is its intrinstic
noisiness. Firstly, the synthesis of a DEL is optimized for
scale, and not precision, which results in uncertainty in the
composition of the library. For instance, DEL synthesis
will result in forming partial or truncated products (Gironda-
Martı́nez et al., 2021; Binder et al., 2022), which has some
causal effect on the observed data that cannot easily be mea-
sured. Additionally, the final data measurement is obtained
by sequencing PCR-amplified DNA barcodes; however, the
PCR process itself does not uniformly sample from the sur-
viving members of the selection experiment (Aird et al.,
2011).

Computational methodology for DEL data is still a nascent
area, largely due to a lack of publicly available data. Current
works typically directly apply fingerprint and graph neural
network approaches that are popular within property predic-
tion models. Due to the noisiness intrinsic to the data, many
methods bin the labeled data into a binary classification to
avoid overfitting on the raw data. For instance, McCloskey
et al. (2020) trained classification models on disynthons us-
ing variants of typical graph neural networks. This approach
was applied by Ahmad et al. (2023) to find first-in-class WD
Repeat Domain 91 ligands, using molecules from buyable
catalogues. Torng et al. (2023) follows up on this work and
uses Weave GCN for hit identification of CA-IX. However,
the true binding process is observed on a discrete scale,
so more recent works have focused on building probabilis-
tic models of binding. Lim et al. (2022) proposed a new
uncertainty-based loss function for training regression mod-
els, and demonstrated the efficacy of their method using
various graph neural network models. (Shmilovich et al.,
2023) takes this process one step further and incorporates
3-D docked poses to leverage the scale of DEL data by us-
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ing multiple-instance learning to learn over poses. Other
works exploit compositionality of DELs as inductive biases
of the models. (Binder et al., 2022) tries to explicitly model
the partial products, while (Chen et al., 2024) computes a
hierarchical representation of DEL molecules and incorpo-
rates a probabilistic loss. (Koziarski et al., 2024) explores
generative models of DEL molecules using GFlowNets.
Many of these developments are relatively new, and we
hope that KinDEL will enable the further development of
these methodologies in the field.

6. Conclusion
DELs have emerged as a high-throughput technology that
enables screenings of large combinatorial small molecule
libraries. However, DEL data has many sources of intrinsic
noise stemming from synthesis and selection experiments,
necessitating the right machine learning tools to extract
the correct signal in the data. We introduce KinDEL as
a 81M molecule dataset with selection data from two tar-
gets, MAPK14 and DDR1, in order to highlight the abil-
ity to model DEL data to find potent binders. Our DEL
is built with chemical diversity in mind, and many of the
molecules in the library have properties within the range of
approved drugs. We additionally release biophysical data
for molecules synthesized both on- and off-DNA to validate
our models trained on DEL data. We hope that our public
data release and benchmarking will engender more interest
in DEL data as an important chemical modality for machine
learning research in the future.

Impact Statement
The broader impact of this work includes the potential to
accelerate the identification of novel therapies, ultimately
benefiting public health. However, as with many datasets
in the chemical and biological sciences, there is a poten-
tial risk of misuse, such as designing harmful substances.
While there are inherent societal implications with advanc-
ing drug discovery, we do not anticipate any specific ethical
concerns that must be highlighted beyond the established
consequences of advancing machine learning techniques in
this domain.
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A. Experimental Protocols
A.1. DEL Synthesis

Library Design The design of DNA-encoded libraries (DELs) often grapples with limited diversity and availability of
bifunctional building blocks compared to their monofunctional counterparts. In order to expand structural diversity of the first
two synthons of a three-step linear library, we implemented a hybrid design that combines trifunctional and monofunctional
building blocks within one step of synthesis, to form a bifunctional synthon, by using DEL synthesis on solid supports. This
strategy significantly expands the chemical space and diversity of our DELs, offering a robust pathway to discovering novel
compounds with enhanced biological activity.

Library Build The DEL is built as a trisynthon library, comprised of 378 synthons in the A position, 1128 synthons in
the B position (the terminal, capping step), and 191 synthons in the C position. This resulted in a DNA encoded library
comprised of roughly 81 million unique members. The first two steps are done either by acylation with N-protected (Boc
or Fmoc) amino acid, followed by deprotection, or by immobilization of the DNA to a solid support (DEAE sepharose
resin) followed by a series of chemical transformations: acylation with trifunctional building block (Boc-amino acid with
protected side chain: Fmoc-amine, ester or ketone), deprotection (if necessary) of the side chain protecting group, reaction
(amide coupling, reductive amination/alkylation) with the monofunctional building block (amine, aldehyde or acid), and
lastly eluting the DNA off the DEAE sepharose and cleavage of the Boc group. In the final step, the downstream amino
groups were reacted with monofunctional acids or aldehydes. Each of the steps described herein is encoded by the attached
DNA strand allowing for ready deconvolution of the sequence of chemical steps taken for any given member.

A.2. DEL Selection

The DEL selection was performed using an Agilent Bravo for all handling steps. To immobilize the protein 1 nanomole of the
protein of interest (Avi-tagged MAPK14 or DDR1) . were incubated through gentle aspiration through streptavidin-coated
beads housed within PhyTips (Cat. #PTV-92-20-05). This was performed in technical triplicate for each protein. Following
immobilization, any unbound proteins were washed away using Buffer A (45 mM HEPES, 45 mM Tris-HCl, 150 mM NaCl,
5 mM MgCl2, pH 8.1).

Subsequently, the immobilized proteins were incubated through gentle aspiration and dispension over a period of 30 minutes
with the Naive DEL library (at 500K copies of each member) in solution of Buffer A supplemented with 0.1 mg/ml sheared
salmon sperm DNA to minimize non-specific binding. To eliminate noise and unbound library compounds, the Phynexus
tips were washed six independent times with Buffer B (45 mM HEPES, 45 mM Tris-HCl, 425 mM NaCl, 5 mM MgCl2, pH
8.1, 0.03% Tween).

Post-washing procedure. Any compounds remaining (the binders) were eluted by 5x aspiration through the tip of hot
water at 90°C. The material eluted is termed ‘Elution Round 1’. Following this the used Phytips were disposed, and fresh
streptavidin PhyTip were used to capture a fresh 1 nanomole of avi-tagged protein of interest, and the process described
above repeated, but, the Naive DEL Library is instead the 90% of the eluent from Round 1 (Elution Round 1) as the source
of library. This procedure is repeated a final time with the Elution Round 2 sample to generate an Elution Round 3 sample.

From the 10% of eluates conserved from round 2 and the round 3 eluate were taken 5 µL of sample that was subsequently
PCR amplified in 50 µL reactions using New England BioLabs 2x Q5 mastermix (Cat. #M0492S) and custom designed
barcode primers to differentiate both the round, target and experiment. Following this 1 µL of the amplified material is
transferred to a 25 µL PCR reaction with Q5 and custom P5 and P7 primers to install the relevant sequencing primers. The
PCR mixture is purified using a QIAquick PCR Purification Kit (Cat. #28104), this sample is then further purified to remove
any DNA products of incorrect size using a PippenHT. The purified samples are submitted to next-generation sequencing
utilizing the Novaseq platform with a 2x150 BP S4 kit. The sequencing depth (number of read counts/sequence counts) is
514.5M/65.8M for MAPK14, 296.5M/49.8M for DDR1, and 440.7M/52M for BCA in all three replicates.

A.3. Biophysical Assays

A.3.1. MOLECULAR BIOLOGY

hMAPK14-1 (1-360, WT) gene was cloned into pET-28a expression vector (Novagen) by polymerase
chain reaction (PCR). An N-terminal His-TEV-Avi tag was added by using the forward primer 5’-
CTTTAAGAAGGAGATATACCATGGGCCATCATCACCATCACCAC-3’ and the reverse primer 5’-
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TTCGTGCCATTCAATTTTCTG-3’. The forward primer included the restriction site NcoI. The hMAPK14 (1-360, WT)
gene was cloned using the forward primer 5’-CTCAGAAAATTGAATGGCACGAAATGTCTCAGGAGAGGCCCACG-3’
and the reverse primer 5’-GTGGTGGTGGTGGTGGTGCTCGAGTTAGGACTCCATCTCTTCTTGGTCA-3’. The reverse
primer included the restriction site XhoI. This generated plasmid pET28a-His-TEV-avi-hMAPK14-1 (1-360, WT).

hMAPK14-2 (1-360, WT) gene was cloned into pET-28a expression vector (Novagen) by PCR. An N-terminal His-TEV
tag was added by using the forward primer 5’-CTTTAAGAAGGAGATATACCATGGGCCATCATCACCATCACCAC-
3’ and the reverse primer 5’-GCCCTGGAAGTACAGGTTCTC-3’. The forward primer included
the restriction site NcoI. The hMAPK14 (1-360, WT) gene was cloned using the forward primer
5’-GAGAACCTGTACTTCCAGGGCATGTCTCAGGAGAGGCCCACG-3’ and the reverse primer 5’-
GTGGTGGTGGTGGTGGTGCTCGAGTTAGGACTCCATCTCTTCTTGGTCA-3’. The reverse primer included
the restriction site XhoI. This generated plasmid pET28a-His-TEV-hMAPK14-2 (1-360, WT).

hDDR1-1 (593-913, ∆730-735) gene was cloned into pFastBac1 expression vector by PCR. An N-terminal His-TEV tag was
added by using the forward primer 5’-GGTCCGAAGCGCGCGGAATTCACCATGCACCATCACCATCACCAC-
3’ and the reverse primer 5’-ACCTTGGAAGTACAGGTTCTC-3’. The forward primer included the re-
striction site EcoRI. The hDDR1-1 (593-913, ∆ 730-735) gene was cloned using the forward primer
5’-GAGAACCTGTACTTCCAAGGTCCTGGTGCTGTGGGTGACGGT-3’ and the reverse primer 5’-
GGCTCTAGATTCGAAAGCGGCCGCTTACACAGTGTTCAGAGCGTC-3’. The reverse primer included the
restriction site NotI. This generated plasmid pFastBac1-His-TEV-hDDR1-1 [593-913 (∆730-735), WT].

hDDR1-2 (593-913, ∆730-735) gene was cloned into pFastBac1 expression vector by PCR. An N-terminal His-TEV-Avi
tag was added by using the forward primer 5’-GGTCCGAAGCGCGCGGAATTCACCATGCATCATCACCATCACCAC-
3’ and the reverse primer 5’-TTCGTGCCATTCAATTTTCTG-3’. The forward primer included the re-
striction site EcoRI. The hDDR1-2 (593-913, ∆730-735) gene was cloned using the forward primer
5’-CTCAGAAAATTGAATGGCACGAACCTGGTGCTGTGGGTGACGGT-3’ and the reverse primer 5’-
GGCTCTAGATTCGAAAGCGGCCGCTTACACAGTGTTCAGAGCGTC-3’. The reverse primer included the
restriction site NotI. This generated plasmidpFastBac1-His-TEV-Avi-hDDR1-2 [593-913 (∆730-735), WT].

BCA2-1 (1-260, WT) gene was cloned into pET28a expression vector by PCR. An N-terminal His-TEV-Avi tag was
added by using the forward primer 5’-CTTTAAGAAGGAGATATACCATGGGCCATCATCACCATCACCAC-
3’ and the reverse primer 5’-TTCGTGCCATTCAATTTTCTG-3’. The forward primer included the
restriction site NcoI. The BCA2-1 (1-260, WT) gene was cloned using the forward primer 5’-
CTCAGAAAATTGAATGGCACGAAATGAGCCATCATTGGGGCTATGGCAAAC-3’ and the reverse primer
5’-GTGGTGGTGGTGGTGGTGCTCGAGTTATTTCGGAAAGCCGCGCACT-3’. The reverse primer included the
restriction site XhoI. This generated plasmid pET28a-His-TEV-Avi-BCA2(1-260,WT).

All cloning was performed using the Beyotime Seamless Cloning kit (D7010M). All plasmids were amplified using DH5α
cells followed by DNA extraction. Insertion of the genes were verified by sequencing.

A.3.2. PROTEIN PRODUCTION

MAPK14

MAPK14 plasmid [either pET28a-His-TEV-avi-hMAPK14-1 (1-360, WT) or pET28a-His-TEV-hMAPK14-2 (1-360, WT)]
was transformed into BL21-Gold (DE3) competent cells (Agilent, 230132) and plated on LB/agar/kanamycin (50 µg/mL)
medium then left to grow at 37°C. Fresh colonies from transformed BL21-Gold cells were picked and used to inoculate 100
mL of LB medium (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter water) supplemented with (50 µg/mL) kanamycin and
cultured overnight at 250 rpm 37°C. The overnight culture was added to 2 L LB/kanamycin ((50 µg/mL)) and grown at 250
rpm 37°C until OD600 reached 0.600. Isopropyl ß-D-1-thiogalactopyranoside (IPTG) was then added (final concentration
0.3 mM) and the culture was left to continue to grow at 16°C, 250 rpm overnight.

Cells were harvested the following day at 8,000 rpm at 4°C and stored at -20°C. Cell pellets were resuspended in lysis buffer
(50 mM Tris, 500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0 and 0.5 µL Benzonase) and lysed using a high pressure cell
homogenizer. Lysate was centrifuged at 13,000 rpm for 30 minutes at 4°C, twice, to remove cell debris. Lysate supernatant
was then applied to 6 mL of Ni-Resin (which had been pre-equilibrated with lysis buffer) and the lysate/Ni mixture was
incubated for 1 hr at 4°C. Resin was then loaded into a column and the column was washed with wash buffer (50 mM Tris,
500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0) and eluted with elution buffer (50 mM Tris, 500 mM NaCl, 1 mM
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TCEP, 10% glycerol, pH 8.0 and 250 mM imidazole). Eluted protein was cleaved with TEV protease at a 1:10 (w/w) ratio
and dialyzed against dialysis buffer (50 mM Tris, 100 mM NaCl, 1 mM TCEP, 7.5 mM MgCl2, pH 8.0) at 4°C overnight.

Protein was loaded onto a Ni-resin column, pre-equilibrated with lysis buffer and the cleaved protein was collected in the
flow-through (cleaved-tag left on the column). In the case of Avi-tagged protein (MAPK14-1), the dialyzed protein was
incubated at 18°C for 4 hrs with ATP (1 mM), Biotin (0.5 mM), and BirA (200 nM), prior to loading onto Ni-resin to remove
cleaved hexahistidine tags.

Protein was collected and concentrated with a 10 kDa Millipore Amicon Ultra-15 centrifugal filter unit. Concentrated
protein was loaded onto a Superdex 200 column pre-equilibrated with SEC buffer. Protein was collected according to UV-vis
signal and follow-up SDS-PAGE verification. Protein fractions were pooled and concentrated with a 10 kDa Millipore
Amicon Ultra-15 centrifugal filter unit and exchanged into a final buffer containing 10 mM HEPES, 200 mM NaCl, 1 mM
TCEP at pH 7.5. A final purified protein yield of 19 mg/L cell culture was obtained.

DDR1

DDR1 plasmid (either pFastBac1-His-TEV-Avi-hDDR1-2 [593-913 (∆730-735), WT] or pFastBac1-His-TEV-hDDR1-1
[593-913 (∆730-735), WT]) was transformed into DH10Bac competent cells (Agilent) and plated on LB/agar plates
containing 50 µg/mL kanamycin, 7 µg/mL gentamicin, 10 µg/mL tetracycline, 100 µg/mL X-gal and 40 µg/mL IPTG then
left to grow at 37°C for 48 hours. Fresh colonies from transformed DH10Bac competent cells were picked and used to
inoculate 5 mL of LB medium (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter water) supplemented with 50 µg/mL
kanamycin, 7 µg/mL gentamicin, 10 µg/mL tetracycline and cultured overnight at 37°C. An aliquot of each cell culture was
verified to contain the recombinant bacmid by PCR analysis.

Transfection. In a 6-well plate, Sf9 cells were grown in 2 mL cultures to a cell density of 2 x 106 cells/mL in SF900II
medium at 27°C. The culture medium was then exchanged with fresh SF900II medium followed by inoculation with the
recombinant bacmid:lipid (Cellfectin II reagent) complexes. The bacmid infected cells were incubated at 27°C for 5 days.
The cell culture medium was collected as P1 virus and cell pellet was used for western blot analysis.

P2 baculovirus generation and scale-up protein expression. Sf9 cells were grown in a 50 mL culture medium to a cell density
of 2 x 106 cells/mL followed by infection with P1 virus in the ratio 1:200. Incubate the P1 infected Sf9 cells at 27°C for 3
days. The cell culture medium was collected as P2 virus and the cell pellet from 1 mL cell culture was used for western
blot analysis. For scale-up expression, Sf9 cells were grown in a 12 L culture medium to a cell density of 2 x 106 cells/mL
followed by infection with P2 virus in the ratio 1:200. For N-Avi tagged hDDR1-2, BirA was co-expressed (infection ratio
1:500, biotin 40 µM) with the P2 infected Sf9 cells. The P2 infected Sf9 cells were incubated at 27°C for 3 days.

Cells were harvested after 3 days at 8,000 rpm at 4°C and stored at -20°C. Cell pellets were resuspended in lysis buffer
(50 mM HEPES, 300 mM NaCl, 2 mM TCEP, 10 mM MgCl2, 10% saccharose, cocktail, 100U/mL Benzonase, pH 8.0)
and Protease Inhibitor Cocktail Tablet was added until a final concentration of 1 tablet/L. Cells were sonicated to lyse in
repeating periods of 3 seconds on, 3 seconds off for 10 minutes. This cycle was then repeated for an additional 10 minutes.
A color change of cell lysate was used to help indicate if cell lysis was sufficient, if no color change from pre-lysed cells was
observed, cell lysis was allowed to continue. Cell lysate was centrifuged at 13,000 rpm for 30 minutes at 4°C, twice, to
remove cell debris. Lysate supernatant was then applied to 6 mL of Ni-Resin (which had been pre-equilibrated with lysis
buffer) and the lysate/Ni resin mixture was incubated for 1 hr at 4°C. Resin was then loaded into a column and the column
was washed with wash buffer (50 mM HEPES, 300 mM NaCl, 2 mM TCEP, 10 mM MgCl2, pH 8.0) and eluted with elution
buffer (50 mM HEPES, 300 mM NaCl, 2 mM TCEP, 10mM MgCl2, pH 8.0, 50 mM imidazole). Eluted protein was cleaved
with TEV protease at a 1:10 (w/w) ratio and dialyzed against dialysis buffer (50 mM HEPES, 300 mM NaCl, 2 mM TCEP,
10 mM MgCl2, pH 8.0) at 4°C overnight.

Protein was loaded onto a Ni-resin column, pre-equilibrated with lysis buffer and the cleaved protein was collected in the
flow-through (cleaved-tag left on the column). Protein was collected and concentrated with a 30 kDa Millipore Amicon
Ultra-15 centrifugal filter unit. Concentrated protein was loaded onto a Superdex 200 column pre-equilibrated with SEC
buffer. Protein was collected according to UV-vis signal and follow-up SDS-PAGE verification. Protein fractions were
pooled and concentrated with a 30 kDa Millipore Amicon Ultra-15 centrifugal filter unit and exchanged into a final buffer
containing 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, 5% glycerol at pH 7.5. A final purified protein yield of 1.8 mg/L
cell culture was obtained.
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BCA2

The BCA plasmid, pET28a-His-TEV-Avi-BCA2(1-260,WT), was transformed into BL21-Gold (DE3) competent cells
(Agilent, 230132) and plated on LB/agar/kanamycin (50 µg/mL) medium then left to grow at 37°C. Fresh colonies from
transformed BL21-Gold cells were picked and used to inoculate 100 mL of LB medium (10 g tryptone, 10 g NaCl, 5 g yeast
extract per liter water) supplemented with 50 µg/mL kanamycin and cultured overnight at 220 rpm 37°C. The overnight
culture was added to 10 L LB/kanamycin (50 µg/mL) and grown at 180 rpm 37°C until OD600 reached 0.600. Isopropyl
ß-D-1-thiogalactopyranoside (IPTG) was then added (final concentration 0.3 mM) and the culture was left to continue to
grow at 16°C, 160 rpm overnight.

Cells were harvested the following day at 8,000 rpm at 4°C and stored at -20°C. Cell pellets were resuspended in lysis
buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 1 mM PMSF, 10% glycerol, pH 8.0 and 100 U/mL Benzonase) and lysed
using a high pressure cell homogenizer. Lysate was centrifuged at 13,000 rpm for 30 minutes at 4°C, twice, to remove cell
debris. Lysate supernatant was then applied to 5 mL of Ni-Resin (which had been pre-equilibrated with lysis buffer) and the
lysate/Ni mixture was incubated for 1 hr at 4°C. Resin was then loaded into a column and the column was washed with
wash buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0) and eluted with elution buffer (50 mM Tris,
500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0 and 250 mM imidazole). Eluted protein was cleaved with TEV protease
at a 1:10 (w/w) ratio and dialyzed against dialysis buffer (50 mM Tris, 100 mM NaCl, 1 mM TCEP, 7.5 mM MgCl2, 5%
glycerol, pH 8.0) at 4°C overnight.

The dialyzed protein was incubated at 18°C for 4 hrs with ATP (1 mM), Biotin (0.5 mM), and BirA (200 nM), prior to
loading onto Ni-resin to remove cleaved hexahistidine tags. Protein was loaded onto a Ni-resin column, pre-equilibrated
with lysis buffer and the cleaved protein was collected in the flow-through (cleaved-tag left on the column).

Protein was collected and concentrated with a 30 kDa Millipore Amicon Ultra-15 centrifugal filter unit. Concentrated
protein was loaded onto a Superdex 75 column pre-equilibrated with SEC buffer. Protein was collected according to UV-vis
signal and follow-up SDS-PAGE verification. Protein fractions were pooled and concentrated with a 30 kDa Millipore
Amicon Ultra-15 centrifugal filter unit and exchanged into a final buffer containing 25 mM HEPES, 200 mM NaCl, 1 mM
TCEP at pH 7.5. A final purified protein yield of 8.38 mg/L cell culture was obtained.

BCA used for fluorescence polarization assay was obtained from Sigma-Aldrich (Product No. C2522).

A.3.3. BIOPHYSICAL METHODS

Fluorescence Polarization

Annealing of DNA tagged DEL molecules. DEL small molecule hits are attached to the DNA oligo, Za (GCAGGCG-
GAGACCTGCAGTCTG). Fluorescein (Integrated DNA Technologies, /3FluorT/) tagged complementary DNA oligo Za’
(CAGACTGCAGGTCTCCGCCTG/3FluorT/) was annealed to Za-tagged DEL compounds using a thermocycler (Bio-Rad,
1851148).

Assay setup. In a 384 well black small volume microplate (Greiner Bio-One, 784900), the annealed compounds were
dispensed using Echo650 (Labcyte) at a constant final concentration of 4 nM in 137 mM NaCl, 2.7 mM KCl, 9.8 mM
Phosphate buffer, 0.01% Tween-20. MAPK14-2, DDR1-1, and BCA were each serially diluted 1:1 starting from a
top dose of 50 µM in 137 mM NaCl, 2.7 mM KCl, 9.8 mM Phosphate buffer, 0.01% Tween-20 for a total 16-point
dilution and were transferred to the 384 well black small volume microplate containing the annealed compounds using
Agilent Bravo G5563A. The final assay concentration was 2 nM the annealed compound and 25 µM top dose of the
protein. The final assay volume was 10 µL. The serially diluted protein was incubated with the annealed DEL compounds
and then the fluorescence polarization was measured using PerkinElmer EnVision 2105 in milli-P (mP), where mP =
1000× (S −GP )/(S +GP ) (S and P are background subtracted fluorescence count rates, and G is an instrument and
assay dependent factor). The dose-response curves (mP vs. [Protein]) were fit in GraphPad Prism using the equation,
Y = Bmax×X/(KD +X)+NS×X +Background, where Y is mP , X is [Protein], Bmax is the maximum specific
binding in the same units as Y , KD is the equilibrium dissociation constant, in the same units as X , NS is the slope
of nonspecific binding in Y units divided by X units, Background is the amount of nonspecific binding with no added
radioligand.
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(a) Correlation between experimental replicates for MAPK14.

(b) Correlation between experimental replicates for DDR1.

(c) Correlation between experimental replicates for BCA.

(d) Correlation between experimental replicates for the control.

Figure 7: Correlation between experimental replicates. Binding to each target and the control was measured in three
replicates, which are included in the published dataset.
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Surface Plasmon Resonance

Compounds were tested using Surface Plasmon Resonance (SPR) using a Biacore T200 and a Biacore S200 (Cytiva Life
Sciences). N-terminally biotinylated DDR1 [593-913 (∆730-735)], MAPK14 (1-360), and BCA2-1 (1-260, WT) were
immobilized to a streptavidin coated SPR chip (Series S SA, Cytiva, 29699621). Approximately 4400 RU of hDDR1-2,
4900 RU of MAPK14-1, and 3300 RU of BCA2-1 were immobilized for dose response assays using 1xHBS-P+ (10 mM
HEPES, 150 mM NaCl, 0.05% v/v Surfactant P20; pH 7.4). 1xHBS-P+ was prepared by mixing 10xHBS-P+ (Cytiva,
BR100671) with HPLC-grade water (Fisher Scientific, W51).

Compounds were diluted in the SPR running buffer which consisted of 1xHBS-P+ supplemented with 5% DMSO (VWR,
76177-938). Multi-cycle kinetics was used to determine compound affinities. Compounds were injected in a series of
increasing concentrations with a 30 µL/min flow rate, a 60 s contact time and a 300 s dissociation time. Compound
sensorgrams were processed and fit using Biacore Evaluation software, with DMSO correction applied during sensorgram
processing. Binding and dissociation curves for each compound were globally fit to obtain an on- and off-rate kinetic
constant (ka and kd, respectively) which were used to determine the overall binding constant (KD) for each compound.

B. Experimental Replicability
DEL experiments suffer from the substantial noise that stems from the large scale of combinatorial libraries screened
simultaneously within a single tube. Key sources of this noise include inconsistent control over the quantities of each
compound in the mixture, synthesis-related challenges such as the introduction of side products and low synthetic yields, as
well as errors during DNA sequencing. Figure 7 illustrates the strong correlation between experimental replicates in our
DEL experiments, underscoring the reproducibility of the panning procedures we conducted.

C. Validation Set Selection
We selected validation compounds to cover a range of KD values and chemical diversity, allowing us to better assess the
models’ ability to rank molecules across diverse binding affinities. To achieve this, we used an ensemble of models described
in Section 3, and then clustered the molecules based on chemical similarity via Butina clustering using Morgan fingerprints.
This constituted the molecules in the “in-library” set. Figure 8 shows the distributions of the pKD values of the selected
compounds. We also surveyed literature for tool compounds, which we also re-synthesized on-DNA. This made up the
additional molecules found in the “extended” set.
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Figure 8: Distributions of pKD values in the in-library held-out sets.

D. Model Hyperparameters
This section describes the hyperparameters used to train the models presented in this study. Random Forest and XGBoost
used 100 decision trees trained with the squared error criterion, and the depth of decision trees was not restricted. The
k-Nearest Neighbors model used 5 nearest neighbors.

The final architecture of the DNN model consisted of 5 linear layers with the ReLU activation functions except for the last
one. Batch norm and dropout layers (with the probability of zeroing an element equal to 20%) were applied after each layer
before the activation layers. The hidden dimension size was set to 512 for all layers.
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The GIN model has 5 GIN convolutional layers with hidden dimension size equal to 256. The graph convolutional layers are
followed by the global average pooling layer and two linear layers with a ReLU activation layer between them. The first
linear layer reduces the dimensionality from 256 to 128 before the second layer produces the model prediction.

Chemprop uses three layers of bond message passing with the hidden dimension of 300. Then, the information is aggregated
using a global average pooling layer, and one linear layer is used to make predictions. The model is trained using the default
Chemprop optimization procedure, which employs the Adam optimizer with a Noam learning rate scheduler and 2 epochs
of warmup.

The DEL-Compose model was used in two modes of molecule encoding: synthon-based encoding (denoted DEL-
Compose(S)) and full molecule encoding (denoted DEL-Compose(M)). The full molecule encoding uses four linear
layers with ReLU activation functions to learn the encoding of the molecule based on its Morgan fingerprint. The synthon-
based mode embeds each synthon separately using the same 4-layer MLP. Next, combinations of synthon embeddings (AB,
BC, AC, ABC) are further processed by 2-layer MLPs, and finally all embeddings are aggregated using a 4-head attention
pooling. The output distribution was set to zero-inflated Poisson distribution. The learning rate used to train DEL-Compose
was 5e-5, and the batch size was 64.

E. Dataset Splitting
It is often difficult ensure that information from the test set does not leak into train. One popular method is calculating
Bemis-Murcko scaffolds (Bemis & Murcko, 1996) for each compound in a dataset and assigning compounds to a split by
scaffold. Unfortunately, this method often fails for DEL data. Below we calculate Bemis-Murcko scaffolds for the top
million compounds in the MAPK14 dataset using rdkit (Landrum, 2010). There are ∼300,000 unique scaffolds calculated
for these compounds, implying many compounds have a unique scaffold (see Fig. 9a). Additionally the common scaffolds
are often trivial (see Fig. 9b). The most common scaffold is a simple benzene, and the next five most common are also
extremely common molecular building blocks. Given these shortcomings, we do not use a scaffold split.

An alternative method is a similarity split based on clustering with fingerprints. A classic method for this is Butina Clustering
(Butina, 1999). Unfortunately, it does not scale well to large datasets. We have developed an internal method that scales to
large datasets. Our two step method first uses UMAP (McInnes et al., 2018) to reduce 1024 ECFP4 fingerprints (Rogers &
Hahn, 2010) to length 10 float vectors. Then HDBSCAN (McInnes et al., 2017) is used to cluster compounds, in a GPU
implementation from NVIDIA (cuml) this runs in a few hours on a single Tesla T4. Clusters are assigned to splits using a
waterfall method, at each step assigning the largest remaining cluster to the smallest current split. The following settings
were used:

UMAP(n_components=10, metric="jaccard", n_neighbors=30,
min_dist=0.0, n_epochs=1000)

HDBSCAN(min_cluster_size=10, min_samples=None, metric=’euclidian’,
prediction_data=True, cluster_selection_method=’eom’)

18



KinDEL: DNA-Encoded Library Dataset for Kinase Inhibitors

0 25 50 75
Top 100 scaffolds sorted by number of occurances

0

2000

4000

6000

8000

10000
Nu

m
be

r o
f o

cc
ur

an
ce

s o
f s

ca
ffo

ld
 in

 to
p 

1M

(a) Number of occurrences for the 100 most common scaffolds in the top one million compounds for MAPK14.
The number of compounds assigned to each scaffold declines rapidly, and many scaffolds are unique.

10061 counts 2476 counts 1927 counts

1894 counts 1859 counts 1670 counts

(b) The top six most frequent scaffolds are common structures that are not pharmacologically ”interesting”.

Figure 9: Bemis-Murcko scaffolds in KinDEL. The high number of unique scaffolds and the simplicity of the most common
scaffolds indicate that a scaffold-based split is not challenging enough for our benchmark.
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(a) DDR1 (b) MAPK14

Figure 10: Example ligands from the KinDEL datasets docked to our selected kinases; (a) example pose of a library member
docked to a DFG-out conformation of DDR1 (PDB: 6FEX), forming extensive hinge interactions. Beta-1 and -2 hidden for
clarity; (b) example pose of a library member docked to a DFG-out conformation of MAPK14 (PDB: 3KQ7), bridging the
activation loop and C-alpha glutamate.

F. Molecular Docking Procedure
Tautomer and protonation state selection was performed using Epik Classic (Shelley et al., 2007) from Schrödinger Suite
2024-4 at pH 7.4. For each library member, a random subset of stereoisomers was enumerated using rdkit 2023.09.2 (up to
32), then 4 conformers per stereoisomer were generated using ETKDGv3 (Wang et al., 2020). Up to 8 of the lowest-energy
conformers under the UFF force field (Rappé et al., 1992) (max 1 per stereoisomer) were retained, for compounds with
UFF parameters for all atoms (otherwise, up to 8 random conformers). Docking was performed using the Vina scoring
function (Trott & Olson, 2010) in Uni-Dock 1.1.2 (Yu et al., 2023) with exhaustiveness 128 and max step 20, saving
the top three poses per receptor. All of these 234k ligand states were docked against all six receptor models, using a fixed 20
Å docking box centered on the orthosteric pocket.

One receptor model represents the major conformation of DDR1 in available experimental structures, the DFG-out, C-
helix-in PDB: 6FEX (Richter et al., 2018). Five receptor models were chosen to represent most experimental structures of
MAPK14, with a variety of activation loop and P-loop conformations, PDB: 3KQ7, 3S3I, 5WJJ, 5XYY, and 6SFI (Cheng
et al., 2009; Aiguadé et al., 2012; Kaieda et al., 2018; Wang et al., 2017; Rohm et al., 2019). All receptors were prepared
using the Protein Preparation Wizard from Schrödinger Suite 2023-4, capping termini with neutral ends, and aligned into a
common frame.

Docked poses are provided in SDF format with “molecule hash” and “receptor” properties. Example poses are shown in
Figure 10, where the hinge binding motif that is characteristic for kinases can be observed.
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