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ABSTRACT

In this paper, we propose ChildGAN to generate a child’s face image according to
the images of parents with heredity prior. The main idea is to disentangle the latent
space of a pre-trained generation model and precisely control the face attributes of
child images with clear semantics. We use distances between face landmarks as
pseudo labels so as to avoid using external labels. By calculating the gradient of
latent vectors to pseudo labels, we figure out the most influential semantic vectors
of the corresponding face attributes. Then we disentangle the semantic vectors in
three aspects: adding a weight factor in the calculating process, working on the
proper resolution layers, and using Schmidt orthogonalization to orthogonalize
these vectors. Finally, we fuse the latent vectors of the parents by leveraging the
disentangled semantic vectors under the guidance of biological genetic laws.

1 INTRODUCTION

Child image generation aims at synthesizing child face image given the images of parents. This is a
challenging task since the generated child face should not only resemble the parents, but inherit the
attributes following the known genetic laws. Besides, the children born to the same parents may look
quite different, which means there is no unique solution to the problem of child image generation.

There are only a few works studying the child image generation problem. KinshipGAN (Ozkan &
Ozkan, 2018) uses a deep face network to generate a child’s face based on one-to-one relationship.
DNA-Net (Gao et al., 2021) and ChildNet (Pernuš et al., 2023) proposes to use a deep generative
Conditional Adversarial Autoencoder for this task. Although some success has been achieved, those
methods suffer three non-trivial issues. First, the generated images are usually blur and of low
quality. Second, those methods cannot explicitly control the facial attributes in the generated faces,
which significantly limits their application scenarios. Third, they ignore the inheritance law from
genetic basis. For instance, thin upper lip is controlled by a dominant gene and is very likely to be
inherited. Without considering such prior, the generated child images may fail to reflect the inherited
attributes.

In this paper, we propose a new framework, i.e., ChildGAN, to generate the face image of the
child according to the parents’ images under the guidance of genetic laws. To ensure the generated
images are of high quality, we leverage a pretrained StyleGAN (Karras et al., 2019) generator and
conduct macro fusion. To explicitly control the facial attributes in the generated faces, we identify
disentangled semantic directions in the latent space. Our semantic learning method is based on
gradient estimation from a large number of samples as well as irrelevant factor reweighting. It finds
the important and decoupled semantic vectors in the latent space without the need for manual labels.
To the inheritance law from genetic basis, we let the child to inherit attributes of the parents in a
micro way under the guidance of genetic laws. This approach enables the zero-shot generation of
child images, without training on specific datasets.

2 METHODS

The framework of the proposed ChildGAN is shown in Figure 1 . The face images of the parents are
first embeded to the latent space of StyleGAN. Then after some preprocessing, the latent codes of the
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Figure 1: The flowchart of our generation process.

parents are mixed through Macro Fusion. We propose an effective method to identify disentangled
semantic directions in the latent space, which allow the child to inherit attributes of the parents in a
micro way under the guidance of genetic laws. Finally, the child image is generated from the child’s
latent code by a pre-tained StyleGAN generator. The details of each component are given in the
Appendix A.1 to A.4.

Our methodology employs the extended W space in StyleGAN, namely W+ space, which is a
concatenation of 18 different 512-dimensional w vectors, to carry out our experiment. We use
10,000 images generated randomly by the pre-trained StyleGAN to learn the semantic vectors. For
each face image, we get the pseudo labels for the attributes, such as the size of the eyes, the size of
the nose, and the thickness of the lip, by first detecting the face landmarks in the image and then
computing the distances between corresponding landmarks pair.

Figure 2: Examples of children images generated by the proposed method. In each group, the images
in the first row represent the parents, and the second row displays the child generated (left) alongside
the real image of their child (right).

3 EXPERIMENTS

Table 1: Kinship verification scores.
Method Acc (E=10) Acc (E=20)
DNA-Net 0.541 0.583
ChildNet 0.602 0.613
Ours 0.739 0.870

Table 2: The average rank of different ap-
proaches in user study.

DNA-Net ChildNet Ours
Avg. rank 2.40 2.24 1.36

Figure 2 presents a subset of our generated results. It is evident that the facial attributes of the
generated children are blends of those of the corresponding parents, with a possible bias toward
one parent due to genetic factors. For an objective evaluation, we trained a kinship verification
network using the Families In the Wild (FIW) dataset (Robinson et al., 2018). This network was
employed to verify the parent-child resemblance, using models trained for 10 and 20 epochs. The
results of this automated evaluation are presented in Table 1. Additionally, we undertook a human
evaluation involving 30 individuals from varied backgrounds, who assessed each image based on its
realism and resemblance to the purported parents. Each participant responded to 30 questions, and
the average rankings are compiled in Table 2. We conduct all the objective evaluations on the FIW
dataset. The outcomes of these evaluations suggest that the ChildGAN effectively simulates kinship
relationships, closely mirroring those in real-life parent-child pairs.
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A APPENDIX

In the appendix, we first introduce the method of macro fusion to achieve the inheritance of macro
and relatively rough characteristics. Then we discuss the scientific knowledge for child generation.
Next, we introduce the extraction and decoupling of important semantics. After that, we present
how to use the genetic knowledge and orthogonal semantic vectors for micro fusion. Finally, we
present more evaluation results of our methods.

A.1 DETAILS OF MACRO FUSION

In order to generate a child’s image, we start by making a rough mix of the parents’ faces to get a
preliminary image of the child. We call this process macro fusion. Before our fusion process, we
map the parents’ images to vectors in the latent space, which called latent codes. Given an image of
the father, we first crop and align the face in it. Then we do GAN inversion (Xia et al., 2022; Liu
et al., 2023b;a), finding the optimal latent code wf by minimizing the reconstruction loss between
the image generated from wf and the real image. The latent code wm for the mother is obtained
in the same way. To produce a child with a specific gender and reduce the background artifacts,
we change the gender character of one parent by moving the corresponding latent code along a pre-
learned orientation in the latent space which mainly controls the gender attribute. That is to say, if
we want the genarated child to be a girl, we need to move the father’s latent code wf forward in this
orientation (about 2 units in length as that’s the average difference between the latent codes of men
and women in this orientation) , and if we want the child to be a boy, we need to move the mother’s
latent code wm backward in this orientation. After this adjustment, we still refer to the latent codes
of the father and mother as wf and wm.

There are two alternatives in macro fusion. First, as a simple method, we can use linear combination:
w′

c = (1− λ)wf + λwm, where λ is a parameter between 0 and 1. In this way, every resolution
layer of the child will be a mixture of the parents. Alternatively, for each resolution layer of w′

c,
we can take the corresponding dimensions of wf or wm respectively as the value of this resolution
layer of w′

c. For example, if we want rough features such as posture, hairstyle, and facial contour to
be inherited from the father, while more subtle features such as facial components are inherited from
the mother on a macro level, we can let the first two resolution layers of w′

c copy from wf , while
the other layers copy from wm. At the end of the macro fusion, we just need to adjust w′

c along the
pre-learned age vector to generate the child of an expected age.
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A.2 DETAILS OF INHERITANCE PRIOR FOR CHILD IMAGE GENERATION

We adopt some genetic evidence in biology (McKusick, 2014) to make our results more scientific
(here we only consider Mendelian inheritance).

1. Skin color (Harrison, 1957): The skin color of a child always follows the natural law of
“neutralizing” the skin colors of the parents.

2. Eyes: Big eyes are inherited in a dominant way, so as long as one parent has big eyes, the
child is more likely to have big eyes.

3. Nose: Generally speaking, large, high noses and wide nostrils are in dominant inheritance.
If one of the parents has a big nose, it is likely to be inherited by the child.

4. Jaw: As dominant inheritance, if one parent has a prominent big chin, the child will be
more likely to grow into a similar chin.

5. Lip thickness: A thin upper lip is a dominant inheritance, while a thicker lower lip is a
dominant inheritance.

6. Baldness (Osborn, 1916): Alopecia is caused by an autosomal dominant gene. Bald men
may be heterozygous (Bb) or homozygous (BB), while bald women are homozygous
(BB)

If we use B to present dominant gene and b for recessive gene, then the genotype with dominant
trait is Bb or BB (in our work, we assume that they’re equally likely), and the genotype with
recessive trait is bb. If one parent presents a recessive trait and the other presents a dominant trait,
the probability of the child presenting a recessive trait is: 1

2 × 1
2 = 1

4 , while the probability of
presenting a dominant trait is 3

4 . If both parents display dominant traits, the probability of the child
presenting a recessive trait is: 1

4 ×
1
2 ×

1
2 = 1

16 , while the probability of presenting a dominant trait
is 15

16 . If both parents present recessive traits, their child will surely present a recessive trait.

In order to classify facial attribute values corresponding to biological traits, we compare the value of
the attribute with a threshold value. We get the value for each attribute by by first detecting the face
landmarks in the image and then computing the distances between corresponding landmarks. Each
threshold is set as the average value of the attribute in a large number of samples. For attributes that
cannot be classified by size, we use the projection value of the latent vector on the attribute vector’s
orientation instead of distance difference as the value of the attribute.

A.3 DETAILS OF SEMANTICS LEARNING

As discussed in Section III.B, a genetic rule usually describes how a certain facial attribute is passed
down from the parents to the child. To generate the child face according to the genetic laws, we
need to identify these attributes in the latent space W+ of StyleGAN, in which we fuse the faces of
the parents. However, this is not readily available, since each w vector usually relates to multiple
attributes. Some previous works (Shen et al., 2020; Ayush Tewari et al., 2020; Abdal et al., 2021;
Pehlivan et al., 2023; Li et al., 2023) have shown that there are directions in the latent space of
StyleGAN that correspond to different attributes of a face. In this section, we propose an effective
method to identify semantic directions (or semantics in short) in the W+ space that separately
correspond to the attributes covered by the heredity laws. To ensure that moving a latent vector
along one semantic direction affects other attributes as little as possible, we further make these
semantic directions orthogonal to each other.

It is observed in StyleGAN that we can change the semantics contained in a synthesis continuously
by linearly interpolating two latent codes. Let {v1, · · · ,vk} be a set of vectors, each representing a
semantic direction in the latent space. Since we chose to operate in W+ space, k = 512×18 = 9216.
These semantic directions will contain all the semantics we want to control. The difference between
the latent codes of two images can be represented as a linear combination of the semantic vectors
{vk}. The weight for each vk is proportional to the change of the value for the corresponding
attribute. Without loss of generality, we have:

wi −wj =
∑
k

(ui,k − uj,k)× vk, (1)
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where wi and wj are the latent codes of two images. ui,k and uj,k denote the values of the face
attribute corresponding to vk. If ui,k − uj,k ̸= 0, we have:

wi −wj

ui,l − uj,l
= vl +

∑
k ̸=l

ui,k − uj,k

ui,l − uj,l
× vk. (2)

With a large number of image pairs available, we can compute the expectation as:

E

(
wi −wj

ui,l − uj,l

)
= vl +

∑
k ̸=l

E

(
ui,k − uj,k

ui,l − uj,l

)
× vk, (3)

where E (p) represents the statistical expectation of p.

Consider the most ideal situation, that is, if different semantics are independent of each other, when
we have enough samples, we can estimate vl through:

ve
l =

2

N × (N − 1)

N−1∑
i=1

N∑
j=i+1

wi −wj

ui,l − uj,l
, (4)

where N is the total number of images available for learning, and ve
l is an estimation of vl.

But in fact, the distribution of values of different attributes in sample pictures is not independent
of each other. For example, people with larger eyes have larger mouths on average. That makes
E
(

ui,k−uj,k

ui,l−uj,l

)
> 0 . According to Equation 3, the vector ve

l we find based on Equation 4 will
have components not only in the vl direction, but also in other directions, which can be written as
vl +

∑
k ̸=l

ui,k−uj,k

ui,l−uj,l
× vk as the sample size approaches infinity. This means that when we want to

change the l-th attribute, the rest of the attributes will change as well.

In order to reduce the proportion of irrelevant components vk (k ̸= l) in the extracted vector and
reduce the influence of other attributes when changing the l-th feature, we add an additional weight
to the terms in Equation 4:

ve
l =

∑N−1
i=1

∑N
j=i+1

wi−wj

ui,l−uj,l
× e

−|
ui,m−uj,m
ui,l−uj,l

|

∑N−1
i=1

∑N
j=i+1 e

−|
ui,m−uj,m
ui,l−uj,l

|
, (5)

where m is the index of the attribute which we want to reduce its entanglement with target semantic
ve
l due to the large value of E

(
ui,m−uj,m

ui,l−uj,l

)
. By introducing this weight factor, wi −wj would be

weighted heavier if the difference of m-th attribute between the two images is small, and wi −wj

would be given a lower weight if the m-th attribute of the two images are quite different. This also
makes the variance of the restricted directional component smaller and accelerated the convergence
speed. Equation 5 can be further extended if we want to do this disentanglement on more than one
attribute. We only need to multiply the weight factors corresponding to these attributes together.

In addition to focusing on the overall characteristics of latent space, differences in different reso-
lution layers in latent space facilitate further decoupling. We found that the first resolution layer
of StyleGAN mainly controls camera elevation and horizontal angles, while the last four resolution
layers mainly control color and background. In order to decouple the extracted facial semantics from
attributes that we are not interested in, we can choose to only work on the middle three resolution
layers.

The selection of the resolution layers and the estimation of the semantic vectors {vl} have to a large
extent disentangled the semantics. However, there are still some coupling of attributes in {vl} . To
achieve more precise control, we further orthogonalize these vectors. In our work, we use the Gram-
Schmidt process to made the semantic vectors orthogonal to each other. Starting with n1 = v1, we
have:

nl = vl −
l−1∑
i=1

⟨vl,ni⟩
⟨ni,ni⟩

ni, (6)

where vl is the semantic vector found by Equation 5 and ni represents the orthogonal vector.
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With the disentangled semantics identified by the method shown in this section, we can decompose
the latent vectors of the parents by projecting them onto these semantic directions. Then an attribute
of the child will be determined by picking a point in each semantic direction based on the genetic
laws. We call this process the micro fusion of the parents.

A.4 DETAILS OF MICRO FUSION

Now that we have obtained the decoupled semantic vectors that correspond to key attributes of
the face, we can inherit face components of the parents according to the genetic laws. Based on
the preliminary child latent code obtained after macro fusion, we further adjust it in the semantic
directions. For each semantic vector, we first project the parents’ and preliminary child’s latent
codes onto it. For the case that one parent presents a dominant trait while the other parent presents
a recessive trait, we get the child’s phenotype according to probability, and move the child’s latent
code to the father or mother’s projection. If both parents show dominant traits but the child should
show the recessive character according to probability, we move the child’s latent code across the
less obvious dominant side and move on until it becomes recessive. In the case of parents and child
all showing dominant traits, we make the child’s latent code move randomly under the restriction of
parents’ projection in this direction (the same for both parents with recessive traits or when there is
no clear genetic rule to guide the semantic).

After dealing with each semantic direction in accordance with the above methods, we resynthesize
wc by:

wc = ŵ′
c +

∑
l

plvl, (7)

where {vl} are the semantic vectors, pl is the projection component of the child image’s latent code
on each semantic direction, and ŵ′

c is what’s left of w′
c (the child image’s latent code after macro

fusion) after been decomposed. After that, we send wc into the StyleGAN Generator to obtain the
final child image.

A.5 MORE RESULTS

Figure 3: Heat maps of the mean squared error between the edited outputs and original image. The
first and second rows are the results of using the basic method and the improved method, respec-
tively. The edited attributes are the nose size (left), eye size (middle) and upper lip thickness (right).

As shown from the heatmaps in Figure 3, our improved method focuses on the component of interest
better than our basic method, and it no longer modifies the face contour. This demonstrates that we
can manipulate the facial attributes better with less attribute coupling.

In Figure 4, we show how the known genetic laws act on specific characteristics. The results demon-
strate that the dominant traits of parents are more likely to be passed on to their children, which
makes our generation process more scientifically sound and reliable.

In Figure 5 we show the diversity of our generated results. We can generated children with different
ages and genders. Also, since the heredity of various characteristics follows the Mendelian inher-
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Figure 4: Examples of the role of genetic laws. Each column is the result of considering one genetic
factor, and all children inherit the corresponding dominant traits.

Figure 5: An example about the diversity of generated results. The first row shows the images of the
parents, the second and the third rows are the results of children with different genders, ages, and
genetic patterns.

itance law, it is not deterministic but with a certain probability that different children of the same
parents do not look exactly the same in appearance. Our results show this diversity.

T-Distributed Stochastic Neighbor Embedding (Van der Maaten & Hinton, 2008) is a machine learn-
ing algorithm for dimensional reduction. We use it to reduce the dimensionality of high-dimensional
facial features to 2-dimensional for visualization. Using this method, we draw a series of face im-
ages of parents, real children and the children generated by our method as Figure 6. As shown in
Figure 6, unlike in DNA-Net (Gao et al., 2021) where the features of the generated children are
concentrated on one side and far away from real ones, the features of children generated by us are
evenly distributed. The feature distributions of child image generated by us is similar to that of
real children’s images. Also, we can see that the feature distributions of the generated child face is
close to the faces of the parents (some are closer to father’s features and some are closer to mother’s
features). This result is consistent with our vertification results.
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Figure 6: Visualization of facial feature distribution of fathers, mothers, children, and generated
ones. Red points represent the feature of fathers, green for mothers, yellow for real children, blue
for generated children, respectively. Best viewed in color.
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