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Abstract

Recent masked diffusion models (MDMs) have shown competitive performance
compared to autoregressive models (ARMs) for language modeling. While most
literature has focused on performance enhancing sampling procedures, efficient
sampling from MDMs has been scarcely explored. We make the observation
that often a given sequence of partially masked tokens determines the values
of multiple unknown tokens deterministically, meaning that a single prediction
of a masked model holds additional information unused by standard sampling
procedures. Based on this observation, we introduce EB-Sampler, a simple drop-
in replacement for existing samplers, utilizing an Entropy Bounded unmasking
procedure that dynamically unmasks multiple tokens in one function evaluation
with predefined approximate error tolerance. We formulate the EB-Sampler as part
of a broad family of adaptive samplers for which we provide an error analysis that
motivates our algorithmic choices. EB-Sampler accelerates sampling from current
state of the art MDMs by roughly 2-3x on standard coding and math reasoning
benchmarks without loss in performance. We also validate the same procedure
works well on smaller reasoning tasks including maze navigation and Sudoku,
tasks ARMs often struggle with.

1 Introduction

Motivated by the success of diffusion and flow [Esser et al.|(2024); [Polyak et al. (2024) models in
continuous domains (e.g., images, video), research efforts have focused on adapting these frameworks
to discrete state spaces. Many of these approaches (Austin et al., 2021a} [Lou et al., 2023} |Sahoo
et al., 2024} (Campbell et al., 2024} Gat et al., 2024} [Shi et al., 2024} Kitouni et al.| [2024) utilize
the masked modeling paradigm, thus we generally refer to these approaches as Masked Diffusion
Models (MDMs). Recent large MDMs such as LLaDa (Nie et al.,|2025b) and Dream (Ye et al.| [2025)
have shown competitive performance compared to similarly sized autoregressive models (ARMs) in
the 7 billion parameter range on traditional language tasks including code, text, and mathematical
reasoning benchmarks. These results open the possibility of scaled non-autoregressive generation for
language using MDMs, a possible competitor to large language models (LLMs).

Abstractly, MDMs sample fixed-length sequences as discrete tokens from a vocabulary. They begin
from a sequence of mask tokens and iteratively update tokens until all tokens are unmasked. Replacing
a masked token with a token from the vocabulary is unmasking. In contrast to standard ARMs, the
order in which tokens are unmasked becomes a design choice. Recent models often leverage samplers
that surpass the performance of random order unmasking, deviating from the masked diffusion process
used at training (Austin et al.| 2021a). In particular, LLaDa and Dream achieve strong performance
by unmasking tokens in a much more favorable order dictated by model predictions (Chang et al.,
2022; |Kim et al} 2025} [Zheng et al., 2023)).
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Performance is not the only criteria by which large MDMs have become popular. Another additional
important aspect is efficient computation. While MDMs cannot reuse past computation via key-value
caching like ARMs due to full attention, MDMs offer an exciting alternative route to efficiency
via the opportunity to sample multiple tokens simultaneously. MDM efficiency is captured by the
number of function evaluations (NFE) which is directly controlled via the sampler. The default for
more efficient sampling of MDMs like LLaDa and Dream is to unmask a fixed number of tokens
each step. Unfortunately, generation quality degrades quickly as more unmasked tokens are sampled
independently and hence this opportunity has been thus far unrealized. Developing an MDM sampler
for language that simultaneously achieves good performance and efficiency is the focus of this work.

Our approach is motivated by two empirical observations. The first is the strong performance of
unmasking orders determined by the model, which indicates the associated predictions aligned with
that order may have low model error, i.e. match the desired optimal distribution. The second is
that multiple masked tokens are often predicted with high certainty, or, equivalently, low entropy.
Intuitively, masked tokens that have both low model error and low entropy can be unmasked in
parallel, which we propose to exploit with our approach. By strategically unmasking such tokens, a
sampler can follow high performance unmasking orders while avoiding error due to independently
unmasking tokens.

We realize these intuitions and make them concrete and precise via our main contributions:

* We propose an adaptive sampler for masked diffusion models called EB-Sampler (short for
Entropy Bounded Sampler), that decides both which tokens to unmask and how many tokens
to unmask at each step using an entropy bound that approximately limits the dependence of
unmasked tokens.

» EB-Sampler is a simple drop-in replacement to existing samplers and can be directly applied
to sample from existing masked diffusion models without further training.

» EB-Sampler accelerates sampling from the best performing masked diffusion models
(LLaDa and Dream) by 2-3x on standard coding and math reasoning benchmarks without
loss in performance. We provide Pareto fronts between efficiency and performance and
conclude EB-Sampler is superior across most settings. We also validate EB-Sampler works
well on smaller reasoning tasks, including maze navigation and Sudoku.

* We show EB-Sampler is a member of a broad family of adaptive multi-token samplers for
masked diffusion models. Our theory explains why this family samples correctly, why it can
leverage a pre-trained masked diffusion model, and provides an intuitive error decomposition
into model error and joint dependence error that motivates the design of EB-Sampler.

2 Preliminaries

2.1 Notations

Consider a discrete state space denoted S = T, of sequences of length d over a finite sized
vocabulary T = [K| ={1,2,...,K}. Astate, z € S, is a sequence of elements, often called fokens,
from the vocabulary 7, where # = (x!,22,. .., 2?) with each element 2! € 7. We denote the set
of indices of a sequence in S with Z = [d] = {1, 2,...,d}. For masked modeling, we extend our

vocabulary to include a mask token, m. If index [ or token 2! is described as masked, then 2! = m and
if unmasked, ! # m. Finally, for a random variable X = (Xt x2 ... 7Xd) andaset A C 7, we
define the notation for conditional probabilities p(z!|z4) = P(X! = 2!|{ X" = z7|i € A}).

2.2 Masked diffusion models

Given a finite set of samples D C S drawn from an unknown target data distribution X ~ ¢, most
MDMs, with few exceptions, have been proven to learn to model clean data conditionals g(z!|z™)
(Ou et al. 2025; Zheng et al., 2024)) where M C 7 is a set, possibly empty, of unmasked token
indices. The main difference from BERT-like masked language modeling (Devlin et al., [2019)) is
that BERT-like models are trained on a fixed masking ratio, as opposed to all possible masks. In
particular, the MDMs we consider learn factorized conditional predictions of p? (z!|z*), using full

attention, for all [ masked tokens, that ideally match q(xl|xM ), for every possible M. Sampling
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Figure 1: Illustration of an unmasking step with EB-Sampler. At each step EB sampler determines
which tokens to unmask by ordering according to an error proxy and then chooses how many tokens
to independently unmask by bounding their joint dependence via model prediction entropies.

with trained factorized conditionals can be done sequentially, unmasking one token at a time. This
baseline sampler can be defined as follows: At each step (i) randomly pick an index to unmask, e.g.,
I; (ii) sample from learned factorized conditional distribution X! ~ p?(2!|z™), where M is the set
of currently masked tokens. We refer to this sampling procedure as random unmasking.

3 Known challenges of MDM sampling

We now discuss two challenges in sampling from MDMs. The connections we draw between these
challenges will support the intuition for the construction of the EB-Sampler in the next section.

3.1 Order of unmasking matters

For the optimal factorized conditionals predictor, the order of sequen- * "8 Random
tial unmasking will not change the underlying model distribution, Ernons
p? (). That is, by the chain rule of probability, for any two permu- | & Margin

tations (orders of unmasking) o, o’

Accuracy (%)
N

Po() = py (@)

where p? = Hfl:lp("(xd(l)|xuj<l‘7(j)), Nevertheless, training an
optimal p? is intractable due to both learning on extremely high MBPP GSMBK
dimensional state spaces with limited model capacity and finite data

and no hard constraints on the modeling itself such that the chain Figure 2: Performance of
rule holds. Formally, it means that there exists local model error greedy sampling with vari-
Dxw(g(z']z™), p?(z'|z™)) > 0. A key consequence is that the ©US unmasking criteria from
total model error, i.e., the discrepancy between the data distribution, LLaDa 8B Base model.

q(z), and the model distribution for a certain order of unmasking,

p% (z), depends on the order of unmasking. A question that arises then is, do MDMs manage to learn
such there are unmasking orders with low total model error? If so, can one find local model error
proxies such that the chosen unmasking order will result in low total model error?

Recent works (Nie et al., [2025alb; [Kim et al., 2025} |Ye et al., [2025) proposed sequential greedy
sampling with unmasking orders dictated by one of the following criteria (Chang et al., [2022; Kim
et al.| 20255 Zheng et al., [2023)) for choosing the next coordinate / to unmask:

Confidence: | = argmax [max pe(xl'|xM )]
vem ozt

Entropy: [ = argmin [H(XI/IXM = 2M)] M
l'eM

Margin: | = argmax [p?(X" = y1]a™) — p?(XV = yo|a™)]
reM



where (y1,12) = arg Tops p? (2! |#M), where arg Tops returns the two token values with maximal
zV

probability, and H(p) = — Y _ p(x)logp(x) is the entropy of p. Greedy samplers show superior
performance compared to random unmasking samplers, as shown in Figure [2] closing the gap in
performance between MDMs and ARMs (Nie et al.,[2025b; [Ye et al.2025). This answers the first
part of the question above, indicating the existence of orders with lower total model error. As for the
second part, on how to find those unmasking orders, Figure 2] shows that the criteria in Equation (T]
can serve as local model error proxies, determining an unmasking order with low(er) total model
error.

3.2 Sampling efficiency

The best performing sampling procedures for language MDMs de-
scribed above, similarly to ARMs, predict one token per function
evaluation, hence the efficiency of MDMs remains a disadvantage
compared to ARMs due to costly computations of full attention that
does not allow KV-caching. An avenue for improving sampling
efficiency of MDMs is to make use of the model predictions on all
masked tokens to unmask multiple tokens per function evaluation.
Common multi-token unmasking procedures unmask a fixed num-
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ber of tokens, k, at each step by sampling independently from the
predicted factorized conditionals. We refer to these approaches as
Top-k sampling, and they can all be cast in terms of choosing the
Top-k lowest model error proxy tokens to be unmasked at each step.
The parameter k tunes an efficiency-accuracy tradeoff. The larger k is, the larger the joint dependence
error will be, as it wrongly assumes independence of a fixed number of tokens at every step. Figure 3]
empirically shows the degradation in performance in Top-k sampling for k € {1,2, 4,8, 16} with
various error proxies.

Figure 3: Efficiency-accuracy
tradeoff of Top-k (NFE) sam-
pling on MBPP.

4 Entropy Bounded (EB) Sampler

The previous section described how challenges in MDM sampling come from two distinct sources of
error: local model error and joint dependence error. Controlling these errors motivates our Entropy
Bounded (EB) Sampler, a direct replacement for Top-k samplers.

Section found that not only do masked tokens with low model error likely exist, but that past
research has already identified proxies computable via model predictions that identify these tokens
in Equation (I). A step in EB-Sampler begins by sorting unmasked tokens in ascending order on this
error proxy, exactly as in Top-k samplers. Then Section showed Top-k sampling accumulates
substantial joint dependence error that harms performance by sampling tokens independently. We
now make the additional observation that MDM predictions are often highly confident about multiple
masked tokens simultaneously. These tokens are predicted to have low dependence in the data
distribution ¢, because these tokens are all predicted to have low entropy. EB-Sampler therefore
defines a threshold v > 0 and decides to unmask the largest subset U of sorted masked tokens such that

> HE"(a'2™) - max H(p’ (2'|2")) <. &)
= leu
When U is comprised of low model error tokens, this expression approximately bounds a rigorous
joint dependence error introduced later in Section[5] Figure[T]visually illustrates a step of EB-Sampler.

Python code showing Top-% sampling and EB-Sampler is provided in Figure 4] where EB-Sampler is
shown to be a minimal change in PyTorch. Like Top-k sampling, EB-Sampler is easily compatible
with ad hoc adjustments like temperature and unsupervised classifier-free guidance that alter p?.

Consider this code with the same inputs. Different outputs are only from EB-Sampler determining the
value of k using the entropy bound of Equation (2). When unmasked tokens have low dependence,
EB-Sampler will unmask more tokens, and conversely, when there is (potentially) high dependence,
EB-Sampler will unmask less tokens. The amount of tokens unmasked per step in EB-Sampler is
therefore not fixed. More function evaluations are used when the sample is predicted complex and
less when the sample is predicted simple. The threshold ~ influences the number of steps where
~ = 0 will unmask one token each step and v = co will unmask all tokens at once.
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def top_k_step(x, model, sample_fn, error_proxy_fn, k): def EB_step(x, model, sample_fn, error_proxy_fn, gamma):

p = model(x) p = model(x)
err = error_proxy_fn(p) err = error_proxy_fn(p)
err = torch.where(x == model.mask_id, err, np.inf) err = torch.where(x == model.mask_id, err, np.inf)
_ , ids = torch.sort(err, dim=-1) _ , ids = torch.sort(err, dim=-1)
+ entropy = torch.distributions.Categorical(probs=p).entropy() [ids]
+ acc_entropy = torch.cumsum(entropy)
+ cummax_entropy = torch.cummax(entropy, dim=0).values
+ k = (acc_entropy - cummax_entropy <= gamma).sum()
k = torch.minimum(k, (x == model.mask_id).sum()) k = torch.minimum(k, (x == model.mask_id).sum())
ids_to_unmask = ids[:k] ids_to_unmask = ids[:k]
x[ids_to_unmask] = sample_fn(p, ids_to_unmask) x[ids_to_unmask] = sample_fn(p, ids_to_unmask)
return x return x

Figure 4: Python code implementation of a single sampling step for common Top-k approaches and
for EB-Sampler.

S Adaptive unmasking samplers

In this section, we formulate the EB-Sampler as a member of a more general family of adaptive
multi-token samplers. The object we use to mathematically describe varying length unmasking steps
is an ordered partition Z, denoted by z = (21, 22, . . ., 24), Where z satisfies:

UZi:I, Ziij:@ (3)

and either z; C 7 or z; = @. Notation z.; denotes ordered sub-partitions up to index ¢, that is
z<i = (z]j € [i - 1]).

For a random variable X = (X', X2,..., X?) over S and ordered sub-partitions s, s, we extend
the notation from Section [2.1]for conditional probabilities:

p(a’fa”) =P ({X' =al, e T} | {X = o/, Vj € T, }) @)

where 7, = Ul_1 s; and Zy = U‘S ! s}. Depending on context, we will also be using the notation in
M with s being a set of indices, e.g., s = z; or a single index, e.g., s = L.

We consider a broad family of sampling procedures defined by ¢ that leverage approximate clean data
conditionals provided by p?, and produce a joint distribution py(x, z) over state = and partition z:

Hp¢ Ziy L

The distributions ¢ enforce z is a valid partition, and sampling z; means token indices z; are unmasked
at step ¢. Without loss of generality, ¢ always unmasks at least one token if possible, i.e. only samples
z; = & when z.; = Z. Similarly define

Hq Ry X

Importantly, g4 (z, z) = g(z) H?Zl @(zi|2*<1, z;), because the product of the clean data condition-
als does not depend on the order of unmasking, z, so that )~ ¢4 (x, 2) = q(x) for any ¢.

T 2) —H [1/ G ) ) sale™<i 2. 6)

=1 \l€z;

d

Z<i) = H Q(Izi

=1

Tzl <) ©)

Expressiveness of ¢ This family encompasses existing common samplers that always unmask the
same number of tokens on each step, such as deterministic samplers of Top-k smallest margin, Top-k
smallest entropy, and Top-k confidence, or simple random unmasking, but also contains additional
options, including dynamically determining the number of tokens to unmask at each step.

Error decomposition We quantify the error from sampling py(x) = >, pe(x, 2) instead of ¢(x)
via KL divergence

d
DxL(q(x),ps(x)) < Dxi(ge(, 2), po(w,2)) = > _ By, [Ing(z™ )= > Inpf(af|2*<)].

i=1 lezt




Appendix E] discusses when this is an equality, and proves this can be rewritten into two terms

ZE%ZDKL (a'le*<).p" @']a*<)) + Dicw g(a™ "), [[ ata'fe=<))). - @)
lez; lez;
model error joint dependence error

Model error comes from sampling incorrect conditionals p? that do not match the data distribution.
Joint dependence error comes from sampling tokens independently that are not actually independent
in g. This second KL divergence is precisely joint mutual information, upper-bounded by

D1, (q(x®|x®<%) q(z!z<1)) < H(q(z!|z*<)) — max H(q(z!|z*<)). ®)
) ot < 3 At nax H(g(a'|a™))
Choosing ¢ given a pre-trained model EB-Sampler is directly motivated by this error decomposi-
tion. The p? that achieves zero model error is the same for any ¢, justifying using any pre-trained
model learned to match clean data conditionals. Assume we can identify low model error tokens and
we design ¢ to only select z; from such tokens, where for all | € z;, p? (2!|z?<¢) ~ g(«!|z*<?). Then
model error is negligible and joint dependence error is approximately upper-bounded by

> H @' (@'a<) — max H(p' (a']z*<")), ©
€z;
lez;
our criteria in Equation (2). So after adaptively identifying low model error tokens, ¢ can control
overall error by selecting subsets of such tokens to unmask with bounded joint dependence. EB-
Sampler applies this approach with the model error proxies from Section[3.1]

6 Experiments

We evaluate the performance of the EB-Sampler on standard code and math reasoning generation
tasks and on logic puzzles solving. The empirical findings in this section support our theoretical
derivations and demonstrate the proposed sampler’s capabilities.

Baselines. We compare the EB-Sampler to Top-k samplers with the three error proxy functionals
described inm (i) confidence; (ii) entropy; and (iii) margin.

Experimental setting. On all tasks and models we follow the same general experimental setting.
We test the EB-Sampler with a range of thresholds, 7, depending on the task. For the Top-k samplers
we test a range of k values. Each point in the plots (e.g., Figure[3) corresponds to the resulting model
performance when sampling with parameter v or k£ for EB or Top-k sampler respectively. After
finding temperature was unhelpful for LLaDa, we used zero temperature sampling for all experiments.
Full details on threshold and & values can be found in Appendix

6.1 Code and math reasoning

We evaluate the performance of the EB-Sampler variants on text generation tasks in which (i) success
can be measured quantitatively; and (ii) require an answer that is longer than a single token. These
two properties facilitate quantitative assessment of the efficiency-accuracy tradeoff a sampler exhibits.

Models. We report results on two recent open source state-of-the-art language MDMs: LLaDa 8B
Base (Nie et al., [2025b) and Dream 7B Base (Ye et al., [2025)).

Benchmarks. We use 4 widely used benchmarks. HumanEval (0 shot) (Chen et al.,|2021) and MBPP
(4 shot) (Austin et al., |2021b) code generation benchmarks; and GSMS8K (8 shot) (Cobbe et al.} [ 2021)
and Math (4 shot) (Hendrycks et al., 202 1)) math reasoning benchmarks. We note that we use different
variants of GSM8K and Math in our evaluation compared to reported results for Dream 7B, hence the
minor gaps in performance for standard Top-1 sampling.

Setup. For each task, we follow common practice and set a maximal number of generated to-
kens, max_gen_len. Then, the prompt is padded to the right with mask tokens until the max-
imal sequence length of the model. During sampling, only masked tokens in the range of
[Llen(prompt), len(prompt) + max_gen_len] are allowed to be unmasked. Generation stops
once all tokens in the designated range have been unmasked. In the main text, we show results for
the two best performing error proxy functions entropy and confidence. Results with margin are in

Appendix D]
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Figure 5: pass@1 accuracy vs. NFE with generate_until logic on code and math reasoning tasks.

6.1.1 Measuring efficiency gains of MDM samplers

In this part, we describe how we measure the gains obtained by our proposed sampler. We explain why
current generation practices for MDMs require rethinking and propose to add a generate_until
logic to save function evaluations. We then further observe that unlike ARMs that generate in a
left-to-right order, a generate_until logic may still be suboptimal for MDM efficient generation.

generate_until logic. Current generation practices for MDMs fix an apriori amount of tokens to

be generated, i.e., max_gen_len, and generate until all tokens are unmasked. This is rather wasteful
as typically producing a response to a given prompt will require less tokens than the full length, that
is answer_len < max_gen_len. We therefore propose to incorporate a generate_until logic in
MDM samplers similar to ARM generation practices. For example, for the MBPP benchmark, the
few shot samples given as context to the model include a concluding phrase “[DONE]”. In ARM
evaluation procedures, this phrase is used as a stopping criterion. For MDMs, however, due to the
non left-to-right order of unmasking, we extend the generate_until logic to include an additional
condition that all tokens in indices preceding the concluding phrase are unmasked.

All experiments were run with the generate_until logic applied as a post-process in order to
measure gains both against full max_gen_len and effective generation length to stopping criterion.
The NFE reported in Figure [5| measures average number of function evaluations until a task specific
generate_until logic is satisfied. EB-Sampler consistently improves upon accuracy-NFE Pareto
frontier across all datasets and error proxies, gaining speed-ups of 2-4x compared to Top-1 sampler
at the same accuracy. In Figures [O]and[T0] we show the same plots against full max_gen_len NFE.

Bias in function evaluation count. Surprisingly, under the generate_until post-process we still
observed high NFE counts at v = 0 compared to expected answer lengths. This is most pronounced
on the MBPP benchmark, where the model finds it “easy” to repeat the instructions given to the
model after the concluding phrase although it did not finish unmasking all the masks before that. To
get a better estimate of the actual speed-up gains achieved by the EB-Sampler we take MBPP as a test
case and adopt the semi-AR block generation scheme from (Arriola et al.,|2025; Nie et al., 2025b)) to
restrict the model from generating tokens that are far from the context. In Table[I| we compare the
average NFE at roughly the same performance for the various strategies of controlling the generation
length. We note that for this dataset and the sampling strategies evaluated in the table the mean
answer length is around 50 tokens, while the semi-AR block generation requires 64.59 NFE, thus not
fully resolving the bias. On the contrary, EB-Sampler requires 21.19 function evaluations to get the
same performance with same average answer length, generating tokens at a rate of 2.4 tokens per
step. We therefore refrain from claiming a 6x speed up as it compares to a loose generation procedure
and believe a better estimate of the EB-Sampler’s gains is around 2-3x. Table[I] provides three key
insights on MDM efficiency evaluation. First, measuring the efficiency gains of samplers for MDMs



Table 1: NFE and Speed-Ups for Dream 7B on the MBPP for various evaluation schemes at roughly
same best pass@ 1. For all configurations in the table the mean answer length is ~ 50 tokens.

generate_until logic +
semi-AR (block_len=64)

Full max_gen_len = 512 generate_until logic

pass@l  NFE Speed-Up NFE Speed-Up pass@1 NFE Speed-Up
Top-1 58.8% 512 x 1 101.71 x 1 58.8%  64.59 x 1
EB, entropy, v = 0.001 59.2%  174.57 x2.93 49.39 x 2.05 59% 38.90 x 1.66
EB, entropy, v = 0.1 58% 85.33 x 6.00 25.49 x3.99 58.6%  21.19 x 3.05

is non-trivial and depends on the generation configuration, second, MDMs invest computation on
generating tokens that are not used and this opens up an important practical question for the future use
of MDM:s, and lastly, EB-Sampler shows strong performance in efficiency gains across all settings.

6.2 Logic puzzles

Discrete diffusion models have been shown to excel on logic puzzles such as maze navigation, Sudoku
and more (Nolte et al.,[2024} |Ye et al.,[2024). We investigate whether these strong performances can
be retained while sampling more efficiently than one token at a time. Specifically, we train small scale
discrete diffusion models on Sudoku and Maze navigation problems and evaluate their performance
on held-out data when varying the sampling strategies.

6.2.1 Maze navigation

We use the maze generation methods for “DFS mazes” in (Nolte 100
et al., 2024)), see their Section 4.1. We generate 48K mazes for
training and 2K for validation. All mazes are defined on a grid of
size 10x10. They are serialized into tokens by enumerating all the
connections between cells in the grid, i.e. the edges in the graph de-
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Top-k, entropy
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Accuracy (%)
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fined by the maze. To aid learning the invariance with respect to edge 0 T caadencs
reordering, the edges are shuffled before tokenization. A 6 million 2 Topk, margin
parameter discrete DiT model, using code adapted from (Lou et al., 0 5 10 1520035
2023)), is trained to optimize the masked diffusion objective, without

explicit time dependence (Kitouni et al, 2024} [Ou et al., 2025). Figure 6: 10x10 mazes - accu-

racy vs average NFE.
The metric used for performance comparison is the accuracy, defined

as the fraction of validation mazes fully solved. Figure [6]shows the accuracy as a function of average
NFE over the validation set for the different ordering metrics. All metrics perform extremely similarly,
thus partially obscured in the plot. All strategies work best in the single token unmasking regime.
EB-Sampler preserves most of the accuracy before experiencing a sharp drop-off at less than 5 NFEs.
In contrast, the Top-k baselines exhibit a steeper decline in performance, already at around 10 NFEs.

6.2.2 Sudoku

To further assess sampling strategies in structured logic problems, 1007 e
we evaluate performance on the task of Sudoku completion. Unlike s0] 1/
maze navigation, which emphasizes path finding, Sudoku requires
reasoning over dense, globally constrained grids. This setting pro-

60

Sudoku solving
EB, entropy

Accuracy (%)

vides a complementary benchmark to test sampling strategies under *0 DA
those global constraints. 20 &= Topk conldence
s
Top-k, margin
We adopt the standard 9x9 Sudoku setting and adapt the code from 0 ZO 980
Alp| (2024) to generate 48K training puzzles and 2K held-out puz- NFE

zles with, all with unique solutions. Each puzzle is serialized into Figure 7: Sudoku - accuracy
a sequence of 89 tokens corresponding to the cell values and end- s average NFE.

of-line tokens, with zeros indicating blank cells. The discrete DiT

model architecture used for maze navigation is reused here.

We again show accuracy as a function of average NFE. The results are depicted in Figure[7] The trend
is similar to the trend in the maze navigation setup. EB-Sampler retains most of its performance for
a longer time than the Top-k samplers, and then drops off sharply. Notably, almost full performance
is retained even when averaging around 10-15 NFEs.



7 Related Work

Performant sampling for discrete diffusion. Procedures that improve sampling from MDMs
are often focused on improving performance for a given pre-trained model. Recent approaches
consider planning (Kim et al., 2025)), deciding which masked tokens should be unmasked next, as
well as remasking (Wang et al.| 2025), deciding which unmasked tokens should be masked again,
related to predictor-corrector iterations (Gat et al., [2024; Lezama et al., [2022) and forward-backwards
sampling (Campbell et al.,[2024]), or consider both planning and remasking in (Zheng et al., [2023;
Peng et al.| 2025; [Liu et al.l 2024)). Like EB-Sampler, this research often considers KL (equivalently
ELBO) bounds. Unlike past research though, we focus on multi-token adaptive planning with a
variable-sized set of tokens to unmask, crucial for efficiency. While sampling for LLaDa (Nie et al.}
2025b) was described as remasking, it can be viewed as determining what to unmask first and then
their token values within semi-autoregressive blocks, a member of our ¢ family. Because we aim
for efficient and justified planning for scaled MDMs, we do not consider revisiting unmasked tokens
here, enabling a simpler, time-independent analysis with a KL bound that is minimized via adaptive
sampling. Future research might devise an efficient multi-token sampler that both unmasks and revisits
past tokens upon EB-Sampler. One option might be to combine EB-Sampler with predictor-corrector
iterations suggested in (Zhao et al.| 2024)) that update unmasked variables but do not change masks.

Efficient sampling for discrete diffusion. Efficiency has received relatively less attention than perfor-
mance. (Ren et al.l 2025) proposed higher-order numerical solvers for discrete diffusion, not specific
to MDMs. (Park et al., [2024)) introduced a method to avoid joint dependence error from parallel
sampling, by performing a global optimization for a non-adaptive sampling schedule (i.e. the number
of tokens per step). EB-Sampler determines this adaptively per sampling step. (Besnier et al., 2025)
introduced an unmasking sampler for MaskGIT (Chang et al.| |2022)) that controls joint dependence
error via quasi-random, low-discrepancy unmasking of an image, outperforming a confidence-based
sampler in that domain. Finally, recent research (Zhu et al., [2025) has proposed a distillation pro-
cedure for MDMs, and trained one-step image generators from multi-step MaskGIT (Chang et al.|
2022)) and Messionic (Bai et al., [2024). Other works, analyzing the convergence and error of discrete
diffusion models such as |Chen and Ying| (2024); [Liang et al.| (2025); Zhang et al.[ (2025) could
potentially enable extension of our analysis of time-independent masked model to time dependent
discrete diffusion.

Speculative decoding. A prominent method to accelerate LLMs is speculative decoding, with 2-2.5x
speedup in (Chen et al.| 2023)). Instead of sampling from a large farget language model, speculative
decoding generates a candidate sequence from a smaller draft language model and accepts some
portion of that candidate utilizing sequence probabilities. Modified rejection sampling guarantees
the sequence is extended and this extension is sampled from the target model. Because evaluating
models with causal attention can be done cheaply compared to sampling, efficiency gains occur
when the draft model quickly samples reasonable sequences. This procedure has also been adapted
to any-order masked models (Uria et al.l 2014; Hoogeboom et al., 2022)) with causal attention
(Pannatier et al.,|2024; /Guo and Ermon, [2025). For MDMs with full attention, we cannot directly
apply speculative decoding because it is generally expensive to compute the sequence probability in
a full attention target model. (De Bortoli et al.,|2025)) has applied speculative sampling to continuous
Gaussian diffusion, but relies upon querying the target model in parallel. Speculative decoding has
been combined with discrete diffusion in (Christopher et al.| 2024), where the draft is an MDM and
the target is a language model. Our EB-Sampler approach is complementary, and could be simply
applied to speed up the draft model.

8 Conclusions and Future Work

In this paper we propose EB-Sampler, a theoretically grounded adaptive sampler for masked discrete
diffusion and flow models. This algorithm controls both which and how many tokens to sample
using an interpretable entropy bound and serves as a drop-in replacement for existing samplers. We
evaluate our approach on math, code and reasoning benchmarks with contemporary diffusion models
of different scales, against the standard samplers used by the authors of those models. We find
that EB-Sampler significantly outperforms existing samplers on the compute-vs-performance Pareto
frontier and even yields 2-3x speed-ups without any loss of performance.



Future research might consider learning a parameterized adaptive sampler from data, perhaps opti-
mizing our KL bound with respect to ¢, or expand upon EB-Sampler to incorporate revisiting past
unmasked tokens. Such research could further advance efficient and performant sampling for masked
diffusion models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: Abstract and introduction list the paper’s contribution and scope in the context
of existing literature.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The focus of this work is MDM sampling efficiency. Section 6.1.1 discusses
the challenges and limitations of faithfully evaluating efficiency of MDM samplers.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: See Appendix A.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We evaluate open source models on public benchmarks. Minimal code
implementation of the core method is shown in Figure ] and experimental details are listed
in Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We evaluate open source models on public benchmarks. Minimal code
implementation of the core method is shown in Figure ] and experimental details are listed
in Appendix.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment section in paper and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The proposed method is deterministic and hence reporting error bars on
experiments is not applicable.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We use publicly available open source models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Citations and links to used assets are provided.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theorems and proofs

A.1 KL divergence error decomposition

We revisit the KL divergence introduced in Section[5] Recall we quantify the error from sampling
ps(x) =D, ps(x, z) instead of ¢(x) via KL divergence

Ing(x

Z Inp?( l\xz<’

d
1= lezt (10)

where the inequality can be derived from the Evidence Lower BOund (ELBO) (Kingma and Welling|
2019). In the equality we plug in the definitions of the joint distributions pg (2, 2), g¢(z, z) from
Equation (3) and Equation (6)) respectively, where the ¢ term cancels out, and the sum and expectation
can be interchanged since the sum does not

We add and subtract In (H?Zl [ic.: q(xl|x2<i>) from Equation ',

d
Z llnq Zlnp l|JCZ<1 ]
i=1

lezt
q(zl|z2<i) q(zzi Z<i)
In +1n : (11)
2" =) " sl )

and will now separately simplify the two terms.

Joint dependence error. We begin with the right term of the expectation in last equality of
Equation (TT)), which will turn out to be the joint dependence error term in Equation (7).
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where in (x) we marginalize over x*>¢ and z~; since the function the expectation is taken over
does not depend on them In (xx) we use the fact that for the sampling procedure defined by ¢,
gp(x™ <i) = q(a? ‘). At last, we arrive at an expectation of the KL-divergence between
the joint and the factorlzed product distributions of £ conditioned on all the unmasked tokens before,
measuring the joint dependence withoun the subset of indices z;.
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Model error. As for the left term in the last equality of Equation (11J), it will turn out to be the
model error term in Equation (7). Recalling the left term:
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where () and (**) are the same steps as in the joint dependence error derivation above. In (x * x),
we again marginalize over variable that do not appear in the expectation. At last, we arrive at a sum
of of the KL-divergences between the factorized conditionals, which is exactly what p? is trained to
learn, and this we call this term model error.

KL divergence equality: The two KL divergences, Dxr(q(z),ps(z)) and
Dxi1,(g¢(z, 2), pg(x, 2)), are equal when ¢y(z|z) = pe(z|z). This only occurs under spe-
cial ¢. For any ¢,

RS N0 ) LI CATaEA B GV
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Po()
Thus p,(z|z) is almost certainly not equal to g4 (z|x) even if we unmask one token sequentially,
because p? is learned. The product of the learned conditionals almost certainly results in a different

joint distribution depending on the order, unlike for the data distribution where the product of the true
conditionals is ¢(x) for every order.

However, when every ¢ is deterministic we do have equality. This special case is relevant because
many schemes introduced in the main text are deterministic, or nearly so. Then the partition z is
entirely determined by = and can be written z4(z), and gy (2|z) = pg(z|x) are a point mass on
zg(x). For a deterministic ¢ optimizing the KL divergence hence directly optimizes the likelihood
E,[In pg ()], and not a lower-bound on that likelihood, because E, [In py ()] = Eqy, [In pg (2, 24 (2))]
when z is deterministically generated.
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B Algorithm

Algorithm 1 EB-Sampler with generate_until logic

Require: Factorized conditionals predictions p(-|z), threshold v > 0, prompt yo, sequence length
d, error proxy functional F, entropy functional H, stopping criteria C' : S — {True, False},
mask token m

n=d — len(yp)
x + [yo,m * n] > Set initial condition
Tn = {l|lz! = m}
while Z,, # () and not C'(z) do > Stop if all tokens unmasked
P = p!(-|x), forl € I,
¢ = E(p
h = H(p)
I = argsort(éz,) > Sort masked tokens by error
U<+ {} > Initialize subpartition
for a in I, do > Iterate over sorted masked tokens
U+~UUa .
if sum(hy) —max(hy) < v then > Compute entropy bound equation
x® = sample(p, > Sample unmasked value from posterior if below threshold
else
break > Halt unmasking for loop if entropy bound is exceeded
Tn = {l|z! = m}
return

C Experimental details

C.1 Code and math reasoning

C.1.1 Datasets

For code generation tasks we evaluate EB-Sampler on 0-shot HumanEval |Chen et al.| (2021)), 4-shot
MBPP |Austin et al.[(2021b), and for math reasoning we test 8-shot GSM8K |Cobbe et al.[ (2021)
without Chain Of Thought (COT) variant, and 4-shot Math |[Hendrycks et al.| (2021)) corresponding to
the hendrycks_math variant.

C.1.2 Setup

We evaluate the efficiency gains of EB-Sampler on two recent state of the art MDMs: LLaDa 8B
Nie et al| (2025b) and Dream 7B |Ye et al.| (2025). For LLaDa 8B the maximal sequence length
is 4096 and for Dream 7B, 2048. That is, the input to the models in the beginning of generation,
is a padded sequence, starting with the prompt given in each task and then padded with the mask
token, m, to the maximal sequence length, denoted max_seq_len. For each dataset a predetermined
generation length is set, denoted max_gen_len. We enforce unmasking tokens that are in the
range [len(prompt),len(prompt) + max_gen_len|. In the rare case when len(prompt) +
max_gen_len > max_seq_len the prompt is truncated from the left.

<+—— len(prompt) —— «—— max_gen_len —»

prompt answer mask padding

< max_seq len >

Figure 8: Input sequence visualization.
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Table 2: Evaluation parameters for code and math reasoning.

Dataset size  #-shots max_gen_len generate_until phrase

LLaDa 8B Dream 7B
HumanEval 164 0 512 ["<lendoftextl>","\n\n\n"]  [’<lendoftextl>", ”“‘\n”]
MBPP 500 4 512 ”[DONE]”
GSM8K 1320 8 256 ”The answer is %d.”
MATH 5000 4 512 I hope it is correct.”

All benchmarks were run with the same < range of values for EB-Sampler, v €
{0,0.001,0.01,0.1,0.25,0.5,0.75,1.0, 1.5}, and with same k range of values for Top-k sampling,
k € {1,2,4,8}. All benchmarks were run in the same computational setting, on 8 x H100. We report
runtimes for confidence and entropy error proxies in Table (3| Runtimes with margin error proxy are
longer due to the need to sort over the vocabulary size to compute the top-2 tokens. Runtimes for
LLaDa 8B are longer than Dream 7B due to having twice the maximal sequence length of Dream.

Table 3: Average runtimes on 8xH100 of code and math benchmarks evaluation for 1 token per
step sampling (Top;) with entropy and confidence error proxies. Relative standard deviation of
measurements is 1%.

Runtimes (hrs.)
LLaDa 8B Dream 7B

HumanEval 0.58 0.26
MBPP 1.75 0.79
GSM8K 2.29 1.03
MATH 17.30 7.84

C.1.3 Post-process

Accuracy evaluation. Model outputs for all datasets evaluated with both LLaDa 8B and Dream
7B had been directly fed into the standard evaluation scripts, except for HumanEval with Dream 7B.
Evaluating the raw output of Dream 7B on the HumanEval benchmark results in around 8% drop
in performance compared to reported results by the authors. Investigating the cause for the drop in
performance led to the observation that Dream 7B sometimes produces answers with a template that
places the generated code inside code blocks which get ignored when compiled and are therefore
considered as failure at the task. We thus post-process Dream’s raw outputs on HumanEval to extract
the function implementation, closing the gap to reported results to < 2%. Importantly, we emphasize
that all comparisons in our paper are between sampling procedures from the same model and same
evaluation.

Efficiency measurement.  As noted in Section[6.1.1] standard sampling procedures from MDM
generate a sequence with predetermined length, max_gen_len. In most cases, the answer to the
given prompt will be shorter, denoted answer_len, and there are (max_gen_len — answer_len)
generated tokens that are being truncated, hence unused, during evaluation. To isolate the efficiency
gain EB-Sampler provides in generating the answer tokens from the gain in generating the rest of the
tokens that are later not used, we incorporate the generate_until logic as a post-process. We note
that this logic can also be integrated in the sampling procedure itself, saving up computation, without
changing the performance of the model, as the logic ensures termination of generation only once the
stopping criterion has been met. The phrases used as markers for the generate_until post-process
logic for each dataset and each model are listed in Table[2]
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D Additional experiments - code and math reasoning
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Figure 10: pass@1 accuracy vs. full max_gen_len NFE on math reasoning tasks.

D.1 Results with margin error proxy

In Figure [TT] we show the results with the margin error proxy along with the results with confidence
and entropy error proxies presented in the main body of the paper in Figure[5] We observed that
confidence error proxy was typically the best for the LLaDa 8B model and entropy error proxy
worked best in most cases for Dream 7B. The margin error proxy mostly yielded inferior accuracy in
full NFE, thus to maintain readability of the plots we did not include it in the main body of the paper.
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Figure 11: pass@1 accuracy vs. NFE with generate_until logic on code and math reasoning
tasks.
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D.2 Measuring efficiency of MDMs

In Section[6.T.T|we outline the different ways to measure sampling efficiency and discuss the problems
with some of the approaches. We explain why measuring efficiency against full sequence length
generation results in apparent high gains (like in Figures [9]and[T0), and then propose two ways to
better approximate the gains provided by different samplers:

* Unmask with generate_until logic

* Unmask semi-auto-regressively with generate_until logic

Effective tokens/step with generate_until logic. In Figure[l12| we show accuracy against the
effective generation speed of the model quantified via:

mean_answer_len
mean_NFE_to_condition’

Effective Tokens/Step = (16)

where mean_answer_len is the average number of tokens from left to right until the
generate_until answer markers, and mean_NFE_to_condition is the number of function evalu-
ations required by the model to generate the answer until both generate_until answer markers
apear in answer and all tokens before the marker are unmasked. Figure [I2] shows that in most cases
the effective speed at v = 0 or Topy, is actually less than 1, meaning that the model unmasks tokens
that are not used in the final answer, or equivalently unmasks tokens that come after the stopping
phrase in the sequence. This observation led us to explore an approach to mitigates this inefficiency
via semi-autoregressive generation (Arriola et al., 2025} Nie et al., 2025b).
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Figure 12: pass@1 accuracy vs. tokens/step on code and math reasoning tasks.

Semi-autoregressive generation.  Figure[I2]supports our claim that mostly in the MBPP bench-
mark many tokens are generated after the stopping phrase although not all tokens have been unmasked
before. In the main body of the paper, in Table[T} we showed an ablation with semi-autoregressive
generation for that benchmark with the Dream 7B model. In Table ] we also add the same ablation
with the LLaDa 8B model. We report the same ablation for the GSM8K benchmark in Tables 5| and [6]
which show that the gap in efficiency between with and without semi-autoregressive generation is
small to non existing aligning with Figure [T2] that shows effective token/step of around 1 on this
benchmark. That is, on GSM8K it is less likely that the model generates tokens that come after the
stopping phrase.
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Table 4: NFE and Speed-Ups for LLaDa 8B on the MBPP for various evaluation schemes at roughly
same best pass@ 1. For all configurations in the table the mean answer length is ~ 60 tokens.

generate_until logic +
semi-AR (block_len=64)

Full max_gen_len = 512 generate_until logic

pass@l  NFE Speed-Up NFE Speed-Up pass@l NFE Speed-Up
Top-1 39.6% 512 x 1 224.93 x 1 39.4%  73.31 x 1
EB, confidence, v = 0.001 39.8%  347.28 x 1.47 155.31 x 1.44 39.4%  60.83 x 1.21
EB, confidence, v = 0.1 39.2% 13841 x 3.67 64.01 x3.51 38.8% 33.20 x2.21

Table 5: NFE and Speed-Ups for Dream 7B on the GSM8K for various evaluation schemes at roughly
same best pass@ 1. For all configurations in the table the mean answer length is ~ 93 tokens.

generate_until logic +

Fullmax_gen_len generate_until logic semi-AR (block_len=64)

pass@l  NFE  Speed-Up NFE Speed-Up pass@l  NFE Speed-Up
Top-1 74.30% 256 x1 97.44 x1 74.90% 95.23 x 1
EB, entropy, v = 0.01 74.37% 156.29 x 1.64 49.60 x 1.96 75.36% 48.29 x 1.97
EB, entropy, v = 0.1 74.83% 129.27 x 1.98 35.94 x2.71 75.36% 35.60 X 2.66

Table 6: NFE and Speed-Ups for LLaDa 8B on the GSMSK for various evaluation schemes at roughly
same best pass@ 1. For all configurations in the table the mean answer length is ~ 93 tokens.

generate_until logic +

Full max_gen_len generate_until logic semi-AR (block_len=64)

pass@l  NFE  Speed-Up NFE Speed-Up pass@1l  NFE Speed-Up
Top-1 71.79% 256 x1 95.19 x1 71.95% 93.62 x1
EB, confidence, v = 0.01 71.64% 185.78 x 1.36 66.57 x 1.43 72.33% 65.42 x 1.43
EB, confidence, 7 = 0.1 72.17% 147.48 x 1.74 45.83 x 2.08 72.71% 45.30 x 2.07

D.3 Comparison to naive thresholding

Our key observation in this work is that adaptively choosing the number of tokens to unmask in
each step can result in a better accuracy-efficiency tradeoff. In this section we compare to naive
thresholding approaches that dynamically determine the number of tokens to unmask with a per-token
thresholding criterion as opposed to the EB-Sampler which accumulates the sum of entropies.

We test the EB-Sampler against three threshold criteria: entropy, confidence and margin. In fig.[T3]
we show accuracy vs. Effective Tokens/Step [[6] For MBPP we see a very similar profile for EB-

Sampler and naive thresholding while for GSM8K, EB-Sampler shows a favorable accuracy-efficiency
tradeoff.
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Figure 13: Comparison between EB-Sampler and naive thresholding. pass@1 accuracy vs. to-
kens/step on code and math reasoning tasks.

These results indicate that for some settings, like in MBPP, the model predictions that yield high
accuracy are highly confident or equivalently have very low entropy, thus naive thresholding aligns
with EB-Sampler accuracy-efficiency profile. On the contrary, for GSM8K, we do observe an non-

negligible gap that could be explained by our information theoretic interpretation of the unmasking
process.
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E Societal Impact

As this work introduces a more efficient sampling procedure from existing models, it does not
introduce significant societal risks beyond those that already exist.
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