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Abstract

One of the key challenges in decentralized and federated learning is to design
algorithms that efficiently deal with highly heterogeneous data distributions across
agents. In this paper, we revisit the analysis of Decentralized Stochastic Gradient
Descent algorithm (D-SGD) under data heterogeneity. We first exhibit the key role
played by a new quantity, called neighborhood heterogeneity, on the convergence
rate of D-SGD. Neighborhood heterogeneity provides a natural criterion to learn
data-dependent and sparse topologies that reduce the detrimental effect of data het-
erogeneity on the convergence of D-SGD. For the important case of classification
with label skew, we formulate the problem of learning a topology as a tractable
optimization problem that we solve with a Frank-Wolfe algorithm. As illustrated
over a set of experiments, the learned sparse topology is showed to balance the
convergence speed and the per-iteration communication costs of D-SGD.

1 Introduction

Decentralized and federated learning methods allow training from data stored locally by several agents
without exchanging raw data. One of the key challenges is to deal with data heterogeneity: as each
agent collects its own data, local datasets typically exhibit different distributions. In this work, we
study this challenge in the context of fully decentralized learning algorithms. Those algorithms, such
as the celebrated Decentralized SGD (D-SGD) [22, 23, 17, 35, 19], operate on a graph representing
the communication topology, i.e. which pairs of nodes exchange information with each other.
Such topology rules a trade-off between the convergence rate and the per-iteration communication
complexity of the algorithms [34]. Choosing a good topology is therefore an important question, but
remains a largely open problem in the presence of data heterogeneity.

In this work, we fill the theoretical gap that currently exists on this question. Our first contribution
is a refined convergence analysis of D-SGD which introduces a new quantity, called neighborhood
heterogeneity, coupling the topology with the data distributions. Our results exhibit sharper rates than
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those of the state-of-the-art [17] and demonstrate that the impact of the topology on the convergence
rate of D-SGD does not only depend on its connectivity: it also depends on its capacity to compensate
the heterogeneity of local data distributions at the neighborhood level.

Our second contribution deals with the problem of learning a good data-dependent topology. We
argue that neighborhood heterogeneity provides a natural objective and show that it can be effectively
optimized in practice in the important case of classification with label distribution heterogeneity
across nodes [16, 13, 2]. We solve the resulting problem using a Frank-Wolfe algorithm [11, 15],
allowing us to track the quality of the learned topology as new edges are added in a greedy manner.
To the best of our knowledge, our work is the first to learn the graph topology for decentralized
learning in a way that is data-dependent, controls communication costs, and is theoretically justified.

1.1 Related Work

Algorithmic improvements to decentralized SGD. Significant work has been devoted to extensions
of D-SGD. We can mention those based on momentum [1, 12, 24, 38], cross-gradient aggregations
[10], gradient tracking [18] and bias correction (or variance reduction) [31, 37, 36, 14]. Many
of these schemes are able to reduce the order of the term that depends on the heterogeneity but
remains impacted by strong heterogeneous scenarios. We stress that the above line of research is
complementary to ours as it is based on modifications of the D-SGD algorithm (which often requires
additional computation and/or communication). In contrast, our work does not modify the algorithm:
we provide a refined analysis and a method to learn the topology. We believe that our results can be
combined with the above algorithmic improvements, but leave such extensions for future work.

Choosing and learning good topologies for decentralized learning. There is a long line of research
on choosing (e.g. grid, circle, exponential graphs) [6, 28, 35] or learning [3, 34, 26, 35] topologies
maximizing their spectral gap. Unlike our approach, these methods simply seek to increase the
connectivity of the topology, but they do not take into account the data distributions across nodes.

Until now, [2] was the only work leveraging the distribution of data in the design of the topology.
Focusing on classification under label skew, they propose a heuristic approach that consists of inter-
connected cliques, where the proportion of classes in each clique should be as close as possible to
the global proportion. Our approach is more flexible as it can learn more general topologies, and
provides full control over the sparsity of the topology. Furthermore, our topology learning criteria
is theoretically justified, while the one in [2] is only supported by empirical experiments. We think
however that the ideas of the present paper could pave the way for a theoretical analysis of their work.

2 Preliminaries

In decentralized and federated learning, a set of n ∈ N? agents (nodes) with their own data distribution
collaborate in order to learn a single parameter θ ∈ Rd optimizing the global consensus objective [22]:

f∗ , minθ∈Rd

[
f(θ) , 1

n

∑n
i=1 fi(θ)

]
, (1)

where each fi(θ) , EZi∼Di
[Fi(θ;Zi)] is the local objective function associated to node i. The

random vectorZi is drawn from the data distributionDi of agent i, having support over a space Ωi, and
Fi is its pointwise loss function (differentiable in its first argument). Note that the distributionsDi can
differ much, leading the local optima θ?i , arg minθ fi(θ) to be far from the global optimum θ? of (1).

To collaboratively solve (1) in a fully decentralized manner, the agents communicate with each other
over a directed graph. The graph topology is represented by a matrix W ∈ [0, 1]n×n, where Wij > 0
means that agent i exchange messages with agent j, while Wij = 0 (no edge) means that node i
and j do not communicate with each other. The choice of topology W affects the trade-off between
the convergence rate of the algorithms and the communication costs. Indeed, more edges imply
higher communication costs but often faster convergence. Communication costs, or per-iteration
complexity, are often regarded as proportional to the maximum (in or out)-degrees of nodes in the
topology, representing the maximum (incoming or outcoming) load of a node [22]:

din
max(W ) = maxi

∑n
j=1 I[Wji > 0], dout

max(W ) = maxi
∑n
j=1 I[Wij > 0]. (2)

D-SGD [22, 17] is a popular fully decentralized algorithm for solving problems of the form (1). It
requires that W is a mixing matrix i.e. a doubly stochastic matrix, and in the rest of the paper, we
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will use the terms topology and mixing matrix interchangeably. D-SGD is recalled in Algorithm 1 of
Appendix A.1. At iteration t, each node i first updates its local estimate θ(t)

i based on∇Fi(θ(t)
i , Z

(t)
i ),

the stochastic gradient of Fi evaluated at θ(t)
i with Z(t)

i sampled fromDi. Then, each node aggregates
its current parameter value with its neighbors according to the mixing matrix W (t).

Recall some standard assumptions extensively considered in decentralized learning [4, 30, 22, 21, 19]:

Assumption 1. (L-smoothness) There exists a constant L > 0 such that for any Z ∈ Ωi, θ, θ̃ ∈ Rd
we have ‖∇Fi(θ, Z)−∇Fi(θ̃, Z)‖ ≤ L‖θ − θ̃‖ .
Assumption 2. (Bounded variance) For any node i ∈ J1, . . . , nK, there exists a constant σ2

i > 0

such that for any θ ∈ Rd, we have EZ∼Di

[
‖∇Fi(θ, Z)−∇fi(θ)‖22

]
≤ σ2

i .

Assumption 3. (Mixing parameter) There exists a mixing parameter p ∈ [0, 1] such that for any
matrix M ∈ Rd×n, we have ‖MWT −M‖2F ≤ (1 − p)‖M −M‖2F , where ‖ · ‖F denotes the
Frobenius norm and M = M · 1

n11
T is the column-wise average of M repeated n times.

3 Joint Effect of Topology and Data Heterogeneity

In this section, we introduce a new quantity called neighborhood heterogeneity and we derive new
convergence rates for D-SGD that depend on this quantity. These rates have several nice properties: (i)
they hold under weaker assumptions than previous work (unbounded heterogeneity), (ii) they highlight
the interplay between the topology and the data distribution across nodes, and (iii) they provide a
criterion for choosing topologies not only based on their mixing properties but also based on data.

3.1 Neighborhood Heterogeneity

Given a mixing matrix W , our notion of neighborhood heterogeneity measures the expected distance
between the aggregated gradients in the neighborhood of a node (as weighted by W ) and the global
average of gradients. In the rest of our analysis, we assume this distance to be bounded.
Assumption 4 (Bounded neighborhood heterogeneity). There exists a constant τ̄2 > 0 such that:

H ,
1

n

n∑
i=1

E
∥∥∥ n∑
j=1

Wij∇Fj(θ, Zj)−
1

n

n∑
j=1

∇Fj(θ, Zj)
∥∥∥2

2
≤ τ̄2, ∀θ ∈ Rd. (3)

where the expectation is taken with respect to (Z1, . . . , Zn) ∼ D1 ⊗ . . .⊗Dn.

To better understand Assumption 4, let us decompose the neighborhood heterogeneity H using a
bias-variance decomposition, which leads to the following bound:

H ≤ 1

n

n∑
i=1

∥∥∥ n∑
j=1

Wij∇fj(θ)−∇f(θ)
∥∥∥2

2
+
σ2

max

n
‖W − 1

n
11T‖2F , with σ2

max = max
i
σ2
i . (4)

This upper bound contains two terms. The first one is a bias term, related to the heterogeneity of the
problem. It essentially measures how the gradients of local objectives differ from the gradient of the
global objective when they are aggregated at the neighborhood level of the topology through W . The
second one is a variance term closely related to the mixing parameter p of Assumption 3: it is upper
bounded by σ2

max(1− p) and lower bounded by σ2
max(1− p)/n, see Proposition 3 in Appendix D.

In our analysis, we will use Assumption 4 in replacement of the bounded local heterogeneity condition
used in previous literature [22, 23, 31, 1, 34, 17, 35]. We recall it below.
Assumption 5 (Bounded local heterogeneity). There exists a constant ζ̄2 > 0 such that
1
n

∑n
i=1 ‖∇fi(θ)−∇f(θ)‖22 ≤ ζ̄2, ∀θ ∈ Rd.

Assumption 5 has the same form as the bias term of H in (4) but considers W = I (i.e., ignoring the
links between nodes). It requires that the local gradients should not be too far from the global gradient:
the more heterogeneous the nodes’ distribution, the bigger ζ̄2. In contrast, neighborhood heterogeneity
takes into account the mixture of gradients in the neighborhoods defined by W . Crucially, our set of
assumptions (Assumptions 2-4) is less restrictive than those of previous work (Assumptions 2, 3, 5).
To see this, we first show that our set of assumptions is implied by the latter (proof in Appendix D).
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Proposition 1. Let Assumptions 2-3 and 5 to be verified. Then Assumption 4 is satisfied with
τ̄2 = (1− p)

(
ζ̄2 + σ̄2

)
, where σ̄2 , 1

n

∑
i σ

2
i .

We can show that our set of assumptions (2-4) is strictly more general than Assumptions 2, 3, 5 by
identifying situations where the bias-variance decomposition (4) is bounded while Assumption 5 is
not verified. A trivial example is with the complete graph W = 1

n11
T, for which H = 0 and thus

τ̄2 = 0, regardless of heterogeneity. More interestingly, some combinations of sparse topologies and
data distributions can ensure that τ̄2 remains small while ζ̄2 can be arbitrary large. We give such
an example in Appendix B. In Section 4, we will show how we can learn a sparse topology W that
(approximately) minimizes the neighborhood heterogeneity H .

3.2 Convergence Analysis

We now present the main theoretical result of this section: two new non-asymptotic convergence
results for D-SGD under Assumption 4. The proof of this theorem is given in Appendix C.

Theorem 1. Consider the D-SGD algorithm with mixing matrices W (0), . . . ,W (T−1) satisfying
Assumptions 3 and 4. Assume further that Assumptions 1-2 are respected, and denote θ̄(t) ,
1
n

∑n
i=1 θ

(t)
i . For any target accuracy ε > 0, there exists a constant stepsize η ≤ p

8L such that:

Convex case:
1

T+1

∑T
t=0 E(f(θ̄(t))− f?) ≤ ε as soon as

T ≥ O
( σ̄2

nε2
+

√
Lτ̄

pε
3
2

+
L

pε

)
r0 , (5)

Non-convex case:
1

T+1

∑T
t=0 E‖∇f(θ̄(t)‖22 ≤ ε as soon as

T ≥ O
(Lσ̄2

nε2
+

Lτ̄

pε
3
2

+
L

pε

)
f0 , (6)

where T is the number of iterations, r0 = ‖θ(0) − θ?‖22, f0 = f(θ(0)) − f? and O(·) hides the
numerical constants explicitly provided in the proof.

We first note that our rates are consistent with those of the literature. Taking the complete graph
allows getting rid of the middle terms and recover the rate of Parallel SGD [8], while with Assumption
5 we can bound τ̄ using Proposition 1 and recover the state-of-the-art bound of [17]. In addition to
requiring less restrictive assumptions than those found in [17], the above rates exhibit sharper bounds.
This comes notably from the fact that, in the heterogeneous setting τ̄ can be much smaller than√

1− p(ζ̄ + σ̄) (see discussion in Section 3.1), and that now the topology influence the convergence
rates via both the mixing parameter p and τ̄ .

4 Learning the Topology

In the previous rates (5) and (6), the smaller is τ̄ , the fewer iterations are needed to reach an error
ε. This motivates the idea of learning a sparse topology W that approximately minimizes (an upper
bound of) the neighborhood heterogeneityH in order to control the trade-off between the convergence
rate and the per-iteration communication complexity, see Equation (2). However, minimizingH in the
general setting appears to be challenging, as Equation (3) should hold for all θ ∈ Rd. Below, we focus
on classification with label skew, and show that Equation (3) simplifies to a more tractable quantity.

4.1 Statistical Learning with Label Skew

Label skew is an important type of data heterogeneity in federated classification problems [16, 13, 2].
In this framework, each agent i is associated with a random variable Zi = (Xi, Yi) ∼ Di where
Xi ∈ Rq represents the feature vector and Yi ∈ J1, . . . ,KK the associated class label. The agents
aim to learn a classifier hθ : Rq → J1, . . . ,KK parameterized by θ ∈ Rp such that hθ(Xi) is a good
predictor of Yi for all i. The heterogeneity of the distributions {Di}ni=1 comes only from a difference
in the label distribution Pi(Y ) i.e. Di = Pi(X,Y ) = P (X|Y )Pi(Y ). For simplicity, we assume
that all agents use the same pointwise loss function (Fi = F for all i), e.g., the cross-entropy. Under
this framework, we can obtain an upper bound on H that can effectively be minimized.

Proposition 2 (Upper bound on H under label skew). Consider the statistical framework de-
fined above and assume there exists B > 0 such that ∀k = 1, . . . ,K and ∀θ ∈ Rd,
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‖EX [∇F (θ;X,Y )|Y = k] − 1
K

∑K
k′=1 EX [∇F (θ;X,Y )|Y = k′]‖22 ≤ B. Then, denoting

πjk , Pj(Y = k), we can bound the neighborhood heterogeneity H in Equation (3) by:

H ≤ KB

n

K∑
k=1

n∑
i=1

( n∑
j=1

Wijπjk −
1

n

n∑
j=1

πjk

)2

+
σ2

max

n
‖W − 1

n
11T‖2F . (7)

The proof is provided in Appendix D.Note that the assumption with B corresponds to a bounded
heterogeneity hypothesis at the class level (rather than at the agent level as in Assumption 5).

The upper bound (7) is quadratic in W and is equal to 0 (minimum) when W = 11T

n , the complete
topology with uniform weights. However, as already discussed, such a dense mixing matrix is
impractical as it yields huge communication costs. We will show how the per-iteration communication
complexity can be controlled while approximately minimizing the upper bound (7).

4.2 Optimization with the Frank-Wolfe Algorithm

In this section, we design an algorithm that finds a sparse approximate minimizer of the quantity (7).
We focus on learning a single mixing matrix W as a “pre-processing” step (before running D-SGD),
and do so in a centralized manner. Specifically, we assume that a single party (which may be one of
the agents, or a third-party) has access to the class proportions πik = Pi(Y = k) for each agent i and
each class k. In practice, since each agent has access to its local dataset, it can compute these local
proportions locally and share them without sharing the local data itself.

Optimization problem. Our objective is to learn a sparse mixing matrix W which (approximately)
minimizes the upper bound (7). Denoting by S ,

{
W ∈ [0, 1]n×n : W1 = 1, 1TW = 1T

}
the set

of doubly stochastic matrices, the optimization problem can be written as follows:

minW∈S

{
g(W ) , 1

n

∥∥∥WΠ− 11T

n Π
∥∥∥2

F
+ λ

n

∥∥∥W − 11T

n

∥∥∥2

F

}
, (8)

where Π ∈ [0, 1]n×K contains the class proportions {πik} and λ > 0 is a hyperparameter. To exactly
match (7), λ should be equal to σ2

max

KB (but σ2
max and B are unknown in practice). Instead, we use

λ to control the bias-variance trade-off. As discussed in Section 3.1, the variance term is an upper
bound of 1− p with p the mixing parameter of W . Therefore, λ allows to tune a trade-off between
the minimization of the bias due to label skew and the maximization of the mixing parameter of W .

Algorithm. We propose to find sparse approximations of (8) using a Frank-Wolfe (FW) algorithm,
which is well-suited to learn a sparse parameter over convex hulls of finite set of atoms [15]. In our
case, S corresponds to the convex hull of the set A of all permutation matrices [25, 32, 33].

FW applied to our specific framework is summarized in Algorithm 2 of Appendix A.2 and is referred
to as Sparse Topology Learning with Frank-Wolfe (STL-FW). In a nutshell, at each iteration t
STL-FW finds the best (sparse) matrix P ∈ A in the opposite direction of the gradient ∇g(Ŵ (t))

and then performs a convex update of the current iterate Ŵ (t) with P . Crucially, STL-FW allows
to control the sparsity of the final solution: at the end of the l-th iteration, each node will have at
most l in-neighbors and l out-neighbors. The per-iteration communication complexity induced by the
learned topology can thus be directly controlled by the number of iterations of our algorithm. The
trade-off with the quality of the solution is quantified by the following theorem.

Theorem 2. Consider the statistical setup presented in Section 4.1 and let {Ŵ (l)}Ll=1 be the sequence
of mixing matrices generated by STL-SW (Appendix A.2). Then, at any iteration l = 1, . . . , L, we
have:

g(Ŵ (l)) ≤ 16
l+2

(
λ+ 1

n

∥∥∑K
k=1(Π:,k −Π:,k1) ·ΠT

:,k

∥∥?
2

)
, (9)

where ‖·‖?2 stands for the nuclear norm, i.e., the sum of singular values. Furthermore, we have
din

max(Ŵ
(l)) ≤ l and dout

max(Ŵ
(l)) ≤ l, resulting in a per-iteration complexity bounded by l.

The above theorem shows that the objective g decreases at a rate of O(1/l) as new connections
between nodes are made. In general, we can bound (9) less tightly by g(Ŵ (l)) ≤ 16

l+2 (λ+ 1), which
is independent of the number of nodes n. Recall that with λ = σ2

max/KB, the upper bound (7) over
H is exactly equal to KB · g(W ). Therefore, the bound given in Theorem 2 also naturally provides a
bound on the neighborhood heterogeneity H , which can be plugged in the rates of Theorem 1.
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Figure 1: Convergence of D-SGD with STL-FW (our approach) and alternative topologies on real datasets
under different communication budgets. The fully connected graph induces intractable communication costs but
gives a performance upper bound, while the exponential graph is shown for dmax = 10 but exceeds this budget.

5 Experiments

This section shows the practical usefulness of our topology learning method STL-SW. We call
communication budget dmax = max{din

max, d
out
max} the maximal number of neighbors a node can have

in the used topologies, which controls the per-iteration communication complexity incurred by any
node. Additional results on both synthetic and real-world data can be found in Appendix E.

Setup. We follow the setup in [2] and consider two classification tasks: a linear model on MNIST [9]
and Group Normalized LeNet [13] on CIFAR10 [20]. In both cases, we partition the dataset on 100
nodes using the scheme introduced in [27], i.e. on average, nodes will have examples of two classes,
but may have only 1 and up to 4. We re-use the hyper-parameters from [2]: learning rate of 0.1 and
batch size of 128 for MNIST, and learning rate of 0.002 and batch size of 20 for CIFAR10. We
compare D-SGD with STL-FW to other fixed topologies: (1) a fully-connected graph (dmax = 99),
which exhibits the fastest convergence speed, (2) a random graph with the same communication
budget as STL-FW, (3) D-Cliques [2], also with the same budget, and (4) a deterministic exponential
graph promoted in recent work [35] (dmax = 14). Note that all competing topologies are data-
independent, except D-Cliques. For all experiments with STL-FW, we use λ = 0.1 since, remarkably,
its value does not significantly change the results (see Fig. 3 in Appendix E).

Results. Figure 1 shows our results for varying communication budget dmax: small (2), medium (5)
and large (10). On MNIST, STL-FW converges faster than all competitors and quickly tends to the
fully-connected topology as the budget dmax increases. Remarkably, STL-FW is already showing
good performance at dmax = 2, which is a very small budget that the other topologies (except the
random one) cannot achieve. As expected, the two data-dependent topologies (D-Cliques and STL-
FW) outperform the random topologies, including the exponential graph which has better connectivity
(dmax = 14) but does not compensate for the heterogeneity. The fact that STL-FW improves over
D-Cliques may be explained by the fact that D-Cliques only compensate the heterogeneity (the bias
term in H) without consideration for the overall connectivity (the variance term in H).
On CIFAR10, we see that dmax = 2 is not sufficient to reach good performance. This can be explained
by the increased complexity of the problem (nonconvex objective with a deep model), requiring larger
communication budgets. This is in line with empirical results in prior work [19]. However, with
slightly larger budgets i.e. dmax = 5 and 10 (dmax = 3 in Fig. 5, App. E), performance improves and
the results are consistent with those on MNIST: STL-FW outperforms other sparse topologies and
comes close to the performance of the fully connected topology for dmax = 10. Overall, STL-FW
provides better convergence speed than all tractable alternatives, with the additional ability to operate
in low communication regimes (unlike D-Cliques and the exponential graph).
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6 Conclusion

In this paper we showed, thanks to the new notion of neighborhood heterogeneity, that if chosen
appropriately, the topology can compensate for the heterogeneity and speed up convergence. We also
tackled the problem of learning such a good topology under data heterogeneity. To the best of our
knowledge, our work is the first to provide a data-dependent approach, with explicit control on the
trade-off between the communication cost and the convergence speed of D-SGD. We believe that our
work paves the way for the design of other data-dependent topology learning techniques. One may
for instance investigate different types of heterogeneity (beyond label skew), different knowledge
assumptions (e.g., not knowing the proportions), and dynamic learning of the topology.
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Appendix

A Algorithms

A.1 Decentralized Stochastic Gradient Descent

Algorithm 1 Decentralized SGD [22, 17]

Require: Initialize ∀i, θ(0)
i = θ(0) ∈ Rd, iterations T , stepsizes {ηt}T−1

t=0 , mixing {W (t)}T−1
t=0 .

for t = 0, . . . , T − 1 do
for each node i = 1, . . . , n (in parallel) do

Sample Z(t)
i ∼ Di

θ
(t+ 1

2 )
i ← θ

(t)
i − ηt∇Fi(θ

(t)
i , Z

(t)
i )

θ
(t+1)
i ←

∑n
j=1W

(t)
ij θ

(t+ 1
2 )

j

end for
end for

A.2 Sparse Topology Learning with Frank-Wolfe (STL-FW)

Algorithm 2 Sparse Topology Learning with Frank-Wolfe (STL-FW)

Require: Initialization Ŵ (0) = In, class proportions Π ∈ [0, 1]n×K and hyperparameter λ > 0.
for l = 0, . . . , L do

P (l+1) = arg minP∈A 〈P,∇g(Ŵ (l))〉 . Find best permutation matrix
γ(l+1) = arg minγ∈[0,1] g

(
(1− γ)Ŵ (l) + γP (l+1)

)
. Line-search

Ŵ (l+1) = (1− γ(l+1))Ŵ (l) + γ(l+1)P (l+1) . Convex update
end for

Starting from the identity matrix Ŵ (0) = In ∈ S, each iteration l ≥ 0 consists of moving towards
a feasible point P (l+1) that minimizes a linearization of g at the current iterate Ŵ (l). As finding
P (l+1) is a linear problem, solving it over S is equivalent to solving it over A. Although A contains
n! elements, the linear program corresponds to the well-known assignment problem [5, 7] and can be
solved efficiently with the Hungarian algorithm in time O(n3) [25]. Note that the gradient needed to
solve the assignment problem is given by

∇g(W ) = 2
n

∑K
k=1(WΠ:,k −Π:,k1) ·ΠT

:,k + 2
nλ
(
W − 11T

n

)
,

where Π:,k corresponds to the k-th column of Π. The next iterate Ŵ (l+1) is then obtained as a convex
combination of P (l+1) and Ŵ (l), and is thus guaranteed to be in S . The optimal combining weight is
computed by line-search, which has a closed-form solution since g is quadratic.

Indeed, recall that we seek to solve:

γ? = arg min
γ∈[0,1]

{
g̃(γ) , g ((1− γ)W + γP )

}
,

with

g(W ) =
1

n

∥∥∥WΠ− 11T

n
Π
∥∥∥2

F
+
λ

n

∥∥∥W − 11T

n

∥∥∥2

F
.

The function g being quadratic, the objective g̃(γ) is also quadratic with respect to γ. Hence, it
suffices to put the derivative g̃′ of g̃ equal to 0, and we get the closed-form solution:
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γ? =

∑K
k=1(Π:,k1−WΠ:,k)T(P −W ) ·Π:,k − λ · tr

((
W − 11T

n

)T
(P −W )

)
‖(P −W )Π‖2F + λ‖P −W‖2F

.

B Example of a sparse topology

Recall that we want to find an example where Assumption 5 is not verified while Assumption 4 is.

Let us consider n nodes with n an even number. For all i = 1, . . . , n, assume Zi ∼ N (m, σ̃2)
if i is odd and Zi ∼ N (−m, σ̃2) if i is even. Assume further that σ̃2 < +∞ but m > 0 can be
asymptotically large. For all i = 1, . . . , n we fix Fi(θ, Zi) = (θ − Zi)2, which corresponds to a
simple mean estimation objective.

Consider a fixed mixing matrix W associated with a ring topology that alternates between the two
distributions. Specifically, for i = 2, . . . , n− 1 and j = 1, . . . , n, we fix the weights as follows:

Wij =


1
2 if j = i ,
1
4 if j = i+ 1 or j = i− 1 ,
0 otherwise .

Moreover, we fix W11 = Wnn = 1
2 and W1n = Wn1 = 1

4 .

With such parametrization we have ∇Fi(θ, Zi) = 2(θ − Zi) and therefore ∇fi(θ) = 2(θ − m)
if i is odd and ∇fi(θ) = 2(θ + m) if i is even. Moreover, the gradient of the global objective is
∇f(θ) = 1

n

∑
i∇fi(θ) = 2θ and the neighborhood averaging

∑
jWij∇fj(θ) = 2θ for all i.

We first verify that Assumptions 2 is satisfied:

E
[
(∇Fi(θ, Zi)−∇fi(θ))2

]
= E

[
4 (Zi − EZi)2

]
= 4σ̃2 <∞ .

Let us now find a bound τ̄2 on the neighborhood heterogeneity H . Using a bias-variance decomposi-
tion, we have:

H =
1

n

n∑
i=1

E

(
n∑
j=1

Wij∇Fj(θ)−
1

n

n∑
j=1

∇Fj(θ)

)2

=
1

n

n∑
i=1

( n∑
j=1

Wij∇fj(θ)−
1

n

n∑
j=1

∇fj(θ)
)2

+
1

n

n∑
i=1

E
( n∑
j=1

(Wij −
1

n
)(∇fj(θ)−∇Fj(θ))

)2

=
1

n

n∑
i=1

(2θ − 2θ)
2

+
1

n

n∑
i=1

n∑
j=1

(Wij −
1

n
)2E(∇fj(θ)−∇Fj(θ))2

= 0 + 4σ̃2 1

n

n∑
i=1

n∑
j=1

(Wij −
1

n
)2 ≤ 4σ̃2 .

The third equality was obtained thanks to the fact that E[∇fj(θ)−∇Fj(θ)] = 0. This result shows
that Assumption 4 is verified with τ̄2 = 4σ̃2 <∞.

On the contrary, since m can be arbitrary large, Assumption 5 is not verified. Indeed:

1

n

n∑
i=1

∇fi(θ)− 1

n

n∑
j=1

∇fj(θ)

2

=
1

n

n∑
i=1

(2m)2

=
4m2

n
, ζ̄2 −→

m→∞
+∞ .

Remark. At first sight, one may wonder why the local variance term σ̃2 appears in τ̄2 but not in ζ̄2.
This is because we chose to define neighborhood heterogeneity in expectation with respect to the
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pointwise loss functions F1, . . . , Fn, resulting in a bias-variance decomposition (see Eq. 4) which is
the relevant quantity to optimize when learning the topology in Section 4. In contrast, following the
convention used in previous work, local heterogeneity is defined with respect to the local objectives
f1, . . . , fn and thus only measures a bias term, while the variance term is accounted separately by
Assumption 2. Since the variance terms are the same in both settings, the difference is in how the
bias term is measured (at the node level or at the neighborhood level): in the example above, it is
equal to 4m2

n for local heterogeneity while it is equal to 0 for neighborhood heterogeneity (see the
above calculation of H).

C Proof of Theorem 1

C.1 Notations and Overview

We start by re-writing the updates of D-SGD (Algorithm 1) in matrix form.

Let Θ(t) ,
(
θ

(t)
1 , . . . , θ

(t)
n

)
∈ Rd×n be the matrix that contains the parameter vectors of all nodes

at time t. Denote by∇F (Θ(t), Z(t)) ,
(
∇F1(θ

(t)
1 , Z

(t)
1 ), . . . ,∇Fn(θ

(t)
n , Z

(t)
n )
)
∈ Rd×n the matrix

containing all stochastic gradients at time t. The D-SGD update at time t can then be written as:

Θ(t+1) =
(

Θ(t) − ηt∇F (Θ(t), Z(t))
)
W (t)T .

In the following, we denote Θ
(t)

,
(
θ̄(t), . . . , θ̄(t)

)
= Θ(t) · 1

n11
T.

The proof follows the classical steps found in the literature (see e.g. [17, 29]). The main difference
resides in how the consensus term ‖Θ(t) −Θ

(t)‖2F is controlled across iterations (Lemma 3). The
proof is organized as follows.

Convex case.

1. Lemma 1 provides a descent recursion that allows to control the decreasing of the term∥∥θ̄(t) − θ?
∥∥2

. The proof closely follows the one of [17, 29].

2. In Lemma 3, the consensus term ‖Θ(t) −Θ
(t)‖2F , which appears in the result of Lemma 1,

is upper-bounded. The resulting upper-bound exhibits our new quantity τ̄2 (an upper bound
on neighborhood heterogeneity).

3. Corollary 1 uses the previous lemma to bound 1
T+1

∑T
t=0 ‖Θ(t) −Θ

(t)‖2F .

4. Lemma 4 provides an upper-bound on the error term with the following form:

1

T + 1

T∑
t=0

E(f(θ̄(t))− f?) ≤ 2

(
br0

T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+
dr0

T + 1
,

where b = σ̄2

n , e = 36Lτ̄2

p2 , d = 8L
p and r0 = ‖θ(0) − θ?‖22.

5. To get the final rate of Theorem 1, it suffices to find T such that each term in the right-hand
side of the previous equation in bounded by ε

3 .

• 2
(
br0
T+1

) 1
2 ≤ ε

3 ⇐⇒
36br0
ε2 ≤ T + 1⇐⇒ 36σ̄2r0

nε2 ≤ T + 1,

• 2e
1
3

(
r0
T+1

) 2
3 ≤ ε

3 ⇐⇒
e
1
2 6

3
2 r0

ε
3
2
≤ T + 1⇐⇒ 6

5
2
√
Lτ̄r0

pε
3
2
≤ T + 1,

• dr0
T+1 ≤

ε
3 ⇐⇒

3dr0
ε ≤ T + 1⇐⇒ 24Lr0

pε ≤ T + 1.

In particular, it suffices to take

T ≥ 36σ̄2r0

nε2
+

89
√
Lτ̄r0

pε
3
2

+
24Lr0

pε
= O

(
σ̄2

nε2
+

√
Lτ̄

pε
3
2

+
L

pε

)
r0 ,

in order to have all three terms bounded by ε
3 , and obtain the final result.
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Non-convex case. The proof is similar to the convex one: it only differs in the descent lemmas that
are used.

1. Lemma 2 provides the descent lemma for the non-convex scenario.
2. The consensus term is bounded using the same results as in the convex case, i.e., with

Lemma 3 and Corollary 1.
3. Lemma 5 provides an upper-bound on the error term with the following form:

1

T + 1

T∑
t=0

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 2

(
4bf0

T + 1

) 1
2

+ 2e
1
3

(
4f0

T + 1

) 2
3

+
4df0

T + 1
,

where b = 2Lσ̄2

n , e = 96L2τ̄2

p2 , d = 8L
p and f0 = f(θ(0))− f?.

4. We bound in each term of the previous equation by ε
3 and get the sufficient condition:

T ≥ 288Lσ̄2f0

nε2
+

576Lτ̄f0

pε
3
2

+
96Lf0

pε
= O

(
Lσ̄2

nε2
+

Lτ̄

pε
3
2

+
L

pε

)
f0 .

C.2 Preliminaries and Useful Results

Property 1 (Averaging preservation). Let W ∈ Rn×n be a mixing matrix and Θ be any matrix in
Rd×n. Then, W preserves averaging:

(ΘW )
11T

n
= Θ

11T

n
= Θ (10)

Property 2 (Implications of L-smoothness and convexity).

• If we assume convexity, we have for all i ∈ J1, . . . , nK:

〈∇fi(θ̃), θ̃ − θ〉 ≥ fi(θ̃)− fi(θ). (11)

• Under Assumption 1 (L-smoothness), it holds for all i ∈ J1, . . . , nK:

Fi(θ, Z) ≤ Fi(θ̃, Z)+〈∇Fi(θ̃, Z), θ− θ̃〉+ L

2
‖θ− θ̃‖22, ∀θ, θ̃ ∈ Rd, Z ∈ θi. (12)

Taking the expectation of the previous equation, we also have:

fi(θ) ≤ fi(θ̃) + 〈∇F (θ̃), θ − θ̃〉+
L

2
‖θ − θ̃‖22, ∀θ, θ̃ ∈ Rd. (13)

• If we further assume that the Fi’s are convex, Assumption 1 also implies ∀θ, θ̃ ∈ Rd,Z ∈ θi:
‖∇fi(θ)−∇fi(θ̃)‖2 ≤ L‖θ − θ̃‖2, (14)

‖∇fi(θ)−∇fi(θ̃)‖22 ≤ 2L
(
fi(θ)− fi(θ̃)−

〈
∇fi(θ̃), θ − θ̃

〉)
, (15)

‖∇Fi(θ, Z)−∇Fi(θ̃, Z)‖22 ≤ 2L
(
Fi(θ, Z)− Fi(θ̃, Z)−

〈
∇Fi(θ̃, Z), θ − θ̃

〉)
. (16)

These results can be found in many convex optimization books and papers, e.g. in [4].
Property 3 (Norm inequalities).

• For a set of vectors {ai}ni=1 such that ai ∈ Rd,

∥∥∥ n∑
i=1

ai

∥∥∥2

2
≤ n

n∑
i=1

‖ai‖22 . (17)

• For two vectors a, b ∈ Rd,

‖a+ b‖22 ≤ (1 + α)‖a‖22 + (1 + α−1)‖b‖22, ∀α > 0. (18)

• For two vectors a, b ∈ Rd,

2〈a, b〉 ≤ α‖a‖22 + α−1‖b‖22, ∀α > 0. (19)
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C.3 Needed Lemmas

In the following we denote by Ft = σ(Z(k)|k ≤ t) the natural filtration with respect to Z(t) =

(Z
(t)
1 , . . . , Z

(t)
n ). Remark that ∀i = 1, . . . , n the iterates θ(t+1)

i and θ̄(t+1) are in particular Ft-
measurable.
Lemma 1 (Descent Lemma - Convex case). Consider the setting of Theorem 1 and let ηt ≤ 1

4L , then
we almost surely have:

EZ(t)|Ft−1

∥∥∥θ̄(t+1) − θ?
∥∥∥2

≤
∥∥∥θ̄(t) − θ?

∥∥∥2

+
η2
t σ̄

2

n
− ηt

(
f(θ̄(t))− f?

)
+

3L

2n
ηt

∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
,

(20)
where EZ(t)|Ft−1

stands for the conditional expectation EZ(t) [·|Ft−1].

Proof. The proof closely follows the one in [17]. Using the recursion of D-SGD and since all mixing
matrices are doubly stochastic and preserve the average (Proposition 1) we have:

‖θ̄(t+1) − θ?‖2 =

∥∥∥∥∥θ̄(t) − ηt
n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )− θ?

∥∥∥∥∥
2

=

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i ) +

ηt
n

n∑
i=1

∇fi(θ(t)
i )− ηt

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )

∥∥∥∥∥
2

=

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

+ η2
t

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )− 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )

∥∥∥∥∥
2

+ 2

〈
θ̄(t) − θ? − ηt

n

n∑
i=1

∇fi(θ(t)
i ),

ηt
n

n∑
i=1

∇fi(θ(t)
i )− ηt

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )

〉
.

Passing to the conditional expectation, the last term (the inner product) is equal to 0. This comes
from the fact that E

Z
(t)
i |Ft−1

[∇Fi(θ(t)
i , Z

(t)
i )] = ∇fi(θ(t)

i ). We therefore need to bound the first two
terms in the conditional expectation.

The second one can easily be bounded using Assumption 2:

η2
tEZ(t)|Ft−1

∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )− 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
∥∥∥2

=
η2
t

n2
EZ(t)|Ft−1

∥∥∥ n∑
i=1

(∇fi(θ(t)
i )−∇Fi(θ(t)

i , Z
(t)
i ))

∥∥∥2

=
η2
t

n2

n∑
i=1

E
Z

(t)
i |Ft−1

∥∥∥∇fi(θ(t)
i )−∇Fi(θ(t)

i , Z
(t)
i )
∥∥∥2

(A.2)

≤ η2
t σ̄

2

n
,

where the second equality was obtained using the identity E ‖
∑
i Yi‖

2
2

=
∑
i E‖Yi‖22 when Yi are

independent and EYi = 0.

Now that the second term is bounded, we can move to the first one. Because θ(t)
i and θ̄(t) are

Ft−1-measurable, we have

EZ(t)|Ft−1

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

=

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

=
∥∥∥θ̄(t) − θ?

∥∥∥2

+ η2
t

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

− 2ηt

〈
θ̄(t) − θ?, 1

n

n∑
i=1

∇fi(θ(t)
i )

〉
︸ ︷︷ ︸

T2

.
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In order to bound T1, recall that by definition 1
n

∑
i∇fi(θ?) = 0, therefore:

T1 =

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(θ(t)
i )−∇fi(θ̄(t)) +∇fi(θ̄(t))−∇fi(θ?))

∥∥∥∥∥
2

(17)

≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(θ(t)
i )−∇fi(θ̄(t)))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(θ̄(t))−∇fi(θ?))

∥∥∥∥∥
2

(17)

≤ 2

n

n∑
i=1

∥∥∥∇fi(θ(t)
i )−∇fi(θ̄(t))

∥∥∥2

+
2

n

n∑
i=1

∥∥∥∇fi(θ̄(t))−∇fi(θ?)
∥∥∥2

(14)(15)

≤ 2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+
4L

n

n∑
i=1

(
fi(θ̄

(t))− fi(θ?)−
〈
∇fi(θ?), θ̄(t) − θ?

〉)
=

2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+
4L

n

n∑
i=1

(
fi(θ̄

(t))− fi(θ?)
)
− 4L

〈
1

n

n∑
i=1

∇fi(θ?)︸ ︷︷ ︸
=0

, θ̄(t) − θ?
〉

=
2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+ 4L
(
f(θ̄(t))− f?

)
.

Finally, we have to bound T2:

−T2 = −2ηt
n

n∑
i=1

〈
θ̄(t) − θ?,∇fi(θ(t)

i )
〉

= −2ηt
n

n∑
i=1

[〈
θ̄(t) − θ(t)

i ,∇fi(θ(t)
i )
〉

+
〈
θ

(t)
i − θ

?,∇fi(θ(t)
i )
〉]

(13)(11)

≤ −2ηt
n

n∑
i=1

[
fi(θ̄

(t))− fi(θ(t)
i )− L

2
‖θ̄(t) − θ(t)

i ‖
2
2 + fi(θ

(t)
i )− fi(θ?)

]

= −2ηt

(
f(θ̄(t))− f(θ?)

)
+
Lηt
n

n∑
i=1

‖θ̄(t) − θ(t)
i ‖

2
2

= −2ηt

(
f(θ̄(t))− f?

)
+
Lηt
n
‖Θ(t) −Θ(t)‖2F .

Combining all previous results, we get:

EZ(t)|Ft−1

∥∥∥θ̄(t+1) − θ?
∥∥∥2

≤
∥∥∥θ̄(t) − θ?

∥∥∥2

+
η2
t σ̄

2

n
+
Lηt
n

(2Lηt + 1) ‖Θ(t) −Θ(t)‖2F

+ 2ηt (2Lηt − 1)
(
f(θ̄(t))− f?

)
.

Since, by hypothesis, ηt ≤ 1
4L , we have 2Lηt + 1 ≤ 3

2 and 2Lηt − 1 ≤ − 1
2 , which concludes the

proof.

Lemma 2 (Descent Lemma - Non-convex case). Consider the setting of Theorem 1 and let ηt ≤ 1
4L ,

then we almost surely have:

EZ(t)|Ft−1
f(θ̄(t+1))−f? ≤ f(θ̄(t))−f?− ηt

4
‖∇f(θ̄(t))‖22+

L2

n
ηt

∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
t . (21)

Proof. The proof adapts the one of Lemma 10 in [17] to our setting.
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EZ(t)|Ft−1
f(θ̄(t+1)) = EZ(t)|Ft−1

f
(
θ̄(t) − ηt

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
)

(13)
≤ f(θ̄(t))− EZ(t)|Ft−1

〈
∇f(θ̄(t)),

ηt
n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
〉

+
L

2
EZ(t)|Ft−1

∥∥∥ηt
n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
∥∥∥2

2

= f(θ̄(t))−
〈
∇f(θ̄(t)),

ηt
n

n∑
i=1

∇fi(θ(t)
i )
〉

︸ ︷︷ ︸
,T4

+
Lη2

t

2
EZ(t)|Ft−1

∥∥∥ 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
∥∥∥2

2︸ ︷︷ ︸
,T5

Adding and subtracting ηt∇f(θ̄(t)) in T4, we have

T4 = −ηt
∥∥∥∇f(θ̄(t))

∥∥∥2

2
+
ηt
n

n∑
i=1

〈
∇f(θ̄(t)),∇fi(θ̄(t))−∇fi(θ(t)

i )
〉

(19),α=1

≤ −ηt
∥∥∥∇f(θ̄(t))

∥∥∥2

2
+
ηt
2

∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
ηt
2n

n∑
i=1

∥∥∥∇fi(θ̄(t))−∇fi(θ(t)
i )
∥∥∥2

2

(14)
≤ −ηt

2

∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
L2ηt
2n

n∑
i=1

∥∥∥θ̄(t) − θ(t)
i

∥∥∥2

2
.

Let us now bound the term T5:

T5 = EZ(t)|Ft−1

∥∥∥ 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )− 1

n

n∑
i=1

∇fi(θ(t)
i ) +

1

n

n∑
i=1

∇fi(θ(t)
i )
∥∥∥2

2

=
1

n2
EZ(t)|Ft−1

∥∥∥ n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )−

n∑
i=1

∇fi(θ(t)
i )
∥∥∥2

2
+
∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )
∥∥∥2

2

(A.2)
=

σ̄2

n
+
∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )−∇f(θ̄(t)) +∇f(θ̄(t))

∥∥∥2

2

(17)
≤ σ̄2

n
+ 2
∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )−∇f(θ̄(t))

∥∥∥2

2
+ 2
∥∥∥∇f(θ̄(t))

∥∥∥2

2

(17)
≤ σ̄2

n
+

2

n

n∑
i=1

∥∥∥∇fi(θ(t)
i )−∇fi(θ̄(t))

∥∥∥2

2
+ 2
∥∥∥∇f(θ̄(t))

∥∥∥2

2

(14)
≤ σ̄2

n
+

2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

2
+ 2
∥∥∥∇f(θ̄(t))

∥∥∥2

2
.

Next, plugging T4 and T5 into the first inequality, we have:

EZ(t)|Ft−1
f(θ̄(t+1))

≤ f(θ̄(t))− ηt
(1

2
− Lηt

)∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
(L2ηt

2n
+
L3η2

t

n

)∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
t .

Since by hypothesis ηt ≤ 1
4L , we have 1

2 − Lηt ≥
1
4 and L2ηt

2n +
L3η2t
n ≤ L2ηt

n , we therefore get
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EZ(t)|Ft−1
f(θ̄(t+1)) ≤ f(θ̄(t))− ηt

4

∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
L2ηt
n

∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
t .

Subtracting each side of the equation by f?, we obtain the final result.

Lemma 3 (Consensus Control). Consider the setting of Theorem 1 and let ηt ≤ p
8L , then:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤ (1− p

4
)E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+

6nτ̄2

p
η2
t−1. (22)

Proof. For any α > 0, we have:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
= E

∥∥∥∥Θ(t)

(
I − 11T

n

)∥∥∥∥2

F

= E
∥∥∥∥(Θ(t−1) − ηt−1∇F (Θ(t−1), Z(t−1))

)
W (t−1)T

(
I − 11T

n

)∥∥∥∥2

F

(10)
= E

∥∥∥∥(Θ(t−1) − ηt−1∇F (Θ(t−1), Z(t−1))
)(

W (t−1)T − 11T

n

)∥∥∥∥2

F

(18)

≤ (1 + α)E
∥∥∥∥Θ(t−1)

(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+(1 + α−1)η2
t−1 E

∥∥∥∥∇F (Θ(t−1), Z(t−1))

(
W (t−1)T − 11T

n

)∥∥∥∥2

F︸ ︷︷ ︸
T3

(A.3)

≤ (1 + α)(1− p)E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+ (1 + α−1)η2

t−1T3.

We now bound T3 by relying on Assumption 4:

T3 = E

∥∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ
(t−1)

, Z(t−1)) +∇F (Θ
(t−1)

, Z(t−1))
)
·

·
(
W (t−1)T − 11T

n

)∥∥∥∥∥
2

F

(17)

≤ 2E
∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ

(t−1)
, Z(t−1))

)(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+2E
∥∥∥∥∇F (Θ

(t−1)
, Z(t−1))

(
W (t−1)T − 11T

n

)∥∥∥∥2

F

= 2E
∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ

(t−1)
, Z(t−1))

)(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+2

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

W
(t−1)
ij ∇Fj(θ̄(t−1), Z

(t−1)
j )− 1

n

n∑
j=1

∇Fj(θ̄(t−1), Z
(t−1)
j )

∥∥∥∥∥∥
2

2

(3)

≤ 2E
∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ

(t−1)
, Z(t−1))

)(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+ 2nτ̄2.
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For conciseness, we will denote Fi(θ
(t−1)
i , Z

(t−1)
j ) by Fi(θ

(t−1)
i ) and ∇F (Θ, Z(t−1)) by ∇F (Θ).

Using Assumption 3, we can bound the first term of the previous equation by:

2(1− p)E
∥∥∥∥(∇F (Θ(t−1))−∇F (Θ

(t−1)
)
)
−
(
∇F (Θ(t−1))−∇F (Θ

(t−1)
)

)∥∥∥∥2

F

(17)

≤ 4(1− p)

[
E
∥∥∥∇F (Θ(t−1))−∇F (Θ

(t−1)
)
∥∥∥2

F
+ E

∥∥∥∥∇F (Θ(t−1))−∇F (Θ
(t−1)

)

∥∥∥∥2

F

]
= 4(1− p)×

×

 n∑
i=1

(
E
∥∥∥∇Fi(θ(t−1)

i )−∇Fi(θ̄(t−1))
∥∥∥2

2
+ E

∥∥∥ 1

n

n∑
j=1

(
∇Fj(θ(t−1)

j )−∇Fj(θ̄(t−1))
)∥∥∥2

2

)
(A.1)

≤ 4(1− p)

L2
n∑
i=1

E
∥∥∥θ(t−1)
i − θ̄(t−1)

∥∥∥2

2
+

n

n2
E
∥∥∥ n∑
j=1

(
∇Fj(θ(t−1)

j )−∇Fj(θ̄(t−1))
)∥∥∥2

2


(17)

≤ 4(1− p)

L2
n∑
i=1

E
∥∥∥θ(t−1)
i − θ̄(t−1)

∥∥∥2

2
+

n∑
j=1

E
∥∥∥∇Fj(θ(t−1)

j )−∇Fj(θ̄(t−1))
∥∥∥2

2


(A.1)

≤ 4(1− p)

L2
n∑
i=1

E
∥∥∥θ(t−1)
i − θ̄(t−1)

∥∥∥2

2
+ L2

n∑
j=1

E
∥∥∥θ(t−1)
j − θ̄(t−1)

∥∥∥2

2


= 8(1− p)L2E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F
.

Combining all previous results and setting α = p
2 , we get:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤ (1 + α)(1− p)E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F

+ 8(1 + α−1)(1− p)L2η2
t−1E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F
+ 2(1 + α−1)η2

t−1nτ̄
2

≤ (1 +
p

2
)(1− p)︸ ︷︷ ︸

≤1− p
2

E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F

+ 8(1 +
2

p
)(1− p)︸ ︷︷ ︸
≤ 16

p

L2η2
t−1E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F
+ 2(1 +

2

p
)︸ ︷︷ ︸

≤ 6
p

η2
t−1nτ̄

2.

Since by hypothesis we have ηt−1 ≤ p
8L , we can bound the second term and get:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤
(

1− p

2
+
p

4

)
E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+

6nτ̄2

p
η2
t−1

=
(

1− p

4

)
E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+

6nτ̄2

p
η2
t−1.

Corollary 1 (Consensus recursion). Consider the setting of Theorem 1 and fix ηt = η ≤ p
8L , we

have:

1

T + 1

T∑
t=0

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤ 24η2nτ̄2

p2
. (23)
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Proof. Unrolling the expression (22) in Lemma 3 up to t = 0, we have for all t > 0:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤
(

1− p

4

)t ∥∥∥Θ(0) −Θ
(0)
∥∥∥2

F︸ ︷︷ ︸
=0

+
6nτ̄2

p
η2

t−1∑
j=0

(
1− p

4

)j

=
6nτ̄2

p
η2 ×

1−
(
1− p

4

)t
1−

(
1− p

4

)
≤ 6η2nτ̄2

p
× 4

p

=
24η2nτ̄2

p2

Summing and dividing by T + 1, we get the final result.

Lemma 4 (Convergence rate with T - Convex case). Consider the setting of Theorem 1 in the convex
case. There exists a constant stepsize η ≤ ηmax = p

8L such that

1

T + 1

T∑
t=0

E(f(θ̄(t))− f?) ≤ 2

(
br0

T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+
dr0

T + 1
, (24)

where b = σ̄2

n , e = 36Lτ̄2

p2 , d = 8L
p and r0 = ‖θ(0) − θ?‖22.

Proof. Thanks to the descent lemma (Lemma 1), we almost surely have:

f(θ̄(t))− f? ≤ 1

η

(∥∥∥θ̄(t) − θ?
∥∥∥2

− EZ(t)|Ft−1

∥∥∥θ̄(t+1) − θ?
∥∥∥2

+
η2σ̄2

n
+

3L

2n
η
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

)
,

where all terms are Ft−1-measurable. Therefore,

E(f(θ̄(t))− f?) ≤ 1

η

(
E
∥∥∥θ̄(t) − θ?

∥∥∥2

− E
∥∥∥θ̄(t+1) − θ?

∥∥∥2

+
η2σ̄2

n
+

3L

2n
ηE
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

)
,

and summing up we get:

1

T + 1

T∑
t=0

E(f(θ̄(t))− f?)

≤ 1

η(T + 1)

T∑
t=0

(
E
∥∥∥θ̄(t) − θ?

∥∥∥2

− E
∥∥∥θ̄(t+1) − θ?

∥∥∥2

+
η2σ̄2

n
+

3L

2n
ηE
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

)

≤ 1

η(T + 1)

∥∥∥θ(0) − θ?
∥∥∥2

+
ησ̄2

n
+

3L

2n

1

T + 1

T∑
t=0

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

(23)

≤ 1

η(T + 1)

∥∥∥θ(0) − θ?
∥∥∥2

+
σ̄2

n
η +

36Lτ̄2

p2
η2.

Fixing η = min

{(
r0

b(T+1)

) 1
2

,
(

r0
e(T+1)

) 1
3

, 1
d

}
with b = σ̄2

n , e = 36Lτ̄2

p2 , d = 8L
p and r0 =

‖θ(0) − θ?‖22, then applying Lemma 6 that is recalled after, we obtain the final result.

Lemma 5 (Convergence rate with T - Non convex case). Consider the setting of Theorem 1 in the
non-convex case. There exists a constant stepsize η ≤ ηmax = p

8L such that

1

T + 1

T∑
t=0

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 2

(
4bf0

T + 1

) 1
2

+ 2e
1
3

(
4f0

T + 1

) 2
3

+
4df0

T + 1
, (25)

where b = 2Lσ̄2

n , e = 96L2τ̄2

p2 , d = 8L
p and f0 = f(θ(0))− f?.
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Proof. Similarly to Lemma 4 for the convex case, we can use the descent Lemma 2 and obtain

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 4

η

(
Eft − Eft+1 +

L2η

n
E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
)
,

where for all t ≥ 0, ft , f(θ̄(t))− f?. Then summing up and dividing by T + 1 we get:

1

T + 1

T∑
t=0

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 4f0

η(T + 1)
+

4L2

n

1

T + 1

T∑
t=0

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
+

2Lσ̄2

n
η

(23)
≤ 4f0

η(T + 1)
+

4L2

n

24η2nτ̄2

p2
+

2Lσ̄2

n
η

=
4f0

η(T + 1)
+

96L2τ̄2

p2
η2 +

2Lσ̄2

n
η .

Fixing η = min

{(
4f0

b(T+1)

) 1
2

,
(

4f0
e(T+1)

) 1
3

, 1
d

}
with b = 2Lσ̄2

n , e = 96L2τ̄2

p2 , d = 8L
p and f0 =

f(θ(0))− f?, we can apply Lemma 6 and obtain the final result.

Lemma 6 (Tuning stepsize [17]). For any parameter r0, b, e, d ≥ 0, T ∈ N, we can fix

η = min

{(
r0

b(T + 1)

) 1
2

,

(
r0

e(T + 1)

) 1
3

,
1

d

}
≤ 1

d
,

and get

r0

η(T + 1)
+ bη + eη2 ≤ 2

(
br0

T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+
dr0

T + 1
.

Proof. The proof of this lemma can be found in the supplementary materials of [17] (Lemma 15).

D Additional Results and Proofs

Proposition 1. Let Assumptions 2-3 and 5 to be verified. Then Assumption 4 is satisfied with
τ̄2 = (1− p)

(
ζ̄2 + σ̄2

)
, where σ̄2 , 1

n

∑
i σ

2
i .

Proof. Denoting ∇F (θ) = (∇F1(θ, Z1), . . . ,∇Fn(θ, Zn)) ∈ Rd×n, and using the relation

E‖Y ‖22 = ‖EY ‖22 + E‖Y − EY ‖22, (26)

we have:

H(t) =
1

n
E‖∇F (θ)W (t) −∇F (θ)‖2F

(A.3)

≤ 1− p
n

E‖∇F (θ)−∇F (θ)‖2F

=
1− p
n

n∑
i=1

E
∥∥∥∇Fi(θ, Zi)− 1

n

n∑
j=1

∇Fj(θ, Zj)
∥∥∥2

2

(26)
=

1− p
n

n∑
i=1

(∥∥∥∇fi(θ)− 1

n

n∑
j=1

∇fj(θ)
∥∥∥2

2
+ E

∥∥∥ n∑
j=1

(
1{j=i} −

1

n
)
(
∇Fj(θ, Zj)−∇fj(θ))

∥∥∥2

2

)
(A.5)

≤ (1− p)

(
ζ̄2 +

1

n

n∑
i=1

E
∥∥∥ n∑
j=1

(
1{j=i} −

1

n

)
(∇Fj(θ, Zj)−∇fj(θ))

∥∥∥2

2

)
.
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Since all terms j in the norm are independent and with expectation 0, the expectation of the sum is
equal to the sum of expectations and

H(t) ≤ (1− p)

ζ̄2 +
1

n

n∑
i=1

n∑
j=1

(
1{j=i} −

1

n

)2E ‖∇Fj(θ, Zj)−∇fj(θ)‖22


= (1− p)

(
ζ̄2 +

1

n

n∑
j=1

E ‖∇Fj(θ, Zj)−∇fj(θ)‖22
n∑
i=1

(
1{j=i} −

1

n

)2
︸ ︷︷ ︸

= n−1
n

)

(A.2)

≤ (1− p)
(
ζ̄2 +

n− 1

n
σ̄2

)
≤ (1− p)

(
ζ̄2 + σ̄2

)
,

which concludes the proof.

Proposition 2. (Upper-bound on H under label skew) Consider the statistical framework
with label-skew and assume there exists B > 0 such that ∀k = 1, . . . ,K and ∀θ ∈ Rd,
‖EX [∇F (θ;X,Y )|Y = k] − 1

K

∑K
k′=1 EX [∇F (θ;X,Y )|Y = k′]‖22 ≤ B. Then, denoting

πjk , Pj(Y = k), we can bound the neighborhood heterogeneity H in Equation (3) by:

H ≤ KB

n

K∑
k=1

n∑
i=1

( n∑
j=1

Wijπjk −
1

n

n∑
j=1

πjk

)2

+
σ2

max

n
‖W − 1

n
11T‖2F .

Proof. First, observe that the local objective functions can be re-written

fj(θ) = E(X,Y )∼Dj
[F (θ;X,Y )]

=

K∑
k=1

Pj(Y = k)EX [F (θ;X,Y )|Y = k]

=

K∑
k=1

πjkEX [F (θ;X,Y )|Y = k] .

From (4), we have the bias-variance decomposition

H ≤ 1

n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

Wij∇fj(θ)−∇f(θ)

∥∥∥∥∥∥
2

2

+
σ2

max

n
‖W − 1

n
11T‖2F

=
1

n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

(Wij −
1

n
)∇fj(θ)

∥∥∥∥∥∥
2

2

+
σ2

max

n
‖W − 1

n
11T‖2F

=
1

n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

(Wij −
1

n
)

K∑
k=1

πjkEX [∇F (θ;X,Y )|Y = k]

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
T4

+
σ2

max

n
‖W − 1

n
11T‖2F .

Then, observing that
∑n
j=1(Wij − 1

n ) = 0 and
∑K
k=1 πjk = 1 imply
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n∑
j=1

(Wij −
1

n
)

K∑
k=1

πjk
1

K

n∑
k′=1

EX [∇F (θ;X,Y )|Y = k′] = 0 ,

we can add this in the norm of the term T4 defined above and get

T4 =

∥∥∥∥∥
n∑
j=1

(Wij −
1

n
)

K∑
k=1

πjk

(
EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]
)∥∥∥∥∥

2

2

=

∥∥∥∥∥
K∑
k=1

(
EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]
) n∑
j=1

(Wij −
1

n
)πjk

∥∥∥∥∥
2

2

(17)
≤ K

K∑
k=1

∥∥∥∥∥(EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]
) n∑
j=1

(Wij −
1

n
)πjk

∥∥∥∥∥
2

2

= K

K∑
k=1

∥∥∥∥∥EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]

∥∥∥∥∥
2

2︸ ︷︷ ︸
≤B

×
( n∑
j=1

(Wij −
1

n
)πjk

)2

≤ KB
K∑
k=1

(
n∑
j=1

Wijπjk −
1

n

n∑
j=1

πjk

)2

.

Finally, plugging this into the upper-bound on H found above, we get the final result.

Theorem 2 Consider the statistical setup presented in Section 4.1 and let {Ŵ (l)}Ll=1 be the sequence
of mixing matrices generated by Algorithm 2. Then, at any iteration l = 1, . . . , L, we have:

g(Ŵ (l)) ≤ 16
l+2

(
λ+ 1

n

∥∥∑K
k=1(Π:,k −Π:,k1) ·ΠT

:,k

∥∥?
2

)
,

where ‖·‖?2 stands for the nuclear norm, i.e., the sum of singular values. Bounding the second term in
the parenthesis, we can obtain the looser bound

g(Ŵ (l)) ≤ 16
l+2 (λ+ 1) .

Furthermore, we have din
max(Ŵ

(l)) ≤ l and dout
max(Ŵ

(l)) ≤ l, resulting in a per-iteration complexity
bounded by l.

Proof. The proof of this theorem is directly derived from Theorem 3 given below, applied with the
parameters of our problem. To prove the first inequality, we first need to find a bound on the diameter
of the set of doubly stochastic matrices, denoted diam‖·‖(S), for a certain (matrix) norm ‖ · ‖. We
fix this norm to be the operator norm induced by the `2-norm, denoted ‖·‖2, which is simply the
maximum singular value of the matrix.

For all W,P ∈ S, we have

‖W − P‖2 ≤ ‖W‖2 + ‖P‖2
= 1 + 1 = 2 ,

which comes from the fact that W and P are doubly stochastic, i.e., their largest eigenvalue is 1. This
shows that diam‖·‖2(S) ≤ 2.
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Let us now find the Lipschitz constant associated to the gradient of the objective:

∇g(W ) =
2

n

K∑
k=1

(WΠ:,k −Π:,k1) ·ΠT
:,k +

2

n
λ

(
W − 11T

n

)
.

Recall that the dual norm ‖·‖?1 of ‖·‖1 is the nuclear norm, i.e., the sum of the singular values.

For any W,P ∈ S, we have

‖∇g(W )−∇g(P )‖?2 =
2

n

∥∥∥∥∥(W − P )

(
λI +

K∑
k=1

Π:,kΠT
:,k

)∥∥∥∥∥
?

2

≤ 2

n
‖λ(W − P )I‖?2 +

2

n

∥∥∥∥∥(W − P )

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

≤ 2λ

n
‖W − P‖2 ‖I‖

?
2 +

2

n

∥∥∥∥∥(W − P )
K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

,

where the last inequality is obtained using the fact that for any real matrices A and B, ‖AB‖? ≤
‖AT‖‖B‖?.

Before bounding the second term, we must observe that because W and P are doubly stochastic,
(W − P )1 = 0 and therefore, for any matrix A ∈ Rn×n, (W − P )A = (W − P )(A− 11T

n A).

Now, the second term can be re-written and bounded as follows:

2

n

∥∥∥∥∥(W − P )

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

=
2

n

∥∥∥∥∥(W − P )

(
K∑
k=1

Π:,kΠT
:,k −

11T

n

K∑
k=1

Π:,kΠT
:,k

)∥∥∥∥∥
?

2

≤ 2

n
‖W − P‖2

∥∥∥∥∥
K∑
k=1

Π:,kΠT
:,k −

11T

n

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

=
2

n
‖W − P‖2

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

.

Plugging the previous result into the bound obtained above, and since ‖I‖?2 = n, we get

‖∇g(W )−∇g(P )‖?2 ≤ 2

(
λ+

1

n

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

)
‖W − P‖2 .

We can now apply Theorem 3 with the found Lipschitz constant and diameter, which gives:

g(Ŵ (l))− g(W ?) ≤ 16

l + 2

(
λ+

1

n

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

)
,

where W ? is the optimal solution of the problem. Since we known that W ? = 11T

n with g(W ?) = 0,
we obtain the first inequality in Theorem 2.
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To prove the second inequality, it suffices to show that
∥∥∥∑K

k=1(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥?
2
≤ n. We

have: ∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

=

∥∥∥∥∥
(
I − 11T

n

) K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

≤
∥∥∥∥I − 11T

n

∥∥∥∥
2

∥∥∥∥∥
K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

=

∥∥∥∥∥
K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

≤
K∑
k=1

∥∥Π:,kΠT
:,k

∥∥?
2
.

Because for any k = 1, . . . ,K, Π:,kΠT
:,k is a rank-1 matrix, its unique eigenvalue is ΠT

:,kΠ:,k and
therefore

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

≤
K∑
k=1

∥∥Π:,kΠT
:,k

∥∥?
2

=

K∑
k=1

ΠT
:,kΠ:,k

=

K∑
k=1

n∑
i=1

π2
ik

Holder
≤

n∑
i=1

max
k
{πik}

K∑
k=1

πik︸ ︷︷ ︸
=1

≤
n∑
i=1

1 = n ,

which concludes the proof of the second inequality in Theorem 2.

The last statement of the theorem follows directly from the structure of permutation matrices and the
greedy nature of the algorithm.

Theorem 3. (Frank-Wolfe Convergence [15, 4]) Let the gradient of the objective function g : x→
g(x) be L-smooth with respect to a norm ‖ · ‖ and its dual norm ‖ · ‖?:

‖∇g(x)−∇g(y)‖? ≤ L‖x− y‖ .

If g is minimized over S using Frank-Wolfe algorithm, then for each l ≥ 1, the iterates x(l) satisfy

g(x(l))− g(x?) ≤
2Ldiam‖·‖(S)2

l + 2
,

where x? ∈ S is an optimal solution of the problem and diam‖·‖(S) stands for the diameter of S
with respect to the norm ‖ · ‖.
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Proof. The proof of this theorem is a direct combination of Theorem 1 and Lemma 7 in [15], both
proved in the paper.

Proposition 3. (Relation between p and ‖W − 11T

n ‖
2
F ) Let W be a mixing matrix satisfying Assump-

tion 3. Then,

(1− p) ≤
∥∥∥∥W − 11T

n

∥∥∥∥2

F

≤ (n− 1)(1− p) .

Proof. The upper-bound is a direct application of Assumption 3 with M = I , the identity matrix of
size n:∥∥∥∥WT − 11T

n

∥∥∥∥2

F

=

∥∥∥∥IWT − I 11
T

n

∥∥∥∥2

F

(A.3)

≤ (1− p)
∥∥∥∥I − 11T

n

∥∥∥∥2

F

= (1− p)(n− 1) .

To show the lower-bound, denote by s1(M), . . . , sn(M) the (decreasing) singular values of any
square matrix M ∈ Rn×n. Denote similarly λ1(M), . . . , λn(M) the eigenvalues of any symmetric
square matrix M ∈ Rn×n.

∥∥∥∥W − 11T

n

∥∥∥∥2

F

=

n∑
i=1

s2
i

(
W − 11T

n

)
≥ s2

1

(
W − 11T

n

)
= λ1

(
(W − 11T

n
)T(W − 11T

n
)

)
= λ1

(
WTW − 11T

n

)
= λ2(WTW ) ≥ 1− p .

The last equality is obtained by noticing that WTW is a symmetric doubly stochastic matrix. It
therefore admits an eigenvalue decomposition where the largest eigenvalue 1 is associated with the
eigenvector 1√

n
1. This makes WTW − 11T

n having the eigenvalue 0 associated to the vector 1√
n
1

and the largest eigenvalue of WTW − 11T

n becomes the second-largest eigenvalue of WTW . The
final inequality comes from the fact that Assumption 3 is always true with p = 1− λ2(WTW ) which
implies that the best p satisfying Assumption 3 in necessarily greater or equal to 1− λ2(WTW ).

D.1 Extension to Random Mixing Matrices

As mentioned in Section 2, all our theoretical results can easily be extended to random mixing
matrices. In that framework, at each iteration t of the D-SGD algorithm, the matrix W (t) is sampled
from a doubly stochastic matrix distribution denotedW(t), independent of the iterates of parameters
θ(t), and possibly time-varying.

To obtain the convergence result, we slightly modify Assumption 3 and Assumption 4 by adding
an expectation with respect to W in front of the equations. For instance, Assumption 3 becomes
EW∼W‖MWT−M‖2F ≤ (1−p)‖M−M‖2F . Then, the statement of Theorem 1 is also slightly mod-
ified by assuming that it is the distributionsW(0), . . . ,W(T−1) that must now respect Assumptions 3
and 4.

By appropriately conditioning with respect to the random mixing matrices or with respect to the
iterates, the proof of the theorem remains the same.

E Additional Experiments

E.1 Simulations on Synthetic Data

Model. We generalize the mean estimation objective of the example from section B with K = 10
clusters and n = 100 nodes, with exactly 10 nodes associated to each cluster. Each cluster is
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(b) D-SGD with dmax = 3
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(c) D-SGD with dmax = 9

Figure 2: (a) Evolution of key quantities across the iterations of topology learning: in red the objective function
g(W (l)), in green the bias term 1

n

∑n
i=1 ‖

∑n
j=1W

(l)
ij ∇fj(θ) − ∇f(θ)‖

2
2 of H and in yellow the mixing

parameter 1 − p = λ2(W
(l)TW (l)). Here, λ = 0.5 and m = 5. (b, c) Error n−1‖θ(t) − θ?‖22 (solid line) of

D-SGD after 50 iterations, averaged over 10 runs, for increasing levels of heterogeneity (measured by parameter
m). The dashed lines show maxi(θ

(t)
i − θ

?)2 and mini(θ
(t)
i − θ

?)2, illustrating the variability across nodes.

associated with a Gaussian distribution. The variance of the K distributions is the same (σ̃2 = 1)
but their means are evenly spread over [−m,m]. Thus, m ≥ 0 controls the heterogeneity of
the problem (the bigger m, the more heterogeneous the setup). We can analytically compute all
numerical constants introduced throughout the paper. Unless otherwise noted, λ is set to σ2/KB
where σ2 = 4σ̃2 and B = 4m2. Competitor. For a fixed budget dmax, we compare the topology
learned by STL-FW with a random dmax-regular graph having uniform weights 1

dmax+1 . This graph is
independent of the data but optimizes the mixing p (every node will have exactly b neighbors, with
uniform weights). We use a fixed step-size for D-SGD, which is tuned separately for each topology
in the interval [0.001, 1].

Results. We first study the behavior of our topology learning algorithm. As seen in Figure 2(a),
the objective function g(W (l)) decreases quickly in the first iterations with a clear “elbow” at l = 9
iterations. This is because we have K = 10 classes, hence 9 neighbors are sufficient to compensate
for label skew. We also see that decreasing g successfully decreases the two key quantities that affect
the convergence of D-SGD and are upper bounded by g: the bias term of H (which can be computed
exactly in this setup) and the mixing parameter 1− p (which continues to decrease beyond l = 9).

Figure 2(b, c) shows that the topology learned by STL-FW indeed translates into faster convergence
for D-SGD than with the random (but well-connected) topology in data heterogeneous settings. This
is especially striking when looking at best and worst-case errors across nodes (dashed lines). For a
low budget (dmax = 2), D-SGD with our topology remains slightly impacted by heterogeneity. But
remarkably, for dmax = 9, our topology makes D-SGD completely insensitive to increasing data
heterogeneity. This observation is consistent with the elbow observed at l = dmax = 9 in Figure 2(a).

E.2 Detailed Experimental Setup for the real-world data

Our main goal is to provide a fair comparison of the convergence speed across different topologies in
order to show the benefits of the principled approach to topology learning provided by STL-FW. We
essentially follow the experimental setup in [2], which we recall below.

In our study, we focus our investigation on the convergence speed, rather than the final accuracy
after a fixed number of iterations. Indeed, depending on when training is stopped, the relative
difference in final accuracy across different algorithms may vary significantly and lead to different
conclusions. Instead of relying on somewhat arbitrary stopping points, we show the convergence
curves of generalization performance (i.e., the accuracy on the test set throughout training), up to a
point where it is clear that the different approaches have converged, will not make significantly more
progress, or behave essentially the same.

Datasets. We experiment with two datasets: MNIST [9] and CIFAR10 [20], which both have
K = 10 classes. For MNIST, we use 50k and 10k examples from the original set for training and
testing respectively. For CIFAR10, we used 50k images of the original training set for training and
10k examples of the test set for measuring prediction accuracy.
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For both MNIST and CIFAR10, we use the heterogeneous data partitioning scheme proposed by
McMahan et al. [27] in their seminal FL work: we sort all training examples by class, then split the
list into shards of equal size, and randomly assign two shards to each node. When the number of
examples of one class does not divide evenly in shards, as is the case for MNIST, some shards may
have examples of more than one class and therefore nodes may have examples of up to 4 classes.
However, most nodes will have examples of 2 classes.

Models. We use a logistic regression classifier for MNIST, which provides up to 92.5% accuracy
in the centralized setting. For CIFAR10, we use a Group-Normalized variant of LeNet [13], a deep
convolutional network which achieves an accuracy of 74.15% in the centralized setting. These
models are thus reasonably accurate (which is sufficient to study the effect of the topology) while
being sufficiently fast to train in a fully decentralized setting and simple enough to configure and
analyze. Regarding hyper-parameters, we use the learning rate and mini-batch size found in [2]
after cross-validation for n = 100 nodes, respectively 0.1 and 128 for MNIST and 0.002 and 20 for
CIFAR10.

Metrics. We evaluate a network of n = 100 nodes, creating multiple models in memory and
simulating the exchange of messages between nodes. To ignore the impact of distributed execution
strategies and system optimization techniques, we report the test accuracy of all nodes (min, max,
average) as a function of the number of times each example of the dataset has been sampled by a node,
i.e. an epoch. This is equivalent to the classic case of a single node sampling the full distribution.
All our results were obtained on a custom version of the non-iid topology simulator made available
online by the authors of [2],1 which provides deterministic and fully replicable experiments on top of
Pytorch and ensures all topologies were used in the same algorithm implementation and used exactly
the same inputs.

Baselines We compare our results against an ideal baseline: a fully-connected network topology
with the same number of nodes. All other things being equal, any other topology using less edges
will converge at the same speed or slower: this is therefore the most difficult and general baseline to
compare against. This baseline is also essentially equivalent to a centralized (single) IID node using
a batch size n times bigger, where n is the number of nodes. Both a fully-connected network and a
single IID node effectively optimize a single model and sample uniformly from the global distribution:
both thus remove entirely the effect of label distribution skew and of the network topology on the
optimization. In practice, we prefer a fully-connected network because it converges slightly faster
and obtains slightly better final accuracy than a single node sampling randomly from the global
distribution.

We also provide comparisons against popular sparse topologies, such as random graphs and expo-
nential graphs [35]. For the random graph, we use a similar number of edges (dmax) per node to
determine whether a simple sparse topology could work equally well. For the exponential graph,
we follow the deterministic construction of [35] and consider edges to be undirected, resulting in
dmax = 14 for n = 100.

We finally compare against D-Cliques [2], the only competitor which takes into account the data
heterogeneity in the choice of topology. D-Cliques constructs a topology around sparsely inter-
connected cliques such that the union of local datasets within a clique is representative of the global
distribution, i.e. it minimizes the first term in our objective function (Eq. 8) within each clique.

E.3 Impact of λ in STL-FW

Figure 3 shows the impact of λ, which rules the bias-variance trade-off in our objective function for
learning the topology. We present results for two extreme values, respectively 0.0001 and 1000 as
well as middle ground of 0.1. For both datasets, λ has little effect on convergence speed. From a
practical perspective, this is an advantage as it removes the need for tuning λ (one can simply set it
to a default positive value). This behavior may be explained by the fact that reducing the bias term
alone also leads to a reduction of variance. Hence, the variance term becomes useful only when the
bias term has been “erased” (or made very small), which can happen only after a certain number of
STL-FW iterations, i.e., for a potentially large dmax. For all other experiments, we used λ = 0.1.

1https://gitlab.epfl.ch/sacs/distributed-ml/non-iid-topology-simulator
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Figure 3: Effect of the hyperparameter λ of STL-FW on the convergence speed of D-SGD with 100 nodes,
dmax = 10.

E.4 Impact of dmax on STL-FW

Figure 4 shows on a single plot the impact of the communication budget dmax of STL-FW on the
convergence speed of D-SGD. The communication budget has a strong impact in both cases, with
STL-FW providing the same convergence speed as fully-connected when dmax = 99, but with some
residual variance because some nodes end up wth less than 99 edges. Most of the benefits of STL-FW
are obtained with the first 10 edges, with additional edges providing only marginal benefits compared
to fully-connected. We thus chose to show all experiments of the main text with three budgets, a
small dmax = 2, a medium dmax = 5, and a large budget dmax = 10.
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Figure 4: Effect of communication budget (dmax) of STL-FW on the convergence speed of D-SGD with 100
nodes, λ = 0.1.

Finally, for a small budget dmax = 2, we had seen in Figure 1 in the main text that STL-FW did not
provide significant benefits compared to a random graph on CIFAR10. Figure 5 shows that as soon as
dmax = 3, STL-FW starts providing benefits compared to a random topology on CIFAR10.
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Figure 5: Convergence speed of D-SGD with our STL-FW topology and a random topology under small
communication budget dmax = 3.
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