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Abstract

The Bayesian approach leads to coherent updates of predictions under new data, which
makes adhering to Bayesian principles appealing in decision-making contexts. Traditionally,
integrating Bayesian principles in complex models like deep learning involves setting priors
and approximating posteriors, despite the lack of direct parameter interpretation. In this
paper, we rethink this approach and consider what characterises a Bayesian prediction rule.
Algorithms meeting these criteria can be deemed implicitly Bayesian — they make the same
predictions as some Bayesian model, without explicitly manifesting priors and posteriors.
We propose how to evaluate a prediction rule’s proximity to implicit Bayesianism, introduce
results illustrating its benefits, and empirically test it across multiple prediction strategies.

1. Introduction

In the Bayesian framework, model predictions are updated coherently and rationally based
on new evidence. These rationality properties are epitomised by various theorems showing
that a Bayesian agent states and updates their beliefs in a way that cannot be trivially
exploited by an adversary (Pettigrew, 2020; Lane and Sudderth, 1984, §4). This arguably
gives Bayesian predictions some level of credibility; e.g. when following the Bayesian ap-
proach exactly, one does not have to worry (as much) about whether some evidence is
being given more weight than other, or whether some evidence is ignored outright. Even
putting computational and approximate inference considerations aside, a Bayesian still has
plenty to worry about with regards to modelling choices; nonetheless, at the very least,
some fundamental sanity checks are taken care of.

This is in contrast to many other — potentially more “black-box” — approaches to
prediction, such as training a deep learning model. For example, when continually updating
a deep learning model with new data, we might have to worry about catastrophic forgetting
(McCloskey and Cohen, 1989), or that the order the data is presented in might affect the
predictions (Ash and Adams, 2020).

When a model makes predictions that will be acted upon in a closed decision-making
loop, e.g. when finding the optimum of an unknown function (Bayesian Optimisation) or for
exploration in reinforcement learning, it is important that the model’s predictions change
in a coherent way in light of new observed. In these settings, the uncertainty estimates
provided by the model are used to guide the decision-making process, often in a way that
has to balance exploration against exploitation – the agent has to decide whether it’s worth
it to pursue exploring an unknown region of the space in order to improve future model’s
predictions. However, if the model’s current predictions and uncertainty estimates are not
related to how the model’s predictions will change upon observing a currently unobserved
variable, then any down-stream decisions made on the basis of these predictions might be
highly suboptimal.
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This, among other reasons, is often the reason Bayesian methods are being advocated
for, and why many attempts have been made to incorporate Bayesian principles into deep
learning. However, despite considerable effort by a large community, existing approaches
for incorporating approximate Bayesian inference into deep learning often perform poorly
in practical settings. Current research typically focuses on one specific model class, which is
obtained by placing a prior over the parameters of the neural network, and approximating
the posterior.1Algorithms relying on this perspective usually encumber scalability. For
example, in Markov Chain Monte Carlo (MCMC) schemes, effectively, multiple models need
to be trained following a cumbersome procedure for an accurate approximation; variational
inference schemes, on the other hand, struggle to fit complex posteriors over the parameters
without similarly complex and difficult to train models to approximate that posterior.

In this paper, we advocate for taking a different perspective on how to incorporate
Bayesian principles into deep learning, and how to even think about measuring how close
we are to achieving this goal. Specifically, we look at what desirable properties predictions
made by Bayesian methods posses (including a new Dutch-book argument in Section 3),
what properties characterise a prediction rule as being Bayesian (Section 2.3), and how
to measure how close a prediction rule is to having these properties (Section 4). We also
empirically investigate how various design decisions can affect how close an algorithm is to
being Bayesian on a small regression task (Section 4.2). We advocate that this might be a
more fruitful way to think about incorporating Bayesian principles into deep learning, as
it only dictates a minimal set of conditions for how the predictions should behave, rather
than dictating how the internals of the prediction algorithm should be structured.

2. Background

Whereas statistics often deals more broadly with inferences about various unobserved quan-
tities, the prediction of future observations is arguably the centerpiece of machine learning.
Hence, in this piece, we primarily consider the setting of predicting future observations given
the past. Concretely, given a sequence of random observations X1, X2, . . . we are interested
in predicting the values of Xn+1, Xn+2, . . . given observations of X1, . . . , Xn for different
n. We’ll also look at the case of regression/classification where for a sequence of random
variables X1, X2, . . . and Y1, Y2, . . . we are interested in predicting the value of Yn+1 given
the observations of X1, Y1, . . . , Xn, Yn, and Xn+1.

To discuss and compare the properties of various approaches to predicting future ob-
servations, it is helpful to introduce the concept of a prediction rule/strategy. If the obser-
vations take values in some space X , then (informally) a prediction rule is a sequence of
functions (s0, s1, s2, . . . ) where each sn maps a sequence (x1, . . . , xn) ∈ X n to a probabil-
ity distribution sn(·|x1, . . . , xn). sn(·|x1, . . . , xn) carries the interpretation of the prediction
for the next observation Xn+1 given the observed outcomes (x1, . . . , xn) for the previous
observations X1, . . . , Xn.

More precisely, Dubins et al. (2014) formally introduce a prediction rule/strategy on a
measurable space (X ,F) as a sequence of functions sn : F × X n → [0, 1] where:

1. Function-space variational inference (Sun et al., 2019) being a notable exception, although in this case
a prior is still specified explicitly, just directly in the function space.
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1. For every fixed (x1, . . . , xn) ∈ X n, the function A 7→ sn(A|x1, . . . , xn) for A ∈ F is a
probability measure on (X ,F),

2. For every fixed A ∈ F , the function x1, . . . , xn−1 7→ sn(A|x1, . . . , xn−1) is ⊗n
i=1F-

measurable (with ⊗n
i=1F denoting the product σ-algebra on X n)

These two conditions equivalently specify that each sk is a Markov kernel from (X k,⊗k
i=1F)

to (X ,F), effectively ensuring that the prediction rules define a joint probability measure
on (X n,⊗n

i=1F), i.e. on the sequence of first n observations, for all n. Furthermore, by the
Ionescu-Tulcea Theorem (Hoffman-Jorgensen, 2017; Berti et al., 2023), a prediction rule
uniquelly defines a probability measure over the whole infinite sequence space (X n,⊗∞

i=1F),
hence formally justifying using a prediction rule to make predictions on the whole sequence
of observations (X1, X2, . . . ); it also allows us to define properties of prediction rules in
terms of the joint they imply over the sequence space.

In a large proportion of cases, when dealing with a machine learning problem, we’re
dealing with settings where the observations take values either in a Euclidean or a discrete
space, and the distribution over the future observations is derived from a conditional prob-
ability density or mass function. To simplify the exposition, we will restrict ourselves to
those two settings, and define a prediction rule as a sequence of functions (s0, s1, s2, . . . )
where each sn maps a sequence (x1, . . . , xn) ∈ X n to a probability density/mass function
sn(·|x1, . . . , xn), overloading the notation above. Of course, such prediction rules can be
converted to the more general definition above. Much of the literature in statistics exploring
prediction rules studies them in the most general settings, formulating the various proper-
ties we’ll define in following chapters for general measurable spaces (see e.g. Berti et al.
(2023) for a broad overview).

A prediction rule describes how a practitioner makes predictions about the future obser-
vations given the past. In the context of deep learning, a prediction rule might encompass
the whole procedure for training a neural network on a dataset of past observations, and
then using the trained neural network to make predictions about future observations. For
example, sn(xn+1|x1, . . . , xn) might be defined as the probability density of xn+1 given by
a normalising flow trained on a dataset of examples (x1, . . . , xn) following, for example,
Stochastic Gradient Descent (SGD) with a maximum likelihood objective2.

A standard assumption in machine learning problems is that the data (X1, X2, . . . ) is
independent and identically distributed (i.i.d.) — the random variables (X1, X2, . . . ) are
independent, and they all follow the same law: Xi ∼ PX for all i. The data generating
distribution PX is unknown the the practitioner. In this paper, we’ll primarily concern
ourselves with the case of i.i.d. data. We’ll describe below how one would go about defining
a prediction rule in the Bayesian framework in an i.i.d. context, and then look at various
properties that such prediction rules might have.

2.1. The Bayesian Inferential Approach

In its most general form, the Bayesian framework for inference is to 1) specify a joint dis-
tribution over all the random variables of interest, and 2) condition on the observed values

2. In this framework, prediction rules are deterministic; to view training a deep learning model as a predic-
tion rule, all sources of randomness other than the data have to be fixed (e.g. through the seed). Each
seed or sequence of seeds then effectively leads to a different prediction rule.
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to obtain a posterior distribution over the unobserved variables of interest. In the context
of a sequential prediction problem, one might specify a joint distribution over the random
variables (X1, X2, . . . ) and condition on the observed values of X1, . . . , Xn to obtain a pos-
terior distribution over e.g. Xn+1. In the context of i.i.d. data, a Bayesian would usually
treat the data generating distribution PX as an unknown, and place a prior distribution
over it. To make predictions about the next observation Xn+1 given observed outcomes
(x1, . . . , xn) for the previous observations X1, . . . , Xn, one could describe the Bayesian in-
ferential approach (Berti et al., 2023) as: I. Specify a prior over the generating distribution;
II. Get a posterior over the generating distribution given the observed data; III. Compute
the prediction sn(·|x1, . . . , xn) by computing the posterior predictive distribution for Xn+1.

For instance, assuming the distributions of interest can be described with a parameter
θ ∈ Rd and a density pX|Θ(x|θ), and that the prior over Θ also has a density pΘ(θ), the
procedure above might look like:

I Specify a prior density pΘ(θ) over the parameters;

II Compute the posterior density pθ|X1,...,Xn
(θ|x1, . . . , xn)

def∝
∏n

i=1 pX|θ(xi|θ)pθ(θ);

III Calculate the prediction sn(·|x1, . . . , xn)
def
=
∫
pX|θ(·|θ)pθ|X1,...,Xn

(θ|x1, . . . , xn)dθ

2.2. Implicitly Bayesian Prediction Rules

An alternative to the inferential approach would to be to specify a prediction rule directly.
This approach is often referred to in the literature as the predictive approach (Berti et al.,
2023) and has been recently studied quite extensively in the statistics literature (Berti et al.,
2013; Fong, 2021; Fong and Lehmann, 2022; Berti et al., 2019, 2021, 1998). It should be
clear that this procedure can in effect result in the same prediction rule as that from the
inferential approach.

For example, the practitioner could specify a linear model on (Xn, Yn) with a uni-
form prior density on the covariates Xn (say, in the range [0, 1]d), and a Gaussian prior
N (θ; 0, I) on the weights θ (assuming a homogeneous, variance σ2, Gaussian noise). Here
y 7→ N (y;µ,Σ) denotes a Gaussian density with mean µ and covariance Σ. Given ob-
servations ((x1, y1), . . . , (xn, yn)), the practitioner would then construct a posterior on the
weights (e.g. through Monte-Carlo sampling) and average over the posterior samples to
obtain a posterior predictive distribution for Xn+1, Yn+1. Alternatively, they could directly
compute an equivalent prediction, without directly manifesting the posterior, with the pre-
diction rule given in Appendix B. If a practitioner happened, by a stroke of luck, to specify
this as their prediction rule without ever considering the underlying assumptions of a linear
model and a prior, they’d still make the same predictions as if they followed the Bayesian
framework with some underlying model.

A natural question to ask is then, under what conditions on the prediction rule is it
equivalent to the inferential approach for some prior and likelihood? In other words, given
a prediction rule, can one say whether there exists a prior and likelihood such that the
predictions from the prediction rule match those of following the Bayesian framework with
that likelihood/prior pair under the i.i.d. assumption? If this is the case, we’ll say that the
prediction rule is implicitly Bayesian.

In what follows, we’ll look at the properties that the prediction rules defined following
the Bayesian framework posses, and the properties that characterise them.
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2.3. Characterising Implicitly Bayesian Prediction Rules

In the case of i.i.d. data, DeFinetti’s theorem gives a simple condition for a prediction
rule to be implicitly Bayesian. As mentioned before, a prediction rule implies a unique
joint distribution over the sequence of random variables (X1, X2, . . . ). By a version of the
DeFinetti’s theorem, under some mild assumptions, a prediction rule is implicitly Bayesian
if and only if the joint distribution it implies over (X1, X2, . . . ) is exchangeable (Hewitt and
Savage, 1955):

Definition 1 (Exchangeable Sequence of Random Variables) A finite sequence of
n random variables (X1, . . . , Xn) is said to be exchangeable if for any permutation π :
{1, . . . , n} → {1, . . . , n} the joint distribution of (X1, . . . , Xn) is the same as the joint dis-
tribution of (Xπ(1), . . . , Xπ(n)).

An infinite sequence of random variables (X1, X2, . . . ) is said to be exchangeable if for
any n, the finite sequence (X1, . . . , Xn) is exchangeable.

By DeFinetti’s theorem, we know that a sequence of random variables (X1, X2, . . . )
is exchangeable if and only if there exists a (unique) prior probability π on the space of
probability measures Θ on X such that:

P [X1 ∈ A1, . . . , Xn ∈ An] =

∫
Θ

n∏
i=1

Pθ(Ai)dπ(Pθ),

in other words, only if the there exists a likelihood/prior construction that defines the same
joint distribution as the prediction rule. Hence, exchangeability is the defining characteristic
of implicitly Bayesian prediction rules on i.i.d. data. This suggests one direct way of checking
whether a prediction rule is implicitly Bayesian: check whether the joint distribution over
(X1, X2, . . . ) implied by the prediction rule is exchangeable.

Conditionally Identically Distributed Another desirable coherence property that we
might expect of a prediction rule is that the future observations are identically distributed
given the past. For example, under the i.i.d.assumption, if we were to observe (x1, . . . , xn),
the prediction for the next observation Xn+1 surely shouldn’t be different from the predic-
tion for the observation after that. After all, we know they are identically distributed, we
just don’t know what the distribution is; it’d be irrational to make different predictions for
Xn+1, Xn+2 given the same data.

This property can be formalised as follows:

Definition 2 (Conditionally Identically Distributed) We say that a sequence of ran-
dom variables (X1, X2, . . . ) is conditionally identically distributed (c.i.d.) if for any n:

P [Xn+1 ∈ ·|X1 = x1, . . . , Xn = xn] = P [Xn+k ∈ ·|X1 = x1, . . . , Xn = xn] ∀k > n

holds almost surely.

A prediction rule is then c.i.d. if the joint distribution it implies over (X1, X2, . . . ) is c.i.d..
Conditionally Identically Distributed sequences have been introduced in (Kallenberg, 1988)
and studied and applied in a range of works (Berti et al., 2004, 2013; Fong et al., 2021a).
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It should be clear that each exchangeable sequence is c.i.d., as exchangeability implies

X1, . . . , Xn, Xn+1
d
= X1, . . . , Xn, Xn+k for any k > 0. Hence, following the Bayesian frame-

work will yield c.i.d. prediction rules, and any implicitly Bayesian prediction rule will be
c.i.d.. Not all c.i.d. sequences are exchangeable, however. c.i.d. can hence be seen as a
weakening of the condition of exchangeability.

Stationarity There is one complimentary property that not all c.i.d. sequences have that
would make them implicitly Bayesian. Namely, stationarity :

Definition 3 (Stationary sequence) A sequence of random variables (X1, X2, . . . ) is
said to be stationary if for any n, k > 0:

X1, . . . , Xn
d
= X1+k, . . . , Xn+k (1)

In the context from the prediction rules, stationarity implies sampling k datapoints
x′1, . . . , x

′
k, from the prediction rule itself and prepending them to the observed data D=

(x1, . . . , xn), would yield a prediction rule sn+k(·|x′1, . . . , x′k,D) that’s in expectation the
same as sn(·|x1, . . . , xn).

By the result of Kallenberg (1988, Proposition 2.1), exchangeability exactly amounts to
stationarity and the c.i.d. condition; stationarity and c.i.d. properties are another way of
characterising implicitly Bayesian prediction rules.

Spreadability Another condition that turns out to also characterise implicitely Bayesian
models is spreadability :

Definition 4 (Spreadable sequence) A sequence of random variables (X1, X2, . . . ) is
said to be spreadable if for any n > 0 and any sequence of indices kn > kn−1 > · · · > k1 ≥ 1:

X1, . . . , Xn
d
= Xk1 , . . . , Xkn (2)

Exchangeability

Stationarity & c.i.d. Spreadability

⇔

⇔

⇔

Figure 1: Equivalent characterisa-
tion of exchangeable sequences, and
hence implicitly Bayesian predic-
tion rules.

Spreadability says that the distribution of the first
n observations is the same as the distribution of any
n observations from the sequence. In the context of a
prediction rule, it implies that, if we were to construct
a new dataset by possibly sampling ki ≥ 0 datapoints
from the prediction rule conditioned on the previous
datapoints inbetween “observed” datapoints xi, xi+1,
the final prediction given that dataset would in expec-
tation be the same as the prediction given the original
dataset. Kallenberg (1988) has shown that spreadabil-
ity is equivalent to exchangeability. In other words,
spreadability is yet another property that characterises implicitly Bayesian prediction rules.

In summary, Figure 1 illustrates the different properties that an implicitly Bayesian
prediction rule posses and can be characterised by. Some might be easier to establish
or approximately enforce then others, and each suggests its own way of constructing an
exchangeable prediction rule from a non-exchangeable one. It’s an interesting question as
to what extent various commonly used machine learning and deep learning methods posses
these different properties, and how various design choices might affect them.
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Can a prediction rule at a fixed step be extended to an implicitely Bayesian
prediction rule? In deep learning, we would often taylor the approach to the amount of
data available at hand. If we have fewer than hundreds of datapoints, we might not even
consider using a neural network at all. One might therefore wonder, given a specification for
a prediction rule at step n only, can it be extended to a prediction rule for all n to satisfy the
aforementioned properties? We discuss this in Section C, but, in short, the requirements
on sn turn out to be quite stringent.

3. Non-implicitly Bayesian agents are vulnerable to adversarial bets

Many of the fundamental axioms of probability, and hence probabilistic inference, can be
argued for on the basis of various Dutch Book arguments (Pettigrew, 2020). These generally
show that, unless one adopts the intuitively sensible-seeming axioms of probability (e.g.
probabilities must sum to 1), one is left vulnerable to accepting seemingly appealing, but
highly disadvantageous, bets.

In this subsection, along similar lines, we’ll show that using a non-exchangeable pre-
diction rule, when the true distribution is exchangeable or i.i.d., leaves one vulnerable to
accepting bets that are in expectation disadvantageous. In particular, an agent that assigns
probabilities to a sequence of data drawn from an (unknown) exchangeable distribution,
and is willing to accept bets on the next sequence of events if their beliefs indicate the bet
is in expectation favourable, is vulnerable to an adversary who knows the beliefs of the
agent, but doesn’t know the true probabilities of the events. We’ll show this only in the
finite discrete setting, i.e. when the sequence of events takes values in X∞ for some finite
space X , and the prediction rule (s1, s2, . . . ) is a sequence of conditional probability mass
functions.

Concretely, we will show a result for an adversary that knows the beliefs of the agent,
but not the true probabilities of the events. For an agent that is following some prediction
rule (s1, s2, . . . ). For any n ∈ N, as described before, this implies some joint probability
mass function on X n. Let’s denote this probability mass function by q : X n → [0, 1]. We
will consider an adversary that constructs an “exchangeable-ified” version of the agent’s
beliefs q as:

q̄(x1, . . . , xn) =
1

n!

∑
π∈Πn

q(xπ(1), . . . , xπ(n)), (3)

where Πn is the collection of all permutations of n elements. It should be clear that q̄ is
itself an exchangeable probability mass function.

We can represent a bet between the agent an adversary with a function r : X n → R,
where, if the observed outcome is x1, . . . , xn, the change to the agent’s wealth after the
bet is r(x1, . . . , xn); in other words, the agents receives |r(x1, . . . , xn)| if r(x1, . . . , xn) is
positive, and the agent pays |r(x1, . . . , xn)| to the adversary if the value of r is negative.
The bet r can be said to be favourable given a probability mass function P if the expected
return is positive, i.e.:

∑
x(n)∈Xn r(x(n))P (x(n)) > 0. The bet reward is anti-symmetric,

so from the perspective of the adversary with a probability mass function P̄ , the expected
return is

∑
x(n)∈Xn(−r(x(n)))P̄ (x(n)). A bet that is favourable for both the agent and the

adversary with beliefs q, q̄ is said to be admissible. It is also helpful to define a notion of
a minimal bet: a bet r is minimal if it is the smallest possible3among all bets that give
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the same expected return to both the agent and the adversary. Restricting to minimal bets
hence simply ensures that the agents do not arbitrarily make bets that are not justified on
the ground of their beliefs.

We can show that the following holds (see Appendix A):

Theorem 5 Given an agent with beliefs q : X n → [0, 1] on the next sequence of n events,
and an adversary with “exchangeable-ified” beliefs q̄ as defined in (3), for any exchangeable
distribution p : X n → [0, 1] that has common support with q all minimal and admissible bets
r have strictly negative expected return for the agent under p:∑

x(n)∈Xn

p(x(n))r(x(n)) < 0 (4)

Furthermore, either: 1) q is exchangeable and q̄ = q, and there are no admissible bets; or
2) q is not exchangeable and there exist admissible (and minimal) bets.

In particular, the above holds when p is an i.i.d. distribution.
The result shows that, in the setting where bets are placed ahead of time, an agent that

follows a non-exchangeable (i.e. non-implicitly Bayesian) prediction rule is vulnerable to
accepting bets from an adversary that is able to make their beliefs exchangeable.

4. Measuring Implicit Bayesianness

Notation As we’ll deal with nested expectations and variances in this section, for the
sake of clarity we’ll adopt the machine learning notation for conditional expectations: for a
function f that depends on multiple random variables A,B, . . . we’ll write EA[f(A,B, . . . )]
to denote the conditional expectation of f conditioned on all the variables other than A —
the subscript indicates the variable that is “marginalised out”.4The subscript in the variance
VarA[f(A,B, . . . )] is defined analogously.

In the preceding section, we argued that implicitly Bayesian prediction rules might be
desirable, and presented various testable properties that characterise them. In this section,
we’ll look at how we can go about measuring these properties in practice, present empirical
results for both Bayesian and non-Bayesian models including deep learning models, and
show that simple design choices can lead to more or less implicitly Bayesian prediction
rules. As was shown in the previous section, exchangeability is one defining characteristic of
implicitly Bayesian prediction rules. In this paper, we’ll focus on measuring exchangeability,
although the other criteria in Section 2.3 are potentially equally interesting candidates.

Exchangeability is not easy to verify. Even for a finite sequence, it requires checking
that

∏n
i=1 si(xi|x1, . . . , xi−1) =

∏n
i=1 si(xπ(i)|xπ(1), . . . , xπ(i−1)) with probability 1 (effec-

tively for almost every sequence (x1, . . . , xn) ∈ X n) for every permutation π.5Even for a
single sequence of observations (x1, . . . , xn) can be computationally expensive, as it might
require checking eq. for all n! permutations of the sequence. Lastly, we rarely expect exact
exchangeability to hold in practice.

3. Smallest in L2 norm, where the L2 norm of f : Xn → R is taken to be
√∑

x(n)∈Xn f(x)2

4. For example, if A,B,C are random variables, then EA[f(A,B,C)] = E[f(A,B,C)|B,C], and
EA[EB [f(A,B,C)]] = E[E[f(A,B,C)|A,C]|C].

5. With respect to the joint measure on Xn implied by the prediction rule, assuming si is a probability
mass function/probability density function.
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Also, even for implementations of models with a strong Bayesian motivation, the exact
equality might not hold due to numerical errors and/or approximate inference. Ideally, we’d
like some measure of the degree of exchangeability of a prediction rule.

To measure how close to being exchangeable a prediction rule is, in this paper we suggest
measuring the variance of the log-joint as we randomly sample permutations of the data
uniformly at random. Concretely, if Π is a random variable that takes values in the set of
all permutations of {1, . . . , n} with equal probability, we propose measuring:

VarΠ

[
log

n∏
i=1

si(xΠ(i)|xΠ(1), . . . , xΠ(i−1))

]
= VarΠ

[
n∑

i=1

log si(xΠ(i)|xΠ(1), . . . , xΠ(i−1))

]
for a given sequence of datapoints (x1, . . . , xn). The log makes the measure more nu-
merically stable. To get around checking this condition holds for (almost) every possible
sequence (x1, . . . , xn), we propose sampling sequences of datapoints and reporting the ex-
pected variance of the log-joint as a measure of implicit Bayesianness. Since it’s nontrivial
to evaluate the variance of the log-joint on an infinite sequence, we resort to checking for
exchangeability on a finite sequence of datapoints.

Arguably, we might care about ‘being implicitly Bayesian’ in some regions of the input
space more than others. Hence, we evaluate the variance of the log-joint preferentially
on sequences of data sampled from a task of interest. Hence, we resort to measuring the
expected variance given some reference distribution over sequences of n datapoints Dn.6Let
X1, . . . , Xn be random variables that follow the law Dn. Then, our measure looks like:

mvar ((s1, s2, . . . )) = EX1,...,Xn

[
VarΠ

[
n∑

i=1

log si(xΠ(i)|xΠ(1), . . . , xΠ(i−1))

]]
(5)

One last caveat remains for the case of non-deterministic prediction rules such as train-
ing of a deep learning model. As we mentioned before, in this case each random seed ϵ
will yield a different prediction rule sϵ = (sϵ1, s

ϵ
2, . . . ). Hence, the metric that we actu-

ally measure is the average variance of the log-joint over different random seeds ϵ ∈ E :
1
|E|
∑

ϵ∈E mvar ((s
ϵ
1, s

ϵ
2, . . . )). In practice, we approximate (5) by Monte-Carlo sampling,

taking the empirical variance and expectation of the log-joint to arrive at a computable
metric.

4.1. Implicit Bayesianness vs. Performance

Although we argue implicit Bayesianness is a desirable property, it is not an end-goal
on its own. After all, if a prediction rule has lacklustre performance on the tasks we
are interested in, it likely won’t be much comfort that it is implicitly Bayesian.7 Hence,
since predictive performance is a key consideration, we’ll aim to depict both the aforemen-
tioned measure of implicit Bayesianness in (5), as well as a measure of performance on

6. For a distribution Dn with full support, the prediction rule s is exchangeable (on the first n observations)
if and only if the variance of the log-joint is zero, justifying the use of the variance of the log-joint as a
measure of exchangeability.

7. It’s not difficult to construct trivial implicitly Bayesian prediction rules. For example, one could set
si(xi|x1, . . . , xi−1) = q(xi) for some fixed probability density/mass function q : X → R. This prediction
rule is trivially exchangeable, but it’s not particularly useful as no learning is taking place — we are
predicting the same thing no matter what we observe.
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the data-generating distribution Dn in the experiments that follow. To report an aggre-
gate of the performance on the entire sequence of n observations, we’ll report the aver-
age negative log-likelihood (NLL) of the prediction rule on the sequence of observations:
EX1,...,Xn [

∑n
i=1 log si(xi|x1, . . . , xi−1)]. If the true data-generating distribution Dn is i.i.d.,

which it will be for all the tasks considered below, then that expectation is the same as:

EX1,...,Xn

[
EΠ

[
n∑

i=1

log si(xΠ(i)|xΠ(1), . . . , xΠ(i−1))

]]
(6)

allowing as to use the same samples to compute 1) a measure of implicit Bayesiannes, i.e.
the variance of the log-joint in (5) and 2) a measure of performance, i.e. the expectation
of the log-joint in (6). We investigate these metrics empirically in the following section.

4.2. Results

We consider a simple 1D regression task on which we compare deep learning prediction rules
against exact Bayesian methods, such as exact conditioning in a Gaussian Process. The task
is pictured in Figure 8. The true function was purposefully chosen to be discontinuous to
yield a model mismatch for a Gaussian Process with a smooth kernel. Figure 2 summarises
all results.

Gaussian Process & Prior Network To illustrate that a parametric model fit with
gradient-descent on an objective function can be implicitly Bayesian, we compare a Gaussian
Proccess (GP) against linear models fit with gradient descent following the “prior networks”
procedure described in Osband et al. (2018); this procedure entails full-batch gradient
descent optimisation of the parameters on a negative log-likelihood objective (similarly
to the canonical recipe for applying deep learning to regression), with the difference that
the targets are augmented with random Gaussian noise and the weights are ℓ2-regularised
towards a random Gaussian sample. Osband et al. (2018) show this yields exact samples
from the posterior of a Bayesian Linear Model. Hence, as we ensemble the predictions
from more and more of these models, the resulting prediction rule should, in the limit, be
implicitly Bayesian. To make the comparison clear, we chose the features and the (implicit)
prior for the linear model in such a way that the resulting model would be equivalent to the
Gaussian Process with a squared exponential kernel its compared against (Appendix D.1).

The results for a Gaussian Process and prior networks are shown in Figures 4 and 2a. As
expected, the linear model approaches both the performance and the implicit Bayesianness
of the GP as the ensemble size increases. Notably, even the exact conditioning Gaussian
process is not perfectly implicitly Bayesian due to numerical precision errors, as evidenced
by the non-zero variance of the log-joint. Nonetheless, this result demonstrates that it’s
possible to get close to the implicit Bayesianness of exact Bayesian methods with algorithms
that resemble those used in deep learning. It hopefully illustrates that improving implicit
Bayesianness of deep learning algorithms might be an achievable task.

Motivated by the results above, a natural question to ask might be: are there any simple
strategies or design choices that can improve the implicit Bayesianness of deep learning
models? Do these strategies tend to come at the trade-off of performance?

Ensembling of deep learning models We run the same experiment as above with
a deep learning model – a 3-hidden layer multi-layer perceptron (MLP) optimised with

10
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Figure 2: Joint log-likelihood variance as a measure of implicit Bayesianness (defined in
(5)) vs. the negative sum of log-likelihood as a measure of performance (defined in (6)) on
the regression task described in Section 4.2. Results show: a) a Gaussian Process (GP)
with a squared exponential kernel , and a linear model fit with the prior networks proce-
dure . . . ; The larger the linear model ensemble, the more the performance and implicit
Bayesianness approaches the GP. b) a Gaussian Process, but with kernel hyperparame-
ters optimised with marginal likelihood ; c) Neural Networks (MLPs) with weight-decay
scaled differently as a function of the training data size n . . . ; results are plotted
for both a single network, as well as ensemble of various sizes, with the lightness (e.g.

) indicating the ensemble size. The large dots represent the average over multi-
ple dataset samples from the data-generating distribution, and the small dots/error-bars
represent deviation of results for individual dataset samples ((x1, y1), . . . , (x100, y100)). The
expected negative log-likelihood of the optimal predictions on this dataset (using the true
distribution) is subtracted from the mean negative joint log-likelihood plotted.

Stochastic Gradient Descent (SGD). We compare a base MLP model against ensemble
predictions (Lakshminarayanan et al., 2017). The results are highlighted in Figures 5 and
6. Ensembling appears to not only improve predictive performance, but also improve the
measure of implicit Bayesianness, although not by as much as for the linear model.

ℓ2 Decay Schedules A concern when defining a prediction rule by training a deep
learning model for a fixed number of epochs is that the algorithm has effectively no notion
of what the data-set size is. Training on two different datasets, the second one being a copy
of the first one with each element repeated twice, would yield an identical training routine
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(bar effects of the random seed). A common workaround is to use stronger regularisation on
smaller datasets8. For example, the Maximum-a-Posteriori (MAP) estimation perspective
of optimising the negative log-likelihood loss with ℓ2-regularisation suggests that the ℓ2
decay coefficient should be decayed as n−1 (Bishop, 2006). Can a strategy as simple as
decaying the ℓ2 regularisation coefficient as a function of the number of datapoints seen
have a notable effect on the implicit Bayesianness of the resulting prediction rule? If it
does, would increased implicit Bayesianness come at the cost of predictive performance? To
investigate this, we run the same experiment as above, but with a decay schedule for the ℓ2
regularisation coefficient of the form cαn

−α for different values of α. cα is in each case set so
that the value of ℓ2 decay would match for n = 100 (see Appendix D). The results are shown
in Figure 7. Surprisingly, the improvements to both implicit Bayesianness and predictive
performance are quite substantial, and, on this task, greater than what’s achievable with
ensembling of up to 10 models. With the two design-choices considered — ensemble size and
ℓ2 decay schedule — more implicitly Bayesian prediction rules seem to generally perform
better as well.

5. Future Directions

Measuring other properties of implicitly Bayesian predictions In this work, we only
experimentally considered measuring exchangeability of a prediction rule. As discussed in
Section 2.3, there are other desirable properties that an implicitly Bayesian prediction rule
posses, and other conditions that characterise them. It would be interesting to investigate
empirical metrics based on these different conditions, and measuring them in practice.

Martingale Posterior Sampling As shown in (Fong et al., 2021b), if the prediction
rule is c.i.d., we can obtain a functional uncertainty estimates that give a notion of re-
ducible uncertainty. Although the method in Fong et al. (2021b) would be computationally
extremely burdensome for deep learning-based prediction rules as defined in this work, it
would be interesting to investigate whether the method could be adapted to be more com-
putationally tractable. Furthermore, it’s an interesting question as to whether improving
any of the implicit Bayesian properties would then lead to more useful uncertainty esti-
mates, for example when used in a Bayesian optimisation, active learning or reinforcement
learning context.

Searching for implicitly Bayesian updates Turning implicit Bayesianness into a
measurable metric opens the doors for black-box optimisation for that property. Prior work
has successfully meta-learned optimisers for faster training of more performant deep learning
models (Metz et al., 2022). By meta-optimising update rules for both good performance
and implicit Bayesianness, training algorithms that are both performant and update their
predictions in a coherent way could perhaps be learnt.

6. Conclusion

In conclusion, this paper proposes a new perspective on incorporating Bayesian principles
into deep learning, shifting focus from explicit model specification to characterising and
achieving predictions that are implicitly Bayesian.

8. Normally, this stronger regularisation might be arrived at through the means of cross-validation hyper-
parameter selection.
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We can represent a bet between the agent an adversary with a function r : X n → R,
where, if the observed outcome is x1, . . . , xn, the change to the agent’s wealth after the
bet is r(x1, . . . , xn); in other words, the agents recieves |r(x1, . . . , xn)| if r(x1, . . . , xn) is
positive, and the agent pays |r(x1, . . . , xn)| to the adversary if the value of r is negative.

The bet r can be said to be favourable given a probability mass function P if the expected
return is positive, i.e.: ∑

x(n)∈Xn

r(x(n))P (x(n)) > 0 (7)

The bet reward is of course anti-symmetric, so from the perspective of the adversary with
a probability mass function P̄ , the expected return is:∑

x(n)∈Xn

(−r(x(n)))P̄ (x(n)) (8)

In what follows, it will be helpful to simplify the notation. If we enumerate all the
elements of X n, we can represent functions from X n to R as vectors in R|Xn|. For example,
if X = {0, 1}, n = 2, and the chosen ordering of elements of X n is ((0, 0), (0, 1), (1, 0), (1, 1)),
then the function r can be represented as a vector in R4:

r =


r(0, 0)
r(0, 1)
r(1, 0)
r(1, 1)


for the reminder of this section (and this section only) we’ll switch freely between the
function notation and the vector notation for the same function as it should be apparent
from the context which one is being considered.

Now, let’s assume that both the agent and the adversary are willing to accept a bet
on the next sequence of outcomes in X n only if it’s in expectation strictly favourable to
them according to their beliefs. In the case of the agent with beliefs q, or q in vector

representation, this can be concisely stated as r · q =
∑|Xn|

i=1 riqi > 0. A bet that is
favourable for both the agent with beliefs q and an adversary with beliefs q̄ is then said to
be admissible.

It is also helpful to define a notion of a minimal bet. The bet is minimal if it is a linear
combination of the beliefs of the agent q and the adversary q̄, i.e. if it can be represented
as r = aq + bq̄ for some a, b ∈ R. The rationale for this is that adding components to the
bet that are orthogonal to the beliefs of the agent and the adversary will not change the
expected return of the bet for either of them. In other words, for any bet r that is not
minimal, there exists a smaller minimal bet r′ such that the expected returns of r and r′

are the same for both the agent and the adversary. Restricting ourselves to minimal bets
hence simply ensures that the agents do not arbitrarily make bets that are not justified on
the ground of their beliefs. In short, we’ll want to state a result that says something along
the lines of “if a sensible bet is made between the agent and the adversary, then no-matter
what the true distribution is the expected return for the agent is strictly negative”. If the
bet isn’t minimal, then we could find some true distribution that rewards one of the bettors
despite them having no ‘edge’ or advantage in terms of their beliefs.
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Outcome 1

Outcome 2

Outcome 3

q

q̄

r1
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r4

Figure 3: An illustration of the beliefs q of the agent and the beliefs q̄ of the adversary as
vectors. The favourable bets for the agent are those that lie in the direction of q of the
shaded plane orthogonal to q. Similarly, the favourable bets for the adversary are those
that lie in the direction of -q̄ of the shaded plane orthogonal to q̄. Multiple inadmissible
bets r1, r2, r3 are shown, as well as one admissible bet r4.

We’ll consider the case of an adversary who knows the beliefs of the agent, i.e. the
probabilities q : X n → [0, 1], but doesn’t know the true probabilities of the events. We’ll
consider the case where they construct an “exchangeable-ified” version of the agent’s beliefs
q as:

q̄(x(n)) =
1

n!

∑
π∈Πn

q(xπ(1), . . . , xπ(n)), (9)

where Πn is the collection of all permutations of n elements. It should be clear that q̄ is
itself exchangeable.

We can show that the following holds:

Theorem 6 Given an agent with beliefs q : X n → [0, 1] on the next sequence of n events,
and an adversary with “exchangeable-ified” beliefs q̄ as defined in (3), for any exchangeable
distribution p : X n → [0, 1] that has common support with q all minimal and admissible bets
r have strictly negative expected return for the agent under p:

p · r =
∑

x(n)∈Xn

p(x(n))r(x(n)) < 0 (10)

Furthermore, either:

• q is exchangeable and q̄ = q, and there are no admissible bets.

• q is not exchangeable and there exist admissible (and minimal) bets.

In particular, the above holds when p is an i.i.d. distribution.

Proof
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for any exchangeable function f : X n → R we have that:

p · q̄ =
∑

x(n)∈Xn

p(x(n))q̄(x(n)) (11)

=
∑

x(n)∈Xn

p(x(n))

(
1

|Πn|
∑
π∈Πn

q(π(x(n)))

)
(12)

=
1

|Πn|
∑
π∈Πn

∑
x(n)∈Xn

p(x(n))q(π(x(n))) (13)

=
1

|Πn|
∑
π∈Πn

∑
x(n)∈Xn

p(π(x(n)))q(π(x(n))) (14)

=
1

|Πn|
∑
π∈Πn

∑
x(n)∈Xn

p(x(n))q(x(n)) (15)

=
∑

x(n)∈Xn

p(x(n))q(x(n)) = p · q, (16)

and so:

p · q̄ = p · q q̄ · q̄ = q · q̄ (17)

Suppose r is minimal. Then, r can be represented as:

r = aq + bq̄,

for some constants a, b...

Hence, admissibility of r equates to:

q · r > 0 ⇒ a(q · q) + b(q · q̄) > 0 (18)

q̄ · r > 0 ⇒ a(q̄ · q) + b(q̄ · q̄) = a(q̄ · q) + b(q̄ · q) < 0

⇒ a+ b < 0, (19)

as q · q̄ > 0.

From eq. X we have that:

From eq. X we can rewrite the expected return for the agent as:

p · r = ap · q + bp · q̄ = ap · q + bp · q = (a+ b)(p · q) (20)

Now, p ·q > 0 as long as p and q have some common support, and by equation X a+ b < 0
for any admissible r, hence:

p · r < 0, (21)

as required.
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II. Minimal and admissible bets exist if and only if q ̸= q̄. Suppose that q = q̄.
Then, by eq. X, an admissible bet must satisfy:

0 < r · q (22)

0 > r · v̄q = r · q, (23)

which is a contradiction, and so q = q̄ implies that no admissible bet exists.
Note that:

∥q̄∥22 =
∑

x(n)∈Xn

(
1

|Πn|
∑
π∈Πn

q(π(x(n)))

)2

≤
∑

x(n)∈Xn

1

|Πn|
∑
π∈Πn

q(π(x(n)))2 △ GM-HM inequality

=
∑

x(n)∈Xn

q(x(n))2 = ∥q∥22,

and so, q · q > q · q̄ (strict inequality, as q ̸= q̄).

Hence, picking a =
(
q·q̄
q·q

) 1
2
and b = −1:

a(q · q) + b(q · q̄) = (q · q̄)
1
2

>(q·q̄)
1
2︷ ︸︸ ︷

(q · q)
1
2 −(q · q̄) > 0 (24)

a+ b =

(
q · q̄
q · q

) 1
2

︸ ︷︷ ︸
<1

−1 < 0, (25)

gives an admissible (and minimal) bet as required.

Appendix B. Bayesian Linear Model Prediction Rule

sn

([
xn+1

yn+1

]
|
[
x1
y1

]
, . . . ,

[
xn
yn

])
= N

(
yn+1; µ̄, Σ̄

)
µ̄ =

(
xn+1Φ

⊺ + σ2
) (

ΦΦ⊺ + σ2
)−1

y1:n

Σ̄ = x⊺n+1xn+1 −
(
xnΦ

⊺ + σ2
) (

ΦΦ⊺ + σ2I
)−1 (

Φxn+1 + σ2
)
+ σ2

with Φ =
[
x1 . . . xn

]⊺
and y1:n =

[
y1 . . . yn

]⊺
.
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Figure 4: Joint log-likelihood variance as a measure of implicit Bayesianness(defined in (5))
vs. the negative sum of log-likelihood as a measure of performance (defined in (6)) plot
for a Gaussian Process with a squared exponential kernel, and a linear model fit with the
prior networks procedure on the regression task described in Section 4.2. The individual
small dots depict the result for a particular collection of datapoints ((x1, y1), . . . , (x100, y100))
drawn from the data-generating distribution, and the large dots represent the mean over
multiple dataset samples from the data-generating distribution. The expected negative log-
likelihood of the optimal predictions on this dataset (i.e. using the true distribution) is
subtracted from the mean negative joint log-likelihood plotted.
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Figure 5: Comparison of the MLP results in Figure 6 and a Gaussian Process Figure 4 on
the same plot.
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Figure 6: Joint log-likelihood variance as a measure of implicit Bayesianness(defined in (5))
vs. the negative sum of log-likelihood as a measure of performance (defined in (6)) plot
for a MLP trained with SGD, as well as ensembles of such models, on the regression task
described in Section 4.2. The error bars denote 10th and 90th percentiles over multiple
dataset samples from the data-generating distribution.
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Figure 7: Comparison of different ℓ2-decay schedules (with respect ot dataset size) for
an MLP model trained with SGD measuring joint log-likelihood variance as a measure of
implicit Bayesianness(defined in (5)) vs. the negative sum of log-likelihood as a measure of
performance (defined in (6)). Results shown for the regression task described in Section 4.2.
The error bars denote 10th and 90th percentiles over multiple dataset samples from the
data-generating distribution.
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Appendix C. Can a prediction rule at a fixed step be extended to an
implicitely Bayesian prediction rule?

In deep learning, we would often taylor our approach to the amount of data available at
hand. For example, we might use a small neural network for a small dataset, and a large
neural network for a large dataset. If we have fewer than hundreds of datapoints, we might
not even consider using a neural network at all. Hence, viewing training of a neural network
as a prediction rule for all possible data sizes might not be the most natural lens.

One might wonder, assuming that one has only specified a prediction rule at step n only,
can it be extended to a prediction rule for all n to satisfy some of the previously mentioned
properties?

One reasonable guess might be that, if the prediction rule at step n is invariant to the
ordering of the data, i.e. sn(·|x1, . . . , xn) = sn(·|xπ(1), . . . , xπ(n)) for any permutation π of
{1, . . . , n}9, then maybe it can be extended to an exchageable prediction rule. If that was
the case, that would be good news: as long as we’re making the prediction at step n only, we
can claim that our prediction rule is implicitly Bayesian; once we start making predictions
at other time-steps, we just need to figure out what an implicitely Bayesian extension is.

However, the invariance of the prediction rule at step n to the ordering of the data is not
a sufficient condition for an implicitely Bayesian extension to exist. It’s possible to devise
simple counter-examples showing to the contrary.

Appendix D. Experimental Details

D.1. Gaussian Process and Prior Networks

For the Gaussian Process, we consider a squared exponential kernel of the form kSE(x, x
′) =

a2 exp
(
− (x−x′)2

2ℓ2

)
. By default, the output variance a2 and the length-scale ℓ are both set

to 1. When the hyperparameters are being updated using margina likelihood, we set the
ranges for both a2 and ℓ to (10−5, 105) and optimise using LBFGS.

For the feature expansion for the Prior Network, we use a large number of Gaussian
radial basis function features uniformly spaced over the relevant part of the input domain; in
the limit, if the basis functions are adequately chosen, this should yield a Bayesian Linear
Model equivalent to a squared exponential kernel GP Rasmussen and Williams (2005).

Concretely, we use a Gaussian basis function ϕβ(x) = c exp(− (x−β)2

ℓ2
) for an adequately

chosen constant c (≈ 4.47) with 100 bases spaced equidistantly on the interval [−6.0, 6.0].

The variance of the noise, both for the likelihood of the Gaussian Process and the linear
model, were in both cases set to the true (known) variance for the task.

D.2. Ensembling

Models are ensembled by averaging their predictions: 1
M

∑M
j=1 s

ϵj
i (x∗|x1, . . . , xi) (equivalent

to taking the logmeanexp operation of the log-probabilities for test data).

9. This is a weaker condition than exchangeability, as it only requires invariance to the ordering of the
conditioning sequence.
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Figure 8: A 1D regression task. (Bottom): The Gaussian density on the covariates. (Top):
The data-generating process illustrating the true function, with the filled area around it
depicting the standard deviation of the homogeneous Gaussian noise.

D.3. MLP

The hyperparameters of the model (weight decay, learning rate) were tuned on a validation
set, with a separate randomly sampled training set of size n, and fixed for all steps i ≤ n
of the prediction rule si (except where explicitly stated that they were adjusted).

The neural network model considered in regression tasks is an MLP with three hidden
layers, each of width 512, with a ReLU activation and no normalisation. The model was
trained for 10000 iterations (independently of dataset size) with a batch-size of 64 (or less,
if the dataset size is smaller).

D.3.1. ℓ2-decay experiments

For different ℓ2-decay experiments, we run the same experiments with same hyperparame-
ters as above, but with a decay schedule in the dataset size i of the form cαi

−α for different
values of α. cα is in each case set so that the value of ℓ2 decay would match for i = n, i.e.
the final value of the weight-decay would be the optimal one as found with cross-validation.

For larger (negative) values of α, the initial weight-decay for small dataset sizes gets
so large that the training becomes numerically unstable. Hence, we clip the maximum
value of weight-decay to 2000, which is sufficient for the model to always learn the solution
equivalent to all weights being set to 0.
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For all results for all methods, for each dataset sequence ((x1, y1), . . . , (xn, yn)), we
ignore the prediction for the first datapoint in the sequence (x1, y1), effectively setting the
log-probability assigned by s0 to 0 for all methods. This does contribute a small amount to
increase in the variance of the log-joint even for exactly exchangeable methods. We do so
as, for deep learning methods, the prediction with no training data is somewhat ill-defined.
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