
Transformed Distribution Matching for Missing Value Imputation

He Zhao 1 Ke Sun 1 Amir Dezfouli 1 Edwin V. Bonilla 1

Abstract

We study the problem of imputing missing values
in a dataset, which has important applications in
many domains. The key to missing value imputa-
tion is to capture the data distribution with incom-
plete samples and impute the missing values ac-
cordingly. In this paper, by leveraging the fact that
any two batches of data with missing values come
from the same data distribution, we propose to im-
pute the missing values of two batches of samples
by transforming them into a latent space through
deep invertible functions and matching them dis-
tributionally. To learn the transformations and im-
pute the missing values simultaneously, a simple
and well-motivated algorithm is proposed. Our
algorithm has fewer hyperparameters to fine-tune
and generates high-quality imputations regardless
of how missing values are generated. Extensive
experiments over a large number of datasets and
competing benchmark algorithms show that our
method achieves state-of-the-art performance1.

1. Introduction
In practice, real-world data are usually incomplete and con-
sist of many missing values. For example, in the medical
domain, the health record of a patient may have consid-
erable missing items as not all of the characteristics are
properly recorded or not all of the tests have been done
for the patient (Barnard & Meng, 1999). In this paper,
we are interested in imputing missing values in an unsu-
pervised way (Van Buuren & Groothuis-Oudshoorn, 2011;
Yoon et al., 2018; Mattei & Frellsen, 2019; Muzellec et al.,
2020; Jarrett et al., 2022). Here the meaning of “unsuper-
vised” is twofold: We do not know the ground truth of
the missing values during training and we do not assume a
specific downstream task.

1CSIRO’s Data61, Australia. Correspondence to: He Zhao
<he.zhao@ieee.org>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1Code at https://github.com/hezgit/TDM

The key to missing value imputation is how to model the
data distribution with a considerable amount of missing
values, which is a notoriously challenging problem. To
address this challenge, existing approaches either choose
to model the conditional data distribution instead (i.e., the
distribution of one feature conditioned on the other fea-
tures), such as in Heckerman et al. (2000); Raghunathan et al.
(2001); Gelman (2004); Van Buuren et al. (2006); Van Bu-
uren & Groothuis-Oudshoorn (2011); Liu et al. (2014); Zhu
& Raghunathan (2015) or use deep generative models to
capture the data distribution, such as in Gondara & Wang
(2017); Ivanov et al. (2018); Mattei & Frellsen (2019); Naz-
abal et al. (2020); Gong et al. (2021); Peis et al. (2022);
Yoon et al. (2018); Li et al. (2018); Yoon & Sull (2020); Dai
et al. (2021); Fang & Bao (2022); Richardson et al. (2020);
Ma & Ghosh (2021); Wang et al. (2022). Alternatively, a
recent interesting idea proposed by Muzellec et al. (2020)
has found success, whose key insight is that any two batches
of data (with missing values) come from the same data dis-
tribution. Thus, a good method should impute the missing
values to make the empirical distributions of the two batches
matched, i.e., distributionally close to each other. This is a
more general and applicable assumption that can be used
in various data under different missing value mechanisms.
In this paper, we refer to this idea as distribution matching
(DM), the appealing property of which is that it bypasses
modelling the data distribution explicitly or implicitly, a
difficult task even without missing values.

As the pioneering study, Muzellec et al. (2020) does DM
by minimising the optimal transport (OT) distance whose
cost function is the quadratic distance in the data space
between data samples. However, real-world data usually
exhibit complex geometry, which might not be captured
well by the quadratic distance in the data space. This can
lead to wrong imputations and poor performance. In this
paper, we propose a new, straightforward, yet powerful DM
method, which first transforms data samples into a latent
space through a deep invertible function and then does dis-
tribution matching with OT in the latent space. In the latent
space, the quadratic distance of two samples is expected
to better reflect their (dis)similarity under the geometry of
the data considered. In the missing-value setting, learning
a good transformation is non-trivial. We propose a simple
and elegant algorithm that learns the transformations and

1

https://github.com/hezgit/TDM

Transformed Distribution Matching for Missing Value Imputation

imputes the missing values simultaneously, which is well-
motivated by the theory of OT and representation learning.

The contributions of this paper include: 1) As DM is a new
and promising line of research in missing value imputa-
tion, we propose a well-motivated transformed distribution
matching method, which significantly improves over pre-
vious methods. 2) In practice, the ground truth of missing
values is usually unknown, making it hard to fine-tune meth-
ods with complex algorithms and many hyperparameters.
We develop a simple and theoretically sound learning al-
gorithm with a single loss and very few hyperparameters,
alleviating the need for extensive fine-tuning. 3) We conduct
extensive experiments over a large number of datasets and
competing benchmark algorithms in multiple missing-value
mechanisms and report comprehensive evaluation metrics.
These experiments show that our method achieves state-of-
the-art performance.

2. Background
2.1. Data with Missing Values

Here we consider N data samples with D-dimensional fea-
tures stored in matrix X ∈ RN×D, where a row vector
X[i, :] ∈ RD (1 ≤ i ≤ N) represents the ith sample. The
missing values contained in X are indicated by a binary
mask M ∈ {0, 1}N×D such that M [i, d] = 1 indicates
that the dth feature of sample i is missing and M [i, d] = 0
otherwise. Moreover, we assign NaN (Not a Number) to
the missing values and use the following Python/Numpy
style matrix indexing X[M] = NaN to denote the miss-
ing data. Similarly, the observed data can be denoted as
X[1 −M], where 1N×D is the matrix with the same di-
mension as M filled with ones. The task of imputation is to
fill X[M] with the imputed values given the mask M and
the observed values X[1−M].

In practice, three missing value patterns/mechanisms (i.e.,
ways of generating the mask) have been widely ex-
plored (Rubin, 1976; 2004; Van Buuren, 2018; Seaman
et al., 2013): missing completely at random (MCAR) where
the missingness is independent of the data; missing at ran-
dom (MAR) where the probability of being missing depends
only on observed values; missing not at random (MNAR)
where the probability of missingness then depends on the
unobserved values. In MCAR and MAR, the missing value
patterns are “ignorable” as it is unnecessary to model the
distribution of missing values explicitly while MNAR can
be a harder case where missing values may lead to important
biases in data (Muzellec et al., 2020; Jarrett et al., 2022).

2.2. Optimal Transport

Optimal transport (OT) provides sound and meaningful
distances to compare distributions (Peyré et al., 2019),

which has been used in many problems, such as computer
vision (Ge et al., 2021; Zhang et al., 2022), text analy-
sis (Huynh et al., 2020; Zhao et al., 2021; Guo et al., 2022c),
adversarial robustness (Bui et al., 2022), probabilistic (gener-
ative) models (Vuong et al., 2023; Vo et al., 2023), and other
machine learning applications (Nguyen et al., 2021; Guo
et al., 2021; Nguyen et al., 2022; Guo et al., 2022a;b). Here
we briefly introduce OT between two discrete distributions
of dimensionality B and B′, respectively. Let α(X1) :=∑B

i=1 aiδX1[i,:] and β(X2) :=
∑B′

j=1 bjδX2[j,:], where
X1 ∈ RB×D and X2 ∈ RB′×D denote the supports of
the two distributions, respectively; a ∈ ∆B and b ∈ ∆B′

are two probability vectors; ∆B is the (B − 1)-dimensional
probability simplex. The OT distance between α(X1) and
β(X2) can be defined as:

dG
(
α(X1), β(X2)

)
:= inf

P∈U(a,b)
⟨P ,G⟩, (1)

where ⟨·, ·⟩ denotes the Frobenius dot-product; G ∈
RB×B′

≥0 is the cost matrix/function of the transport;

P ∈ RB×B′

>0 is the transport matrix/plan; U(a, b)
denotes the transport polytope of a and b, which is
the polyhedral set of B × B′ matrices: U(a, b) :={
P ∈ RB×B′

>0 |P1B′ = a,P T1B = b
}

; and 1B is the N -
dimensional column vector of ones. The cost matrix G con-
tains the pairwise distance/cost between B and B′ supports,
for which different distance metrics can be used. Specif-
ically, if the cost is defined as the pairwise quadratic dis-
tance: G[i, j] = ∥X1[i, :]−X2[j, :]∥2, where ∥·∥ is the Eu-
clidean norm, the OT distance reduces to the p-Wasserstein
distance (p = 2 here), i.e., dG

(
α(X1), β(X2)

)
=

W 2
2

(
α(X1), β(X2)

)
.

3. Method
3.1. Previous Work: Optimal Transport for Missing

Value Imputation

Our method is motivated by Muzellec et al. (2020), the pio-
neering method of distribution matching, recently proposed
for missing value imputation. Consider two batches of data
of X: X1 and X2 with batch size of B, both of which
can contain missing values. The key insight is that a good
method should impute the missing values in X1 and X2

so that the empirical distributions of them are matched. To
do so, Muzellec et al. (2020) propose to minimise the OT
distance2 between them in terms of the missing values.

min
X1∪2[M1∪2]

W 2
2

(
µ(X1), µ(X2)

)
, (2)

where µ(X1) = 1
B

∑
i δX1[i,:] denotes the empirical

measure associated to the B samples of X1 (simi-

2The paper actually uses the Sinkhorn divergence (Genevay
et al., 2018; Feydy et al., 2019), a surrogate divergence to OT.

2

Transformed Distribution Matching for Missing Value Imputation

(a) Ground truth (b) OTImputer

Figure 1. Two synthetic datasets (two rows) each of which is with
500 samples. (a) Ground truth: Blue points (60%) have no missing
values and red points (40%) have one missing value on either
coordinate (following MCAR). (b) The imputed values for the red
points by OTImputer4, where the orange rectangle highlights the
region of interest.

larly for µ(X2)); X1∪2 denotes the union of X1 and
X2, i.e., the unique data samples of the two batches;
M1∪2 denotes the union of M1 and M2, i.e., the
mask of missing values in X1∪2. To impute the
missing values, one can take an iterative update of
X1∪2[M1∪2] by gradient descent, e.g., RMSprop (Tiele-
man et al., 2012): X1∪2[M1∪2] ← X1∪2[M1∪2] −
αRMSprop

(
∇X1∪2[M1∪2]W

2
2

(
µ(X1), µ(X2)

))
. We re-

fer to this method as “OTImputer”.

3.2. Motivations

We now motivate the proposed method by giving a closer
look at OTImputer.

Lemma 3.1. For any given X1 and X2, we have:

W 2
2

(
µ(X1), µ(X2)

)
= min

π

1

B

B∑
i=1

∥X1[i, :]−X2[π(i), :]∥2,

where the minimum is taken over all possible permutations
π of the sequence (1, . . . , B), and π(i) is the permuted
index of i with 1 ≤ π(i) ≤ B.

Proof. It is a special case of Proposition 2 of Nguyen (2011).

The above lemma shows that 2-Wasserstein distance be-
tween two empirical distributions used in OTImputer is

4Note that Figure 1 is not directly comparable with Figure 2
in Muzellec et al. (2020) because the synthetic dataset is gener-
ated differently, the missing value proportion is different, and the
computation of OT is done differently.

equivalent to the minimisation of a matching distance by
finding the optimal permutation. In the missing value im-
putation context, OTImputer finds the closest pairs of data
samples in the two batches in terms of the quadratic distance
in the data space (by the computation of 2-Wasserstein)
and then tries the hardest to minimise their quadratic dis-
tance to impute missing values (by the minimisation of
2-Wasserstein). Real-world data usually exhibit complex
geometry, which can hardly be captured by the quadratic
distance in the data space. Figure 1 shows the imputation
results on two synthetic datasets. It can be seen that OTIm-
puter incorrectly imputes a considerable amount of missing
values within the orange rectangles. This is because these
imputed samples have a small quadratic distance to others in
the data space but they are not good imputations. Therefore,
the quadratic distance in the data space is unable to reflect
the data geometry.

3.3. Proposed Method

In this paper, we introduce Transformed Distribution
Matching (TDM), which carries out OT-based missing value
imputation on a transformed space, where the distances
between the transformed samples can reveal the similar-
ity/dissimilarity between them better, respecting the under-
lying geometry of the data. Specifically, we aim to learn a
deep transformation parameterised by θ, fθ : RD′ → RD

that projects a data sample x ∈ RD to a transformed one
z ∈ RD′

: z := fθ(x). With a slight abuse of notation, we
denote the batch-level transformation as Z = fθ(X) where
fθ is applied to each sample (row vector) in X . Generalising
Eq. (2), we learn fθ and the imputations by:

min
X1∪2[M1∪2],θ

LW (X1,X2), (3)

LW (X1,X2) = W 2
2

(
f#µ(X

1), f#µ(X
2)
)
, (4)

where f#µ(X) := µ(fθ(X)). If fθ is an isometry, then
our TDM reduces to OTImputer (Muzellec et al., 2020). We
provide more theoretical analysis of this loss in Section A
of the appendix.

The above optimisation is straightforward, however, simply
minimising the Wasserstein loss can lead to model collaps-
ing, meaning that no matter what the input sample is, fθ
always transforms it into the same point in the latent space.
It is easy to see that model collapsing is the trivial solution
that minimises the Wasserstein distance between any two
samples (or batches) (i.e., to be zero), regardless of how the
missing values are imputed. To prevent model collapsing,
we are inspired by the viewpoint of representation learning,
where our method can be viewed to learn the latent represen-
tation z from the data sample x with missing values in an
unsupervised way. Representation learning based on mutual
information (MI) has been shown promising in several do-
mains (Oord et al., 2018; Bachman et al., 2019; Hjelm et al.,

3

Transformed Distribution Matching for Missing Value Imputation

(a) TDM (ours) (b) X with OOD noises (c) f1(X) (d) f1:2(X) (e) f1:3(X)

Figure 2. (a) The imputed values for the red points by TDM, corresponding to the ground truth of Figure 1(a). (b) X with OOD noises
(grey points). (c-e) The transformed points by different blocks of fθ .

2019; Tschannen et al., 2020), where it has been motivated
by the InfoMax principle (Linsker, 1988). To avoid model
collapsing, we propose to add a constraint to fθ such that it
also maximises the MI I (X, fθ(X)). Thus, we define

LMI(X) = −I (X, fθ(X)) , (5)

and aim to learn θ by minimising both LW (X1,X2) and
LMI(X1) + LMI(X2).

Estimating the above MI in high-dimensional spaces has
been known as a difficult task (Tschannen et al., 2020).
Although several methods have been proposed to approx-
imate the estimation, e.g., in Oord et al. (2018), they may
inevitably add significant complexity and parameters to our
method. Instead of maximising a tractable lower bound as in
Oord et al. (2018); Poole et al. (2019), we propose a simpler
approach that constrains fθ to be a smooth invertible map.

Proposition 3.2. If fθ is a smooth invertible map, then
fθ ∈ argmaxf ′ I (X, f ′(X)).

Proof. By definition, we have I(X, f ′(X)) = H(X) −
H(X|f ′(X)) where H(X) and H(X|f ′(X)) are the en-
tropy and conditional entropy, respectively. As we consider
X and f ′(X) as empirical random variables with finite
supports of their samples, H(X|f ′(X)) ≥ 0. Therefore,
I(X, f ′(X)) ≤ H(X) = I(X,X). If fθ is a smooth
invertible map, it is known that: I(X, fθ(X)) = I(X,X)
according to Eq. (45) of Kraskov et al. (2004). Therefore,
I(X, fθ(X)) ≥ I(X, f ′(X)).

Proposition 3.2 shows that fθ being invertible5 (i.e., fθ
projects x to z and its inverse function f−1

θ projects z back
to x) prevents model collapsing, without explicitly maximis-
ing the mutual information. Accordingly, we implement fθ
with invertible neural networks (INNs) (Dinh et al., 2014;

5One may also say that fθ is bijective or fθ is a diffeomor-
phism (Papamakarios et al., 2021).

2017; Kingma & Dhariwal, 2018), which are approximators
to invertible functions (Jacobsen et al., 2019; Gomez et al.,
2017; Ardizzone et al., 2019; Kobyzev et al., 2020; Papa-
makarios et al., 2021). Specifically, the INNs for fθ consists
of a succession of T blocks, fθ = f1 ◦ f2 ◦ · · · fT , each
of which is an invertible function6. Note that now we have
D′ = D, meaning that the output and input dimensions are
the same for fθ and every ft (1 ≤ t ≤ T).

For one block ft, whose input and output vectors are de-
noted as yin ∈ RD and yout ∈ RD respectively, we imple-
ment it as an affine coupling block by following Ardizzone
et al. (2019), which consists of two complementary affine
coupling layers (Dinh et al., 2017):

yout
1:d = yin

1:d ⊙ exp
(
g1(y

in
d+1:D)

)
+ h1(y

in
d+1:D), (6)

yout
d+1:D = yin

d+1:D ⊙ exp
(
g2(y

out
1:d)

)
+ h2(y

out
1:d), (7)

where yin and yout are decomposed into two disjoint
subsets, respectively: yin = [yin

1:d,y
in
d+1:D] and yout =

[yout
1:d,y

out
d+1:D]; d is set to ⌊D/2⌋; ⊙ denotes the element-

wise product. Moreover, g1, g2, h1 and h2 are neural net-
works, each of which is implemented by a succession of
fully connected layers with the SELU activation (Klambauer
et al., 2017). In addition, the output of g1 and g2 is clamped
by the arctan function. The implementation ensures that ft
is invertible (Dinh et al., 2017) as proved in Section A.2 of
the appendix. It is noticeable that our method is agnostic
to the implementation of INNs and other coupling layers
such as NICE (Dinh et al., 2014) and GLOW (Kingma &
Dhariwal, 2018) can also be used as drop-in replacements.

3.4. When TDM Is Better?

We believe that TDM outperforms OTImputer when the data
exhibit complex geometry. To demonstrate this, Figure 2(a)
shows the imputation of TDM on the same data shown in

6As f1, . . . , fT are invertible, so is fθ (Kobyzev et al., 2020)

4

Transformed Distribution Matching for Missing Value Imputation

Figure 1, where it can be observed that the imputed values
of TDM (with three blocks, i.e., T = 3) align with the data
distribution significantly better than OTImputer. To demon-
strate the learned transformed spaces, we feed the data with
out-of-distribution (OOD) samples generated from a two-
dimensional normal distribution shown in Figure 2(b) into
the learned fθ of TDM with a succession of three blocks.
Note that TDM is trained without these OOD noises. Fig-
ures 2(c-e) show the latent space after the first (f1(X)),
second (f1:2(X)), and third (final) (f1:3(X)) block, respec-
tively. In the latent spaces, the in-domain samples are close
to each other, and are well separated from the OOD samples.
That explains why TDM does not have the false imputations
as OTImputer, because the OOD samples are far away from
the in-domain ones in terms of the quadratic distance in the
latent spaces. This also demonstrates that TDM does not
simply push all the points in the data space close to each
other and model collapsing is avoided. In Figure 7 of the
appendix, we show two additional synthetic datasets, whose
geometry is simpler than the previous ones. In these simpler
cases, one can see that OTImputer is able to correctly impute
the missing values as TDM. This is because the quadratic
distance in the data space used in OTImputer can capture
the data geometry well. In these cases, TDM does not have
to learn a complex series of transformations. Therefore, the
transformed spaces of TDM look similar to the data space,
i.e., is close to an isometry, which leads TDM to reduce to
OTImputer.

3.5. Implementation Details

As discussed before, we only need to minimise the Wasser-
stein distance without explicitly maximising the mutual
information, which requires fθ to be invertible, denoted as
fθ ∈ F INN. Our final loss then becomes:

min
X1∪2[M1∪2],θ

LW s.t. fθ ∈ F INN, (8)

where θ consists of parameters of the neural networks g1,
g2, h1, h2 used in every block of fθ.

Computation of Wasserstein Distances The exact compu-
tation of Wasserstein distances can be done by network sim-
plex methods that take O(D3) (D is the feature dimension
of X1 and X2) (Ahuja et al., 1995). Muzellec et al. (2020)
uses Sinkhorn iterations (Cuturi, 2013) with the entropic
regularisation to compute the 2-Wasserstein distances in
O(D2 logD) (Altschuler et al., 2017; Dvurechensky et al.,
2018): d̂G

(
µ(X1), µ(X2)

)
:= dG

(
µ(X1), µ(X2)

)
+

ϵr(P), where r(P) is the negative entropy of the transport
plan and ϵ is set in an ad-hoc manner: 5% of the median dis-
tance between initialised values in each dataset. We find that
ϵ is critical to the imputation results and the ad-hoc setting
may achieve sub-optimal performance. To avoid selecting ϵ,
instead of Sinkhorn iterations, we use the network simplex

Algorithm 1: TDM. Learnable parameters include miss-
ing values X[M] and parameters θ of f .
input :Data X with missing values indicated by M
output :X with X[M] imputed, fθ
Initialise θ of f ;
Initialise missing values with noisy mean
X[M]← nanmean(X, dim=0) +N (0, 0.1) ;
while Not converged do

Sample two batches of B data samples X1 and
X2;

Feed X1 and X2 to fθ;
for i = 1 . . . B, j = 1 . . .K do

Compute G′[i, j]; # Quadratic cost function #
end
Compute LW ;
Update the missing values X1∪2[M1∪2] and θ
with gradient update;

end

method (Bonneel et al., 2011) efficiently implemented in
the POT package (Flamary et al., 2021). Theoretically, the
network simplex method has O(D3) complexity, however,
Bonneel et al. (2011) reports it behaves in O(D2) in prac-
tice. Unlike W2 used in TDM, neither d̂G nor the Sinkhorn
divergence (Genevay et al., 2018) used in Muzellec et al.
(2020) is guaranteed to be a metric distance.

Computation of Gradients Recall that in Eq. (1)
OT/Wasserstein distances are computed by finding the op-
timal transport plan P ∈ RB×B

>0 (B is the batch size in
Eq. (8)). Given P , if a quadratic cost function is used, the
gradient of LW in terms of fθ(X1[i, :]) (X1[i, :] is the ith

sample of X1) is (Cuturi & Doucet, 2014; Muzellec et al.,
2020) :

∂LW

∂fθ(X1[i, :])
=

B∑
j=1

P [i, j]
(
fθ(X

1[i, :])− fθ(X
2[j, :])

)
,

with which, one can use backpropagation to update θ and the
missing values in X1[i, :]. The algorithm of our proposed
method is shown in Algorithm 1.

4. Related Work
As missing values are ubiquitous in many domains, missing
value imputation has been an active research area (Little
& Rubin, 2019; Mayer et al., 2019). Existing methods can
be categorised differently from different aspects (Muzellec
et al., 2020) such as the type of the missing variables (e.g.,
real, categorical, or mixed) the mechanisms of missing data
(e.g., MCAR, MAR, or MNAR discussed in Section 2.1).
In this paper, we focus on imputing real-valued missing
data. Besides simple baselines such as imputation with
mean/median/most-frequent values, we introduce the related

5

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

A
E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

Figure 3. MAE in the MCAR (top) and MAR (bottom) settings.

work from the perspective of whether a method treats data
features (i.e., the columns in data X ∈ RN×D) separately
or jointly, following Jarrett et al. (2022).

Methods in the former category estimate the distributions of
one feature conditioned on the other features and perform it-
erative imputations for one feature at a time, such as in Heck-
erman et al. (2000); Raghunathan et al. (2001); Gelman
(2004); Van Buuren et al. (2006); Van Buuren & Groothuis-
Oudshoorn (2011); Liu et al. (2014); Zhu & Raghunathan
(2015). As each feature’s conditional distribution may be
different, these methods need to specify different models
for them, which can be cumbersome in practice, especially
when the missing values are unknown.

In the latter category, methods learn a joint distribution of
all the features explicitly or implicitly. To do so, various
methods have been proposed, such as the ones based on
matrix completion (Mazumder et al., 2010), (variational)
autoencoders (Gondara & Wang, 2017; Ivanov et al., 2018;
Mattei & Frellsen, 2019; Nazabal et al., 2020; Gong et al.,
2021; Peis et al., 2022), generative adversarial nets (Yoon
et al., 2018; Li et al., 2018; Yoon & Sull, 2020; Dai et al.,

2021; Fang & Bao, 2022), graph neural networks (You
et al., 2020; Vinas et al., 2021; Chen et al., 2022; Huang
et al., 2022; Morales-Alvarez et al., 2022; Gao et al., 2023),
normalising flows (Richardson et al., 2020; Ma & Ghosh,
2021; Wang et al., 2022), and Gaussian process (Dai et al.,
2022).

In addition to these two categories, several recent work
proposes general refinements to existing imputation meth-
ods. For example, Wang et al. (2021) introduces data aug-
mentation methods to improve generative methods such as
those in Yoon et al. (2018); Nazabal et al. (2020); Richard-
son et al. (2020). Kyono et al. (2021) proposes causally-
aware (Mohan et al., 2013) refinements to existing methods.
Recently, Jarrett et al. (2022) proposes to automatically se-
lect an imputation method among multiple ones for each
feature, which shows improved results over individual meth-
ods. Our method is a stand-alone approach and many of the
above refinements can be applied to ours as well such as the
data augmentation and causally-aware methods.

Among the above works, the closest one to ours is OTIm-
puter (Muzellec et al., 2020), whose differences from ours

6

Transformed Distribution Matching for Missing Value Imputation

have been comprehensively discussed. Muzellec et al.
(2020) also introduces a parametric version of OTImputer
trained in a round-robin fashion. The parametric algorithm
does not work as well as the standard OTImputer and our
method can be easily extended with the parametric algo-
rithm if needed. Methods based on normalising flows, e.g.,
MCFlow (Richardson et al., 2020) and EMFlow (Ma &
Ghosh, 2021) also use INNs for imputation. However, there
are fundamental differences of TDM to them, the most sig-
nificant one of which is that MCFlow and EMFlow can
still be viewed as deep generative models using INNs as
the encoder and decoder and their losses are still recon-
struction losses or maximum likelihood in the data space,
while ours uses a matching distance in the latent space as
the loss. Going beyond missing value imputations, a recent
work by Coeurdoux et al. (2022) proposes to learn sliced-
Wasserstein distances with normalising flows, which we do
not consider as a close related work to ours as the primary
goal, motivation, and methodology are different.

5. Experiments
5.1. Experimental Settings

Datasets Similar to many recent works (Yoon et al., 2018;
Mattei & Frellsen, 2019; Muzellec et al., 2020; Jarrett et al.,
2022), UCI datasets7 with different sizes are used in the
experiments, the statistics of which are shown in Table 1
of the appendix. Each dataset is standardised by the scale
function of sklearn8. Following Muzellec et al. (2020);
Jarrett et al. (2022), we generate the missing value mask for
each dataset with three mechanisms in four settings, which,
to our knowledge, include all the cases used in the literature.
Specifically, for MCAR, we generate the mask for each data
sample by drawing from a Bernoulli random variable with
a fixed parameter. For MAR, we first sample a subset of
features (columns in X) that will not contain missing values
and then we use a logistic model with these non-missing
columns as input to determine the missing values of the
remaining columns and we employ line search of the bias
term to get the desired proportion of missing values. Finally,
we also generate the masks with MNAR in two ways: 1)
MNARL: Using a logistic model with the input masked by
MCAR; 2) MNARQ: Randomly sampling missing values
from the range of the lower and upper pth percentiles. For
each of the four settings, we use 30% missing rate, sample
10 masks for one dataset with different random seeds (Jarrett
et al., 2022), and report the mean and standard deviation
(std) of the corresponding performance metric.

Evaluation Metrics We evaluate the performance of a

7https://archive-beta.ics.uci.edu
8https://scikit-learn.org/stable/modules/

generated/sklearn.preprocessing.scale.html

method by examining how close its imputation is to the
ground-truth values, which is measured by the mean abso-
lute error (MAE) and the root-mean-square error (RMSE).
Following Muzellec et al. (2020), we also use the 2-
Wasserstein distance, W 2

2 , between the imputed and the
ground-truth distributions in the data space. Here W 2

2 is
similar to the loss of OTImputer in Eq. (8) and the differ-
ence is W 2

2 as a metric is computed over all the imputed
and ground-truth samples9 while OTImputer minimises W 2

2

between two sampled batches. For all the three metrics,
lower values indicate better performance. Although we do
not assume a specific downstream task, we conduct the eval-
uations of classification on the imputed data of different
methods, whose settings are as follows: 1) We remove the
datasets that do not have labels (e.g., parkinsons) or have
binary labels (e.g., letter. In this case, the classification per-
formance is almost the same regardless of how the missing
values are imputed). 2) After the missing values are im-
puted for a dataset, we train a support vector machine with
the RBF kernel and auto kernel coefficient. We report the
average accuracy of 5-fold cross-validations. 3) We report
the mean and std of average accuracies in 10 runs of an
imputation method with different random seeds.

Settings of Our Method To minimise the loss in Eq. (8),
we use RMSprop (Tieleman et al., 2012) as the optimiser
with learning rate of 10−2 and batch size of 51210. Due
to the simplicity of our method, there are only two main
hyperparameters to set in terms of the architecture of the
transformation. The first one is the number of INN blocks
T . For the affine coupling layers (Dinh et al., 2017) in each
transformation, we use three fully connected layers with
SELU activation for each of h1, h2, g1, and g2. The size of
each fully connected layer is set to K ×D where D is the
feature dimension of the dataset and K is the second hyper-
parameter. We empirically find that T = 3 and K = 2 work
well in practice and show the hyperparameter sensitivity in
Appendix B. We train our method for 10,000 iterations and
report the performance based on the last iteration, which is
the same for all the OT-based methods.

Baselines We compare our method against four lines of ten
baselines. 1) Iterative imputation methods: ICE (Van Bu-
uren & Groothuis-Oudshoorn, 2011) with linear/logistic
models used in Muzellec et al. (2020); Jarrett et al. (2022);
MissForest with random forests (Stekhoven & Bühlmann,
2012). 2) Deep generative models: GAIN (Yoon et al.,
2018)11 using generative adversarial networks (Goodfellow
et al., 2020) where the generator outputs the imputations and
the discriminator classifies the imputations in an element-

9Therefore, W 2
2 cannot be reported if the number of data points

is too large.
10If the number of data samples N is less than 512, we use

2⌊N/2⌋, following Muzellec et al. (2020).
11https://github.com/jsyoon0823/GAIN

7

https://archive-beta.ics.uci.edu
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html
https://github.com/jsyoon0823/GAIN

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

A
E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

Figure 4. MAE in the MNARL (top) and MNARQ (bottom) settings.

wise fashion; MIWAE (Mattei & Frellsen, 2019)12 extend-
ing the importance weighted autoencoders (Burda et al.,
2016) for missing value imputation; MCFlow (Richardson
et al., 2020)13 and EMFlow (Ma & Ghosh, 2021)14 extend-
ing normalising flows for imputation. 3) Methods based
on OT: OTImputer (SH), the original implementation of
OTImputer (Muzellec et al., 2020)15 where OT distances
are computed by Sinkhorn iterations; OTImputer (NS), the
same to OTImputer (SH) except that the OT distances are
computed by the network simplex methods with POT (Fla-
mary et al., 2021). 4) Other methods: SoftImpute (Hastie
et al., 2015) using matrix completion and low-rank SVD
for imputation; MIRACLE (Kyono et al., 2021)16 introduc-

12https://github.com/pamattei/miwae
13https://github.com/trevor-richardson/

MCFlow
14https://openreview.net/attachment?id=

bmGLlsX_iJl&name=supplementary_material
15https://github.com/BorisMuzellec/

MissingDataOT
16https://github.com/vanderschaarlab/

ing causal learning as a regulariser to refine imputations.
For ICE and MissForest, we use the implementations in
sklearn (Pedregosa et al., 2011)17 For SoftImpute, we use
the implementation of Jarrett et al. (2022), which follows
the original implementation. For the other methods, we use
their original implementations (links of code listed above)
with the best reported settings.

5.2. Results

Now we show the MAE results18 in the four missing value
settings in Figures 3 and 4. The results of RMSE and W 2

2

are shown in Figures 8 and 9 of the appendix. From these
results, it can be observed that our proposed method, TDM,
consistently achieves the best results in comparison with oth-
ers in almost all the settings, metrics, and datasets. Specifi-
cally, for OT-based methods, we can see that one may gain

MIRACLE
17https://scikit-learn.org/stable/modules/

impute.html
18The empty results are due to the failure of running the code.

8

https://github.com/pamattei/miwae
https://github.com/trevor-richardson/MCFlow
https://github.com/trevor-richardson/MCFlow
https://openreview.net/attachment?id=bmGLlsX_iJl&name=supplementary_material
https://openreview.net/attachment?id=bmGLlsX_iJl&name=supplementary_material
https://github.com/BorisMuzellec/MissingDataOT
https://github.com/BorisMuzellec/MissingDataOT
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://github.com/vanderschaarlab/MIRACLE
https://scikit-learn.org/stable/modules/impute.html
https://scikit-learn.org/stable/modules/impute.html

Transformed Distribution Matching for Missing Value Imputation

QB WQ SD GL AC
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE Ground-truth

Figure 5. Classification accuracy in the MCAR setting.

(a) glass

0 2000 4000 6000 8000 10000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
A

E

Method
OTImputer
TDM

(b) seeds

0 2000 4000 6000 8000 10000
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

(c) blood transfusion

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

(d) anuran calls

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

Figure 6. MAE over training iterations of TDM and OTImputer on
four datasets in MCAR. The results are averaged over 10 runs.

marginal yet consistent improvement in most cases by using
the network simplex methods to compute the OT distance
in the comparison between OTImputer (NS) and OTImputer
(SH). With the help of the learned transformations, TDM sig-
nificantly outperforms both OT methods. Note that shown
in Eq. (2), OTImputer directly minimises the metric of W 2

2

between two batches in the data space. Alternatively, TDM
minimises the Wasserstein distance in the transformed space.
Interestingly, although TDM does not directly minimises
W 2

2 in the data space, it outperforms OTImputer on W 2
2

(shown in the appendix). In the comparison with MCFlow
and EMFlow that also use INNs as ours, their performance
is not as good as TDM’s.

Figure 5 shows the classification accuracy with the imputed
data by different approaches in the MCAR setting (the other
settings are shown in Figure 10 of the appendix). We also
report the accuracy on the ground-truth data as a reference.

From the results, it can be seen that TDM in general per-
forms the best in the classification task, showing that good
imputations do help with downstream tasks.

Figure 6 shows the MAE over the training iterations of TDM
and OTImputer on four datasets in the MCAR settings (the
other metrics and settings are shown in Figures 17, 18, 19,
and 20 of the appendix). It can be observed that TDM con-
verges slightly slower than OTImputer as a function of the
number of iterations, as TDM additionally learns the deep
transformations. The average running time (seconds) per
iteration for the two methods in the same computing environ-
ment is as follows: glass: OTImputer (1.14), TDM (3.20);
seeds: OTImputer (1.03), TDM (3.19); blood transfusion:
OTImputer (2.39), TDM (3.35); anuran calls: OTImputer
(2.33), TDM (4.06). The running time per iteration of TDM
is about 2 to 3 times that of OTImputer. For larger datasets,
the running time gap between the two appears to be smaller.
In several datasets, e.g., glass, OTImputer exhibits overfit-
ting, while TDM is more stable during training.

6. Conclusion
We propose transformed distribution matching (TDM) for
missing value imputation. TDM matches data samples in
a transformed space, where the distance of two samples
is expected to better reflect their (dis)similarity under the
geometry of the data considered. The transformations are
implemented with invertible neural networks to avoid model
collapsing. By minimising the Wasserstein distance between
the transformed samples, TDM learns the transformations
and imputes the missing values simultaneously. Extensive
experiments show that our method significantly improves
over previous approaches, achieving state-of-the-art perfor-
mance. The limitations of TDM include: 1) Due to the
learning of neural networks, TDM is relatively slower than
OTImputer. 2) TDM (OTImputer as well) does not work
with categorical data. We leave the development of more
efficient and applicable algorithms of TDM to future work.

9

Transformed Distribution Matching for Missing Value Imputation

References
Ahuja, R. K., Magnanti, T. L., Orlin, J. B., and Reddy, M.

Applications of network optimization. Handbooks in
Operations Research and Management Science, 7:1–83,
1995.

Altschuler, J., Niles-Weed, J., and Rigollet, P. Near-linear
time approximation algorithms for optimal transport via
sinkhorn iteration. In NeurIPS, 2017.

Ardizzone, L., Kruse, J., Rother, C., and Köthe, U. Analyz-
ing inverse problems with invertible neural networks. In
ICLR, 2019.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning
representations by maximizing mutual information across
views. In NeurIPS, 2019.

Barnard, J. and Meng, X.-L. Applications of multiple impu-
tation in medical studies: from AIDS to NHANES. Sta-
tistical methods in medical research, 8(1):17–36, 1999.

Barthe, F. and Bordenave, C. Combinatorial Optimization
Over Two Random Point Sets, pp. 483–535. Springer
International Publishing, Heidelberg, 2013.

Bonneel, N., Van De Panne, M., Paris, S., and Heidrich,
W. Displacement interpolation using Lagrangian mass
transport. In SIGGRAPH Asia, pp. 1–12, 2011.

Bui, A. T., Le, T., Tran, Q. H., Zhao, H., and Phung, D. A
unified Wasserstein distributional robustness framework
for adversarial training. In ICLR, 2022.

Burda, Y., Grosse, R. B., and Salakhutdinov, R. Importance
weighted autoencoders. In ICLR, 2016.

Chen, K., Liang, X., Zhang, Z., and Ma, Z. GEDI: A graph-
based end-to-end data imputation framework. arXiv
preprint arXiv:2208.06573, 2022.

Coeurdoux, F., Dobigeon, N., and Chainais, P. Learning
optimal transport between two empirical distributions
with normalizing flows. In ECML PKDD, 2022.

Cuturi, M. Sinkhorn distances: Lightspeed computation of
optimal transport. In NeurIPS, 2013.

Cuturi, M. and Doucet, A. Fast computation of Wasserstein
barycenters. In ICML, pp. 685–693, 2014.

Dai, Z., Bu, Z., and Long, Q. Multiple imputation via gener-
ative adversarial network for high-dimensional blockwise
missing value problems. In 2021 20th IEEE Interna-
tional Conference on Machine Learning and Applications
(ICMLA), pp. 791–798, 2021.

Dai, Z., Bu, Z., and Long, Q. Multiple imputation with
neural network Gaussian process for high-dimensional
incomplete data. In ACML, 2022.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using Real NVP. In ICLR, 2017.

Dvurechensky, P., Gasnikov, A., and Kroshnin, A. Com-
putational optimal transport: Complexity by accelerated
gradient descent is better than by Sinkhorn’s algorithm.
In ICML, pp. 1367–1376, 2018.

Fang, F. and Bao, S. FragmGAN: Generative adversar-
ial nets for fragmentary data imputation and prediction.
arXiv preprint arXiv:2203.04692, 2022.

Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S.-i., Trouvé,
A., and Peyré, G. Interpolating between optimal transport
and MMD using Sinkhorn divergences. In AISTATS, pp.
2681–2690, 2019.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati,
H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A.,
Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A., and
Vayer, T. POT: Python optimal transport. JMLR, 22(78):
1–8, 2021.

Gao, Z., Niu, Y., Cheng, J., Tang, J., Xu, T., Zhao, P., Li,
L., Tsung, F., and Li, J. Handling missing data via max-
entropy regularized graph autoencoder. In AAAI, 2023.

Ge, Z., Liu, S., Li, Z., Yoshie, O., and Sun, J. OTA: Optimal
transport assignment for object detection. In CVPR, pp.
303–312, 2021.

Gelman, A. Parameterization and Bayesian modeling. Jour-
nal of the American Statistical Association, 99(466):537–
545, 2004.

Genevay, A., Peyré, G., and Cuturi, M. Learning generative
models with Sinkhorn divergences. In AISTATS, pp. 1608–
1617, 2018.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without
storing activations. In NeurIPS, 2017.

Gondara, L. and Wang, K. Multiple imputation us-
ing deep denoising autoencoders. arXiv preprint
arXiv:1705.02737, 280, 2017.

10

Transformed Distribution Matching for Missing Value Imputation

Gong, Y., Hajimirsadeghi, H., He, J., Durand, T., and Mori,
G. Variational selective autoencoder: Learning from
partially-observed heterogeneous data. In AISTATS, pp.
2377–2385, 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Guo, D., Tian, L., Zhang, M., Zhou, M., and Zha, H.
Learning prototype-oriented set representations for meta-
learning. In ICLR, 2021.

Guo, D., Li, Z., Zhao, H., Zhou, M., and Zha, H. Learning to
re-weight examples with optimal transport for imbalanced
classification. In NeurIPS, 2022a.

Guo, D., Tian, L., Zhao, H., Zhou, M., and Zha, H. Adap-
tive distribution calibration for few-shot learning with
hierarchical optimal transport. In NeurIPS, 2022b.

Guo, D., Zhao, H., Zheng, H., Tanwisuth, K., Chen, B.,
Zhou, M., et al. Representing mixtures of word em-
beddings with mixtures of topic embeddings. In ICLR,
2022c.

Hastie, T., Mazumder, R., Lee, J. D., and Zadeh, R. Matrix
completion and low-rank SVD via fast alternating least
squares. JMLR, 16(1):3367–3402, 2015.

Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite,
R., and Kadie, C. Dependency networks for inference,
collaborative filtering, and data visualization. JMLR, 1
(Oct):49–75, 2000.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. In ICLR, 2019.

Huang, B., Zhu, Y., Usman, M., Zhou, X., and Chen, H.
Graph neural networks for missing value classification in
a task-driven metric space. TKDE, 2022.

Huynh, V., Zhao, H., and Phung, D. OTLDA: A geometry-
aware optimal transport approach for topic modeling. In
NeurIPS, volume 33, pp. 18573–18582, 2020.

Ivanov, O., Figurnov, M., and Vetrov, D. Variational autoen-
coder with arbitrary conditioning. In ICLR, 2018.

Jacobsen, J.-H., Behrmann, J., Zemel, R., and Bethge, M.
Excessive invariance causes adversarial vulnerability. In
ICLR, 2019.

Jarrett, D., Cebere, B. C., Liu, T., Curth, A., and van der
Schaar, M. HyperImpute: Generalized iterative imputa-
tion with automatic model selection. In ICML, pp. 9916–
9937, 2022.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In NeurIPS, 2018.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. NeurIPS, 30, 2017.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing
flows: An introduction and review of current methods.
IEEE TPAMI, 43(11):3964–3979, 2020.

Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating
mutual information. Physical review E, 69(6):066138,
2004.

Kyono, T., Zhang, Y., Bellot, A., and van der Schaar, M.
MIRACLE: Causally-aware imputation via learning miss-
ing data mechanisms. In NeurIPS, volume 34, pp. 23806–
23817, 2021.

Li, S. C.-X., Jiang, B., and Marlin, B. MisGAN: Learning
from incomplete data with generative adversarial net-
works. In ICLR, 2018.

Linsker, R. Self-organization in a perceptual network. Com-
puter, 21(3):105–117, 1988.

Little, R. J. and Rubin, D. B. Statistical analysis with
missing data, volume 793. John Wiley & Sons, 2019.

Liu, J., Gelman, A., Hill, J., Su, Y.-S., and Kropko, J.
On the stationary distribution of iterative imputations.
Biometrika, 101(1):155–173, 2014.

Ma, Q. and Ghosh, S. K. EMFlow: Data imputation in
latent space via em and deep flow models. arXiv preprint
arXiv:2106.04804, 2021.

Mattei, P.-A. and Frellsen, J. MIWAE: Deep generative
modelling and imputation of incomplete data sets. In
ICML, pp. 4413–4423, 2019.

Mayer, I., Sportisse, A., Josse, J., Tierney, N., and
Vialaneix, N. R-miss-tastic: A unified platform for
missing values methods and workflows. arXiv preprint
arXiv:1908.04822, 2019.

Mazumder, R., Hastie, T., and Tibshirani, R. Spectral regu-
larization algorithms for learning large incomplete matri-
ces. JMLR, 11:2287–2322, 2010.

Mohan, K., Pearl, J., and Tian, J. Graphical models for
inference with missing data. In NeurIPS, volume 26,
2013.

Morales-Alvarez, P., Gong, W., Lamb, A., Woodhead, S.,
Jones, S. P., Pawlowski, N., Allamanis, M., and Zhang,
C. Simultaneous missing value imputation and structure
learning with groups. In NeurIPS, 2022.

11

Transformed Distribution Matching for Missing Value Imputation

Muzellec, B., Josse, J., Boyer, C., and Cuturi, M. Missing
data imputation using optimal transport. In ICML, pp.
7130–7140, 2020.

Nazabal, A., Olmos, P. M., Ghahramani, Z., and Valera,
I. Handling incomplete heterogeneous data using VAEs.
Pattern Recognition, 107:107501, 2020.

Nguyen, T., Le, T., Zhao, H., Tran, Q. H., Nguyen, T., and
Phung, D. Most: Multi-source domain adaptation via
optimal transport for student-teacher learning. In UAI, pp.
225–235, 2021.

Nguyen, T., Nguyen, V., Le, T., Zhao, H., Tran, Q. H., and
Phung, D. Cycle class consistency with distributional
optimal transport and knowledge distillation for unsuper-
vised domain adaptation. In UAI, pp. 1519–1529, 2022.

Nguyen, X. Wasserstein distances for discrete measures
and convergence in nonparametric mixture models. arXiv
preprint arXiv:1109.3250v1, 2011.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Papamakarios, G., Nalisnick, E. T., Rezende, D. J., Mo-
hamed, S., and Lakshminarayanan, B. Normalizing flows
for probabilistic modeling and inference. JMLR, 22(57):
1–64, 2021.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. JMLR, 12:2825–2830, 2011.

Peis, I., Ma, C., and Hernández-Lobato, J. M. Missing data
imputation and acquisition with deep hierarchical models
and Hamiltonian Monte Carlo. In NeurIPS, 2022.

Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and
Tucker, G. On variational bounds of mutual information.
In ICML, pp. 5171–5180, 2019.

Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J.,
Solenberger, P., et al. A multivariate technique for multi-
ply imputing missing values using a sequence of regres-
sion models. Survey methodology, 27(1):85–96, 2001.

Richardson, T. W., Wu, W., Lin, L., Xu, B., and Bernal, E. A.
MCFLOW: Monte Carlo flow models for data imputation.
In CVPR, pp. 14205–14214, 2020.

Rubin, D. B. Inference and missing data. Biometrika, 63(3):
581–592, 1976.

Rubin, D. B. Multiple imputation for nonresponse in surveys,
volume 81. John Wiley & Sons, 2004.

Seaman, S., Galati, J., Jackson, D., and Carlin, J. What is
meant by “missing at random”? Statistical Science, 28
(2):257–268, 2013.

Stekhoven, D. J. and Bühlmann, P. MissForest—non-
parametric missing value imputation for mixed-type data.
Bioinformatics, 28(1):112–118, 2012.

Tieleman, T., Hinton, G., et al. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning. In ICLR, 2020.

Van Buuren, S. Flexible imputation of missing data. CRC
press, 2018.

Van Buuren, S. and Groothuis-Oudshoorn, K. MICE: Mul-
tivariate imputation by chained equations in r. Journal of
statistical software, 45:1–67, 2011.

Van Buuren, S., Brand, J. P., Groothuis-Oudshoorn, C. G.,
and Rubin, D. B. Fully conditional specification in mul-
tivariate imputation. Journal of statistical computation
and simulation, 76(12):1049–1064, 2006.

Vinas, R., Zheng, X., and Hayes, J. A graph-based imputa-
tion method for sparse medical records. arXiv preprint
arXiv:2111.09084, 2021.

Vo, V., Le, T., Vuong, L.-T., Zhao, H., Bonilla, E., and
Phung, D. Learning directed graphical models with opti-
mal transport. arXiv preprint arXiv:2305.15927, 2023.

Vuong, T.-L., Le, T., Zhao, H., Zheng, C., Harandi, M.,
Cai, J., and Phung, D. Vector quantized Wasserstein
auto-encoder. arXiv preprint arXiv:2302.05917, 2023.

Wang, S., Li, J., Miao, H., Zhang, J., Zhu, J., and Wang,
J. Generative-free urban flow imputation. In CIKM, pp.
2028–2037, 2022.

Wang, Y., Li, D., Xu, C., and Yang, M. Missingness aug-
mentation: A general approach for improving generative
imputation models. arXiv preprint arXiv:2108.02566,
2021.

Yoon, J., Jordon, J., and Schaar, M. GAIN: Missing data
imputation using generative adversarial nets. In ICML,
pp. 5689–5698, 2018.

Yoon, S. and Sull, S. GAMIN: Generative adversarial multi-
ple imputation network for highly missing data. In CVPR,
pp. 8456–8464, 2020.

12

Transformed Distribution Matching for Missing Value Imputation

You, J., Ma, X., Ding, Y., Kochenderfer, M. J., and
Leskovec, J. Handling missing data with graph represen-
tation learning. In NeurIPS, volume 33, pp. 19075–19087,
2020.

Zhang, C., Cai, Y., Lin, G., and Shen, C. Deepemd: Dif-
ferentiable earth mover’s distance for few-shot learning.
TPAMI, 2022.

Zhao, H., Phung, D., Huynh, V., Le, T., and Buntine, W.
Neural topic model via optimal transport. In ICLR, 2021.

Zhu, J. and Raghunathan, T. E. Convergence properties
of a sequential regression multiple imputation algorithm.
Journal of the American Statistical Association, 110(511):
1112–1124, 2015.

13

Transformed Distribution Matching for Missing Value Imputation

A. Theoretical Analysis
A.1. Properties

In this section, we discuss the basic properties of the proposed imputation method. Essentially, the loss of TDM is an
empirical estimation of

EW 2
2 (f#µ(X

1), f#µ(X
2)), (9)

where E denotes the expectation wrt the random mini-batches X1 and X2 that are sampled independently. We assume
each sample in each random mini-batch is sampled independently and identically based on the uniform distribution on
{1, 2, · · · , N}.
Proposition A.1.

EW 2
2 (f#µ(X

1), f#µ(X
2)) ≥ EW 2

2 (f#µ(X
1), f#µ(X)),

where f#µ(X) := 1
N

∑N
i=1 δfθ(X[i,:]) is the pushforward empirical measure with respect to all observed samples in X .

Proof. We first show that µ → W 2
2 (µ, ν) is convex. Consider µ = λµ1 + (1 − λ)µ2, where λ ∈ (0, 1). The optimal

transport plan of µ1 (resp. µ2) is P1 (resp. P2). Then, λP1 + (1− λ)P2 is a valid transport plan from µ to ν. We have

W 2
2 (µ, ν) := inf

P∈U(µ,ν)
⟨P ,G⟩

≤ ⟨λP1 + (1− λ)P2,G⟩
= λ⟨P1,G⟩+ (1− λ)⟨P2,G⟩
= λW 2

2 (µ1, ν) + (1− λ)W 2
2 (µ2, ν).

By Jensen’s inequality,

EW 2
2 (f#µ(X

1), f#µ(X
2)) ≥W 2

2 (f#µ(X
1),Ef#µ(X2)).

Based on our assumption, all samples in X2 are sampled uniformly, and therefore

Ef#µ(X2) =
1

N

N∑
i=1

δfθ(X[i,:])

regardless of the minibatch size B. In summary,

EW 2
2 (f#µ(X

1), f#µ(X
2)) ≥ EW 2

2 (f#µ(X
1), f#µ(X)).

On the LHS the operator E(·) is taken with respect to the two random batches X1 and X2; on the RHS E(·) is with respect
to X1.

The inequality in Proposition A.1 holds for some given X (with the missing entries imputed) and fθ. As learning goes on,
both sides of the inequality change with the missing entries as well as θ, while the inequality is always valid regardless of
how the missing values are set.

Our loss is a surrogate of EW 2
2 (f#µ(X

1), f#µ(X)). During learning, our imputation method tries to make the local
distribution f#µ(X

1) to be close to the global distribution f#µ(X). Similar lower- and upper-bounds for W1 (the
1-Wasserstein distance) between empirical measures appeared in Barthe & Bordenave (2013).

We also have an upper bound of EW 2
2 (f#µ(X

1), f#µ(X
2)) through the triangle inequality.

Proposition A.2. ∀µ,
EW 2

2 (f#µ(X
1), f#µ(X

2)) ≤ 4EW 2
2 (f#µ(X

1), µ). (10)

Proof. The 2-Wasserstein distance is a metric distance and therefore satisfies the triangle inequality. We have

∀µ,X1,X2, W 2
2 (f#µ(X

1), f#µ(X
2)) ≤

(
W2(f#µ(X

1), µ) +W2(f#µ(X
2), µ)

)2
.

14

Transformed Distribution Matching for Missing Value Imputation

Take the expectation wrt our random sampling protocol on both sides, and by noting that X1 and X2 are sampled
independently, we get

EW 2
2

(
f#µ(X

1), f#µ(X
2)
)

≤ E
(
W2(f#µ(X

1), µ) +W2(f#µ(X
2), µ)

)2
.

= EW 2
2 (f#µ(X

1), µ) + EW 2
2 (f#µ(X

2), µ) + 2EW2(f#µ(X
1), µ) · EW2(f#µ(X

2), µ)

= 2EW 2
2 (f#µ(X

1), µ) + 2
(
EW2(f#µ(X

1), µ)
)2

.

As
(
EW2(f#µ(X

1), µ)
)2 ≤ EW 2

2 (f#µ(X
1), µ), we have

EW 2
2

(
f#µ(X

1), f#µ(X
2)
)
≤ 4EW 2

2 (f#µ(X
1), µ).

Proposition A.2 is valid for an arbitrary measure µ. Let

µ = µ̄ := argmin
µ

W 2
2

(
f#µ(X

1), µ
)

(11)

be the Wasserstein barycentre of the random measure f#µ(X
1). Then EW 2

2 (f#µ(X
1), µ̄) is the Wasserstein variance

which bounds the loss from above.

Given X , the random distance W2

(
f#µ(X

1), µ̄
)

is bounded. We have

0 ≤W2

(
f#µ(X

1), µ̄
)
≤ R,

where R := maxW2(f#µ(X
1), µ̄) is a constant depending on fθ and the dataset X . Therefore

var
(
W2

(
f#µ(X

1), µ̄
))
≤ 1

4
R2,

where var(·) denotes the variance. By Proposition A.2 and the Popoviciu’s inequality, we have

EW 2
2

(
f#µ(X

1), f#µ(X
2)
)
≤ 4

(
EW2(f#µ(X

1), µ̄)
)2

+ 2var
(
W2

(
f#µ(X

1), µ̄
))

≤ 4
(
EW2(f#µ(X

1), µ̄)
)2

+
1

2
R2.

Hence, the (expected) loss is bounded above by the 2-Wasserstein distance between the random measure f#µ(X
1) and its

center. It is therefore a variance-like measure.

Proposition A.3. Let X1, X2 be independent random batches of size B, X3, X4 be independent random batches of size
2B, then

EW 2
2 (f#µ(X

3), f#µ(X
4)) ≤ EW 2

2 (f#µ(X
1), f#µ(X

2)). (12)

If B = 1, then
EW 2

2 (f#µ(X
1), f#µ(X

2)) = E∥fθ(X[i, :])− fθ(X[j, :])∥2. (13)

Therefore, as the batch size B increases, the loss will decrease. Eventually, when B is sufficiently large, the distance
between the two measures f#µ(X1) and f#µ(X

2) will be close to zero as they both become close to f#µ(X).

To prove the above proposition, we introduce the lemma below first.

Lemma A.4. Let X1 and X2 (resp. X3 and X4) be multisets of the same size B (resp. B′).

(B +B′)W 2
2 (µ(X

1 ∪X3), µ(X2 ∪X4)) ≤ BW 2
2 (µ(X

1), µ(X2)) +B′W 2
2 (µ(X

3), µ(X4)). (14)

15

Transformed Distribution Matching for Missing Value Imputation

Proof. By Lemma 3.1,

BW 2
2

(
µ(X1), µ(X2)

)
= min

π

B∑
i=1

∥X1[i, :]−X2[π(i), :]∥2,

B′W 2
2

(
µ(X3), µ(X4)

)
= min

π′

B′∑
j=1

∥X3[j, :]−X4[π′(j), :]∥2,

where the minimum is taken over all possible permutations of (1, · · · , B) (resp. (1, · · · , B′)). Denote the optimal
permutation as π⋆ (resp. π′⋆). Then we can construct a permutation σ⋆ of the index set (1, · · · , B,B + 1, · · · , B +B′) by
permuting (1, · · · , B) wrt π⋆ and permuting (B + 1, · · · , B +B′) wrt π′⋆. Thus we have

(B +B′)W 2
2

(
µ(X1 ∪X3), µ(X2 ∪X4)

)
= min

σ

B+B′∑
i=1

∥(X1 ∪X3)[i, :]− (X2 ∪X4)[σ(i), :]∥2

≤
B+B′∑
i=1

∥(X1 ∪X3)[i, :]− (X2 ∪X4)[σ⋆(i), :]∥2

=

B∑
i=1

∥X1[i, :]−X2[π⋆(i), :]∥2 +
B′∑
i=1

∥X3[i, :]−X4[π′⋆(i), :]∥2

= BW 2
2

(
µ(X1), µ(X2)

)
+B′W 2

2

(
µ(X3), µ(X4)

)
.

The proof of Proposition A.3 is as follows.

Proof. In Lemma A.4, let B′ = B, and take expectation on both sides of the inequality, then Proposition A.3 is immediate.
If B = 1, the 2-Wasserstein distance between empirical measures becomes the Euclidean distance.

A.2. Invertibility Analysis

We rewrite Eq. 6 and Eq. 7 as

z1:d = yin
1:d ⊙ exp

(
g1(y

in
d+1:D)

)
+ h1(y

in
d+1:D),

zd+1:D = yin
d+1:D,

yout
1:d = z1:d,

yout
d+1:D = zd+1:D ⊙ exp (g2(z1:d)) + h2(z1:d),

where z is a D-dimensional intermediate vector. Both the mappings yin → z and z → yout are invertible (the inverse has a
simple closed form (Dinh et al., 2017) and is omitted here), and therefore yin → yout is invertible.

Note that yout
i (the i’th dimension of yout) only depends on yin

1:i. The Jacobian of the mapping yin → yout has a lower
triangular structure.

A.3. Proof of Proposition 3.2

Proof. By definition, we have I(X, f ′(X)) = H(X) −H(X|f ′(X)) where H(X) and H(X|f ′(X)) are the entropy
and conditional entropy, respectively. As we consider X and f ′(X) as empirical random variables with finite supports of
their samples, H(X|f ′(X)) ≥ 0. Therefore, I(X, f ′(X)) ≤ H(X) = I(X,X). If fθ is a smooth invertible map, it is
known that: I(X, fθ(X)) = I(X,X) (proof shown in Eq. (45) of Kraskov et al. (2004)). Therefore, I(X, fθ(X)) ≥
I(X, f ′(X)).

16

Transformed Distribution Matching for Missing Value Imputation

(a) Ground truth (b) OTImputer (c) TDM (ours) (d) f1(X) (e) f1:2(X) (f) f1:3(X)

Figure 7. Two synthetic datasets (two rows) each of which is with 500 samples. (a) Ground truth: Blue points (60%) have no missing
values and red points (40%) have one missing value on either coordinate (following MCAR). (b) The imputed values for the red points by
OTImputer. (c) The imputed values for the red points by TDM. (d-f) The transformed points by different blocks of fθ .

Table 1. Dataset statistics

Dataset N D Abbreviation

california 20,640 8 CA

qsar biodegradation 1,055 41 QB

blood transfusion 748 4 BT

wine quality 4,898 11 WQ

parkinsons 195 23 PK

yacht hydrodynamics 308 6 YH

seeds 210 7 SD

glass 214 9 GL

planning relax 182 12 PR

concrete slump 103 7 CS

anuran calls 7,195 22 AC

letter 20,000 16 LT

B. Hyperparameter Sensitivity
To test the sensitivity of TDM to the two main hyperparameters T and K, we vary them from 1 to 4 and show the imputation
metrics in Figure 11, 12, 13. It can be observed that increasing T improves the performance in general but comparing T = 4
with T = 3, the improvement becomes marginal and overfitting can also be observed in a few datasets, e.g., QB and AC. In
addition, one can see that varying K does not have significant impact on the performance.

We also report the sensitivity of our method to different batch sizes (128, 256, 512) in the comparison with OTImputer,
shown in Figure 14, 15, 16. It can be seen that larger batch sizes in general give better performance of both TDM and
OTImputer.

17

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

Figure 8. From top to bottom: RMSE in the MCAR, MAR, MNARL, and MNARQ settings.

18

Transformed Distribution Matching for Missing Value Imputation

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
2 2

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
2 2

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
2 2

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
2 2

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE

Figure 9. From top to bottom: W 2
2 in the MCAR, MAR, MNARL, and MNARQ settings.

19

Transformed Distribution Matching for Missing Value Imputation

QB WQ SD GL AC
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE Ground-truth

QB WQ SD GL AC
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE Ground-truth

QB WQ SD GL AC
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

TDM OTImputer (NS) OTImputer (SH) GAIN MIWAE MCFlow EMFlow ICE MissForest SoftImpute MIRACLE Ground-truth

Figure 10. From top to bottom: Classification accuracy in the MAR, MNARL, and MNARQ settings.

20

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

M
A

E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

Figure 11. From top to bottom: MAE in the MCAR, MAR, MNARL, and MNARQ settings for TDM with different T and K.

21

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

Figure 12. From top to bottom: RMSE in the MCAR, MAR, MNARL, and MNARQ settings for TDM with different T and K.

22

Transformed Distribution Matching for Missing Value Imputation

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

W
2 2

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

W
2 2

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

BT WQ PK YH SD GL PR CS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
2 2

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
2 2

TDM (T=1,K=2) TDM (T=2,K=2) TDM (T=3,K=2) TDM (T=4,K=2) TDM (T=2,K=1) TDM (T=2,K=3) TDM (T=2,K=4)

Figure 13. From top to bottom: W 2
2 in the MCAR, MAR, MNARL, and MNARQ settings for TDM with different T and K.

23

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

M
A

E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

M
A

E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

M
A

E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

Figure 14. From top to bottom: MAE of TDM and OTImputer with batch size varied in MCAR, MAR, MNARL, and MNARQ.

24

Transformed Distribution Matching for Missing Value Imputation

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

CA QB BT WQ PK YH SD GL PR CS AC LT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

S
E

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

Figure 15. From top to bottom: RMSE of TDM and OTImputer with batch size varied in MCAR , MAR, MNARL, and MNARQ.

25

Transformed Distribution Matching for Missing Value Imputation

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2
W

2 2

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
2 2

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
2 2

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

BT WQ PK YH SD GL PR CS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
2 2

TDM (128) OTImputer (128) TDM (256) OTImputer (256) TDM (512) OTImputer (512)

Figure 16. From top to bottom: W 2
2 of TDM and OTImputer with batch size varied in MCAR , MAR, MNARL, and MNARQ.

26

Transformed Distribution Matching for Missing Value Imputation

0 2000 4000 6000 8000 10000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

Method
OTImputer
TDM

Figure 17. MAE and RMSE over training iterations of TDM and OTImputer on four datasets (from left to right: glass, seeds,
blood transfusion, anuran calls) in MCAR.

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.2

0.4

0.6

0.8

1.0

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8
M

A
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.7

0.8

0.9

1.0

1.1

R
M

S
E Method

OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.6

0.8

1.0

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.6

0.7

0.8

0.9

1.0

1.1

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

Method
OTImputer
TDM

Figure 18. MAE and RMSE over training iterations of TDM and OTImputer on four datasets (from left to right: glass, seeds,
blood transfusion, anuran calls) in MAR.

0 2000 4000 6000 8000 10000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.8

0.9

1.0

1.1

1.2

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

Method
OTImputer
TDM

Figure 19. MAE and RMSE over training iterations of TDM and OTImputer on four datasets (from left to right: glass, seeds,
blood transfusion, anuran calls) in MNARL.

27

Transformed Distribution Matching for Missing Value Imputation

0 2000 4000 6000 8000 10000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
M

A
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

M
A

E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

R
M

S
E

Method
OTImputer
TDM

0 2000 4000 6000 8000 10000
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

Method
OTImputer
TDM

Figure 20. MAE and RMSE over training iterations of TDM and OTImputer on four datasets (from left to right: glass, seeds,
blood transfusion, anuran calls) in MNARQ.

28

