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ABSTRACT

The integration of deep learning into critical vision application areas has given
rise to a necessity for techniques that can explain the rationale behind predictions.
In this paper, we address this need by introducing Salvage, a novel removal-based
explainability method for image classification. Our approach involves training an
explainer model that learns the prediction distribution of the classifier on masked
images. We first introduce the concept of Shapley-distributions, which offers a
more accurate approximation of classification probability distributions than ex-
isting methods. Furthermore, we address the issue of unbalanced important and
unimportant features. In such settings, naive uniform sampling of feature subsets
often results in a highly unbalanced ratio of samples with high and low predic-
tion likelihoods, which can hinder effective learning. To mitigate this, we propose
an informed sampling strategy that leverages approximated feature importance
scores, thereby reducing imbalance and facilitating the estimation of underrepre-
sented features. After incorporating these two principles into our method, we con-
ducted an extensive analysis on the ImageNette, MURA, WBC, and Pet datasets.
The results show that Salvage outperforms various baseline explainability meth-
ods, including attention-, gradient-, and removal-based approaches, both qualita-
tively and quantitatively. Furthermore, we demonstrate that our explainer model
can serve as a fully explainable classifier without a major decrease in classification
performance, paving the way for fully explainable image classification.

1 INTRODUCTION

In recent years, the expansion of artificial intelligence (AI) techniques, particularly in the field of
computer vision, has revolutionized numerous industries and societal domains, ranging from health-
care to autonomous vehicles. Notably, the emergence of Vision Transformers (ViT), (Dosovitskiy
et al., 2021) has lately significantly impacted the field of computer vision, establishing a new stan-
dard for image classification. Their ability to leverage self-attention mechanisms and effectively
model long-range dependencies has positioned them at the forefront of research and applications
across diverse domains. However, despite their remarkable performance, a critical challenge per-
sists: the incompatibility of existing explainability techniques with vision transformers. The ma-
jority of explainability methods developed and refined for Convolutional Neural Networks (CNNs)
often prove inadequate when applied to vision transformers. This difference highlights the need for
architecture-independent explainability methods.

Among such methods, removal-based techniques work by iteratively masking portions of an input
image to observe the resulting changes in the model’s predictions. If the removal of a particular
region significantly affects the model’s prediction, it suggests that the region is important for the
decision. Conversely, if removing a region has little to no effect, it is deemed less relevant to
the model’s decision. Recently, ViT Shapley (Covert et al., 2023) has been introduced, merging
the principles of removal-based methods with a game-theoretic foundation. The method involves
training an explainer model to estimate the Shapley values (Shapley, 1952) of the image patches,
quantifying their contribution to the classifier’s prediction. The Shapley value of a patch is estimated
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as the average change in the model’s prediction when the patch is added to the image, calculated
across all possible masked variations. Given that the number of possible mask combinations grows
exponentially with the number of patches, ViT-Shapley leverages the FastShap (Jethani et al., 2022)
algorithm, approximating the Shapley values via a least squares objective and stochastic gradient
descent on randomly sampled masks, efficiently handling the computational complexity.

We propose a similar removal-based approach but with a key difference. Instead of approximating
the Shapley value during training, we train an explainer model to learn a representation of the classi-
fier’s prediction distribution on masked images. At test time, the Shapley value for each patch is then
derived from the learned representation. Moreover, we address two weaknesses of ViT-Shapley:

• The ViT-Shapley method often falls short by treating differences in prediction probabilities as
linear scores and optimizing them using least squares, which does not adequately capture the
probabilistic nature of the classifier’s outputs. We address this limitation using a more conven-
tional approach for probability distribution approximations, minimizing the divergence between
the explainer’s estimated distributions and the classifier’s actual prediction distributions.

• The random mask sampling employed by ViT-Shapley is sample-inefficient, especially when deal-
ing with heavy unbalanced ratios of important and unimportant patches, which can hinder effec-
tive learning. To mitigate this issue, we adopt an informative sampling strategy to enhance sample
efficiency throughout training. By integrating the estimated attribution scores into the sampling
process, we are able to achieve a more balanced distribution of masks with low and high prediction
likelihoods, thereby facilitating the estimation of underrepresented features.

After incorporating the two proposed optimizations into a method, we refer to as Salvage (Shapley-
distribution Approximation Learning Via Attribution Guided Exploration), we performed an evalua-
tion on four datasets (ImageNette, WBC, Pet, MURA) and observed that Salvage outperforms vari-
ous baseline explainability methods, including attention-, gradient-, and removal-based approaches,
both qualitatively and quantitatively. Moreover, we introduce a novel concept, classifying by ex-
plaining which shifts the focus from explaining a classifier’s behavior to aggregating the explainer’s
estimated feature importance scores into a classification prediction. By doing so we can guarantee
the consistency between the predictions and explanations of the model. Our results demonstrate
that our explainer can serve as a fully explainable classifier without a major decline in classification
performance, advancing the development of more trustworthy image classifiers.

2 RELATED WORK

With the increasing demand for explainable AI, a variety of different attribution methods have been
explored. These fall into five main categories.

Class Activation Maps: Convolutional Neural Networks (CNNs) have inspired the development of
Class Activation Mapping (CAM) techniques to highlight important features in visual tasks. The
original CAM (Zhou et al., 2015) method works for CNNs with Global Average Pooling (GAP)
layers by generating attribution maps based on weighted feature maps. However, this method is
limited to architectures with GAP layers. Grad-CAM (Selvaraju et al., 2019) improves upon this
by using backpropagated gradients to compute feature map weights, making it more flexible. Vari-
ants like Grad-CAM++ (Chattopadhay et al., 2018), Eigen-CAM (Muhammad & Yeasin, 2020),
and Ablation-CAM (Desai & Ramaswamy, 2020) explore different ways of refining these weights.
Despite these advancements, CAM-based techniques were primarily designed for CNNs and often
underperform when applied to transformer architectures (Covert et al., 2023).

Attention-based Methods: The attention mechanism of transformer models naturally allows in-
sights into the information flow within the network. A straightforward method to assess importance
is by analyzing the attention scores between the class token and input tokens at a specific layer
(Clark et al., 2019). However, this approach gives limited insight into the overall information flow
since different layers may focus on different regions, and the final output is shaped by the inter-
action across all layers. (Abnar & Zuidema, 2020) tackles this by modeling the information flow
as a directed acyclic graph, using attention scores as edge weights. They propose two methods to
extract input token relevance: attention rollout, which traces attention weights from the class token
back to the input tokens, and attention flow, which estimates information flow using maximum flow
computations in the graph. However, attention mechanisms often exhibit issues like high attention
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scores focusing on low-informative background regions (Covert et al., 2023; Darcet et al., 2023).
(Darcet et al., 2023) suggest this problem stems from the use of random tokens as intermediaries for
internal computations and address it by adding supplementary tokens. While attention scores can be
useful in some cases, recent studies question their reliability as explanations, arguing they may not
always reflect a model’s true reliance on each token (Jain & Wallace, 2019; Serrano & Smith, 2019).
Moreover, attention-based methods are class-agnostic, providing a single explanation per prediction
and lacking class-specific insights.

Gradient-based Methods: Saliency maps (Simonyan et al., 2014) are an early method that extracts
the gradient of the class score with respect to the input image. However, these gradients can be highly
sensitive to small input perturbations, resulting in significant fluctuations (Smilkov et al., 2017). To
mitigate this, SmoothGrad (Smilkov et al., 2017) averages the gradients over multiple noisy versions
of the input image, effectively smoothing the gradients and reducing volatility. Integrated Gradients
(Sundararajan et al., 2017) further improves on this by integrating gradients along the path between
a baseline image (typically a black image) and the target image.

Removal-based Methods: Treating neural networks as a complete black box function, removal-
based Methods measure fluctuations in the predicted class probabilities under partial information.
The estimation of the prediction under partial information is achieved by inferring the classifier on
masked images. RISE (Petsiuk et al., 2018) suggests measuring the contribution of each part of
the image by sampling a large number of masks, computing the prediction of the network on each
masked image, and finally summing up the averaged product of the masks with their corresponding
predictions. However, as the number of possible masks grows exponentially in the number of image
patches, a large amount of masks is required to obtain a decent estimation for each single region.
To address this issue, FastSHAP (Jethani et al., 2022) proposes a game theory approach, training an
explainer model to estimate the Shapley value of the image patches, which consists of the average
change in the model’s prediction when the patch is added to the image. Building upon this concept,
ViT-Shapley (Covert et al., 2023) further extends this method by adopting a vision transformer-based
architecture for the explainer model. While this method aims to train a model to approximate the
Shapley value directly, our approach learns a representation of the classifier’s prediction distribution
from which the Shapley value can be extracted.

LRP-based Methods: Layer-Wise Relevance Propagation (LRP) (Lapuschkin et al., 2015), based
on Deep Taylor Decomposition (DTD) (Montavon et al., 2017), explains model predictions by prop-
agating the output back to the input using specific decomposition rules. While LRP has shown good
results on CNNs, applying it to transformer architectures has led to unstable explanations. (Chefer
et al., 2020) attributes these instabilities to skip connections and attention layers, and the authors
propose alternative propagation rules for these operations, particularly combining LRP relevance
with gradient-based attention rollout for attention layers. Similarly, (Ali et al., 2022) attempts to
address this issue by proposing more stable rules for the self-attention and LayerNorm operations.

3 BACKGROUND

In this section, we introduce Shapley values (Shapley, 1952), which serve as the foundation of our
method. Originating from cooperative game theory, Shapley values are used to fairly distribute
payoffs among players based on their individual contributions to the total value. In the context of
machine learning, they quantify the impact of each feature on a model’s prediction by measuring
the average change in prediction when the feature is included in an input subset. We begin by
presenting the formal definition of Shapley values, followed by a rearrangement that enables their
approximation without requiring their marginal contributions.

3.1 SHAPLEY VALUES

Let N be a set of features and v(S) the prediction outcome given a feature subset S ⊂ N . The
Shapley value ϕi of a feature i is obtained as follows:

ϕi =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!︸ ︷︷ ︸
wS

(v(S ∪ {i})− v(S)) (1)
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The computation of Shapley values for all features requires evaluating the predictions for every pos-
sible subset of features. However, as the number of features increases, the number of subsets grows
exponentially, making the computation of the exact Shapley values infeasible for very large numbers
of features. To address this challenge, FastShap (Jethani et al., 2022) proposes an approximation of
the Shapley values using a least-squares objective over the feature subset distribution pw(S) ∝ wS ,
sampled proportionally to wS :

Epw(S)[(v(S)−
∑
i∈S

ϕi)
2] (2)

However, using the Mean Squared Error (MSE) loss to approximate probabilistic model outputs in-
troduces significant limitations. MSE is primarily designed for comparing scalar values and is not
well-suited for capturing the complexities of probability distributions, such as their inherent uncer-
tainty, variance, and multimodal characteristics. Additionally, MSE is sensitive to scale and does not
enforce the necessary constraints of probability measures, like non-negativity and normalization. As
a result, MSE often yields invalid or suboptimal approximations when applied to distributions.

3.2 APPROXIMATING SHAPLEY VALUES WITHOUT MARGINAL CONTRIBUTIONS

Kolpaczki et al. (2024) suggests a rearrangement of the Shapley value formula. Instead of expressing
it as the weighted average of marginal contributions, it can be viewed as the difference between the
weighted average of prediction outcome when feature i is included and the weighted average of
prediction outcome when feature i is excluded:

ϕi =
∑

S⊆N\{i}

wS · v(S ∪ {i})︸ ︷︷ ︸
ϕ+
i

−
∑

S⊆N\{i}

wS · v(S)︸ ︷︷ ︸
ϕ−
i

(3)

The positive and the negative Shapley values can be seen as the expected values ϕ+
i = E[v(S ∪ i)]

and ϕ−
i = E[v(S)], over the set distribution pw(S) ∝ w for S ⊆ N \ {i}.

4 APPROACH

4.1 SHAPLEY DISTRIBUTION ESTIMATION

We build upon the concept of optimizing Shapley values without relying on marginal contributions
by training an explainer model to learn both positive and negative Shapley values. During training,
we sample masked images from the distribution pw(S) ∝ wS . For each sampled masked image, we
update the estimated positive Shapley values ϕ+

i for all visible image patches i ∈ S, and the negative
Shapley values ϕ−

j for all masked patches j /∈ S. This is achieved by minimizing the difference
between the sum

∑
i∈S ϕ+

i +
∑

i/∈S ϕ−
i and the actual prediction outcome v(s). As mentioned in

section 3.1, using the mean squared error (MSE) to approximate the target distribution v(s) would
yield suboptimal results because of the probabilistic nature of the classifier’s output. Therefore, we
propose mapping the summed term into a probability distribution u(S), which we refer to as Shapley
probability distribution:

u(S) = σ(
∑
i∈S

ϕ+
i +

∑
i/∈S

ϕ−
i ) (4)

where σ denotes the softmax function in a multiclass classification setting or the sigmoid function for
binary classification. The Shapley distribution of the masked image is then optimized by minimizing
the Jensen–Shannon (JS) (Lin, 1991) divergence between the classifier’s prediction v(S) and its
corresponding estimated probability distribution u(S):

argmin
ϕ+,ϕ−

Epw(S)[DJS(u(S)||v(S))] (5)

At test time, the feature importance scores of each feature (image patch) are given by their estimated
Shapley value ϕi = ϕ+

i − ϕ−
i .
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4.2 ATTRIBUTION GUIDED SAMPLING

In our experiments, we observed that sampling from the random mask distribution pw often results
in a disproportionate number of masked images having either high or low likelihoods of the pre-
dicted class. This imbalance severely affects the minority class estimation, since a large number of
samples are required to estimate the values of its members. This finding motivated us to address
this imbalance through an alternative mask distribution, thereby enhancing the sampling efficiency
during training. Thus, we propose exploiting the current estimates of feature importance scores ϕ
to rebalance the ratio of masks, targeting the most and least informative regions of the image. Our
proposed informative sampling distribution, pϕ(S) ∝ ϕ, operates in two stages:

1. Sampling the number of masked patches: First, the number of masked patches within an
image is sampled from a uniform distribution U(1, n), where n represents the total number
of patches in the image.

2. Selecting patches: Next, patches are selected without replacement, using the estimated
feature importance scores ϕ of the target class, as sampling weights. For instance, if three
patches have importance scores of 0, 1, and 3, their corresponding probabilities of being
sampled would be 0, 0.25, and 0.75, respectively.

We then generate two equal mask subsets: the first, prioritizing the most informative regions from the
image, and the second by masking them to target the least informative regions. A detailed description
of the sampling process is provided as pseudo-code in Algorithm 3. Compared to random sampling,
pϕ(S) yields a mask distribution with more balanced prediction likelihoods (see Figure 6), thereby
enhancing sample efficiency during training.

4.3 FROM AN EXPLAINER TO A FULLY EXPLAINABLE CLASSIFIER

Since the classifier and the explainer are two decoupled models, the explainer merely approximates
the behavior of the classifier. Thus, there is no guarantee of consistency between the classifier’s
predictions and the explainer’s explanations, especially under domain shift. We suggest addressing
this issue by using the explainer as a unified model for both classification and explanation.

Recall that Salvage is trained to minimize the divergence between its Shapley distribution u(S) and
the corresponding classifier prediction v(S). By setting S to the full (unmasked) image N in eq. (4),
we obtain the explainer’s approximation for the classifier’s prediction for the complete image:

u(N) = σ(
∑
i∈N

ϕ+
i ) ≈ v(N) (6)

In addition to ensuring consistency between the classification prediction and its explanation, using
the explainer as a classifier offers a unique advantage. By aggregating the importance scores of
each image region, we obtain a precise understanding of how each region contributes to the overall
prediction. This approach results in a classifier that is fully transparent and explainable.

5 EXPERIMENTS

In this section, we first describe our experimental setup. We then conduct both a qualitative and a
quantitative analysis of our method and several baselines. Next, we conduct an ablation study, show-
ing the advantage of informative sampling. Finally, we evaluate the classification and explanation
of Salvage as an explainable classification method.

5.1 EXPERIMENTAL SETUP

We adopt the experimental setting from ViT-Shapley (Covert et al., 2023), evaluating the explana-
tion performance of our method across the ImageNette (Howard & Gugger, 2020) , WBC (bodzás
et al., 2023), and Pet (Parkhi et al., 2012) datasets for multi-class classification and the MURA
(Rajpurkar et al., 2018) dataset for binary classification. For the target model, we use a Vision
Transformer base model (ViT-B) with a patch size of 16 and registers (Darcet et al., 2023), lever-
aging the implementation and pre-trained weights provided by DINOv2 (Oquab et al., 2024). The
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classifier model is trained for 25 epochs and fine-tuned on masked images for 50 epochs. We adopted
the Segmenter (Strudel et al., 2021) segmentation architecture for our explainer models and trained
them using 32 masks per image for ∼ 18k iterations (corresponding to 50 epochs for ImageNette,
WBC, and MURA, and 100 epochs for Pet). All models were trained with a batch size of 64, an
AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 1e-5 and a weight decay of
1e-5, except the explainer models of ViT-Shapley which were trained with lr 1e-4. We compare
our method to 10 different baselines; GradCam (Selvaraju et al., 2019), EigenCam (Muhammad
& Yeasin, 2020), Attention scores from the last layer with registers (Clark et al., 2019; Darcet
et al., 2023) (Attn. last), Attention Rollout with registers (Abnar & Zuidema, 2020; Darcet et al.,
2023), ViT-CX (Xie et al., 2023), Saliency maps (Simonyan et al., 2014), Integrated gradients (Sun-
dararajan et al., 2017), LRP beyond attention (Chefer et al., 2020), RISE (Petsiuk et al., 2018), and
ViT-Shapley (Covert et al., 2023). As a reference, we additionally evaluate the metric scores on ran-
domly generated maps (Random). The implementation of the CAM-based methods is adapted from
(Gildenblat & contributors, 2021), while the other baselines use their original implementations.

5.2 QUALITATIVE ANALYSIS
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Figure 1: Qualitative examples computed on ImageNette, Pet and MURA.
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We conduct a qualitative analysis comparing our method with the baselines. We present 6 examples
from ImageNette, 4 from Pet, and 4 from MURA in Figure 1. Saliency maps, Vit-CX, and LRP seem
unreliable as their attribution maps often focus on random parts of the background. Despite its solid
quantitative results, the attribution maps generated by RISE are highly noisy. Attention rollout (with
registers) and ViT-Shapley yield decent results on most images with relatively low scores outside
the informative regions. Solely Salvage excels at highlighting the entire relevant region of interest.
Further qualitative examples from ImageNette, Pet and MURA, as well as qualitative examples from
WBC, can be found in Appendix A.5.

5.3 QUANTITATIVE ANALYSIS

Table 1: Quantitative results computed on the Pet, ImageNette, WBC, and MURA datasets. The
performance of the 10 compared methods is measured in terms of SRG, R-SRG, RMA, and RRA.

Pet ImageNette MURA WBC

Method SRG R- RMA RRA SRG R- SRG R- SRG R-
SRG SRG SRG SRG

GradCam 10.6 3.5 48.1 42.7 -1.9 -3.3 16.2 10.1 -18.5 -20.2
EigenCam 27.4 3.2 48.9 62.9 13.2 -3.1 0.1 -4.5 22.9 -7.0

Attn. last 47.9 9.6 61.1 70.1 27.0 3.0 22.4 7.0 42.2 1.6
Attn. Roll. 52.0 11.2 51.5 74.6 32.0 3.4 17.6 6.3 48.1 2.5

ViT-CX 50.2 17.6 30.6 67.5 29.9 7.5 19.8 9.1 41.6 7.3

Sal. Maps 51.1 10.8 52.7 76.3 27.7 2.8 25.3 8.5 42.8 2.1
IntGrad 27.4 7.9 51.5 58.8 11.0 2.2 13.9 6.1 11.8 1.6

LRP 49.5 9.2 63.9 71.8 27.9 3.0 19.3 6.8 37.0 1.7

RISE 63.7 18.5 30.1 47.8 22.9 5.4 56.5 22.1 20.7 3.5
ViT-Shap 61.1 14.7 52.7 69.0 40.3 6.2 65.3 20.6 57.4 7.3

Salvage 68.5 26.3 64.9 73.5 51.3 14.9 68.6 25.3 69.7 22.6
Random 0.0 0.0 30.0 29.4 0.0 0.0 0.0 0.0 0.0 0.0

Based on our baselines, we employed various metrics to assess Salvage’s performance. Since the
true importance of features is unknown beforehand, evaluating explanation accuracy poses a chal-
lenge. The metrics used to evaluate our method include Most and Least Influential First (MIF, LIF)
(Petsiuk et al., 2018), Symmetric Relevance Gain (SRG) (Blücher et al., 2024), Relevance Rank Ac-
curacy (RRA) and Relevance Mass Accuracy (RMA) (Arras et al., 2022). MIF and LIF (also known
as Deletion and Insertion) measure performance by progressively removing image patches based on
their importance scores, with the goal of minimizing MIF (removing most important features first)
and maximizing LIF (removing least important features first). SRG improves upon these metrics
by addressing their sensitivity to masking strategies and calculating the difference between the MIF
and LIF scores to provide more consistent performance rankings. Additionally, RRA and RMA
assess the alignment of feature importance scores with human-annotated regions of interest. RRA
evaluates how well the top-k important patches match the annotated region, while RMA measures
the proportion of attributions within the annotated area, reflecting the focus on relevant regions.

It is important to note that MIF, LIF, and SRG offer only limited insights into the quality of expla-
nations, as they focus solely on the ranking of features while disregarding their relative differences.
To address this limitation, we extend our metric selection by further including three new metrics to
assess the relative score differences within an attribution map. Specifically, we extend the MIF and
LIF metrics into R-MIF (Relatively Most Influential First) and R-LIF (Relatively Less Influential
First). Instead of selecting patches purely based on their rank, we use estimated importance scores
as weights in a sampling process to determine which patches to add first. To reduce sampling vari-
ance, we generate 128 masks for each size of feature subset. Analogously to SRG, we define R-SRG
as the difference between R-LIF and R-MIF. These proposed metrics provide deeper insight into the
relative importance of feature attribution scores and their influence on the model predictions. A
pseudo-code and a more detailed description of the metrics is provided in appendix A.1.
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Our results, as shown in Table 1 and Figure 2, clearly demonstrate that our method outperforms all
baselines across both rank-based and relative-based metrics on all three datasets. We have observed
in Figure 2 that all top-3 methods (Rise, ViT-Shapley, and Salvage) reach similar LIF and R-LIF
scores – hinting, that all three methods highlight a small subset of important features which is suf-
ficient for the model to recognize the classified object. However, we observed that Salvage reaches
significantly better MIF and R-MIF scores, which suggests that our method is more effective at
identifying a larger portion of the important features compared to the other methods. Disregarding
the top-3 methods, our results are in line with Covert et al. (2023) showing poor performance of the
CAM-based, attention-based, gradient-based, and LRP-based methods. The LIF, MIF, R-LIF, and
R-MIF scores of all methods have been included in appendix A.3 for the sake of completeness.

Moreover, we evaluate the RMA and RRA metrics on the Pet dataset, for which human-annotated
regions of interest were provided. The results (cf. Table 1) showed that Salvage achieves the best
scores in terms of RMA. We additionally observe that Sal. Maps and Attn. Roll. reach slightly
higher RRA scores showing a strong alignment in ranking, meaning their top attribution scores lie
within the object of interest. However, these methods also show a lower attribution mass within the
object (RMA) and exhibit weaker SRG and R-SRG scores, suggesting they may not focus on the
most relevant parts of the object for the prediction, potentially limiting their effectiveness.
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Figure 2: An Illustration of the MIF, LIF, SRG, R-MIF, R-LIF, and R-SRG across the different car-
dinality values (number of masked patches) for the top-3 performing methods (RISE, ViT-Shapley,
and Salvage) computed on the Pet, ImageNette, WBC, and MURA datasets.

5.4 ABLATION STUDIES

In this section, we investigate the individual contribution of each core principle in our method,
Shapley distribution estimation and informative sampling, through two ablation studies. The first
study compares the performance of Shapley distribution estimation to the MSE-based approximation
(ViT-Shapley) without informative sampling. The second study investigates the effect of informative
sampling on the performance of Salvage by comparing its performance with and without the use of
informative sampling.

The results of our studies, illustrated in Figure 3, reveal the following: (a) Shapley distribution
estimation outperforms MSE-based approximation (ViT-Shapley) on ImageNette, WBC, and Pet
datasets, but shows a slightly lower performance on MURA. However, we believe the latter could
benefit from adjusting the temperature parameter in the sigmoid function used during training. (b)
Informative sampling clearly improves performance on MURA and ImageNette, while achieving
modest gains in R-SRG of 0.68 and 0.26 for WBC and Pet, respectively.
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Figure 3: (a) Ablation study quantifying the performance gain of using Shapley distribution esti-
mation versus MSE-based approximation (ViT-Shapley). (b) Ablation study comparing the perfor-
mance of Salvage with and without informative sampling. The performance is reported in terms of
R-SRG, which is given by the difference between R-LIF and R-MIF (the larger the better).
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Figure 4: Confusion matrices showing the overlap between correctly and incorrectly classified sam-
ples for the explainer models (Salvage and ViT-Shapley) and classifier. Each cell indicates the
percentage of samples classified correctly or incorrectly by both models, with rows representing the
explainer’s outcomes and columns representing the classifier’s outcomes.

In this subsection, we assess the benefits of using Salvage as an explainable classifier. By directly
deriving predictions from the feature importance scores, the exact contribution of each image re-
gion to the classification outcome is made explicit. This makes Salvage particularly well-suited for
applications where explainability is as critical as classification accuracy.

We start by analyzing the overlap between correctly and incorrectly classified samples for the ex-
plainer and classifier in Figure 4. The results suggest that Salvage demonstrates no major drop
in performance relative to the original classifier and a high agreement with the predictions of the
classifier. In contrast to Salvage, we observe that the ViT-Shapley explainer yields a poor classifica-
tion performance and low overlap with the predictions of the classifier. A more detailed qualitative
analysis of the classification performance of Salvage is presented in Table 4.

Next, we analyze the explanations of Salvage in cases where its classification prediction is inaccu-
rate. In Figure 5, we present examples where Salvage failed to produce the correct classification
prediction and provide its attribution maps for both the predicted class (second row) and ground
truth classes (third row). In the second row of the figure, we can see that Salvage provides clear,
understandable explanations for its misclassifications. For example, it can explain errors such as
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mistaking a monument for a church, a construction truck for a garbage truck, or a mouse for an
English Springer Spaniel. Notably, in the last row, even in these failure cases, the attribution map
corresponding to the ground truth class of the image still accurately highlights the ground truth
object (parachute, french horn,...). The ability to provide reliable explanations, even in cases of
classification failure, underscores Salvage’s strong potential to serve as a fully explainable classifier.

Image

Predicted
class

Church English Springer Garbage Truck Garbage Truck

Ground-truth
Class

Parachute French Horn Gas Pump Chain Saw

Figure 5: Examples of test images from ImageNette where Salvage fails to make a correct classi-
fication prediction. In the second row, we present the Salvage’s attribution map for the (wrongly)
predicted class, in the last row its attribution map for the ground truth class of the image.

6 CONCLUSION

By incorporating a novel methodology for attribution score estimation and informative sampling, we
have developed a removal-based explanation method for image classification called Salvage. Our
experiments demonstrate that Salvage outperforms all 10 evaluated baselines, both qualitatively and
quantitatively, by delivering higher-quality explanations and clearly distinguishing relevant from
irrelevant image regions. Beyond its strong explanation performance, we have also established
Salvage’s potential as a fully explainable classifier. While its classification accuracy is comparable
to that of a classifier model, Salvage consistently provides detailed and interpretable explanations,
even for images that are misclassified. This capability not only highlights the regions contributing to
the predictions but also helps users understand the underlying factors leading to errors. Overall, these
features underscore Salvage’s strong potential to serve as a fully explainable classifier in applications
where explainability is as critical as classification accuracy.

7 LIMITATIONS AND FUTURE WORK

Our work offers several promising avenues for further advancement. Future optimizations of our
method could involve refining the neural architecture of the explainer model, as improved segmen-
tation architectures may enhance its ability to capture spatial relationships and accurately estimate
attribution scores for each superpixel-class pair. Moreover, introducing a temperature parameter in
the softmax or sigmoid functions during the approximation of the classifier’s distribution may be
valuable and could offer a better alignment of the magnitude of the approximated values with the
output logits of the classifier. Additionally, since Salvage adopts the principles of Shapley’s additive
explanation, it relies on the assumption that all features are linearly independent—an assumption
that may be overly restrictive in practice. A promising direction for future work could involve ex-
tending Salvage to account for feature interactions. Motivated by the quality of the explanation maps
produced by Salvage, we plan to explore its potential on different tasks and data modalities, as well
as an unsupervised segmentation model in future research.
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Stefan Blücher, Johanna Vielhaben, and Nils Strodthoff. Decoupling pixel flipping and occlu-
sion strategy for consistent xai benchmarks, 2024. URL https://arxiv.org/abs/2401.
06654.
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Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLoS ONE, 10:e0130140, 07 2015. doi: 10.1371/journal.pone.
0130140.

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991. doi: 10.1109/18.61115.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.
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A APPENDIX

A.1 METRICS OVERVIEW

Least influential First (LIF) and Most influential First (MIF) : also known as Insertion and
Deletion (Petsiuk et al., 2018) repeatedly mask the images by removing image patches based on
their ascending/descending ranking from the least important to the most important attribution scores
of the method being evaluated. The area under the resulting curve (predictions/number of patches)
is then computed as the performance score as illustrated in Algorithm 1. The LIF score should be
maximized, which is achieved by removing the least important features first, in order to get high
predictions with as few patches as possible. Conversely, the MIF score should be minimized by
removing the most influential patches first. It is important to note that MIF and LIF offer only
limited insights into the quality of explanations, as they focus solely on the ranking of features while
disregarding their relative differences.

Algorithm 1 Most Informative First (MIF) and Least Informative First (LIF)

Require: N : Set of all features, v: Prediction outcome function, ϕ: Importance scores for each
feature, metric: ’MIF’ or ’LIF’

Ensure: (averaged) MIF or LIF score
1: S ← ∅ ▷ Initialize empty subset
2: preds← [] ▷ List to store prediction outcomes
3: if metric = ’LIF’ then
4: sorted features← Sort features in descending order of importance based on ϕ
5: else
6: sorted features← Sort features in ascending order of importance based on ϕ
7: end if
8: for i = 1 to |N | do
9: Add sorted features[i] to S

10: pred← v(S) ▷ Evaluate the prediction outcome with the current subset
11: Append pred to preds
12: end for
13: final score←

∑
preds
|N | ▷ Compute the average over all subset sizes

14: return final score

Symmetric Relevance Gain (SRG): In a recent study, Blücher et al. (2024) demonstrated the in-
consistency of the MIF and LIF metrics while using different masking strategies, as these can lead
to different performance rankings depending on the robustness of the masking strategy. In order to
address this issue, the authors presented a simple, yet effective metric named SRG, which is given
by the difference between the MIF and LIF scores:

SRG = LIF −MIF (7)

The authors have shown on 40 different masking strategies that this metric breaks the inherent con-
nection to the underlying occlusion strategy and leads to consistent rankings.

Relatively Most influential First (R-SRG), Relatively least influential First (R-LIF) MIF, LIF,
and SRG provide limited insights into the quality of explanations, as they focus exclusively on fea-
ture ranking without accounting for the relative difference scores between the features. To address
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this limitation, we propose an extension of these metrics aimed at capturing the faithfulness of the
relative differences in importance scores across different features. While MIF and LIF evaluate the
prediction model by selecting the patches to be removed purely based on their ranking, we propose
selecting n features through a weighted sampling process. This process uses feature importance
scores as sampling weights, ensuring that features are sampled in proportion to their estimated im-
portance. By employing this method, we can assess the faithfulness of the relative differences in
attribution scores, which are integrated into the sampling process. Analogous to MIF and LIF, R-
MIF aims to sample the most relevant features, while R-LIF aims to sample the least relevant ones.
In our experiments, we repeated the sampling process for each mask size 128 times to minimize
variance in performance scores resulting from the sampling process (nmasks = 128). For a more
detailed overview, we present the pseudo-code for the computation of the R-MIF and R-LIF scores
in Algorithm 2.

Algorithm 2 R-MIF and R-LIF

Require: N : Set of all features, v: Prediction outcome function, ϕ: Importance scores for each
feature, metric: ’R-MIF’ or ’R-LIF’, n masks: Number of subsets to sample per cardinality

Ensure: (averaged) R-MIF or R-LIF score
1: S ← ∅ ▷ Initialize empty subset
2: preds← [] ▷ List to store averaged prediction outcomes
3: ϕ min← min(ϕ) ▷ Find minimum feature importance score
4: ϕ max← max(ϕ) ▷ Find maximum feature importance score
5: ϕ norm← ϕ−ϕ min

ϕ max−ϕ min ▷ Min-max normalization ensuring positive sampling weights
6: if metric = ’R-LIF’ then
7: weights← ϕ norm ▷ Use the normalized scores as weights for R-LIF
8: else
9: weights← 1− ϕ norm ▷ use 1 minus the normalized scores as weights for R-MIF

10: end if
11: for i = 1 to |N | do
12: subset preds← [] ▷ Store prediction outcomes for this step
13: for j = 1 to n masks do
14: Sj ← draw i features from N using weights as sampling weights, without replacement
15: pred← v(Sj) ▷ Evaluate the prediction outcome with the sampled subset
16: Append pred to subset preds
17: end for
18: avg pred←

∑
subset preds
n masks ▷ Average the prediction outcomes over all samples

19: Append avg pred to preds
20: end for
21: final score←

∑
preds
|N | ▷ Compute the final average score over all subset sizes

22: return final score

Relative Symmetric Relevance Gain (R-SRG) Analogously to SRG, we combine the R-MIF and
R-LIF scores by defining:

R-SRG = R-LIF −R-MIF (8)

Relevance Rank Accuracy (RRA) / Relevance Mass Accuracy (RMA) Arras et al. (2022) pre-
sented two metrics measuring the consistency of the feature importance scores with a target region
of interests provided by human annotations. For relevance rank accuracy, image patches are ordered
based on their importance scores, and the number of top-k pixels within the ground truth mask is
measured, with k set to be the number of pixels in the ground truth mask. A high relevance rank
score is indicative of a strong alignment between the explanation and the human annotation. For
relevance mass accuracy, the ratio of positive attributions within the ground truth mask to the sum of
all positive attributions is calculated. A high relevance mass score indicates that significant attention
is placed on the same region as the human annotation, with little attention directed to other regions.

A.2 SAMPLING DISTRIBUTION

For the sake of completeness, we present a pseudo code of the informative sampling procedure in
Algorithm 3. Moreover, we computed the average prediction of the sampled subsets once using ran-
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dom sampling and once using attribution-informed sampling. The results illustrated in appendix A.2
demonstrate that the average prediction likelihood of our informative sampling technique yields a
more balanced distribution than random sampling.

Additionally, we evaluated the effect of addressing this unbalance on sample efficiency. To do so, we
illustrate in Figure 7 the effect of informative sampling on sample efficiency by comparing the SRG
metric (higher is better) during training for models trained with and without the proposed informative
sampling method. The results demonstrate that informative sampling consistently improves the SRG
metric across the training process, indicating enhanced sample efficiency.

Algorithm 3 Feature Subset Sampling Using Importance Scores

Require: N : Set of all features, ϕ: Importance scores for each feature, n masks: Total number of
subsets to sample

Ensure: List of sampled subsets
1: ϕ min← min(ϕ) ▷ Find minimum feature importance score
2: ϕ max← max(ϕ) ▷ Find maximum feature importance score
3: ϕ norm← ϕ−ϕ min

ϕ max−ϕ min ▷ Min-max normalization ensuring positive sampling weights
4: samples← [] ▷ List to store sampled subsets
5: for k = 1 to n masks

2 do
6: m← Sample from U(1, |N |) ▷ Sample subset size from uniform distribution
7: Sϕ ← draw m features from N using ϕ norm as sampling weights, without replacement
8: Append Sϕ to samples
9: end for

10: for k = 1 to n masks
2 do

11: m← Sample from U(1, |N |) ▷ Sample subset size from uniform distribution
12: S1−ϕ ← draw m features from N using (1− ϕ norm) as sampling weights, without repl.
13: Append S1−ϕ to samples
14: end for
15: return samples
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Figure 6: Average prediction likelihood of the ground truth class using informative sampling versus
random sampling, computed across various mask sizes.
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Figure 7: Comparison of the SRG metric during training of the Salvage explainer model. The
SRG metric (higher is better) is evaluated for models trained with informative sampling (Salvage
Informed) and without it (Salvage Uninformed) across 25%, 50%, and 100% of the overall training
duration.

A.3 FURTHER QUANTITATIVE ANALYSIS

In this section, we present the averaged LIF and MIF scores for all baselines in Table 2, along with
the R-LIF and R-MIF scores in Table 3. The results indicate that while the top three methods achieve
relatively high LIF and L-LIF scores, our method demonstrates superior performance in the MIF and
R-MIF metrics. This suggests that our model is better at identifying a larger portion of the important
features, resulting in a clearer distinction between the relevant and irrelevant regions of the image.
This observation is in line with the findings of our qualitative results.

Table 2: Quantitative results computed on the dataset Pet, ImageNette, WBC, and MURA. The
performance of the 12 compared methods is measured in terms of MIF and LIF.

Pet ImageNette MURA WBC
Method LIF ↑ MIF ↓ LIF ↑ MIF ↓ LIF ↑ MIF ↓ LIF ↑ MIF ↓

GradCam 81.08 70.47 88.94 90.89 78.23 62.07 76.22 94.70
EigenCam 76.47 49.05 87.70 74.45 65.59 65.48 85.64 62.76

Attn. last 89.44 41.55 96.76 68.74 74.69 52.28 96.46 54.27
Attn. Roll. 89.62 37.65 96.95 64.93 73.60 56.02 97.19 49.13

ViT-CX 88.19 37.96 96.29 66.37 74.44 54.60 93.51 51.88

Sal. Maps 89.38 38.26 96.09 68.34 74.57 49.31 96.36 53.58
IntGrad 89.45 62.01 96.76 85.80 75.32 61.45 97.32 85.47

LRP 89.64 40.09 97.05 69.17 75.14 55.85 97.01 60.02

RISE 95.73 32.03 98.30 75.38 93.20 36.72 98.47 77.76
ViT-Shap 93.52 32.45 98.71 58.38 91.25 25.91 98.81 41.38

Salvage 93.21 24.75 98.44 47.09 91.94 23.38 98.33 28.63

Random 83.29 83.67 95.13 95.07 71.24 70.78 96.55 96.55
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Table 3: Quantitative results computed on the dataset Pet, ImageNette, WBC, and MURA. The
performance of the 12 compared methods is measured in terms of R-MIF and R-LIF.

Pet ImageNette MURA WBC

Method R-LIF R-MIF R-LIF R-MIF R-LIF R-MIF R-LIF R-MIF
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

GradCam 85.19 81.68 92.59 95.90 78.27 68.18 77.93 98.12
EigenCam 79.15 75.99 90.03 93.10 66.30 70.84 85.64 92.60

Attn. last 91.40 81.78 98.47 95.44 75.36 68.36 98.95 97.34
Attn. Roll. 90.83 79.61 98.29 94.83 74.79 68.53 99.07 96.53

ViT-CX 89.08 71.45 97.98 90.49 74.37 65.28 98.78 91.49

Sal. Maps 90.84 80.06 98.09 95.25 75.19 66.69 98.94 96.83
IntGrad 90.62 82.74 98.20 96.03 75.38 69.29 99.09 97.52

LRP 91.32 82.09 98.52 95.47 75.66 68.82 99.08 97.35

RISE 91.62 73.12 98.26 92.89 81.91 59.84 98.99 95.46
ViT-Shap 91.66 76.97 98.89 92.67 81.05 60.47 99.55 92.28

Salvage 91.60 65.31 98.79 83.92 81.77 56.45 99.50 76.88

Random 85.20 84.91 96.66 96.68 71.53 71.79 98.15 98.15

A.4 CLASSIFICATION ANALYSIS

In this section, we first asses the classification performance of Salvage quantitatively in Table 4 by
comparing it to a baseline classifier and the ViT-Shapley explainer model. Salvage demonstrates no
major drop in performance relative to the original classifier. In contrast, the ViT-Shapley explainer
model performs poorly in classification. This issue can be attributed to the explainer’s attribution
scores for different classes being decoupled during training due to the use of additive normalization
(Covert et al., 2023).

Table 4: An overview of the classification performance of the original classifier, ViT-Shapley, and
Salvage computed on Pet, ImageNette, WBC and MURA.

Model Pet ImageNette WBC MURA
Accuracy Accuracy Accuracy Precision Recall F1-score MCC

Classifier 95.91% 99.64% 99.75% 84.64% 78.88% 81.66% 0.66
ViT-Shapley 0.00% 0.05% 0.69% 59.03% 92.74% 72.14% 0.39

Salvage 93.61% 98.88% 99.75% 80.31% 80.52% 80.41% 0.62

A.5 QUALITATIVE EXAMPLES

We present further qualitative examples comparing Salvage to the baseline methods in Figure 9. The
figure includes 5 examples from ImageNette, 5 examples from Pet, and 4 examples from MURA.
Additionally we present 8 examples from the WBC Dataset (one example per cell type) in Figure 8.
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Figure 8: Qualitative examples computed on the WBC dataset.

18



Published as a conference paper at ICLR 2025

Te
nc

h

Image GradCam EigenCam Sal. Maps Int. Grad ViT-CX LRP Attn. Last Attn. Roll Rise ViT-Shapley Salvage

Ga
s P

um
p

Go
lf 

Ba
ll

En
gl

ish
 S

pr
in

ge
r

Pa
ra

ch
ut

e
Ch

ih
ua

hu
a

Pe
rs

ia
n

Sc
ot

tis
h 

Te
rri

er
En

gl
ish

 S
et

te
r

Le
on

be
rg

er
Ab

no
rm

al
Ab

no
rm

al
Ab

no
rm

al
Ab

no
rm

al

Figure 9: Qualitative examples computed on ImageNette, Pet and MURA.
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