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ABSTRACT

Sparse longitudinal (SL) textual data arises when individuals generate text repeat-
edly over time (e.g., customer reviews, occasional social media posts, electronic
medical records across visits), but the frequency and timing of observations vary
across individuals. These complex textual data sets have immense potential to
inform future policy and targeted recommendations. However, because SL text
data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies,
detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect,
a flexible framework that pairs LLM-based text embeddings with functional data
analysis to detect clusters and infer anomalies in large SL text datasets. First,
LLmFPCA-detect embeds each piece of text into an application-specific numeric
space using LLM prompts. Sparse multivariate functional principal component
analysis (mFPCA) conducted in the numeric space forms the workhorse to recover
primary population characteristics, and produces subject-level scores which, to-
gether with baseline static covariates, facilitate data segmentation, unsupervised
anomaly detection and inference, and enable other downstream tasks. In partic-
ular, we leverage LLMs to perform dynamic keyword profiling guided by the
data segments and anomalies discovered by LLmFPCA-detect, and we show that
cluster-specific functional PC scores from LLmFPCA-detect, used as features in
existing pipelines, help boost prediction performance. We support the stability of
LLmFPCA-detect with experiments and evaluate it on two different applications
using public datasets, Amazon customer-review trajectories, and Wikipedia talk-
page comment streams, demonstrating utility across domains and outperforming
state-of-the-art baselines.

1 INTRODUCTION

In modern machine learning, it is common to encounter datasets comprising ofN subjects, where each
subject i is associated with a sequence of textual observations {Ki(Ti1),Ki(Ti2), . . . ,Ki(TiNi)}
recorded at sparse and irregular time points {Ti1, Ti2, . . . , TiNi} ⊂ R. Despite LLMs having
spurred many advancements in analysis of text data, current methods are not well adapted to sparse
longitudinal (SL) designs—time-evolving texts observed at irregular, subject-specific times—so these
are frequently discarded or collapsed across time, ignoring the dynamic patterns in the texts. In this
paper, we propose a novel framework for the analysis of SL text data that yields representations
suitable for straightforward integration into unsupervised and supervised learning pipelines. The
proposed methodology is applicable to a wide range of domains that generate SL text data, such
as, electronic medical records in healthcare (Ford et al., 2016), consumer interactions through
service channels in business (Cavique et al., 2022), activity logs from online learning platforms in
education (Yang & Kang, 2020), user posts and comments on social media Hutto et al. (2013); Valdez
et al. (2020); Kelley & Gillan (2022) and many more.

A major challenge with SL text datasets is that observations are unstructured and noisy, heterogeneous
across subjects, and may contain outliers. The first step in making such data amenable for downstream
supervised or unsupervised learning tasks, including prediction and inference, is to extract parsimo-
nious feature representations of the longitudinal texts that capture the leading modes of variation.
In this work, we propose LLmFPCA-detect, which starts from noisy SL texts and produces learned
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representations, accounting for heterogeneity and providing type-I-error–controlled outlier screening.
LLmFPCA-detect begins by embedding text into an application specific numeric space using LLMs.
In this numeric space, sparse multivariate functional principal component analysis(mFPCA) Happ
& Greven (2018); Yao et al. (2005) is used to model the longitudinal text embeddings as noisy
observations of an underlying smooth trajectory. The method first clusters the preliminary FPC scores,
augmented with baseline subject-level covariates, and then screens for outliers; a novel calibration
step yields the final set of anomalies with statistical significance guarantees. We illustrate this new
approach on two datasets: the Amazon review corpus and the Wikipedia talk- page comment stream,
where LLmFPCA-detect reveals insightful findings from SL text data.

Related Works Modeling SL data Beginning with the seminal parametric random-effects formula-
tion Laird & Ware (1982), the field of longitudinal data analysis has undergone extensive development
over the decades; see Verbeke et al. (2014) for a review on multivariate longitudinal data analysis.
Functional data analysis (FDA) provides a nonparametric framework for SL data—via principal
components through conditional expectation Yao et al. (2005); Happ & Greven (2018)—to predict
subject-specific smooth trajectories even from one or a few observations. While this line of work has
expanded to include dynamic Hao et al. (2024); Zhou & Mueller (2024) and covariate-dependent Kim
et al. (2023) extensions, and has led to methods for clustering and unsupervised anomaly detec-
tion Schmutz et al. (2020); Wu et al. (2023); Castrillón-Candás & Kon (2022), and supervised
tasks such as regression and classification Müller (2005), none of these methods extend directly to
heterogeneous, complex SL text data paired with baseline covariates and containing outliers.

Text time series versus SL texts An SL design differs from a time series; instead of a single, regularly
spaced sequence of observations, it comprises many subjects, each with its own trajectory recorded at
irregular, subject-specific times where per-subject sampling is sparse, and between-subject hetero-
geneity could be substantial. While text time-series modeling has advanced considerably O’Connor
et al. (2010); Blei & Lafferty (2006); Wang & McCallum (2006); Bamler & Mandt (2017); Dodds
et al. (2011); Griffiths & Steyvers (2004); Yurochkin et al. (2019), these approaches rely on dense,
uniformly spaced observations and are not suited to SL texts.

Anomaly detection Text clustering and anomaly detection are central NLP tasks, used to flag harmful
content, phishing, and spam. With pretrained language models (e.g., BERT Devlin et al. (2019),
RoBERTa Liu et al. (2019), GPT Brown et al. (2020)), embedding-based detectors have proliferated
alongside other approaches Yin & Wang (2016); Cao et al. (2025); Ruff et al. (2019); Subakti et al.
(2022); Dhillon & Modha (2001); Liu et al. (2008); Kannan et al. (2017). Yet three limitations
persist: (i) most methods lack type-I error control for flagged anomalies; (ii) time series anomaly
detectors Blázquez-Garcı́a et al. (2021); Zamanzadeh Darban et al. (2024); Xu et al. (2022) can be
adapted to unstructured texts via embeddings, but only assuming dense, regularly sampled streams;
and (iii) these methods do not support SL designs with subject-specific, irregular observation times
and evolving trajectories, hence missing on the individual level dynamic trends in the anomalies.
Functional data analysis methods for SL anomaly detection exist (Sun & Genton, 2011; Dai & Genton,
2018; Hubert et al., 2015; Gervini, 2009), but they operate on structured numeric functions rather
than unstructured text and likewise lack formal false-positive guarantees. As a result, there is no
end-to-end solution that transforms SL texts into trajectory-aware feature representations and detects
anomalies with explicit type-I error control.

Our Contributions We introduce LLmFPCA-detect, a novel framework that combines LLM-based
embeddings with sparse mFPCA to enable covariate-informed data segmentation and type-I error
controlled anomaly detection in sparsely observed, longitudinal, heterogeneous text data, yielding
feature representations suitable for incorporating SL texts in a wide range of downstream tasks.
LLmFPCA-detect is broadly applicable to settings involving subjects with time-stamped text records
that arrive irregularly over time. While we focus on sparsely sampled scenarios, the methodology can
be readily adapted to densely observed data. We demonstrate the effectiveness of LLmFPCA-detect
through its application to the Amazon Reviews dataset (Amazon data) and the Wikipedia talk-page
comment streams (Wiki data). The key components of the framework, as illustrated in Figure 1, are:

1. Representation We derive domain-appropriate LLM embeddings for each time-stamped text. For
the Amazon Reviews dataset, we embed the texts using emotion scores based on Plutchik’s Wheel
of EmotionsPlutchik (1980), which identifies eight primary emotions as the foundation for all
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others. For the Wikipedia request–comment stream, we obtain toxicity and aggression scores
using GPT for each comment to compare against findings from human-annotated scores.

2. Learning trajectory representations and detection with guarantees The numeric trajectories
form multivariate SL data, which are processed using the mFPCA pipeline to obtain multivariate
functional principal component (mFPC) scores. These scores, combined with baseline covariates,
are used for covariate-informed clustering. Anomalies are then detected in an unsupervised
manner by: i) screening points in the tails of the cluster-specific mFPC score distributions, and ii)
statistically testing the screened points while controlling for multiple comparisons. The identified
anomalies are further analyzed to localize time window specific deviations in the population.

3. Interpretability and insights We use LLMs to extract keywords from texts associated with each
cluster and flagged window, revealing dynamic, human-interpretable signals that explain why the
flagged discovery matters.

Organization The rest of the paper is organized as follows. Section 2 provides the motivation
for the clustering and anomaly detection steps of LLmFPCA-detect. Section 3 outlines the meth-
ods, estimation procedures, and algorithms that make up the different steps in LLmFPCA-detect.
Sections 4.1 and 4.2 demonstrates the application of LLmFPCA-detect to customer journey data
from Amazon reviews and to Wikipedia request–comment streams, illustrating its cross-domain
applicability. Additional details and experiments are provided in the Appendix.

2 MOTIVATION AND FRAMEWORK

Figure 1: Proposed framework

In this section, we present the foundational framework underlying
LLmFPCA-detect.

Multivariate functional data representation For each subject
i = 1, . . . , N , a random function Xi ∈ L2(T )p is observed on
a discrete, potentially irregular and sparse time grid {Tij}Ni,N

j,i=1

along with baseline covariates Zi ∈ Rq where (X,Z) ∼ P,
with P being the joint distribution of (X,Z). The population
mean function is defined as µ(t) = E(X(t)), and the covariance
surface for s, t ∈ T is given by C(s, t) = E{(X(s) − µ(s)) ⊗
(X(t) − µ(t))} with entries Cij(s, t) = Cov(X(i)(s), X(j)(t))
is assumed to satisfy the conditions of Proposition 2 in Happ &
Greven (2018). Then,X admits a multivariate Karhunen–Loève
expansion (Propositions 3 and 4 in Happ & Greven (2018))

X(t) = µ(t) +

∞∑
j=1

ρmψm(t)

where ρm = ⟨X(t) − µ(t),ψm(t)⟩ with Cov(ρm, ρn) = λmI{m = n}, and λ1 ≥ λ2 ≥ · · · ≥ 0
are the eigenvalues of the covariance operator associated with C. The corresponding eigenfunctions
ψm, m ∈ N serve as the multivariate functional principal components, with ρm being the associated
mFPC scores. IfX admits a finite expansion with M principal components, Proposition 5 in Happ &
Greven (2018) establishes how mFPCA ofX relates to univariate functional principal component
analysis (uFPCA) of each component X(d)(·) ∈ L2(T ) for d = 1, . . . , p.

Data heterogeneity and anomalies Suppose the trajectories {Xi}Ni=1 belong to K distinct clusters,
denoted by C1, . . . , CK , with

⋃
k Ck = {1, . . . , n} and Ck ∩ Cj = ∅ for j ̸= k. Observations in Ck

are generated according to the distribution Pk, yielding the overall mixture P =
∑K

k=1 πkPk with
(π1, . . . , πK) denoting cluster proportions. For i ∈ Ck, assume thatXi admits a finite multivariate
Karhunen–Loève expansionXi(t) = µk(t) +

∑M
m=1 ρimψm(t), i ∈ Ck, where µk ∈ L2(T )p is

the cluster-specific mean function, and ψm ∈ L2(T )p are shared eigenfunctions across clusters. To
incorporate possible measurement errors and anomalies, we observe

Yi(t) =Xi(t) + ηi(t) + ai(t),

where ηi,ai ∈ L2(T )p capture the measurement errors and anomalies respectively. These are
assumed to be jointly independent of Xi, i = 1, . . . , n, with E(ηi(t)) ≡ 0 for all t ∈ T , and
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Cov(η(j)(s), η(k)(t)) = σ2
ηIs=t for all j, k ∈ {1, . . . , p}. The term ai ≡ 0 almost surely for all

i ∈ AC
0 , where A0 ⊂ {1, . . . , N} denotes the set of anomalous subjects. For each i ∈ A0, we

assume ai(t) ̸= 0 for some t ∈ T0 ⊂ T almost surely. We employ trimmed k-means to recover
the clusters accurately despite being contaminated with outliers; for details on cluster recovery see
Section D.1in Appendix D.

Calibrating the anomalies After the clusters are recovered, the anomalous observations in A0 are
assigned to one of the clusters C1, . . . , CK . To detect A0 in an unsupervised manner, we perform a
screening step within each cluster by examining the tails of the FPC score distribution, approximating
Ck ∩A0 by Ak,ϵ

0 ⊂ Ck (see Appendix E). The distribution of FPC scores in the clean subset Ck ∩AC
0

is then used to recover Ck ∩ A0 with confidence. In practice, each cluster Ck is randomly split into
two subsets, and the non-screened portion is used to calibrate the anomaly detection procedure; see
Theorem E.1 in Appendix E for theoretical guarantees. Finally, based on the detected anomalous set
A0, we analyze the corresponding keywords across different time windows.

The foregoing framework outlines a pipeline for obtaining cluster-specific feature representations
and type-I controlled anomaly detection in fully observed multivariate functional trajectories with
possible measurement errors. In SL settings, each subject is observed at random time points Tij for
i = 1, . . . , N , j = 1, . . . , Ni, with Tij ∈ T . These time points Ti1, . . . , TiNi

are assumed i.i.d. and
independent of Xi and ηi for all i. The number of measurements Ni is random, reflecting sparse
and irregular designs, and Ni, for i = 1, . . . , N , are assumed i.i.d. and independent of all other
random elements. In practice, we observe Yi(Tij), j = 1, . . . , Ni, i = 1, . . . , N , and all relevant
quantities must be estimated from these noisy observations. Section 3 outlines the estimation details
and algorithms for this pipeline, including steps for incorporating the underlying textual data.

3 METHODS: PIPELINE AND ESTIMATION

From SL Texts to Numeric Embeddings The first step maps each time-stamped text Ki(Tij) to a
p-dimensional vector via a fixed embedding

Φ : X −→ Rp, Yi(Tij) = Φ
(
Ki(Tij)

)
, (1)

where Φ, is implemented via LLM prompting, held constant across subjects, and deterministic (the
same text yields the same vector). For subject i this yields the multivariate trajectory {Yi(Tij)}Ni

j=1,
whose coordinates are modeled jointly using mFPCA (e.g. Plutchik emotion embeddings for Amazon
reviews; see Sections C and 4.1). Each subject also has baseline, time-invariant covariates Zi ∈ Rq

(e.g. average rating, review length, engagement duration).

Algorithm 1 Multivariate Functional Principal Component Analysis (mFPCA)

Input: SL data: {Yi(Tij)}Ni
j=1 for i = 1, . . . , N .

1: ({ξ̂(d)ik }
N,Kd

i=1,k=1, µ̂
(d)(t), {ϕ̂(d)k (t)}Kd

k=1) ← uFPCA({(Tij , Y (d)
i (Tij))}i,j) for each dimension

d = 1, . . . , p. ▷ Algorithm 4; only scores are used below
2: Ξ̂i ← (ξ̂

(1)
i1 , . . . , ξ̂

(1)
iK1

, . . . , ξ̂
(p)
i1 , . . . , ξ̂

(p)
iKp

), i = 1, . . . , N ▷ Stack univariate FPC scores

3: Define matrix Ξ̂ ∈ RN×M with rows Ξ̂i where M =
∑p

d=1Kd.
4: ĈΞ ← 1

N−1 Ξ̂
⊤Ξ̂ . ▷ Compute covariance matrix

5: Perform eigen-decomposition of ĈΞ to obtain eigenvalues {λ̂m}Mm=1 and eigenvectors
{v̂m}Mm=1.

6: ψ̂(d)
m (t)←

∑Kd

k=1 v̂
(d)
m,kϕ̂

(d)
k (t), d = 1, . . . , p and m = 1, . . . ,M . ▷ Multivariate eigenfunctions

7: ρ̂im ← Ξ̂⊤
i v̂m for i = 1, . . . , N and m = 1, . . . ,M ▷ Compute mFPC scores

Output: Tuple of estimated mFPC scores, eigenfunctions and mean curves: {ρ̂im, ψ̂m, µ̂}N,M
i,m=1.

Dynamic Trajectory Representations using mFPCA Algorithm 1 details the estimation steps
of the mFPCA setup outlined in Section 2. Starting from {Yi(Tij)}Ni

j=1, we estimate the mFPC
scores ρ̂im by building on the univariate functional principal component analysis (uFPCA) of each
{Y (d)

i (Tij)}Ni,N
j,i=1 for d = 1, . . . , p. The algorithm follows the approach in Happ & Greven (2018),
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using estimated quantities from uFPCA including the mean functions µ̂(d)(t), eigenfunctions ϕ̂(d)(t)
and univariate FPC scores ξ̂(d)ik ; for details see Algorithm 4 in Section C.2 and Yao et al. (2005).

Algorithm 2 Detecting anomalous subjects within a cluster Ĉ
Input: Subject cluster Ĉ; data {Yi(Tij) : i ∈ Ĉ}; significance levels α1, α (where α1 > α).

1: Obtain mFPC scores {ρ̂Ĉim}i∈Ĉ,m=1,...,B corresponding to the top B cluster-specific mFPC
components using Algorithm 6 applied to {Yi(Tij) : i ∈ Ĉ}.

▷ B: number of top mFPC components based on prop. of variance explained
2: Randomly partition Ĉ into disjoint sets I1, I2 of equal size.
3: (G1, G

c
1)← ScreenPotentialOutliers(I1, {ρ̂Ĉim : j ∈ I1}, B, α1). ▷ Algorithm 7

4: (G2, G
c
2)← ScreenPotentialOutliers(I2, {ρ̂Ĉim : j ∈ I2}, B, α1).

5: Initialize A(1) ← ∅. ▷ Set of confirmed outliers for cluster Ĉ
6: A(1)

G1
← ConfirmAnomalies(G1, G

c
2, {ρ̂Ĉim : j ∈ G1 ∪Gc

2}, B, α). ▷ Algorithm 8

7: A(1)
G2
← ConfirmAnomalies(G2, G

c
1, {ρ̂Ĉim : j ∈ G2 ∪Gc

1}, B, α).
8: A(1) ← A(1)

G1
∪ A(1)

G2
.

Output: Set of confirmed anomalous subjects A(1) = {(i, Si) : i ∈ Ĉ is an outlier, Si ̸= ∅}.

Clustering and Anomaly Detection using mFPC Scores and Covariates We segment subjects by
clustering their estimated mFPC scores jointly with static covariates (Algorithm 5, Appendix D). For
each estimated cluster Ĉk we re-fit mFPCA using only its members (Algorithm 1; Algorithm 6), yield-
ing cluster-specific means µ̂k(t), eigenfunctions ψ̂k

m(t), updated scores ρ̂kim and and reconstructed
trajectories (Equation equation 8).

Algorithm 3 Dynamic temporal profiling of anomalous subjects

Input: Type 1 anomalies A(1) (from Alg. 2 for cluster Ĉ); data {Yj(Tjk) : j ∈ Ĉ}; cluster means
{µ̂(d)

Ĉ
(t)} (from Alg. 6); Clean held-out sets Gc

1, G
c
2 & split info I1, I2 for Ĉ (from Alg. 2); time

windows {(aw, bw]}Ww=1; significance level α.

1: ({µ̄(w)

Ĉ
}Ww=1, {D

(w)
j }j∈Gc

1∪Gc
2,w=1,...,W ) ← ComputeWindowDeviations({Yj(Tjk) :

j ∈ Gc
1 ∪Gc

2}, {µ̂
(d)

Ĉ
(t)}, {(aw, bw]}Ww=1). ▷ Compute scores for clean held-out set Alg. 9

2: A(2) ← IdentifyAnomalousWindows(A(1), {Yi(Tij) : i s.t. (i, ) ∈ A(1)},
{µ̄(w)

Ĉ
}, {D(w)

j }, I1, I2, Gc
1, G

c
2,

{(aw, bw]}Ww=1, α). ▷ Identify anomalous windows for subjects (Alg. 10)

Output: Set of subject-indexed anomalous temporal windows A(2) = {(i,Wi) : i ∈ A(1),Wi ̸= ∅}.

Globally anomalous subjects will still be assigned to one of the K clusters unless explicitly
screened—a difficult task in heterogeneous data. To detect such cases post-assignment, we ap-
ply Algorithm 2 (with Algorithms 7 and 8; Appendix E). The procedure tests whether a subject’s
multivariate FPC scores deviate from the typical pattern of its assigned cluster Ĉ, using sample
splitting and data-driven calibration to control multiplicity across principal components. It outputs
flagged subjects A(1) = (i, Si), where Si records the outlying FPC directions—information that then
guides localized anomaly analysis (Algorithm 3).

Subjects flagged by Algorithm 2 (set A(1)) may be anomalous only over portions of their trajectories.
Algorithm 3 localizes these periods by comparing each subject’s raw segments to the cluster mean,
with data-driven calibration (Algorithm 9); implementation details are in Appendix E (Algorithms 9,
10). The output isA(2) = (i,Wi), whereWi denotes the time windows in which subject i’s trajectory
departs from a clean cohort within that window. This step pinpoints atypical intervals and enables
per-window anomaly flags, which feed into the final dynamic keyword profiling stage.
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Dynamic Keyword Profiling Finally, we describe intent extraction from anomalous reviews. For
each subject i, let Si, be the anomalous reviews. Challenges include lexical variation for similar
semantics, shared stylistic drift across users, and scalability for large number of anomalous reviews.
We maintain a time-ordered intent list I(t−)

i from reviews before time t. At time t, an LLM receives
I
(t−)
i , top global intents observed before t, and the current review, and either matches an existing

intent or proposes a new one. Full details appear in Algorithm 11 (Appendix F).

4 REAL DATA APPLICATIONS

4.1 MODELING DYNAMIC EMOTIONS IN AMAZON CUSTOMER REVIEWS

Figure 2: Plutchick’s wheel of
emotions

We use the Amazon Reviews corpus Hou et al. (2024), which in-
cludes 1,946 users and 22,032 reviews over five years, focusing
on Automobile for the main analysis; Beauty & Personal Care and
Sports & Outdoors supply user-level covariates (e.g., cross-category
purchase share). Each review includes a user ID, timestamp, product
title, text, and a 1–5 rating, with users posting over multiple years.

Emotion embedding for text transcripts Plutchik’s wheel of
emotions provides a structured framework for mapping emotional
states along opposing pairs, capturing both intensity and polarity
(see Fig. 2 Semeraro et al. (2021)). We convert each transcript into
four real-valued scores—joy–sadness, trust–disgust, fear–anger, and
surprise–anticipation—on a continuous [−1, 1] scale, where −1 and
1 denote the extremes of each pole (e.g., grief vs. ecstasy), and
intermediate values encode moderate intensity. A zero-shot GPT-3.5-
Turbo prompt returns one scalar per axis (details and validation in Section C.1). Stacking these over
time yields a 4-D timestamped embedding per subject, which serves as the input to LLmFPCA-detect
for mFPCA and the subsequent steps.

Rating Review Joy–Sadness Trust–Disgust Fear–Anger Surprise–Anticipation
5 I use this great oil in all of my 150cc Scooters (was told to by a Scooter

mechanic) and I’ve never had an engine problem. But this price is thru the
roof, $17.50 for a single quart is STUPID...wally world sells it for $4.99...but
its kinda funny that all of Amazon’s oils are priced thru the roof

-0.8 -0.6 -0.8 -1

1 Received this today and went to put it on my 3/8 extension for an oil filter
change. The machining is pretty, but measurements are so poor I cannot get
it on the extension to use. Absolute junk! I should have paid more attention
to the negative review.

-0.77 -0.75 -0.5 -0.7

Table 1: Amazon customer reviews with emotion scores across four Plutchik dimensions.

Table 1 illustrates how emotion embeddings reveal customer pain points that are not captured by
5-star ratings alone. In the first example, a 5-star review shows strong sadness (–0.8), disgust (–0.6),
anger (–0.8), and surprise (–1), indicating frustration with pricing despite overall satisfaction. The
third example, also rated 1 star, shows high sadness (–0.77), disgust (–0.75), and surprise (–0.7),
pointing to severe frustration over usability issues.

Emotion mFPCA scores (Algorithm 1) improve predictive power over product ratings We test
whether review text improves forecasting of adverse outcomes (e.g., sudden rating drops) in Amazon
Reviews. A “rating drop” is defined as the extreme percentile of each user’s maximum gap between
consecutive ratings. We compare two optimally tuned random-forest models on a class-balanced
sample with identical baseline covariates—cluster labels from Algorithms 1–5 and purchase mix
across categories. Model A summarizes past behavior by the mean Automobile rating; Model B
replaces that single aggregate with emotion mFPC scores, capturing time-varying textual signals.
On the test set, Model A: accuracy 0.542, precision 0.538, recall 0.596, F1 0.565, ROC–AUC 0.534.
Model B improves all metrics—accuracy 0.609 (+12.4%), precision 0.610 (+13.4%), recall 0.603
(+1.2%), F1 0.606 (+7.3%), ROC–AUC 0.645 (+20.8%)–showing that compact emotion-trajectory
features capture predictive signal beyond coarse star-rating averages.

Clustering dynamics and case studies Figure 3 plots mean emotion trajectories for the three clusters
from purchasing proportions in Automobiles, Beauty & Personal Care, and Sports & Outdoors).
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Figure 3: Mean emotion trajectories across the three user clusters. Curves represent mean scores for
the Joy–Sadness, Trust–Disgust, Fear–Anger, and Surprise–Anticipation emotion dimensions.

fear−anger joy−sadness surprise−anticipation trust−disgust

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
0.3

0.4

0.5

0.13

0.15

0.17

0.1

0.2

0.025

0.050

0.075

Time

E
m

ot
io

n 
S

co
re

Clean Cohort Anomaly Mean

Figure 4: Mode of variation plot for a user along the fourth FPC (outlying) from cluster 3

Cluster 1 has the highest baseline across emotions–consistently stronger affect. Cluster 3 follows a
similar temporal shape but is uniformly lower (milder affect). Cluster 2 departs most, with elevated
sadness and anger, indicating sharper pain points. Because anomalies are scored relative to each
cluster’s mean, even upward shifts in positive emotion within Cluster 2 can register as anomalous.
Section D.3 of the Appendix reports bootstrap analysis confirming cluster stability.

Through mode-of-variation plots (see Section C.2for details) and corresponding review excerpts in
the flagged time window, we show that the detected anomalies capture customer pain points. Figure 4
shows a user’s emotional trajectory relative to Cluster 3. The user’s emotions are consistently shifted
from the cluster mean along the fourth eigenfunction in Cluster 3, with a pronounced spike in the
fear–anger petal and a sharp drop in joy–sadness during the final time window—signaling a clear pain
point. Review texts from this period reveal issues with mismatched parts, specifically a replacement
door-handle cover with incorrect keyhole cut-outs. The dominant complaints relate to product fit
and quality control. These insights suggest actionable interventions, such as enforcing compatibility
checks at purchase and improving final-stage quality control by the seller.

Figure 5 shows a user exhibiting a dip–recovery emotional pattern along the second eigenfunction.
Early in the timeline, all four emotion petals remain well below the cluster baseline. During the
anomalous time window, there is a sharp rise in fear and surprise, driven by issues related to poor
product quality. The user expresses frustration and regret, suggesting loss of brand trust. Key pain
points include the failure of a critical component and confusion caused by missing documentation.

Keyword profiling After detecting anomalies, we perform keyword profiling (Algorithm 11 in
Section F of the Appendix) to each flagged instance. Table 2 summarizes the keywords associated
with anomalous points in each cluster. A quick glance shows that users in Cluster 2 tend to express
broadly negative emotions, while Cluster 3 highlights more specific issues—such as missing cables
and poor documentation—reflecting the more descriptive and varied nature of reviews in that group.
Table 6 illustrates dynamic profiling of keywords; see Section F in the Appendix for details.

4.2 TRACKING TOXICITY AND AGGRESSION IN WIKIPEDIA REQUEST–COMMENT STREAM

We evaluate LLmFPCA-detect on the English Wikipedia request–comment stream to demonstrate
cross-domain applicability. For each comment, we record the text, timestamp, structured user
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Figure 5: Mode of variation plot for a user along the second FPC (outlying) from cluster 1

Cluster Keywords
Cluster 1 as described, good quality, perfect product, poor value for money, wrong size, poor fit

Cluster 2 poor quality, poor value for money

Cluster 3 as described, bulky design, good quality, good value for money, good design, leaks fuel,
missing cable, quantity issue, poor documentation, wrong size

Table 2: Group-level pain points detected across clusters

covariates, and crowdsourced ground-truth toxicity/aggression scores. This corpus exemplifies sparse
longitudinal text: users post at irregular, infrequent intervals. The dataset was collected via the
Wikipedia API, restricted to the user–talk and article–talk namespaces, and sourced from Wiki data.
We retain comments from 2010–2015 authored by 925 pseudonymized users.

Method TW1 TW2 TW3 TW4 TW5
LLmFPCA-detect (gpt-4o-mini) 0.58 0.58 0.46 0.37 0.32
Isolation Forest (BERT) 0.41 0.33 0.25 0.23 0.39
Isolation Forest (gpt-4o-mini) 0.41 0.33 0.25 0.23 0.39

Table 3: F1 scores for anomalies detected by LLMFPCA-DETECT versus ground truth, compared
with Isolation Forest on GPT-derived scores and a BERT baseline (segregated by time windows).

Comparison with state-of-the-art We assess anomaly detection on Wikipedia by treating human-
annotated toxicity/aggression as surrogate ground truth and extracting GPT-derived toxicity/ag-
gression scores from text via prompts. As a content-agnostic baseline, we use BERT embeddings
(no explicit toxicity cues). We partition the timeline into five windows and, within each, define
pseudo–ground-truth anomalies using Isolation Forest on the human scores plus user covariates
(comment count, median inter-comment gap). We then run Isolation Forest on (i) GPT-derived
scores and (ii) BERT embeddings (each with the same covariates) as baselines. Finally, we apply
LLmFPCA-detect to the GPT-derived trajectories with the same covariates to flag anomalies across
the five windows and compare against these baselines (Table 3).

Cluster dynamics LLmFPCA-detect flags not only one-off vandalism or brief flare-ups by otherwise
well-behaved contributors, but also sustained problematic behavior and its mode of deviation. For
example, Cluster 1 outliers tend to post unusually high volumes or engage in extended policy disputes,
whereas Cluster 2 outliers show short, intense bursts of toxic language. Table 4 presents representative
cases with brief excerpts and the corresponding anomalous time window. In Cluster 1, the dominant
pattern is procedural friction—disagreements about process (e.g., whether a proposed mentorship
program requires further consensus) rather than direct attacks. By contrast, Cluster 2 features
overt hostility, where procedural disagreements escalate into personal or confrontational language.
Additionally, Appendix D.3 reports bootstrap analyses confirming stability of the obtained clusters.

Keyword profiling Dynamic keyword profiling makes each anomaly interpretable (Table 5). Rather
than an opaque outlier score, moderators see the top terms that triggered the flag, revealing the
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Cluster User ID Comment excerpt (abridged) Label

1 10783082 “. . . If that’s how you want it. I will talk to this to ANI if necessary . . . ” 1
1 10756369 “=== Adopt Me === Here is a proposal for a new mentorship process

. . . ”
1

2 2305952 “OK, maybe I was wrong. I’m sorry, but don’t try me again . . . ” 5
2 2305952 “No, that’s irrelevant. Your source is garbage, stop spamming it.” 5

Table 4: Examples from the Wikipedia comment stream where detected anomalies match crowd-
sourced annotations, showing cluster ID, anonymized user ID, excerpt, and toxicity/aggression label.

Cluster 1 (Window) Top keywords (LLmFPCA-detect) Theme

W1 consensus, policy, “WP: ANI” Policy enforcement friction
W2 civility, manners, please, courtesy Soft-skills reminders
W3 backlog, deadline, stall, formalise Procedural urgency

Cluster 2 (Window) Top keywords (LLmFPCA-detect) Theme

W4 nonsense, garbage-source,
stop-spamming

Direct hostility

W5 revert, vandal, warning, block, “3RR” Conflict over content
W5 wasting-time, already-explained Moderator fatigue

Table 5: Dynamic–keyword profiling makes each anomaly legible. In this Wikipedia setting, instead
of an opaque outlier score, the moderator sees the top keywords that drove the statistical flag.

concerns underlying anomalous behavior. In this corpus, Cluster 1 anomalies are predominantly
procedural—e.g., disputes over which venue (WP:ANI, etc.) should adjudicate. Cluster 2, by contrast,
exhibits explicit antagonism: personal attacks, contempt for sources (“garbage-source”), and edit-war
jargon. The exasperation lexicon (“wasting time,” “already explained”) further signals moderator
fatigue—an operational risk that steady-state toxicity metrics would miss.

Identifying peak–hostility windows (e.g., Window 5) with LLmFPCA-detect enables proactive
moderation, such as temporarily throttling edits. In Cluster 1, the dominant issue is procedural
friction, suggesting policy fixes like clearer closure rules or targeted sanctions. Keyword profiling
pinpoints specific, time-bounded situations where light-touch actions can prevent rule violations
and burnout. Linking time windows to salient terms reveals root causes and supports proportionate,
domain-specific responses instead of one-size-fits-all bans.

5 CONCLUSION

LLmFPCA-detect provides an end-to-end framework for sparse longitudinal (SL) text by integrating
LLM-embeddings with functional data analysis. LLmFPCA-detect tackles key challenges in such
datasets—including sparsity, irregularity, noise, and semantic complexity—by embedding text into
meaningful numeric representations, followed by mFPCA which is used for user segmentation,
anomaly detection, and dynamic intent profiling across large SL text datasets, a setting that remains
largely unaddressed in the literature. Applied to Amazon customer reviews, LLmFPCA-detect
successfully uncovers emotion dynamics and identifies critical pain points in the customer journey,
offering valuable insights for consumer analytics. We demonstrate the utility of LLmFPCA-detect on
English Wikipedia request–comment stream to detect toxic comments, where the detected anomalies
align well with crowdsourced human annotations. The flexibility of LLmFPCA-detect makes it
applicable to other domains such as healthcare, education, and social media where SL text data
is routine. Future work includes establishing theoretical guarantees based on mFPCA estimates
rather than fully observed trajectories, and extending LLmFPCA-detect to other supervised and
unsupervised tasks on SL text datasets.
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