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Abstract

The Bayesian approach leads to coherent updates of predictions under new data, which
makes adhering to Bayesian principles appealing in decision-making contexts. Tradition-
ally, integrating Bayesian principles into models like deep neural networks involves setting
priors on parameters and approximating posteriors. This is done despite the fact that,
typically, priors on parameters reflect any prior beliefs only insofar as they dictate function
space behaviour. In this paper, we rethink this approach and consider what properties
characterise a prediction rule as being Bayesian. Algorithms meeting such criteria can be
deemed implicitly Bayesian — they make the same predictions as some Bayesian model,
without explicitly manifesting priors and posteriors. We argue this might be a more fruit-
ful approach towards integrating Bayesian principles into deep learning. In this paper, we
propose how to measure how close a general prediction rule is to being implicitly Bayesian,
and empirically evaluate multiple prediction strategies using our approach. We also show
theoretically that agents relying on non-implicitly Bayesian prediction rules can be easily
exploited in adversarial betting settings.

1. Introduction

In the Bayesian framework, model predictions are updated coherently and rationally based
on new evidence. These rationality properties are epitomised by various theorems showing
that a Bayesian agent states and updates their beliefs in a way that cannot be trivially
exploited by an adversary (Pettigrew, 2020; Lane and Sudderth, 1984, §4). This arguably
gives Bayesian predictions some level of credibility; e.g. when following the Bayesian ap-
proach exactly, one does not have to worry (as much) about whether some evidence is
being given more weight than other, or whether some evidence is ignored outright. Even
putting computational and approximate inference considerations aside, a Bayesian still has
plenty to worry about with regards to modelling choices; nonetheless, at the very least,
some fundamental sanity checks are taken care of.

This is in contrast to many other — potentially more “black-box” — approaches to
prediction, such as training a deep learning model. For instance, when continually updating
a deep learning model with new data, we might have to worry about catastrophic forgetting
(McCloskey and Cohen, 1989), or that the order the data is presented in might adversely
affect the predictions (Ash and Adams, 2020).

When a model makes predictions that will be acted upon in a closed decision-making
loop, e.g. when finding the optimum of an unknown function (Bayesian Optimisation) or for
exploration in reinforcement learning, it is important that the model’s predictions change
in a coherent way in light of new observed data. In these settings, the uncertainty estimates
provided by the model are used to guide the decision-making process, often in a way that
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has to balance exploration against exploitation. However, if the model’s current predictions
and uncertainty estimates are not related to how the model’s predictions will change upon
observing a currently unobserved variable, then any down-stream decisions made on the
basis of these predictions might be highly suboptimal.

This, among other reasons, is often the reason Bayesian methods are being advocated
for, and why many attempts have been made to incorporate Bayesian principles into deep
learning. However, despite considerable effort by a large community, existing approaches
to putting deep learning within a Bayesian framework often perform poorly in practical
settings. Current research typically focuses on one specific model class, which is obtained
by placing a prior over the parameters of the neural network, and approximating the pos-
terior.1Algorithms relying on this perspective usually encumber scalability. For example,
in Markov Chain Monte Carlo (MCMC) schemes, effectively, multiple models need to be
trained following a cumbersome procedure for an accurate approximation; variational in-
ference schemes, on the other hand, struggle to fit complex posteriors over the parameters
without similarly complex and difficult to train models to approximate that posterior.

In this paper, we advocate for taking a different perspective on how to incorporate
Bayesian principles into deep learning, and how to even think about measuring how close
we are to achieving this goal. Specifically, we look at what desirable properties predictions
made by Bayesian methods posses (including a new Dutch-book-style theorem in Section 3),
what properties characterise a prediction rule as being Bayesian (Section 2.3), and how to
measure how close a prediction rule is to satisfying these properties (Section 4). We em-
pirically demonstrate our proposed measure by investigating how various design decisions
affect how close an algorithm is to being implicitly Bayesian on a small regression task (Sec-
tion 4.2). We advocate that this might be a more fruitful way to think about incorporating
Bayesian principles into deep learning, as it only dictates a minimal set of conditions for
how the predictions should behave, rather than dictating how the internals of the prediction
algorithm should be structured.

2. Background

Whereas statistics often deals more broadly with inferences about various unobserved quan-
tities, the prediction of future observations is arguably at the core of machine learning.
Hence, in this piece, we primarily consider the setting of predicting future observations
given the past. Concretely, given a sequence of random variables X1, X2, . . . we are in-
terested in predicting the values of Xn+1, Xn+2, . . . given observations of X1, . . . , Xn for
different n. We’ll also look at the case of regression/classification where for a sequence
of random variables X1, X2, . . . and Y1, Y2, . . . we are interested in predicting the value of
Yn+1 given the observations of X1, Y1, . . . , Xn, Yn, and Xn+1.

To discuss and compare the properties of various approaches to predicting future ob-
servations, it is helpful to introduce the concept of a prediction rule/strategy. If the ob-
servations take values in some space X , then (informally) a prediction rule is a sequence
of functions (s0, s1, s2, . . . ) where each sn maps a sequence (x1, . . . , xn) ∈ X n to a proba-
bility distribution sn(·|x1, . . . , xn) on X . sn(·|x1, . . . , xn) carries the interpretation of the

1. Function-space variational inference (Sun et al., 2019) being a notable exception, although in this case
a prior is still specified explicitly, just directly in the function space.
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prediction for the next observation Xn+1 given the observed outcomes (x1, . . . , xn) for the
previous observations X1, . . . , Xn.

More precisely, Dubins et al. (2014) formally introduce a prediction rule/strategy on a
measurable space (X ,F) as a sequence of functions sn : F × X n → [0, 1] where:

1. For every (x1, . . . , xn) ∈ X n, the function A 7→ sn(A|x1, . . . , xn) for A ∈ F is a
probability measure on (X ,F),

2. For everyA ∈ F , the function x1, . . . , xn−1 7→ sn(A|x1, . . . , xn−1) is⊗n
i=1F-measurable

(with ⊗n
i=1F denoting the product σ-algebra on X n)

These two conditions equivalently specify that each sk is a Markov kernel from (X k,⊗k
i=1F)

to (X ,F), effectively ensuring that the prediction rules define a joint probability measure
on (X n,⊗n

i=1F), i.e. on the sequence of first n observations, for all n. Furthermore, by the
Ionescu-Tulcea Theorem (Hoffman-Jorgensen, 2017; Berti et al., 2023), a prediction rule
uniquely defines a probability measure over the whole infinite sequence space (X∞,⊗∞

i=1F),
hence formally justifying using a prediction rule to make predictions on the whole sequence
of observations (X1, X2, . . . ); it also allows us to define properties of prediction rules in
terms of the joint they imply over the sequence space.

A prediction rule describes how a practitioner makes predictions about the future obser-
vations given the past. In the context of deep learning, a prediction rule might encompass
the whole procedure for training a neural network on a dataset of past observations, and
then using the trained neural network to make predictions about future observations. For
example, sn(xn+1|x1, . . . , xn) might be defined as the probability density of xn+1 given by
a normalising flow trained on a dataset of examples (x1, . . . , xn) following, for example,
Stochastic Gradient Descent (SGD) with a maximum likelihood objective2.

A standard assumption in machine learning problems is that the data (X1, X2, . . . ) is
independent and identically distributed (i.i.d.) — i.e. the random variables (X1, X2, . . . ) are
independent, and they all follow the same law: Xi ∼ PX . The data generating distribution
PX is unknown to the practitioner. In this paper, we’ll primarily concern ourselves with
the case of i.i.d. data. We’ll describe below how one would go about defining a prediction
rule in the Bayesian framework in an i.i.d. context, and then look at various properties that
such prediction rules might have.

2.1. The Bayesian Inferential Approach

In its most general form, the Bayesian framework for inference is to 1) specify a joint
distribution over all the random variables of interest, and 2) condition on the observed
values to obtain a posterior distribution over the unobserved variables of interest. In the
context of a sequential prediction problem, one might specify a joint distribution over the
random variables (X1, X2, . . . ) and condition on the observed values of X1, . . . , Xn to obtain
a posterior distribution over e.g. Xn+1. For i.i.d. data, a Bayesian would usually treat the
data generating distribution PX as an unknown, and place a prior distribution over it. To
make predictions about the next observation Xn+1 given observed outcomes (x1, . . . , xn) for

2. In this framework, prediction rules are deterministic; to view training a deep learning model as a predic-
tion rule, all sources of randomness other than the data have to be fixed (e.g. through the seed). Each
seed or sequence of seeds effectively leads to a different prediction rule.
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the previous observations X1, . . . , Xn, one could describe the Bayesian inferential approach
(Berti et al., 2023) as: I. Specify a prior over the generating distribution; II. Get a posterior
over the generating distribution given the observed data; III. Compute the prediction
sn(·|x1, . . . , xn) by computing the posterior predictive distribution for Xn+1.

For instance, assuming the distributions of interest can be described with a parameter
θ ∈ Rd and a density pX|Θ(x|θ), and that the prior over Θ also has a density pΘ(θ), the
procedure above might look like:

I Specify a prior density pΘ(θ) over the parameters;

II Compute the posterior density pθ|X1,...,Xn
(θ|x1, . . . , xn)

def∝
∏n

i=1 pX|θ(xi|θ)pθ(θ);

III Calculate the prediction sn(·|x1, . . . , xn)
def
=
∫
pX|θ(·|θ)pθ|X1,...,Xn

(θ|x1, . . . , xn)dθ

2.2. Implicitly Bayesian Prediction Rules

An alternative to the inferential approach would to be to specify a prediction rule directly.
This approach is often referred to in the literature as the predictive approach (Berti et al.,
2023) and has been recently studied extensively in the statistics literature (Berti et al.,
2013; Fong, 2021; Fong and Lehmann, 2022; Berti et al., 2019, 2021, 1998). It should be
evident that this procedure can in effect result in the same prediction rule as that from the
inferential approach.

For example, the practitioner could specify a linear model on (Xn, Yn) with a uniform
prior density on the covariates Xn (say, in the range [0, 1]d), and a Gaussian prior N (θ; 0, I)
on the weights θ (assuming homogeneous Gaussian noise with variance σ2). Here y 7→
N (y;µ,Σ) denotes a Gaussian density with mean µ and covariance Σ. Given observations
((x1, y1), . . . , (xn, yn)), the practitioner would then construct a posterior on the weights
(e.g. through Monte-Carlo sampling) and average over the posterior samples to obtain a
posterior predictive distribution for Xn+1, Yn+1. Alternatively, they could directly compute
an equivalent prediction, without directly manifesting the posterior, with the prediction rule
given in Appendix C. If a practitioner happened, by a stroke of luck, to specify this as their
prediction rule without ever considering the underlying assumptions of a linear model and
a prior, they’d still make the same predictions as if they followed the Bayesian framework
with some underlying model.

A natural question to ask is: under what conditions on the prediction rule is it equiv-
alent to the inferential approach for some prior and likelihood? In other words, given a
prediction rule, can one say whether there exists a prior and likelihood such that the pre-
dictions from the prediction rule match those of following the Bayesian framework with
that likelihood/prior pair under the i.i.d. assumption? If this is the case, we’ll say that the
prediction rule is implicitly Bayesian.3

In what follows, we’ll look at the properties that the prediction rules defined following
the Bayesian framework posses, and the properties that characterise them.

2.3. Characterising Implicitly Bayesian Prediction Rules

In the case of assumed i.i.d. data, De Finetti’s theorem gives a simple condition for a
prediction rule to be implicitly Bayesian. As mentioned before, a prediction rule implies a

3. The prediction rule and the corresponding likelihood/prior construction can be said to be Bayes-ically
the same.
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unique joint distribution over the sequence of random variables (X1, X2, . . . ). By a version
of the De Finetti’s theorem, under some mild assumptions, a prediction rule is implicitly
Bayesian if and only if the joint distribution it implies over (X1, X2, . . . ) is exchangeable
(Hewitt and Savage, 1955):

Definition 1 (Exchangeable Sequence of Random Variables) A finite sequence of
n random variables (X1, . . . , Xn) is said to be exchangeable if for any permutation π :
{1, . . . , n} → {1, . . . , n} the joint distribution of (X1, . . . , Xn) is the same as the joint dis-
tribution of (Xπ(1), . . . , Xπ(n)).

An infinite sequence of random variables (X1, X2, . . . ) is said to be exchangeable if, for
any n, the finite sequence (X1, . . . , Xn) is exchangeable.

By De Finetti’s theorem (see Appendix A for a more formal introduction), we know
that a sequence of random variables (X1, X2, . . . ) is exchangeable if and only if there exists
a (unique) prior probability π on the space P of probability measures on X such that:

P [X1 ∈ A1, . . . , Xn ∈ An] =

∫
P

n∏
i=1

p(Ai)dπ(p) ∀A1, . . . , An∀n ∈ N,

where p ∈ P is a probability measure on X . In other words, only if the there exists a
likelihood/prior construction that defines the same joint distribution as the prediction rule.
Hence, exchangeability is the defining characteristic of implicitly Bayesian prediction rules
on i.i.d. data. This suggests one direct way of checking whether a prediction rule is implicitly
Bayesian: check whether the joint distribution on (X1, X2, . . . ) implied by the prediction
rule is exchangeable.

Conditionally Identically Distributed Another desirable coherence property that we
might expect of a prediction rule is that the future observations are identically distributed
given the past. For example, under the i.i.d.assumption, if we were to observe (x1, . . . , xn),
the prediction for the next observation Xn+1 surely shouldn’t be different from the predic-
tion for the observation after that. After all, we know they are identically distributed, we
just don’t know what the distribution is; it’d be irrational to make different predictions for
Xn+1, Xn+2 given the same data.

This property can be formalised as follows:

Definition 2 (Conditionally Identically Distributed) We say that a sequence of ran-
dom variables (X1, X2, . . . ) is conditionally identically distributed (c.i.d.) if for any n:

P [Xn+1 ∈ ·|X1 = x1, . . . , Xn = xn] = P [Xn+k ∈ ·|X1 = x1, . . . , Xn = xn] ∀k > n

holds almost surely.

A prediction rule is then c.i.d. if the joint distribution it implies over (X1, X2, . . . ) is c.i.d..
Conditionally Identically Distributed sequences have been introduced in (Kallenberg, 1988)
and studied and applied in a range of works (Berti et al., 2004, 2013; Fong et al., 2021a).

It should be clear that each exchangeable sequence is c.i.d., as exchangeability implies

X1, . . . , Xn, Xn+1
d
= X1, . . . , Xn, Xn+k for any k > 0. Hence, following the Bayesian frame-

work will yield c.i.d. prediction rules, and any implicitly Bayesian prediction rule will be
c.i.d.. Not all c.i.d. sequences are exchangeable, however. c.i.d. can hence be seen as a
weakening of the condition of exchangeability.
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Stationarity There is one complimentary property that not all c.i.d. sequences have that
would make them implicitly Bayesian. Namely, stationarity :

Definition 3 (Stationary sequence) A sequence of random variables (X1, X2, . . . ) is
said to be stationary if for any n, k > 0:

X1, . . . , Xn
d
= X1+k, . . . , Xn+k (1)

In the context from the prediction rules, stationarity implies sampling k datapoints
x′1, . . . , x

′
k, from the prediction rule itself and prepending them to the observed data D=

(x1, . . . , xn), would yield a prediction rule sn+k(·|x′1, . . . , x′k,D) that’s in expectation the
same as sn(·|x1, . . . , xn).

By the result of Kallenberg (1988, Proposition 2.1), exchangeability exactly amounts to
stationarity and the c.i.d. condition; stationarity and c.i.d. properties are another way of
characterising implicitly Bayesian prediction rules.

Spreadability Another condition that turns out to also characterise implicitely Bayesian
models is spreadability :

Definition 4 (Spreadable sequence) A sequence of random variables (X1, X2, . . . ) is
said to be spreadable if for any n > 0 and any sequence of indices kn > kn−1 > · · · > k1 ≥ 1:

X1, . . . , Xn
d
= Xk1 , . . . , Xkn (2)

Exchangeability

Stationarity & c.i.d. Spreadability

⇔

⇔

⇔

Figure 1: Equivalent characterisa-
tion of exchangeable sequences, and
hence implicitly Bayesian predic-
tion rules.

Spreadability says that the distribution of the first
n observations is the same as the distribution of any
n observations from the sequence. In the context of a
prediction rule, it implies that, if we were to construct
a new dataset by possibly sampling ki ≥ 0 datapoints
from the prediction rule conditioned on the previous
datapoints inbetween “observed” datapoints xi, xi+1,
the final prediction given that dataset would in expec-
tation be the same as the prediction given the original
dataset. Kallenberg (1988) has shown that spreadabil-
ity is equivalent to exchangeability. In other words,
spreadability is yet another property that characterises implicitly Bayesian prediction rules.

In summary, Figure 1 illustrates the different properties that an implicitly Bayesian
prediction rule posses and can be characterised by. Some might be easier to establish
or approximately enforce then others, and each suggests its own way of constructing an
exchangeable prediction rule from a non-exchangeable one. It’s an interesting question as
to what extent various commonly used machine learning and deep learning methods posses
these different properties, and how various design choices might affect them.

Can a prediction rule at a fixed step be extended to an implicitely Bayesian
prediction rule? In deep learning, we would often taylor the approach to the amount of
data available at hand. If we have fewer than hundreds of datapoints, we might not even
consider using a neural network at all. One might therefore wonder, given a specification
for a prediction rule at step n only, can it be extended to a prediction rule for all n to
satisfy the aforementioned properties? We discuss this in Appendix E, but, in short, the
requirements on sn turn out to be quite stringent.
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3. Non-implicitly Bayesian agents are vulnerable to adversarial bets

Many of the fundamental axioms of probability, and hence probabilistic inference, can
be argued for on the basis of various Dutch Book arguments (Pettigrew, 2020). These
show that, unless one adopts the intuitively sensible-seeming axioms of probability (e.g.
probabilities must sum to 1), one is left vulnerable to accepting seemingly appealing, but
highly disadvantageous, bets. In this subsection, along similar lines, we’ll show that using
a non-exchangeable prediction rule, when the true distribution is exchangeable (e.g. i.i.d.),
leaves one vulnerable to accepting bets that are in expectation disadvantageous. We give a
brief overview of the setup and the result here, but for a thorough exposition and the proof
see Appendix B.

Consider a game in which two players (an agent and an adversary) make bets on a
sequence of n observations from some unknown exchangeable or i.i.d.distribution. Here,
we’ll restrict ourselves to the finite discrete setting where the sequence of events takes
values in X n for some finite space X . The agent and the adversary agree ahead of time
how much the adversary will pay to (or receive from) the agent for every possible observed
outcome. This is captured in a bet function r : X n → R, which represents the reward of
r(x1:n) to the agent, and cost of −r(x1:n) to the adversary, when the observed outcomes is
x1:n ∈ X n.

The agent and adversary are taken to have some ‘beliefs’ over what the observations
might be. The beliefs are taken to be probability mass functions on X n. Their beliefs dictate
what kind of bets they are willing to accept. Given agent and adversary beliefs q : X n → R
and q̄ : X n → R, a bet r : X n → R is said to be admissible if it appears ‘favourable’ from the
point of view of both the agent and the adversary, namely if

∑
x1:n∈Xn r(x1:n)q̄(x1:n) > 0

and
∑

x1:n∈Xn r(x1:n)q̄(x1:n) < 0. These inequalities can be interpreted as saying, from
the point of view of the beliefs of the agent and the adversary, their respective expected
payoffs are positive. It is also helpful to define a notion of a minimal bet: given agent and
adversary beliefs, a bet r is minimal if it is the smallest possible4among all bets that give
the same expected return to both the agent and the adversary (see Appendix B for details).
Restricting to minimal bets ensures that the players do not arbitrarily make bets that are
not justified on the ground of their beliefs.

We will consider an adversary that constructs an “exchangeable-ified” version q̄ of the
agent’s beliefs q as:

q̄(x1, . . . , xn) =
1

n!

∑
π∈Πn

q(xπ(1), . . . , xπ(n)), (3)

where Πn is the collection of all permutations of n elements. It should be clear that q̄ is
itself an exchangeable probability mass function.

We provide a specific construction demonstrating that any agent following non-exchangeable
beliefs (e.g. those implied by a non-exchangeable prediction rule) is necessarily exploitable,
at least by an agent with an “exchangeable-ified” version of their beliefs. This is formalised
in the following theorem:

Theorem 5 Given an agent with beliefs q : X n → [0, 1], and an adversary with beliefs q̄
that are an “exchangeable-ified” version of beliefs of the agent q̄ as defined in (3), for any

4. Smallest in ℓ2 norm, where the ℓ2 norm of f : Xn → R is taken to be
√∑

x1:n∈Xn f(x)2.
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exchangeable distribution p : X n → [0, 1] that has some common support with q, all minimal
and admissible bets r have a strictly negative expected return for the agent under p:∑

x1:n∈Xn

p(x1:n)r(x1:n) < 0 (4)

Furthermore, either: 1) q is exchangeable and q̄ = q, and there are no admissible bets; or
2) q is not exchangeable and there exist admissible (and minimal) bets.

In particular, the above holds when p is an i.i.d. distribution.

4. Measuring Implicit Bayesianness

Notation As we’ll deal with nested expectations and variances in this section, we’ll adopt
the machine learning notation for conditional expectations: for a function f that depends
on multiple random variables A,B, . . . we’ll write EA[f(A,B, . . . )] to denote the conditional
expectation of f conditioned on all the variables other than A – the subscript indicates the
“marginalised out” variables.5The subscript in the variance VarA[f(A,B, . . . )] is defined
analogously.

In the preceding section, we argued that implicitly Bayesian prediction rules might be
desirable, and presented various testable properties that characterise them. In this section,
we’ll look at how we can go about measuring these properties in practice, present empirical
results for both Bayesian and non-Bayesian models including deep learning models, and
show that simple design choices can lead to more or less implicitly Bayesian prediction rules.
As shown in Section 2.3, exchangeability is one defining characteristic of implicitly Bayesian
prediction rules. In this paper, we’ll focus deriving empirical measures of approximate
exchangeability, although the other criteria in Section 2.3 are equally interesting candidates.

In a machine learning context, we’re usually dealing with settings where the observations
take values either in a Euclidean or a discrete space, and the distribution over the future
observations is derived from a conditional probability density or mass function. In this
section, we will restrict ourselves to those two settings, and define a prediction rule as a
sequence of functions (s0, s1, s2, . . . ) where each sn maps a sequence (x1, . . . , xn) ∈ X n to
a probability density/mass function sn(·|x1, . . . , xn), overloading the notation above. Of
course, such prediction rules can be converted to the more general definition above.

Exchangeability is not easy to verify. Even for a finite sequence, it requires checking
that

∏n−1
i=0 si(xi+1|x1, . . . , xi) =

∏n−1
i=0 si(xπ(i+1)|xπ(1), . . . , xπ(i)) with probability 1 (i.e. for

almost every sequence (x1, . . . , xn) ∈ X n with respsect to the joint measure on X n implied
by the prediction rule) for every permutation π. Checking the exchangeability condition for
even for just a single sequence (x1, . . . , xn) can be computationally expensive, as it requires
verifying the above equality for all n! permutations of the sequence. Lastly, we rarely
expect exact exchangeability to hold in practice. Even for implementations of models with
a strong Bayesian motivation, the exact equality might not hold due to numerical errors or
approximate inference. Ideally, we’d like some measure of the degree of exchangeability of
a prediction rule.

To measure how close to being exchangeable a prediction rule is, in this paper we suggest
measuring the variance of the log-joint as we randomly sample permutations of the data

5. For example, if A,B,C are random variables, then EA[EB [f(A,B,C)]] = E[E[f(A,B,C)|A,C]|C].
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uniformly at random. Concretely, if Π is a random variable that takes values in the set of
all permutations of {1, . . . , n} with equal probability, we propose measuring:

VarΠ

[
log

n−1∏
i=0

si(xΠ(i+1)|xΠ(1), . . . , xΠ(i))

]
= VarΠ

[
n−1∑
i=0

log si(xΠ(i+1)|xΠ(1), . . . , xΠ(i))

]
for a given sequence of datapoints (x1, . . . , xn). Taking the log makes the measure more
numerically stable. To get around measuring the variance for every sequence (x1, . . . , xn),
we propose sampling sequences of datapoints and reporting the expected variance of the
log-joint as a measure of implicit Bayesianness. Since it’s nontrivial to evaluate the variance
of the log-joint on an infinite sequence, we resort to checking for exchangeability on a finite
sequence of datapoints. Arguably, we might care about ‘being implicitly Bayesian’ in some
regions of the X n space more than others. Hence, we evaluate the variance of the log-
joint preferentially on sequences of data sampled from a task of interest. We resort to
measuring the expected variance given some reference distribution Dn over sequences of n
datapoints.For a distribution Dn with full support, the prediction rule s is exchangeable
(on the first n observations) if and only if the variance of the log-joint is zero, justifying
the use of the variance of the log-joint as a measure of exchangeability. Let X1, . . . , Xn be
random variables that follow the law Dn. Then, our measure looks like:

mvar ((s1, s2, . . . )) = EX1,...,Xn

[
VarΠ

[
n∑

i=1

log si(xΠ(i)|xΠ(1), . . . , xΠ(i−1))

]]
(5)

One last caveat remains for the case of non-deterministic prediction rules such as training
of a deep learning model. In this case, each random seed ϵ will yield a different prediction
rule sϵ = (sϵ1, s

ϵ
2, . . . ). Hence, the metric that we actually measure is the average variance

of the log-joint over different random seeds ϵ ∈ E : 1
|E|
∑

ϵ∈E mvar ((s
ϵ
1, s

ϵ
2, . . . )). In practice,

we approximate (5) by Monte-Carlo sampling, taking the empirical variance and mean of
the log-joint to arrive at a computable metric.

4.1. Implicit Bayesianness vs. Performance

Although we argue implicit Bayesianness is a desirable property, it is not an end-goal on its
own. After all, if a prediction rule has lacklustre performance on the tasks we are interested
in, it likely won’t be much comfort that it is implicitly Bayesian.6 Hence, since predictive
performance is a key consideration, we’ll report both the aforementioned measure of implicit
Bayesianness in (5), as well as a measure of performance on the data-generating distribution
Dn in the experiments that follow. To report an aggregate of the performance on the entire
sequence of n observations, we’ll report the average negative log-likelihood (NLL) of the
prediction rule on the sequence of observations: EX1,...,Xn [

∑n
i=1 log si(xi|x1, . . . , xi−1)]. If

the true data-generating distribution Dn is i.i.d., which it will be for all the tasks considered
below, then that expectation is the same as:

EX1,...,Xn

[
EΠ

[
n∑

i=1

log si(xΠ(i)|xΠ(1), . . . , xΠ(i−1))

]]
(6)

6. It’s not difficult to construct trivial implicitly Bayesian prediction rules. For example, one could set
si(xi|x1, . . . , xi−1) = q(xi) for some fixed probability density/mass function q : X → R. This prediction
rule is trivially exchangeable, but it’s not particularly useful as no learning is taking place.
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allowing as to use the same samples to compute 1) a measure of implicit Bayesiannes, i.e.
the variance of the log-joint in (5) and 2) a measure of performance, i.e. the expectation
of the log-joint in (6). We investigate these metrics empirically in the following section.

4.2. Results

We consider a simple 1D regression task on which we compare deep learning prediction
rules against exact and approximate Bayesian methods, such as exact conditioning in a
Gaussian Process or approximate inference in Bayesian Neural Networks (BNNs). The task
is pictured in Figure 12. The true function was chosen to be discontinuous to yield a model
mismatch for a Gaussian Process with a smooth kernel. Figure 2 summarises all results.
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Figure 2: Evaluation of the joint log-likelihood variance as a measure of implicit Bayesian-
ness (defined in (5)) vs. the negative sum of log-likelihood as a measure of performance
(defined in (6)) on the regression task described in Section 4.2. The large dots rep-
resent the average over multiple dataset samples from the data-generating distribution,
and the small dots/error-bars represent deviation of results for individual dataset samples
((x1, y1), . . . , (x100, y100)). For some methods, where ensembling multiple independently
trained models might be of interest, we report results for multiple ensemble sizes; the light-
ness of the colour indicates the ensemble size. The expected negative log-likelihood of the
optimal predictions on this dataset (using the true distribution) is subtracted from the mean
negative joint log-likelihood plotted.

Gaussian Process & Prior Network To illustrate that a parametric model fit with
gradient-descent on an objective function can be implicitly Bayesian, we compare a Gaussian
Proccess (GP) against linear models fit with gradient descent following the “prior networks”
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procedure described in Osband et al. (2018); this procedure entails full-batch gradient
descent optimisation of the parameters on a negative log-likelihood objective (similarly
to the canonical recipe for applying deep learning to regression), but with the targets
augmented with random Gaussian noise and the weights ℓ2-regularised towards a random
Gaussian sample. Osband et al. (2018) show this yields exact samples from the posterior
of a Bayesian Linear Model. Hence, as we ensemble the predictions from more and more
of these models, the resulting prediction rule should, in the limit, be implicitly Bayesian.
To make the comparison clear, we chose the features and the (implicit) prior for the linear
model in such a way that the resulting limiting model would be equivalent to the Gaussian
Process with a squared exponential kernel its compared against (Appendix F.1).

The results for a Gaussian Process and prior networks are shown in Figures 4 and 2a. As
expected, the linear model approaches both the performance and the implicit Bayesianness
of the GP as the ensemble size increases. Notably, even the exact conditioning Gaussian
process is not perfectly implicitly Bayesian due to numerical precision errors, as evidenced
by the non-zero variance of the log-joint. Nonetheless, this result demonstrates that it’s
possible to get close to the implicit Bayesianness of exact Bayesian methods with algorithms
that resemble those used in deep learning. It hopefully illustrates that improving implicit
Bayesianness of deep learning algorithms might be an achievable task.

Motivated by the results above, we ask: what strategies or design choices might be most
effective at improving implicit Bayesianness of deep learning models? Do methods with a
Bayesian motivation necessarily outperform ones without?

Ensembling of deep learning models We run the same experiment as above with
a deep learning model – a 3-hidden layer multi-layer perceptron (MLP) optimised with
Stochastic Gradient Descent (SGD). We compare a base MLP model against ensemble
predictions (Lakshminarayanan et al., 2017). The results are highlighted in Figures 5 and
6. Ensembling appears to not only improve predictive performance, but also improve the
measure of implicit Bayesianness, although not by as much as for the linear model.

ℓ2 Decay Schedules A concern when defining a prediction rule by training a deep
learning model for a fixed number of epochs is that the algorithm has effectively no notion
of what the data-set size is. Training on two different datasets, the second one being a copy
of the first one with each element repeated twice, would yield an identical training routine
(bar effects of the random seed). A common workaround is to use stronger regularisation
on smaller datasets.For example, the Maximum-a-Posteriori (MAP) estimation perspective
of optimising the negative log-likelihood loss with ℓ2-regularisation suggests that the ℓ2
decay coefficient should be decayed as n−1 (Bishop, 2006). Can a strategy as simple as
decaying the ℓ2 regularisation coefficient as a function of the number of datapoints seen
have a notable effect on the implicit Bayesianness of the resulting prediction rule? To
investigate this, we run the same experiment as above, but with a decay schedule for the ℓ2
regularisation coefficient of the form cαn

−α for different values of α. cα is in each case set so
that the value of ℓ2 decay would match for n = 100 (see Appendix F). The results are shown
in Figure 7. Surprisingly, the improvements to both implicit Bayesianness and predictive
performance are quite substantial, and, on this task, greater than what’s achievable with
ensembling of up to 10 models.

Approximate Inference in BNNs We also compare against various popular methods
to approximate Bayesian inference in neural networks with a prior placed on the parame-
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ters. We consider MC Dropout (Gal and Ghahramani, 2016), the Laplace approximation
(Daxberger et al., 2022), and exact Hamiltonian Monte-Carlo (HMC) sampling. We also
evaluated (non-linear) prior networks (Osband et al., 2018); the results are shown in Fig-
ure 8, but weren’t included in the main Figure 2 as they were particularly noncompetitive.
Interestingly, methods with a Bayesian motivation don’t necessarily perform better than
ones without. MC-Dropout is outperformed by regular SGD trained neural networks with
a well-chosen ℓ2-decay schedule. The simple Laplace approximation performs surprisingly
well, coming out ahead of even a Gaussian Process with kernel hyperparameters updated
with empirical Bayes in terms of implicit Bayesianness.

5. Future Work

Measuring other properties of implicitly Bayesian predictions In this work, we only
experimentally considered measuring exchangeability of a prediction rule. As discussed in
Section 2.3, there are other desirable properties that an implicitly Bayesian prediction rules
posses, and other conditions that characterise them. It would be interesting to investigate
empirical metrics based on these different conditions.

Martingale Posterior Sampling As shown in (Fong et al., 2021b), if a prediction rule
is c.i.d., we can obtain a functional uncertainty estimates that give a notion of reducible un-
certainty using martingale posterior sampling. Although the method in Fong et al. (2021b)
would be computationally extremely burdensome for deep learning-based prediction rules,
it would be interesting to investigate whether the method could be tractably adapted to this
setting. Furthermore, it’s an interesting question as to whether improving any of the im-
plicit Bayesian properties would then lead to more useful uncertainty estimates, for example
when used in Bayesian optimisation, active learning or reinforcement learning contexts.

Searching for implicitly Bayesian updates Turning implicit Bayesianness into a dif-
ferentiable measure of closeness opens the doors for black-box optimisation for that property.
Prior work has successfully meta-learned optimisers for faster training of more performant
deep learning models (Metz et al., 2022). By meta-optimising update rules for both good
performance and implicit Bayesianness, training algorithms that are both performant and
update their predictions in a coherent way could perhaps be learnt.

6. Conclusion

In conclusion, this paper proposes a new perspective on incorporating Bayesian principles
into deep learning, shifting focus from explicit model specification to characterising and
achieving predictions that are implicitly Bayesian.
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Appendix A. De Finetti’s theorem

Consider a probability space (Ω,FΩ, P ) and a sequence of random variables (X1, X2, . . . ), Xi :
Ω → X , where Xi takes values in some measurable space (X ,F). Then, by a version of the
De Finetti’s theorem given by Hewitt and Savage (1955), under fairly general conditions, if
(X1, X2, . . . ) is exchangeable as per Definition 1, then the distribution of (X1, X2, . . . ) can
be represented as a mixture of i.i.d. distributions.

Concretely, consider the set P of probability measures p ∈ P on (X ,F), and the smallest
σ-algebra S that makes p 7→ p(A) measurable for all A ∈ F . For p ∈ P, denote by p∞ the
product probability measure ⊗∞

i=1p on the product space (
∏∞

i=1X ,⊗∞
i=1F) (Saeki, 1996).

Then, if (X1, X2, . . . ) is exchangeable, there exists a unique probability measure π on (P,S)
such that the joint distribution of (X1, X2, . . . ) can be represented as:

P [(X1, X2, . . . ) ∈ A] =

∫
P
p∞(A)dπ(p) ∀A ∈ ⊗∞

i=1F , (7)

The only condition is that X must be a Hausdorff space with F being the σ-algebra of all
Baire sets in X . The practically relevant aspect of that condition is that it is satisfied in
the typically considered settings of X being R or Rd with the usual Borel σ-algebra.

The above formulation is slightly different than the one given in Section 2.3. Namely,
the proposition in (7) was instead replaced with: there exists a unique probability measure
π on (P,S) such that:

P [X1 ∈ A1, . . . , Xn ∈ An] =

∫
P

n∏
i=1

p(Ai)dπ(p) ∀A1, . . . , An ∈ F , ∀n ∈ N, (8)

which we think is a little bit more approachable. The propositions in (7) and (8) are
equivalent. Clearly, (7) implies (8); if the equality holds for all sets A in the infinite product
σ-algebra ⊗∞

i=1F , then it will hold for rectangles A = (A1, . . . , An,X ,X , . . . ) ∈ ⊗∞
i=1F , and

so:

P [X1 ∈ A1, . . . , Xn ∈ An] = P [(X1, X2, . . . ) ∈ A] B = (A1, . . . , An,X ,X , . . . )

=

∫
P
p∞(B)dπ(p)

=

∫
P

n∏
i=1

p(Ai)
∞∏

i=n+1

1︷ ︸︸ ︷
p(X ) dπ(p) △Definition of product measure

=

∫
P

n∏
i=1

p(Ai)dπ(p)

To go the other way around, from (8) to (7), assume that there exists a unique measure π
such that (8) holds. We can extend the statement to ‘infinite rectangle’ sets of the form
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B = (A1, A2, . . . ), Ai ∈ F ∀i ∈ N by noting that since (A1, . . . , An,X ,X , . . . ) ↓ B, we have
that P [X1 ∈ A1, . . . , Xn ∈ An] ↓ P [(X1, X2, . . . ) ∈ B]. Hence:

P [(X1, X2, . . . ) ∈ B] = lim
n→∞

P [X1 ∈ A1, . . . , Xn ∈ An]

= lim
n→∞

∫
P

n∏
i=1

p(Ai)dπ(p)

=

∫
P

lim
n→∞

n∏
i=1

p(Ai)dπ(p) △Dominated Convergence Theorem

=

∫
P
p∞(B)dπ(p)

Now, since P [(X1, X2, . . . ) ∈ ·] and
∫
P p∞(·)dπ(p) are two measures on (

∏∞
i=1X ,⊗∞

i=1F)
that agree on the π-system of rectangles that generates the product σ-algebra, they must
agree on the entire σ-algebra.

It is worth noting that exchangeability of the entire infinite sequence (X1, X2, . . . ) is
required for the result to hold. One might hope that if a finite sequence (X1, . . . , Xn) is
exchangeable for some n, then the joint distribution of these n random variables might also
be a mixture distribution. This is not always the case, see e.g. (Kerns and Székely, 2006).
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Appendix B. Non-implicitly Bayesian agents are vulnerable to adversarial
bets

Consider a betting game in which two players — an agent and an adversary — make bets
on the next sequence of n observations, each observation taking value in some space X . At
the end, a transfer of funds happens between the agent and the adversary depending on the
observed outcomes.

Formally, a bet is a function r : X n → R. The value of r can be thought of as rep-
resenting the transfer of funds from the adversary to the agent for each possible outcome;
i.e. if the observed outcome is x1, . . . , xn and r(x1, . . . , xn) is positive, the agent receives
r(x1, . . . , xn) from the adversary. If, on the other hand, the observed outcome is x1, . . . , xn
and r(x1, . . . , xn) is negative, the agent gives −r(x1, . . . , xn) to the adversary.

We’ll consider players that, in some sense, make predictions on the sequence of obser-
vations, and choose which bets to accept based on those beliefs. Concretely, agent beliefs,
and adversary beliefs are probability mass functions on X n.

Definition 6 (Bets favourable to agent) Given agent beliefs q : Xn → R, a function
r : X n → R is said to be a bet favourable to the agent if:∑

x1:n∈Xn

r(x1:n)q(x1:n) > 0. (9)

In other words, a bet is favourable to the agent if the ‘expected return’ from the point of
view of the agent is strictly positive.

Definition 7 (Bets favourable to adversary) Given adversary beliefs q̄ : Xn → R, a
function r : X n → R is said to be a bet favourable to the adversary if:∑

x1:n∈Xn

(−r(x1:n))q̄(x1:n). (10)

Definition 8 (Admissible bets) Given agent and adversary beliefs, a bet r is said to be
an admissible bet if it is simultaneously a bet favourable to the agent and a bet favourable
to the adversary.

Definition 9 (Minimal bets) Given agent beliefs q : Xn → R, and adversary beliefs
q̄ : Xn → R, a function r : X n → R is said to be a minimal bet if it’s a linear combination
of agent and adversary beliefs, namely:

r(x1:n) = aq(x1:n) + bq̄(x1:n) for some a, b ∈ R (11)

The rationale for this is that adding components to the bet that are orthogonal to the
beliefs of the agent and the adversary will not change the expected return of the bet for
either of them. In other words, for any bet r that is not minimal, there exists a ‘smaller’
minimal bet r′ such that the expected returns of r and r′ are the same for both the agent
and the adversary. Restricting ourselves to minimal bets hence simply ensures that the
agents do not arbitrarily make bets that are not justified on the ground of their beliefs.
This is made concrete in the remark below:
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Definition 10 (ℓ2 norm) For functions f : X n → R, the ℓ2 norm of f , written ∥f∥2, is
defined as ∥f∥2 =

√∑
x1:n∈Xn f(x1:n)2

Remark 11 Given agent beliefs q and adversary beliefs q̄, and a minimal bet function
r : X n → R, any other bet function r′ : X n → R for which:∑

x1:n∈Xn

r(x1:n)q(x1:n) =
∑

x1:n∈Xn

r′(x1:n)q(x1:n)∑
x1:n∈Xn

(−r(x1:n))q̄(x1:n) =
∑

x1:n∈Xn

(−r′(x1:n))q̄(x1:n),

i.e. for which the expected returns to the agent and the adversary are the same as under r,
will have a greater or equal ℓ2 norm: ∥r∥2 ≤ ∥r′∥2, with equality if and only if r = r′.

Given a bet function r : X n → R, and a true distribution p : X n → R, the game proceeds
by sampling observations X1, . . . , Xn from p — i.e. (X1, . . . , Xn) ∼ p — and at the end of
game a transfer of fund occurs. The reward to the agent is defined as r ((X1, . . . , Xn)), and
the expected return to the agent is defined as:

E[r ((X1, . . . , Xn))] =
∑

x1:n∈Xn

p(x1:n)r(x1:n). (12)

We’ll specifically consider the case of an adversary that constructs an “exchangeable-
ified” version of the agent’s beliefs q as:

q̄(x1:n) =
1

n!

∑
π∈Πn

q(xπ(1), . . . , xπ(n)), (13)

where Πn is the collection of all permutations of n elements. It should be clear that q̄ is
itself exchangeable. One can think of interpret this as a scenario in which the adversary
doesn’t know the true probabilities of the events, but knows the beliefs of the agent, and
so they are able to exploit a possible lack of exchangeability in the agent’s beliefs.

The theorem we will state below roughly says “if a sensible bet is made between the
agent and the adversary, then no-matter what the true distribution is the expected return
for the agent is strictly negative”. The minimality of the bet is required for this to hold:
if the bets are allowed to not be minimal, then we could find some true distribution that
rewards one of the bettors despite them having no ‘edge’ or advantage in terms of their
beliefs.

A note on notation In what follows, it will be helpful to simplify the notation, and
think of the agent and adversary beliefs, as well as bets, as vectors. If we enumerate all the
elements of X n, we can represent functions from X n to R as vectors in R|Xn|. For example,
if X = {0, 1}, n = 2, and the chosen ordering of elements of X n is ((0, 0), (0, 1), (1, 0), (1, 1)),
then the function r can be represented as a vector in R4:

r =


r(0, 0)
r(0, 1)
r(1, 0)
r(1, 1)


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Outcome 1

Outcome 2

Outcome 3

q

q̄

r1

r2
r3

r4

Figure 3: An illustration of the beliefs q of the agent and the beliefs q̄ of the adversary as
vectors. The favourable bets for the agent are those that lie in the direction of q of the
shaded plane orthogonal to q. Similarly, the favourable bets for the adversary are those
that lie in the direction of -q̄ of the shaded plane orthogonal to q̄. Multiple inadmissible
bets r1, r2, r3 are shown, as well as one admissible bet r4.

for the reminder of this section (and this section only) we’ll switch freely between the
function notation and the vector notation for the same function as it should be apparent
from the context which one is being considered.

This brings us to the following result, which we will now prove:

Theorem 12 Given an agent with beliefs q : X n → [0, 1], and an adversary with “exchangeable-
ified” beliefs q̄ as defined in (3), for any exchangeable true distribution p : X n → [0, 1] that
has some shared common support with q all minimal and admissible bets r have strictly
negative expected return for the agent:

p · r =
∑

x1:n∈Xn

p(x1:n)r(x1:n) < 0 (14)

Furthermore, either:

• q is exchangeable and q̄ = q, and there are no admissible bets.

• q is not exchangeable and there exist admissible (and minimal) bets.

Remark 13 In particular, Theorem 12 holds when p is an i.i.d. distribution.

Proof
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For any exchangeable7function f : X n → R we have that:

f · q̄ =
∑

x1:n∈Xn

f(x1:n)q̄(x1:n)

=
∑

x1:n∈Xn

f(x1:n)

(
1

|Πn|
∑
π∈Πn

q(π(x1:n))

)

=
1

|Πn|
∑
π∈Πn

∑
x1:n∈Xn

f(x1:n)q(π(x1:n))

=
1

|Πn|
∑
π∈Πn

∑
x1:n∈Xn

f(π(x1:n))q(π(x1:n))

=
1

|Πn|
∑
π∈Πn

∑
x1:n∈Xn

f(x1:n)q(x1:n)

=
∑

x1:n∈Xn

f(x1:n)q(x1:n) = f · q,

where the second to last equality holds because permuting the elements of both vectors in
a dot product f · q doesn’t change the result. Hence:

p · q̄ = p · q q̄ · q̄ = q · q̄ (15)

I. All admissible and minimal bets have negative expected return. Suppose r is
minimal and admissible. Then, by minimality, r can be represented as:

r = aq + bq̄, (16)

for some constants a, b ∈ R. By admissibility r, we can further get the following inequality
for a, b:

q · r > 0 ⇒ a(q · q) + b(q · q̄) > 0 (17)

q̄ · r > 0 ⇒ a(q̄ · q) + b(q̄ · q̄) = a(q̄ · q) + b(q̄ · q) < 0

⇒ a+ b < 0 , (18)

as q · q̄ > 0.
By (16), we can rewrite the expected return (for the agent) as:

p · r = ap · q + bp · q̄ = ap · q + bp · q = (a+ b)(p · q),

where the second to last equality follows by (15).
Now, p · q > 0 as long as p and q have some common support, and by (18), a+ b < 0,

hence:
p · r < 0,

as required.

7. Exchangeable here has been appropriated in the context of general functions to mean that the function
f : X e → R is permutation invariant in its arguments, i.e. for any permutation π : {1, . . . , n} →
{1, . . . , n}, f(x1:n) = f(π(x1:n)).
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II. Minimal and admissible bets exist if and only if q ̸= q̄. Suppose that q = q̄.
An admissible bet must satisfy:

0 < r · q
0 > r · q̄ = r · q,

which is a contradiction, and so q = q̄ implies that no admissible bet exists.
Now, suppose that q ̸= q̄. Note that:

∥q̄∥22 =
∑

x1:n∈Xn

(
1

|Πn|
∑
π∈Πn

q(π(x1:n))

)2

≤
∑

x1:n∈Xn

1

|Πn|
∑
π∈Πn

q(π(x1:n))
2 △ GM-HM inequality

=
∑

x1:n∈Xn

q(x1:n)
2 = ∥q∥22,

and so, q · q > q · q̄ (strict inequality, as q ̸= q̄).

Hence, picking a =
(
q·q̄
q·q

) 1
2
and b = −1 yields an admissible and minimal bet r = aq+bq̄,

because:

a(q · q) + b(q · q̄) = (q · q̄)
1
2

>(q·q̄)
1
2︷ ︸︸ ︷

(q · q)
1
2 −(q · q̄) > 0

a+ b =

(
q · q̄
q · q

) 1
2

︸ ︷︷ ︸
<1

−1 < 0.

Hence, whenever q ̸= q̄ we can find a minimal and admissible bet as required.

In the context of prediction rules, one can see the above result as a failing of not implicitly
Bayesian prediction rules; such prediction rules would induce non-exchangeable distributions
over finite sequences of observations (for some sequence length), and hence an agent that
derives their beliefs from such a prediction rule would be vulnerable to the adversarial
construction in Theorem 12.

Appendix C. Bayesian Linear Model Prediction Rule

sn

([
xn+1

yn+1

]
|
[
x1
y1

]
, . . . ,

[
xn
yn

])
= N

(
yn+1; µ̄, Σ̄

)
µ̄ =

(
xn+1Φ

⊺ + σ2
) (

ΦΦ⊺ + σ2
)−1

y1:n

Σ̄ = x⊺n+1xn+1 −
(
xnΦ

⊺ + σ2
) (

ΦΦ⊺ + σ2I
)−1 (

Φxn+1 + σ2
)
+ σ2

with Φ =
[
x1 . . . xn

]⊺
and y1:n =

[
y1 . . . yn

]⊺
.
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Appendix D. Additional results
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Figure 4: Joint log-likelihood variance as a measure of implicit Bayesianness(defined in (5))
vs. the negative sum of log-likelihood as a measure of performance (defined in (6)) plot
for a Gaussian Process with a squared exponential kernel, and a linear model fit with the
prior networks procedure on the regression task described in Section 4.2. The individual
small dots depict the result for a particular collection of datapoints ((x1, y1), . . . , (x100, y100))
drawn from the data-generating distribution, and the large dots represent the mean over
multiple dataset samples from the data-generating distribution. The expected negative log-
likelihood of the optimal predictions on this dataset (i.e. using the true distribution) is
subtracted from the mean negative joint log-likelihood plotted.
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Figure 5: Comparison of the MLP results in Figure 6 and a Gaussian Process Figure 4 on
the same plot.
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Figure 6: Joint log-likelihood variance as a measure of implicit Bayesianness(defined in (5))
vs. the negative sum of log-likelihood as a measure of performance (defined in (6)) plot
for a MLP trained with SGD, as well as ensembles of such models, on the regression task
described in Section 4.2. The error bars denote 10th and 90th percentiles over multiple
dataset samples from the data-generating distribution.
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Figure 7: Comparison of different ℓ2-decay schedules (with respect ot dataset size) for
an MLP model trained with SGD measuring joint log-likelihood variance as a measure of
implicit Bayesianness(defined in (5)) vs. the negative sum of log-likelihood as a measure of
performance (defined in (6)). Results shown for the regression task described in Section 4.2.
The error bars denote 10th and 90th percentiles over multiple dataset samples from the
data-generating distribution.
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Figure 8: Joint log-likelihood variance as a measure of implicit Bayesianness(defined in (5))
vs. the negative sum of log-likelihood as a measure of performance (defined in (6)) plot
comparing various approximate methods for inference in a 3-hidden layer Bayesian Neural
Network. In particular, the performance of the prior network method (Osband et al., 2018)
is subpar even compared to regular SGD training of the neural network in both performance
and implicit Bayesianness.
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D.1. Where does the performance advantage of different models come from?

The results in Figure 2 illustrate that Multi-layer Perceptrons (MLPs) and MLP ensembles
trained with SGD appear to have subpar performance compared to other methods, especially
GPs, in terms of the joint log-likelihood. This might be somewhat surprising, especially
given the model mismatch of the true function for the GP models. We might expect that
the MLP models should eventually outperform GPs if the training size was large enough.
In this subsection, we break down the performance metric in Figure 2 to try and gauge
what’s going on.
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Figure 9: Comparison of the average “test” log-likelihoods of the next datapoint in a se-
quence for the different models with different training data sizes (number of conditioning
datapoints).
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In Figure 9, we plot the average log-likelihoods for the different methods broken down by
the training set size. The final ‘joint’ log-likelihood metric in Figure 2 will be the sum of the
per-training-size log-likelihoods. The figure illustrates that the SGD-trained MLP models
can overfit dramatically when trained with very few training datapoints (< 40). This seems
to be the biggest contributor to their subpar aggregate performance. Surprisingly, for the
standard ℓ2-decay of n−1 (with n being the training data size), the performance doesn’t
seem to monotonically improve, and is actually the worst after observing around 15 to 20
datapoints.

Increasing the regularisation strength through ℓ2-decay seems to have the effect of avert-
ing the worst of the overfitting in MLPs in the low-data regime by essentially forcing the
network to ignore the training data until a certain training dataset size is reached. For
example, predictions from an MLP with n−2.5 ℓ2-decay are shown in Figure 10.
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(a) Dataset size=20
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(b) Dataset size=50

Figure 10: MLP trained with SGD on the discontinuous regression task with ℓ2-decay of
n−2.5 for different training data sizes.

Ensembling the MLP predictions seems to help surprisingly little with performance in
the low-data regime. This appears to be because, for some training data configurations, the
MLPs trained with different seeds overfit in the same way. An example of this is shown in
Figure 11.

It appears that both MLPs fit with the Laplace approximation and a GP with kernel
hyperparameters updated throughout training eventually outperform the GP with fixed
hyperparameters. This is at the cost of the initially subpar performance in the low-data
regime (< 20 datapoints), where updating the kernel hyperparameters in the GP might
lead to overfitting.
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(a) Seed=0
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(b) Seed=1
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(c) Seed=2
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Figure 11: MLP trained with SGD on the same 19 datapoints on the discontinuous regres-
sion task with different seeds (different initialisation). The model consistently fits the data
in the same manner, regardless of initialisation, extrapolating the data unfavourably in the
interval (−2.5,∞).

Appendix E. Can a prediction rule at a fixed step be extended to an im-
plicitly Bayesian prediction rule?

In deep learning, we would often tailor our approach to the amount of data available at
hand. For example, we might use a small neural network for a small dataset, and a large
neural network for a large dataset. If we have fewer than hundreds of datapoints, we might
not even consider using a neural network at all. Hence, viewing training of a neural network
as a prediction rule for all possible data sizes might not be the most natural lens.

One might wonder, assuming that one has only specified a prediction rule at step n only,
can it be extended to a prediction rule for all n to satisfy some of the previously mentioned
properties?

One reasonable guess might be that, if the prediction rule at step n is invariant to the
ordering of the data, i.e. sn(·|x1, . . . , xn) = sn(·|xπ(1), . . . , xπ(n)) for any permutation π of
{1, . . . , n}8, then maybe it can be extended to an exchageable prediction rule. If that was
the case, that would be good news: as long as we’re making the prediction at step n only, we
can claim that our prediction rule is implicitly Bayesian; once we start making predictions
at other time-steps, we just need to figure out what an implicitely Bayesian extension is.

8. This is a weaker condition than exchangeability, as it only requires invariance to the ordering of the
conditioning sequence.
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However, the invariance of the prediction rule at step n to the ordering of the data is not
a sufficient condition for an implicitely Bayesian extension to exist. It’s possible to devise
simple counter-examples showing to the contrary.

Appendix F. Experimental Details
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Figure 12: A 1D regression task. (Bottom): The Gaussian density on the covariates. (Top):
The data-generating process illustrating the true function, with the filled area around it
depicting the standard deviation of the homogeneous Gaussian noise.

F.1. Gaussian Process and Prior Networks

For the Gaussian Process, we consider a squared exponential kernel of the form kSE(x, x
′) =

a2 exp
(
− (x−x′)2

2ℓ2

)
. By default, the output variance a2 and the length-scale ℓ are both set

to 1. When the hyperparameters are being updated using margina likelihood, we set the
ranges for both a2 and ℓ to (10−5, 105) and optimise using LBFGS.

For the feature expansion for the Prior Network, we use a large number of Gaussian
radial basis function features uniformly spaced over the relevant part of the input domain; in
the limit, if the basis functions are adequately chosen, this should yield a Bayesian Linear
Model equivalent to a squared exponential kernel GP Rasmussen and Williams (2005).

Concretely, we use a Gaussian basis function ϕβ(x) = c exp(− (x−β)2

ℓ2
) for an adequately

chosen constant c (≈ 4.47) with 100 bases spaced equidistantly on the interval [−6.0, 6.0].
The variance of the noise, both for the likelihood of the Gaussian Process and the linear

model, were in both cases set to the true (known) variance for the task.
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F.2. Ensembling

Models are ensembled by averaging their predictions: 1
M

∑M
j=1 s

ϵj
i (x∗|x1, . . . , xi) (equivalent

to taking the logmeanexp operation of the log-probabilities for test data).

F.3. MLP

The hyperparameters of the model (weight decay, learning rate) were tuned on a validation
set, with a separate randomly sampled training set of size n, and fixed for all steps i ≤ n
of the prediction rule si (except where explicitly stated that they were adjusted). The
hyperparameters found with random search for the 1D regression task in Figure 12 were a
learning rate of 10−3 and weight-decay of 0.017. In Figure 13 we show a grid-search over
the weight-decay to validate 0.017 is close to optimal.
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Figure 13: Grid-search over weight-decay for the MLP experiments on the 1D regression
task.

The neural network model considered in regression tasks is an MLP with three hidden
layers, each of width 512, with a ReLU activation and no normalisation. The model was
trained for 10000 iterations (independently of dataset size) with a batch-size of 64 (or less,
if the dataset size is smaller).

Heteroscedastic vs. homoscedastic noise output On a regression task, we could
parameterise a Gaussian likelihood with a neural network by either a) only parameterising
the mean with the output of the neural network, and fixing the scale to some value (e.g.
the true noise standard deviation), or by b) parameterising both the mean and the scale
with the outputs of the neural network. For a single modelto be able to represent epistemic
(knowledge) uncertainty (with a non-trivial prior), however, it is necessary to be able to
vary the output uncertainty depending on the input. Hence, wherever possible, we use the
heteroscedastic likelihood (option b)) wherever this doesn’t break the theoretical justifi-
cation for a given method. Concretely, we use the heteroscedastic noise likelihood (with
scale parameterised by a softplus transformation of the network output) for all MLP ex-
periments with SGD and SGD ensembles, all ℓ2 decay experiments, MC-dropout (as the
variational approximation is compatible with heteroscedastic nosie output), and HMC. The
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Laplace method and prior networks by default assume a fixed homoscedastic noise likeli-
hood, and hence that’s the likelihood we used for those experiments (with the true noise
standard deviation for the scale).

F.3.1. ℓ2-decay experiments

For different ℓ2-decay experiments, we run the same experiments with same hyperparame-
ters as above, but with a decay schedule in the dataset size i of the form cαi

−α for different
values of α. cα is in each case set so that the value of ℓ2 decay would match for i = n, i.e.
the final value of the weight-decay would be the optimal one as found with cross-validation.

For larger (negative) values of α, the initial weight-decay for small dataset sizes gets
so large that the training becomes numerically unstable. Hence, we clip the maximum
value of weight-decay to 2000, which is sufficient for the model to always learn the solution
equivalent to all weights being set to 0.

For all results for all methods, for each dataset sequence ((x1, y1), . . . , (xn, yn)), we
ignore the prediction for the first datapoint in the sequence (x1, y1), effectively setting the
log-probability assigned by s0 to 0 for all methods. This does contribute a small amount to
increase in the variance of the log-joint even for exactly exchangeable methods. We do so
as, for deep learning methods, the prediction with no training data is somewhat ill-defined.

F.3.2. Laplace Approximation

For the Laplace approximation (Ritter et al., 2018; MacKay, 1992), we use post-hoc Laplace
after training the network with SGD. As the Laplace approximation traditionally expects
an optimised set of parameters corresponding to the maximum-a-posteriori estimate, we set
the weight decay to match the prior precision in the Laplace approximation; in other words,
if the prior precision is λ, weight decay will be set to λ

n for a training dataset of size n.
We don’t optimise prior-precision post-hoc during each training run (as choosing the prior
with emprical Bayes is likely to make the model less implicitly Bayesian). We use the same
number of optimisation steps as for regular MLP training for finding the MAP solution.
For the Laplace approximation, we use a Kronecker-factored (K-FAC) approximation for
the Hessian, as described in (Daxberger et al., 2022). The predictive distribution is the
Generalised Linear Model predictive, which for regression with a Gaussian likelihood is
available in closed form.

One difference to other MLP experiments is that, to be compatible with standard imple-
mentations of Laplace, the MLP parameterises only the mean of a homoscedastic likelihood
(where the standard deviation in the likelihood function is set to the true data-generating
process noise standard deviation). This is in contrast to other MLP experiments, where the
MLP parameterises both the mean and the standard deviation in the likelihood.

We again ablate over the learning rate and prior precision and pick the parameters that
yield highest validation-set log-likelihood, as shown in Figure 14.
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Figure 14: Grid-search over weight-decay and learning rate for the MLP experiments with
the Laplace approximation on the 1D regression task. Weight-decay is equal to prior
precision divided by dataset size (100).
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