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Abstract

In this paper, we investigate whether we could
use pruning as a reliable method to boost the gen-
eralization ability of the model. We found that
existing pruning method like L2 can already offer
small improvement on the target domain perfor-
mance. We further propose a novel pruning scor-
ing method, called DSS, designed not to maintain
the source accuracy of the compressed model as
typical pruning work does, but to directly enhance
the robustness and the generalization performance
of the model. We conduct empirical experiments
to validate our method and demonstrate that it can
be even combined with state-of-the-art generaliza-
tion work like MIRO(Cha et al., 2022) to further
boost the performance. On MNIST to MNIST-M,
we could improve the baseline performance by
over 5 points simply by introducing 60% channel
sparsity selected by DSS into the model. On the
popular DomainBed benchmark and combining
with MIRO, we can further boost the state-of-the-
art performance by 1 point only by introducing
10% sparsity into the model. Code can be found
at https://github.com/AlexSunNik/
pruning_for_domain_gen.

1. Introduction

In recent years, we have seen rapid development in deep
neural networks with various model architectures(He et al.,
2016; Dosovitskiy et al., 2020) for a wide range of dif-
ferent tasks. However, the pretrained models could be
poor at generalizing learned features or knowledge to new
datasets or environments. Even a slight shift from the net-
work’s original training domain could significantly hurt its
performance(Recht et al., 2019; Hendrycks & Dietterich,
2021; Yang et al., 2021), which suggests that the successes
achieved by deep learning so far have been largely driven by
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supervised learning and large-scale labeled datasets(Deng
et al., 2009). This domain shift issue has seriously impeded
the development and practical deployment of deep neural
models.

A straightforward approach to deal with this domain shift
is to collect some data from the target domain to adapt the
source-domain trained model, relying on the assumption
that target data is accessible for model adaption. This do-
main adaptation approach(Lu et al., 2020; Saito et al., 2018;
Ganin & Lempitsky, 2015; Long et al., 2015; Liu et al.,
2020; Hoffman et al., 2018; Gong et al., 2012; Long et al.,
2016; Balaji et al., 2019; Kang et al., 2019; Kulis et al.,
2011; Gandelsman et al., 2022; Sun et al., 2020; Liu et al.,
2021) is practical in many scenarios since we do not need
extra labor and computation cost to label the collected target
distribution data and simply leverage the unlabeled data for
adaptation. However, it does assume that we have access to
target domain data during training, which is infeasible and
impractical in many cases.

A more strictly defined problem is domain generalization,
which does not assume access to target sample features
during training and strives to learn robust representations
against distribution shifts from multiple source domains
during training. We later perform evaluation of the trained
model on an unseen test domain to measure the generaliz-
ability, transferability, and robustness of the model. While
many existing works in domain generalization attempt to
learn domain-invariant features (Arjovsky et al., 2019; Bui
etal., 2021; Cha et al., 2021; Ganin & Lempitsky, 2015; Li
et al., 2018a; Sun & Saenko, 2016), some recent works (Gul-
rajani & Lopez-Paz, 2021; Koh et al., 2021) also demon-
strate decent accuracies without explicitly enforcing invari-
ance. Recently, the state-of-the-art work MIRO (Cha et al.,
2022) aims to learn similar features to ’oracle’ represen-
tations, reformulating the domain generalization task by
maximizing mutual information between oracle representa-
tions and model representations while performing training
on source domains. It achieves state-of-art performance on
the widely-used DomainBed (Gulrajani & Lopez-Paz, 2021)
benchmark.

A seemingly completely irrelevant direction, pruning (Le-
Cun et al., 1989; Hassibi et al., 1993; Han et al., 2015;
Frankle & Carbin, 2019; Lee et al., 2019; Sun et al., 2022),
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aims to compress the model by removing the least important
channels scored by some saliency criterion. Since size of
the model gets shrinked after pruning, it is also sometimes
considered to reduce the overfitting of models and increase
the domain generalization ability of the model from another
perspective. In fact, some latest works (Li et al., 2022; Jin
et al., 2022; Bartoldson et al., 2020) began to investigate
deeper relationship between pruning and the generalizability
and robustness of models.

In this paper, we made a further step, investigating whether
we could use pruning as a reliable method to boost the
generalization ability of the model. We aim to answer the
following three questions:

1. Can we leverage existing popular and simple pruning
metrics like L2(Li et al., 2017) to boost generalization
accuracy by pruning unimportant channels?

2. Can we design a better pruning score taking the gener-
alization ability of the model into consideration? More
concretely, a score specifically designed to improve
target domain accuracy instead of maintaining source
domain accuracy as typical pruning.

3. Finally, can we combine it with modern state-of-the-
art domain generalization algorithms like MIRO(Cha
et al., 2022) as a simple plug-in component to further
boost the accuracy?

We answered the above three questions with solid empiri-
cal studies ranging across three datasets and model archi-
tectures. To begin with, we study the first two questions
extensively across many different pruning sparsity ratios on
MNIST to MNIST-M, which is randomly colored MNIST.
We found that the existing simple pruning method L2(Li
et al., 2017) can offer a small improvement over the vanilla
baseline(i.e. without using any domain generalization tech-
nique). Later, we solve the question (2) by designing a
novel pruning method specifically targeting generalization
accuracy. Given a convolutional neural networks(CNNs),
we evaluate the activation map for samples from different
domains at each layer for every channel and compute a do-
main similarity score (DSS) based on the distance of the
activation maps. We then use structural pruning to prune
the channels with the lowest DSS, followed by a finetuning
session to recover accuracy. From empirical results, we ob-
serve an obvious improvement from the standard L2 pruning
score. Notably, we can improve the baseline performance
by more than 5 points by sparsifying 60% of the channels
in the model, which may seem very surprising.

After validating the effectiveness of our proposed DSS score,
we resolve the question (3) by combining our method with
the state-of-the-art work MIRO (Cha et al., 2022). We con-
duct experiments on two datasets PACS and OfficeHome

from the DomainBed (Gulrajani & Lopez-Paz, 2021) bench-
mark and observe a 1 point improvement of MIRO by intro-
ducing a 10% channel sparsity into the model, demonstrat-
ing the capability of our method to even improve the SOTA
result.

2. Related Works

2.1. Domain Generalization

The problem of domain generalization was first introduced
by (Blanchard et al., 2011) as a machine learning problem.
As mentioned, the main difference of domain generaliza-
tion from adaptation is that target-domain data is considered
to be inaccessible during model training. Specifically in
computer vision which usually involves dealing with sev-
eral large-scale datasets simultaneously, (Torralba & Efros,
2011) found that dataset biases could lead to poor generaliza-
tion performance by conducting an experiment with object
recognition models on six benchmark datasets. Since then,
many works aim to tackle domain generalization tasks from
many perspectives. One major approach is to learn domain-
invariant features by either minimizing between-domain
feature divergences (Ganin & Lempitsky, 2015; Li et al.,
2019; Matsuura & Harada, 2020; Sun & Saenko, 2016; Zhao
et al., 2020), robust optimization (Arjovsky et al., 2019; Cha
et al., 2021), or augmenting source domain examples (Bai
et al., 2021; Carlucci et al., 2019). Inspired by these works,
our pruning DSS score also aims to remove features that are
the most domain-sensitive, or in other words, keep the most
domain-similar features to be used for the later downstream
tasks. Recently, the state-of-the-art work MIRO (Cha et al.,
2022) reformulates the domain generalization task by maxi-
mizing mutual information between oracle representations
and model representations while performing training on
source domains. In our experiments, we are also going to
demonstrate that our method can be used to further improve
MIRO.

2.2. Pruning

Network pruning methods can be roughly categorized as
unstructured pruning and structured pruning. Unstructured
pruning methods (LeCun et al., 1989; Hassibi et al., 1993;
Han et al., 2015; Frankle & Carbin, 2019; Lee et al., 2019)
removes individual neurons of less importance without con-
sideration for where they occur. On the other hand, struc-
tured pruning methods (Li et al., 2017; Liu et al., 2017;
Molchanov et al., 2017) prune parameters under struc-
ture constraints, for example removing convolutional filters.
Most pruning methods focus on designing an importance
score to reflect parameters’ importance to the final output.
The popular channel pruning score L2 (Li et al., 2017) is
evaluated as the Frobenious Norm of the convolution ker-
nels. In this work, we leverage structural pruning as well
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Figure 1. MNIST to MNIST-M Visualization of averaged feature
maps that are least and most similar between source and target
domains ranked by our DSS score. In the least similar case, we
could see that the target feature map contains highlighted regions
in the corner, which suggests potential spurious features.

because it allows us to filter and select features. Unlike all
previous pruning works which aim to shrink the model size
as much as possible while maintaining good source perfor-
mance, our method focuses on enhancing the generalization
ability of the model. We design a novel score domain sim-
ilarity score (DSS) for this purpose, which measures the
similarity of features between the source and target domain
to keep robust features for estimating output.

3. Methodology

Here, we describe how to compute the proposed DSS score.
Consider X as the input space and ) as the output space.
We define a domain as a joint distribution Pxy on & X
Y. Moreover, we refer to Px as the marginal or input
distribution on X, and Py|x as the posterior distribution of
Y given X. Suppose we have two distinct domains, Pxy-
and P%y (PXy # Pxy)-
1

Suppose we are dealing with image data and suppose =~ ~
Pk, 2zt € R and 22 ~ P 2?2 € ROMW here,
¢, h, w are input channels(3 for RGB), height, and weight of
our input data to the model. Below for convenience, when
we do not distinguish the domain, we simply use z to refer to
the input image. In representation learning, we usually build
a feature extractor T'(.) constructing representation from raw
input data = and outputting features maps or activation maps.
The extracted features are then fed into a projector or linear
classifier f(.) to produce the final estimation, i.e. f(T'(x)).

Moreover, suppose T'(z) € RO,

Given z! and 22, we construct source and domain feature
maps respectively as T'(x') and T'(x2). The goal of our
DSS score is to measure the similarity of 7'(x') and T'(x?).
To this end, we simply leverage the score proposed in Deep-
Face (Taigman et al., 2014) which computes the normalized
inner product of the flattened features. We denote normalize
and flatten operator as +(.) for simplicity. Therefore, at a
convolutional layer, domain sensitivity score (DSS) S for
each channel ¢ out of ¢ channels can be computed as:

Si = (Ey(T(z"):)], Ely(T(2%):)]) (1
S =[S0,81,...,S] @)

In practice, we could leverage Monte Carlo Estimation for
estimating the expected features from each distribution. For
E[y(T(z');)] for example, we can compute it as:

E(T(z"):)] = N > AT, €

which samples N times from the distribution P%. A sim-
ilar procedure can be done for P%, as well. With the
computed DSS score, we then prune the channels given by
ArgBotK(S, n), which selects the bottom n channels out of
¢ channels with the lowest DSS. We finish by performing a
finetuning session on the kept channels to recover accuracy.

In Figure.1, we demonstrate the example feature maps on
MNIST-M dataset with lowest(most sensitive) and highest
(most similar) feature maps respectively. Interestingly, in the
least similar case, we could see that the target feature map
contains very highlighted regions in the corner of the image,
which suggests potential spurious features since MNIST-
like dataset mostly does not contain ’useful” features there.

4. Empirical Results

As mentioned in Sectionl, we conduct experiments with
the augmented MNIST dataset MNIST-M and two datasets
PACS and OfficeHome from DomainBed (Gulrajani &
Lopez-Paz, 2021). MNIST-M dataset contains digits from
original MNIST dataset blended over patches randomly ex-
tracted from color photos of BSDS500. Since both datasets
are relatively not large in size, in selecting N(number of
times to estimate expected feature maps), we just leverage
the entire dataset. Moreover, the methodology section only
discusses the procedure on a single layer. With a multi-
layered network like ResNet (He et al., 2016), we perform
the described procedure at every layer independently.

4.1. Experiment Detail

All experiments are conducted with the PyTorch deep learn-
ing framework. Each experiment is performed on a NVIDIA
Titan Xp GPU. In terms of evaluation, following standard
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Figure 2. MNIST to MNIST-M Performance at different channel
sparsity ratios. Our DSS scores reliably improve target accuracy
and performs better than standard pruning scores like L2 (Li et al.,
2017).

Method ‘ Before Finetuning  After Finetuning

Baseline 59.30
Rev.DSS 55.93 58.35
DSS 61.14 63.21

Table 1. MNIST to MNIST-M Ablation Results performed with
pruning 40% channels with either our proposed DSS score or the
reverse of our DSS score, i.e. we remove channels with highest
DSS instead. The effectiveness of DSS is demonstrated in boosting
the generalization performance of the model. Notably, with our
proposed DSS score, even before fine-tuning immediately follow-
ing pruning, we could already observe improvement.

practice, we train model on one or multiple source domains
and evaluate it on the target domain.

4.2. MNIST-M

We conduct experiments on MNIST-M with a simple Con-
vNet which is also leveraged in works like (Ganin & Lem-
pitsky, 2015). Here, we train on the vanilla MNIST data and
evaluate on MNIST-M data for generalization performance
and robustness. The two important comparisons here are
(1) baseline, model only trained on the source MNIST and
tested on MNIST-M and (2) baseline pruned with standard
pruning metric L2 (Li et al., 2017). We prune at various
channel sparsity ratios to better understand the behaviors.
Results and comparisons are summarized in Figure2.

4.2.1. OPTIMIZATION DETAIL

In terms of the optimization and hyperparameters of the
baseline, we use the same settings as studies like (Ganin
& Lempitsky, 2015). Concretely, the cross-entropy loss is
leveraged as training loss for the classification task, and
SGD optimizer is used for loss minimization. The learning
rate is set as 0.01, and momentum is set as 0.9. Moreover,
the batch size is set as 32, and the total training epochs is

set as 100.

In terms of finetuning hyperparameters, we follow the same
as the baseline. Instead, we only train an additional 20
epochs for finetuning.

4.2.2. RESULT ANALYSIS

We can first observe that, standard and existing simple prun-
ing method L2 (Li et al., 2017) can already offer a small
improvement across various sparsity levels. For example,
with 60% channel sparsity introduced into the model se-
lected by L2, baseline performance can be boosted from
59.3 to around 60.5. This answers our question (1) raised
in Sec.1 and confirms our expectation that general pruning
can improve the generalization ability of the model.

Next, we can observe that our proposed DSS score further
improves the results by a margin. Notably, we can improve
the baseline performance by more than 5 points from 59.3
to 64.5 by sparsifying 60% of the channels in the model
selected by DSS, which surpasses standard pruning score
like L.2. This answers our question (2) raised in Sec.1 and
preliminarily demonstrates the effectiveness of our proposed
method.

4.2.3. ABLATION

Here, we also conduct a quick ablation study in verifying
the effectiveness of our proposed method. Results are pre-
sented in Table 1. We compare with pruning with the reverse
of our metric, which means that instead of removing the
most sensitive features with the smallest DSS score, we re-
move the most similar features with the highest DSS score.
Expectedly, we observe that the method degrades the per-
formance of the baseline model. Surprisingly, we observe
that, with DSS, even before fine-tuning, we can observe an
improvement over the baseline from 59.30 to 61.14, further
strengthening the effectiveness of our score.

4.3. DomainBed

As promised, we could also combine our proposed method
with any state-of-the-art algorithm and further boost the
performance. The experiment here is conducted on datasets
PACS and OfficeHome from DomainBed (Gulrajani &
Lopez-Paz, 2021). On PACS and OfficeHome, each contains
four datasets, we follow the standard leave-one procedure
which performs training and evaluation four times with each
time training on three distributions and testing on the other.
Final score is then averaged over these four runs. Moreover,
our DSS score is also computed with an average of all of
the three training domains. The important baseline here
is thus naturally the model trained with the state-of-the-art
algorithm MIRO (Cha et al., 2022).
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Method | PACS  OfficeHome | Avg.

DANN (Ganin & Lempitsky, 2015) 83.6 65.9 74.8
CDANN (Li et al., 2018b) 82.6 65.8 74.2
IRM (Arjovsky et al., 2019) 83.5 64.3 73.9
GroupDRO (Sagawa et al., 2019) 84.4 66.0 75.2
ARM (Zhang et al., 2021) 85.1 64.8 75.0
ERM (Vapnik & Vapnik, 1998) 84.2 67.6 75.9
Mixup (Wang et al., 2020; Xu et al., 2020; Yan et al., 2020) 84.6 68.1 76.4
SelfReg (Kim et al., 2021) 85.6 67.9 76.8
MIRO (Cha et al., 2022) 85.4 70.5 78.0
MIRO + Ours 10% 86.5 71.4 79.0

Table 2. Domain Bed Domain generalization results of applying our proposed method on state-of-the-art method MIRO. We reliably
improve the performance of MIRO by shrinking the model size down by 10% removing channels selected by our DSS score.

4.3.1. OPTIMIZATION DETAIL

We develop based on code provided by MIRO (Cha et al.,
2022) and follow the same suggested optimization settings.
Concretely, ResNet50 is selected as the base model archi-
tecture to perform the study. The cross-entropy loss is lever-
aged as training loss for the classification task, and the
Adam optimizer is used for loss minimization. Default betas
parameters of 0.9, 0.999 are used for the Adam optimizer.
The entire training procedure lasts for 5000 iterations. For
PACS, the regularization lambda is set as 0.01 for MIRO
training as described in the paper (Cha et al., 2022). The
learning rate is set as 3e — 5 with no dropout and 0 weight
decay. For OfficeHome, the regularization lambda is set as
0.1. The learning rate is set as 3e — 5 with 0.1 dropout and
le — 6 weight decay.

For the finetuning following the pruning session, the learn-
ing rate is decayed by 10.

4.3.2. RESULT ANALYSIS

Results are presented in Table.2. As observed in the table,
we can further improve the state-of-the-art MIRO perfor-
mance by introducing 10% channel sparsity selected by our
method. Compared with MIRO (Cha et al., 2022), on PACS,
we improve it from 85.4 to 86.5; on OfficeHome, we im-
prove it from 70.5 to 71.4. On average, we improve MIRO
from 78.0 to 79.0, a whole point improvement over the state-
of-the-art only by introducing sparsity into the model. Given
the amount of improvement of the research works on this
benchmark as shown in Table 2, our improvement is quite
decent, especially considering there is no cost for running
DSS but to only inject channel sparsity into a pre-trained
model. This answers our question (3) raised in Sec.1 and
demonstrates the efficacy of the proposed score which can
work in a model-agnostic way to improve potentially any
domain generalization algorithm.

5. Discussion

In this paper, we made an initial investigation into the prob-
lem of leveraging pruning as a way to perform domain
generalization and designed a simple and straightforward
pruning score. A smarter and more adaptive approach is
to incorporate trimming ’spurious’ channels/features into
the training objective itself and dynamically adjust model
structure on-the-fly during training. We leave this for future
study and hope this work, by looking at domain general-
ization from a novel pruning perspective, will inspire more
following works.

6. Conclusion

In this paper, we study whether we could use pruning as a
reliable method to improve the generalization performance
of the model. We first found that existing pruning methods
like L2 (Li et al., 2017) can already offer small improve-
ment on the target domain performance. We then propose a
novel pruning score DSS, designed not to maintain source
accuracy of the pruned model, but to directly enhance the
robustness and generalization performance of the model.
We conduct empirical experiments to validate our method
and demonstrate that it can be even combined with state-of-
the-art generalization work like MIRO(Cha et al., 2022) to
further boost the performance. We hope that our work offers
a novel perspective on domain generalization, by reformu-
lating it as a robust features selection or spurious features
pruning task.
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