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Abstract

Despite the growing focus on reasoning in001
Large Language Models (LLMs), particu-002
larly through techniques like Chain-of-Thought003
prompting, there remains limited analysis on004
whether these models are really reasoning or if005
performance improvements are mainly due to006
the context added to the prompt. Furthermore,007
there is a lack of advanced evaluation tasks008
assessing natural language reasoning in gener-009
ative models. This paper addresses a gap in010
the study of reasoning in LLMs by presenting011
the first large-scale evaluation of their uncon-012
strained natural language reasoning capabili-013
ties based on natural language argumentation.014
As a result, three main contributions are pro-015
duced: (i) the formalisation of a new strategy016
designed to evaluate argumentative reasoning017
understanding in LLMs: argument-component018
selection; (ii) the creation of the Argument Rea-019
soning Tasks (ART) dataset, a new benchmark020
based on argument structures for natural lan-021
guage reasoning; and (iii) an extensive experi-022
mental analysis involving four different models,023
pointing out consistently the important limita-024
tions of LLMs on natural language reasoning025
tasks.026

1 Introduction027

The question of whether Large Language Mod-028

els (LLMs) can perform reasoning is a thorny one.029

Not only have there been a wide range of studies030

exploring the issue (and coming to wildly differ-031

ent conclusions), but techniques such as Chain of032

Thought prompting (CoT) (Wei et al., 2022) and033

multi-hop Question-Answering (Yang et al., 2018;034

Zhu et al., 2024), that purport to place reasoning035

at the forefront of LLM interaction, have gener-036

ated remarkable performance enhancements and037

demanding challenge tasks (Chu et al., 2024). Cou-038

pled with high profile marketing touting LLM rea-039

soning capabilities1 and anecdotal evidence of both040
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spectacular success and spectacular failure, it is no 041

wonder there has been such an explosion of work 042

in trying to fairly assess reasoning competence in 043

LLMs (Miao et al., 2020; Cobbe et al., 2021; Patel 044

et al., 2021; Talmor et al., 2021; Geva et al., 2021; 045

Mirzadeh et al., 2024; Han et al., 2024; Valmeekam 046

et al., 2024; Mehrafarin et al., 2024; Paruchuri et al., 047

2024; Tyagi et al., 2024a; Samadarshi et al., 2024; 048

Shiri et al., 2024; Han et al., 2024). To date, how- 049

ever, all of this work has focused on artificial, syn- 050

thetic, toy problems such as arithmetic, logic puz- 051

zles, and theorem-proving. Though a focus on such 052

toy problems offers an opportunity to carefully con- 053

trol variability under laboratory conditions, it also 054

risks seriously misrepresenting LLM performance 055

with respect to realistic human reasoning. Even 056

(Guan et al., 2023), who demonstrate deep weak- 057

nesses in current LLM capacity, rest their argument 058

on classical planning, a very narrow and tightly 059

constrained type of reasoning. What is required is 060

a vocabulary, a model, a dataset and a set of tasks 061

that also cover natural, in-situ human reasoning, as 062

it is expressed in language. This is the domain of 063

argumentation theory (van Eemeren et al., 2014), 064

and our goal in this paper is to leverage recent re- 065

sults in the area to equip us with the tools to assess 066

LLM performance in realistic settings. 067

We address this significant challenge by present- 068

ing the first large-scale evaluation of the natural lan- 069

guage reasoning capabilities of LLMs based on nat- 070

ural language argumentation. This paper has, there- 071

fore, the three following main contributions: (i) we 072

formalise a new task that we define as argument- 073

component selection which is designed to evaluate 074

argumentative reasoning in LLMs; (ii) we create 075

and release publicly the Argument Reasoning Tasks 076

(ART) dataset, a new benchmark for argumentation 077

reasoning consisting of 112,212 multiple-choice 078

questions covering a total of sixteen different tasks 079

addressing structural aspects of argumentation; and 080

(iii) we present a complete set of experiments in- 081
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volving four open- and closed-weight models as082

well as a thorough analysis of the observed results.083

2 Related Work084

As pointed out in recent work, CoT reasoning can085

also be achieved without any prompt engineering,086

by just modifying the greedy decoding strategy to087

explore alternative top-k decoding paths (Wang and088

Zhou, 2024). This finding, despite being presented089

as that the models reason intrinsically, it can also090

be interpreted as meaning that the models do not091

reason at all, they just have different alternative092

most likely sequence paths learnt from the train-093

ing data, and tuning the input prompt (or adapting094

the decoding) allows to select a different decoding095

path than the one that provides the direct answer.096

Following this important finding, rather than fo-097

cusing on how the output of the model is decoded,098

the focus should be on studying the model’s ability099

to generalise and keep this behaviour labelled as100

“reasoning” when addressing problems of different101

nature and involving more complex and realistic102

reasoning than the ones that are commonly studied103

in the literature2.104

This aspect has been discussed in recent work105

(Valmeekam et al., 2024; Wu et al., 2024), where106

the reported results show that with minimal varia-107

tions of the standard versions of the tasks included108

in the most popular benchmarks used for reason-109

ing, the performance of LLMs drops significantly.110

These findings challenge the claims that LLMs can111

do reasoning and that it allows them to improve112

their performance in a broad range of tasks.113

In addition to CoT and (multi-hop) QA-related114

tasks, other datasets and tasks to evaluate rea-115

soning in LLMs have been proposed in the past.116

ProofWriter (Tafjord et al., 2021) presents a dataset117

to evaluate deductive logical reasoning through for-118

mal logic problems. COPA (Roemmele et al., 2011)119

and its multilingual version XCOPA (Ponti et al.,120

2020) are two datasets created to evaluate causal121

reasoning by providing situations and asking to se-122

lect the most likely outcome to happen according123

to a cause-effect relationship. In this same direc-124

tion, SWAG (Zellers et al., 2018) and HellaSWAG125

(Zellers et al., 2019) introduce two datasets to eval-126

uate commonsense reasoning inference featuring127

adversarially generated scenarios in which models128

need to determine the most plausible option. The129

2And that, therefore, will most likely be also included in
the training data of the latest versions of the popular LLMs

aNLI (Bhagavatula et al., 2019) dataset is proposed 130

to investigate abductive reasoning. Again, the mod- 131

els are challenged to identify plausible outcomes 132

for incomplete information scenarios. FOLIO (Han 133

et al., 2024) consists of a collection of first order 134

logic statements to evaluate the reasoning capabili- 135

ties of LLMs. The models are asked to determine 136

the truth values of a set of conclusions given some 137

premises which are presented in both, natural lan- 138

guage and first-order logic statements. From the 139

reported results, it is possible to observe how LLMs 140

struggle to solve this task. Finally, it is also worth 141

mentioning other recent approaches, which have 142

proposed the assessment of the reasoning capaci- 143

ties of LLMs based on games such as Minesweeper, 144

grid puzzles, Sudoku or crosswords among others 145

(Li et al., 2024; Tyagi et al., 2024b; Shah et al., 146

2024; Saha et al., 2024). 147

We can observe, however, that despite being fo- 148

cused on reasoning-related tasks, none of them 149

address the problem of non-constrained reasoning 150

in natural language (e.g., in argumentation), which 151

is a fundamental aspect for evaluating and under- 152

standing the actual natural language reasoning ca- 153

pabilities of LLMs. 154

3 Theoretical Background 155

Arguments combine premises and conclusions to 156

create complex reasoning structures. Argument 157

theory distinguishes different structural combina- 158

tions of premises and conclusions: serial (premises 159

and/or conclusions are supported by premises 160

themselves) (Beardsley, 1950), linked (multiple 161

premises support a conclusion together in a com- 162

bined inferential step) (Thomas, 1973), convergent 163

(multiple premises independently support the con- 164

clusion), and divergent (same premise supports 165

more than one conclusion). With these four types 166

of argument structure, it is possible to analyse and 167

understand argumentation in similar ways as multi- 168

hop and CoT reasoning are commonly studied. 169

An important challenge in the evaluation of 170

LLMs on argumentation skills is to ensure that 171

the reasoning capacities are assessed instead of the 172

dialogue generation abilities. Their training en- 173

ables LLMs to create credible textual output based 174

on probable token combinations. In an argument 175

continuation task without sufficient limitations, the 176

model will produce a probable continuation based 177

on the input text. In this case, it is difficult to evalu- 178

ate the appropriateness of the created continuation. 179
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Our approach solves the evaluation challenge by180

introducing a multiple-choice task, a setup similar181

to the ones LSAT tests already used to measure the182

reasoning abilities of LLMs in logic games (Malik,183

2024). By asking for one or more elements from a184

complex argumentative graph structure, the model185

needs to identify the correct continuation among a186

choice of options from the same argumentative con-187

text. This requires the ability to follow and recon-188

struct an implicit reasoning path. Tasks targeting189

larger chunks of argumentative elements require190

a model to choose an appropriate sub-structure as191

continuation, which demands deep understanding192

of necessary intermediate reasoning steps, similar193

to complex multi-hop Q&A tasks.194

4 Method195

Aimed at providing, for the first time, a method196

to consistently evaluate the natural language rea-197

soning capabilities of LLMs in argumentation, we198

formulate argument-component selection, consist-199

ing of a series of sixteen different argumentative200

reasoning tasks grouped into four different types of201

argumentative structures. This way, the proposed202

method allows us to evaluate the natural language203

reasoning capabilities of LLMs by asking them to204

build and reconstruct natural language arguments.205

4.1 Task Formulation206

An argument is represented as a structure consist-207

ing of a sequence of argument components A =208

{a1, a2, . . . , an} and the relations of inference and209

conflict between them R = {⊢,⊸},R : A × A.210

Our proposed tasks leverage the argumentative con-211

text, C to predict or generate a required argument212

component. To facilitate automatic evaluation and213

ensure consistency, we restrict the proposed tasks214

to selecting missing components from a predefined215

set of options. This constraint is crucial as open-216

ended generation poses challenges for evaluation,217

given that multiple valid components could fulfil218

the argument structure. By limiting the options,219

we allow the model to focus on identifying the220

most appropriate components while enabling reli-221

able evaluation against gold-standard answers. We222

therefore define a series of Argumentative Reason-223

ing Tasks as argument-component selection prob-224

lems, where the model must identify the correct225

argument component(s) from a set of candidates226

to meet some set of structural argumentative crite-227

ria. The task requires filling the missing compo-228

nents of specific substructures while considering 229

the entire argument as context. Accordingly, the 230

model is provided with an argument as a context 231

C, a partially specified argument substructure (with 232

missing argument components), and a candidate 233

set U = {u1, u2, . . . , uk}, which includes the cor- 234

rect answer û. The objective is to select the correct 235

missing component û by evaluating the candidates 236

for their relevance and alignment with the given 237

context C. This process is formalized as: 238

û = argmax
u∈U

score(u | C), 239

where score(u | C) measures the semantic and 240

structural fit of the candidate u within the argu- 241

ment substructure. The next section outlines the 242

instantiation of the argument-component selection 243

formulation into the argumentative reasoning tasks 244

included in our proposed evaluation method. 245

4.2 Argumentive Reasoning Tasks (ART) 246

We design a series of sixteen tasks based on four dif- 247

ferent types of argument structures: serial, linked, 248

convergent, and divergent argument. Aimed at eas- 249

ing its understanding, a visual representation of the 250

designed tasks can be found in Appendix A. 251

4.2.1 Serial Reasoning 252

In serial argument, an argument relation of infer- 253

ence (⊢) is applied sequentially. The model is 254

tasked with identifying a conclusion, premise, or 255

intermediate step based on the argument compo- 256

nent(s) and the entire argument as a context. It 257

includes the following six tasks: 258

One-hop Conclusion. With a single instance 259

of an argument relation of inference (⊢), between 260

a premise, α and a conclusion β̂, a set is created 261

of alternative potential conclusions, {β1, . . . , βn} 262

(which when taken together with β̂ is referred to 263

together as the set B), from which the model must 264

select. Treating the model as a function, f , the 265

inputs are a set of argument components, plus a 266

set of context, C. The argument components in 267

this case are the premise α, and the fact that the 268

role to be played by the model’s selection is as 269

the conclusion of a ⊢ relation that has α as its 270

premise. This role is expressed in the input by a 271

metavariable X . The model’s result is a binding of 272

X to β̂, one of the elements of B. Formally, given 273

B = {β0, β1, . . . , βn}, f({α, α ⊢ X}, C) = {X : 274

β̂}, where β̂ ∈ B. 275

One-hop Premise. The task in this case is to 276

identify a premise α̂ given a conclusion β, where 277
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α̂ supports β (α̂ ⊢ β), from a set of alternative278

potential premises A = {α0, α1, . . . , αn}, which279

includes the target premise α̂. Given the inputs280

β, and the fact that the model’s role is to select a281

premise for a (⊢) relation with β as its conclusion282

(denoted as Y ), along with a set of context C, the283

model f outputs the selected premise. The model’s284

result is a binding of Y to α̂, one of the elements285

of A. Formally, given A = {α0, α1, . . . , αn},286

f({β, Y ⊢ β}, C) = {Y : α̂}, where α̂ ∈ A.287

288

Two-hop Conclusion. In a two-hop argument,289

there are two sequential inference relations, (⊢).290

The first is between a premise α and an intermedi-291

ate conclusion β, and the second is between β and292

a final conclusion γ̂. A set of alternative potential293

conclusions, {γ0, γ1, . . . , γn} (referred to together294

with γ̂ as the set D), is created from which the295

model must select in the given context C. Formally,296

given D = {γ0, γ1, . . . , γn}: f({α, β, α ⊢ β, β ⊢297

X}, C) = {X : γ̂}, where γ̂ ∈ D.298

Two-hop Premise. Following a similar formali-299

sation, with two sequential argument relations of300

inference, (⊢), the first between a premise, α̂, and301

an intermediate conclusion, β, and the second be-302

tween β and a final conclusion, γ, a set is created303

of alternative potential premises, {α0, α1, . . . , αn}304

(referred to together with α̂ as the set A), from305

which the model must select in the given context C.306

Formally, given A = {α0, α1, . . . , αn},f({X ⊢307

β, β, β ⊢ γ, γ}, C) = {X : α̂}, where β̂ ∈ A.308

One-Intermediate Conclusion. Similarly, in-309

termediate conclusion involves two sequential ar-310

gument relations of inference, (⊢). The first is311

between a premise α and an intermediate conclu-312

sion β̂, and the second is between β̂ and a final313

conclusion γ. A set of alternative potential in-314

termediate conclusions, {β0, β1, . . . , βn} (referred315

to together with β̂ as the set B), is created from316

which the model must select in the given con-317

text C. Formally, given B = {β0, β1, . . . , βn},318

f({α,X ⊢ γ, γ}, C) = {X : β̂}, where β̂ ∈ B.319

Two-Intermediate Conclusions. Two interme-320

diate conclusions involve three sequential argu-321

ment relations of inference, (⊢). The first is be-322

tween a premise α and the first intermediate con-323

clusion β̂, the second is between β̂ and the sec-324

ond intermediate conclusion γ̂, and the third is325

between γ̂ and the final conclusion ω. Given the326

context C, the model selects β̂ and γ̂ from a set327

of alternative potential intermediate conclusions,328

B = {β0, β1, . . . , βn} and U = {γ0, γ1, . . . , γn},329

respectively. Formally, given B,U , f({α, ω, α ⊢ 330

X,X ⊢ Y, Y ⊢ ω}, C) = {X : β̂}, {Y : 331

γ̂}, where β̂ ∈ B and γ̂ ∈ U. 332

4.2.2 Linked Reasoning 333

In a linked argument, there exists a support relation 334

where a conclusion β is supported by a premise α 335

in combination with another premise θ. It involves 336

the following variants. 337

One Linked Premise. Given the context C, the 338

aim of this task is to identify the premise θ̂, such 339

that α ∧ θ̂ ⊢ β holds, from a set of alternative 340

potential linked premises, Z = {θ0, θ1, . . . , θn}. 341

Formally, the relation is expressed as, f({α, β, α∧ 342

X ⊢ β}, C) = {X : θ̂}, where θ̂ ∈ Z. 343

Two Linked Premises. Similarly, in two linked 344

premise, given the context C, the task is to iden- 345

tify both premises α̂ and θ̂, such that α̂ ∧ θ̂ ⊢ β, 346

from alternative potential linked premises, A = 347

{α0, α1, . . . , αn} and Z = {θ0, θ1, . . . , θm}. For- 348

mally, the relation is expressed as, f({β,X ∧ Y ⊢ 349

β}, C) = {(X,Y ) : (α̂, θ̂)}, where α̂ ∈ A, θ̂ ∈ 350

Z. 351

Linked Reasoning Conclusion. Finally, this 352

task aims to identify the conclusion β̂, such that 353

α ∧ θ ⊢ β̂ holds, from a set of alternative potential 354

conclusions, B = {β0, β1, . . . , βn}, in the given 355

context C. Formally, the relation is expressed as, 356

f({α, θ, α∧ θ ⊢ X}, C) = {X : β̂}, where β̂ ∈ 357

B. 358

4.2.3 Convergent Reasoning 359

In a convergent argument, multiple premises (α, θ) 360

independently support a conclusion β. It includes 361

the following variants. 362

One Convergent Premise. The task is to iden- 363

tify a premise α̂ that independently supports β, 364

given the conclusion β and the other premise θ that 365

also independently supports β in the context C. The 366

model selects α̂ from a set of alternative potential 367

premises, A = {α0, α1, . . . , αn}. Formally, the 368

relation is expressed as, f({θ, β,X ⊢ β}, C) = 369

{X : α̂}, where α̂ ∈ A. 370

Two Convergent Premises. Two convergent 371

premises identifies both α̂ and θ̂, such that each 372

independently supports β in the given context C. 373

The premises α̂ and θ̂ are selected from the sets 374

of alternative potential premises {α0, α1, . . . , αn} 375

and T = {θ0, θ1, . . . , θm}, respectively. For- 376

mally, the relation is expressed as, f({β,X ⊢ 377

β, Y ⊢ β}, C) = {(X,Y ) : α̂, θ̂}, where α̂ ∈ 378

A and θ̂ ∈ T. 379

4



Figure 1: Illustration of the data processing for ART. In the argument graph on the left, substructures of the target
task are identified (sub-graph in the middle). Based on these, multiple-choice questions as displayed on the right
are created, where the question (orange dotted outlines) includes the argumentative component together (yellow
square-outlines) with the relevant context (grey) from the complete graph in the left. The correct answer choice
(green full outlines) of the identified argumentative structure is presented alongside with incorrect options sampled
from all other nodes in the graph (grey).

Convergent Reasoning Conclusion. Final, this380

task identifies the conclusion β̂, which is inde-381

pendently supported by the two premises α and382

θ. Given the premises α, θ and the context C, the383

model must select a conclusion β̂ from a set of384

potential conclusions B = {β0, β1, . . . , βm}. For-385

mally, the relation is expressed as, f({α, θ, α ⊢386

X, θ ⊢ X}, C) = {X : β̂}, where β̂ ∈ B.387

Alternative Hop. Given a premise α, an inter-388

mediate conclusion β, and a final conclusion ω,389

each with their respective argument relations of390

inference, (⊢), the aim is to find an alternative rea-391

soning chain that leads to ω. This chain should392

involve an alternative premise θ̂ that supports an in-393

termediate conclusion γ̂, which in turn leads to394

the final conclusion ω. Specifically, the model395

must identify an alternative θ̂ such that θ̂ ⊢ γ̂396

and γ̂ ⊢ ω in the given context C. Formally, let397

Z = {θ0, θ1, . . . , θn} be the set of potential al-398

ternative premises and U = {γ0, γ1, . . . , γn} the399

set of potential intermediate conclusions. The400

model’s task is then to find θ̂ ∈ Z and γ̂ ∈ U401

that satisfy the relation. This is expressed as,402

f({α, β, ω, α ⊢ β, β ⊢ ω,X ⊢ Y, Y ⊢ ω}, C) =403

{X : θ̂}, {Y : γ̂}, where θ̂ ∈ Z and γ̂ ∈ U.404

Here, θ̂ is the selected alternative premise from the405

set Z and γ̂ is the selected intermediate conclusion406

from the set U , such that θ ⊢ γ and γ ⊢ ω holds407

true.408

4.2.4 Divergent Reasoning409

In divergent argument, one premise supports multi-410

ple conclusions. It involves the following variants.411

One Divergent Reasoning Conclusion. This412

task identifies one of the conclusions β̂, γ̂, which is413

supported by the premise α. Given the premise α,414

and one of the conclusions γ and the context C, the415

model selects β̂ from a set of potential conclusions416

{B = β0, β1, . . . , βm}. Formally, the relation is 417

expressed as, f({α, α ⊢ X,α ⊢ γ}, C) = {(X : 418

γ̂},where β̂ ∈ B. 419

Two Divergent Reasoning Conclusions. This 420

task identifies two conclusions β̂ and γ̂, both of 421

which are supported by the premise α. Given 422

the premise α and context C, the model selects 423

β̂ and γ̂ from a set of potential conclusions {B = 424

β0, β1, . . . , βm} and Z = {γ0, γ1, . . . , γn}. For- 425

mally, the relation is expressed as, f({α, α ⊢ 426

X,α ⊢ Y }, C) = {(X,Y ) : {β̂, γ̂},where β̂ ∈ 427

B and γ̂ ∈ Z. 428

Divergent Reasoning Premise. Given the con- 429

clusions β and γ within a context C, the model 430

selects α̂ from a set of potential premises A = 431

{α1, . . . , αn}, such that α̂ supports both β and 432

γ. Formally, this relation is defined as, f({X ⊢ 433

β,X ⊢ γ}, C) = {X : α̂}, where α̂ ∈ A. 434

4.3 Data 435

To create a robust and comprehensive evaluation, 436

we incorporate seven corpora spanning diverse do- 437

mains and argumentative contexts, covering both 438

monologue and dialogue structures. The corpora 439

include MTC (Peldszus and Stede, 2015), AAEC 440

(Stab and Gurevych, 2017), CDCP (Park and 441

Cardie, 2018), ACSP (Lauscher et al., 2018), AB- 442

STRCT (Mayer et al., 2020), US2016 (Visser et al., 443

2020), and QT30 (Hautli-Janisz et al., 2022). 444

MTC consists of short argumentative texts orig- 445

inally in German and translated into English, an- 446

notated according to Freeman’s macro-structural 447

theory of argumentation, with argument relations 448

categorized as supports and attacks. AAEC com- 449

prises persuasive student essays annotated at the 450

discourse level, identifying argument components 451

(claims and premises) and their argumentative rela- 452

tions as supports and attacks. CDCP is a corpus 453
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Tasks MTC AAEC CDCP ACSP AbstRCT US2016 QT30

Type Variants

Serial 1H-C 290 4841 1033 5789 2288 3379 6488
1H-P 290 4841 1033 5789 2288 3379 6488
2H-C 57 3279 348 759 327 1009 1118
2H-P 57 3279 348 759 327 1009 1118
Int-C 57 3279 348 759 327 1009 1118
2-Int-C 3 569 89 80 8 249 787

Linked 1L-P 17 - 64 - - 180 511
2L-P 17 - 64 - - 180 511
LR-C 17 - 64 - - 180 511

Convergent 1C-P 96 4735 763 2024 1899 1129 397
2C-P 96 4735 763 2024 1899 1129 397
CR-C 96 4735 763 2024 1899 1129 397
AH 57 3279 348 759 327 1009 1118

Divergent 1DR-C - - 11 184 48 106 386
2DR-C - - 11 184 48 106 386
DR-P - - 11 184 48 106 386

Table 1: Updated statistics of task types for each dataset. The task variants are defined as follows: 1H-C (One-hop
Conclusion), Int-C (Intermediate Conclusion), 2H-P (Two-hop Premise), 2-Int-C (Two-Intermediate Conclusions);
1L-P (One Linked Premise), 2L-P (Two Linked Premises), LR-C (Linked Reasoning Conclusion); 1C-P (One
Convergent Premise), 2C-P (Two Convergent Premises), CR-C (Convergent Reasoning Conclusion), AH (Alternative
Hop); 1DR-C (One Divergent Reasoning Conclusion), 2DR-C (Two Divergent Reasoning Conclusions) and DR-P
(Divergent Reasoning Premise).

of user comments on the Consumer Debt Collec-454

tion Practices (CDCP) rule, annotated with argu-455

mentative structure. It includes two types of sup-456

port relations, categorised as Reason and Evidence457

which are consolidated into a single support rela-458

tion. ACSP is a corpus of scientific publications459

in the field of computer graphics, annotated for460

argumentative relations, including supports, contra-461

dictions, and semantic equivalence. ABSTRCT is462

a corpus of abstracts from randomized controlled463

trials across various medical domains, annotated to464

identify argument components and their relations.465

These relations include support, attack, and partial-466

attack. US2016 includes transcripts of debates467

from the 2016 US presidential election (primary468

and general) and related Reddit discussions. An-469

notated using Inference Anchoring Theory (IAT),470

it captures argumentation and dialogue structures471

with relations categorised as supports, attacks, and472

rephrases. Finally, QT30 contains transcripts from473

the UK’s Question Time, a political talk show, also474

annotated with IAT to identify supports, attacks,475

and rephrases.476

4.4 Data Processing477

For each of the sixteen tasks included in our478

method, we systematically navigate through the479

argument structures available in the seven corpora,480

extracting all substructures that conform to the481

task specifications presented above. The result-482

ing multiple-choice questions are organized into an483

input set and a corresponding target answer. The in-484

put set comprises the involved types of argumenta- 485

tive relations and their corresponding components 486

(excluding the target correct answer), alongside 487

the concatenation of all the sentences surrounding 488

the argument component as the context (C). Four 489

alternative incorrect answer options are randomly 490

selected from other arguments outside of the identi- 491

fied argument substructure. For tasks instantiating 492

the argument-component selection formulation, if 493

multiple correct answers are present in an argument, 494

only one correct answer is included in the list of 495

options, while other correct answers are excluded 496

from the pool of incorrect options. For serial rea- 497

soning task types, any reasoning chain involving 498

linked arguments is excluded. This exclusion en- 499

sures that the substructure adequately captures the 500

logic of the chain, as partial chains that involve 501

only one argument component do not fully rep- 502

resent the structure of linked reasoning. Figure 503

1 summarises the data processing steps, in which 504

complex and large argument graphs are converted 505

into five-option multiple-choice questions. 506

As a result of this process, we present the Argu- 507

mentative Reasoning Tasks (ART) dataset3. The 508

ART dataset consists of a total of 112,212 multiple- 509

choice questions following the sixteen task defi- 510

nitions, which can also be easily implemented as 511

prompts as exemplified in Appendix C. Table 1 de- 512

picts the number of questions divided by task and 513

corpora that make up our dataset. 514

3The dataset will be publicly released after the acceptance
of this paper under a CC BY-NC-SA 4.0 license.
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Dataset Model Size Argument-Component Selection
Serial Linked Convergent Divergent

AAEC

Qwen 2.5 7B 23.78 ± 13.52 - 10.85 ± 11.50 -
72B 35.59 ± 13.49 - 18.95 ± 19.37 -

Llama 3.1 8B 12.23 ± 9.87 - 4.15 ± 3.62 -
70B 38.77 ± 8.12 - 16.08 ± 20.25 -

Mistral 7B 29.82 ± 14.12 - 10.4 ± 13.46 -

GPT GPT-4o 49.83 ± 17.37 - 35.78 ± 21.50 -

MTC

Qwen 2.5 7B 0.2 ± 0.21 - 1.75 ± 2.04 -
72B 19.51 ± 16.29 - 2.6 ± 3.40

Llama 3.1 8B 0.16 ± 0.16 - 1.05 ± 1.50 -
70B 8.53 ± 11.71 - 5.46 ± 4.56 -

Mistral 7B 0.16 ± 0.26 - 0.9 ± 1.53 -

GPT GPT-4o 49.73 ± 24.36 - 11.36 ± 11.54 -

CDCP

Qwen 2.5 7B 29.97 ± 14.84 35.38 ± 25.32 17.45 ± 20.45 0.86 ± 0.80
72B 50.28 ± 21.52 51.28 ± 16.59 24.68 ± 28.54 1.2 ± 0.61

Llama 3.1 8B 10.33 ± 7.95 9.23 ± 12.21 5.85 ± 6.66 0.4 ± 0.4
70B 40.71 ± 17.94 49.74 ± 21.88 21.47 ± 28.40 0.93 ± 0.53

Mistral 7B 22.97 ± 12.18 12.82 ± 14.94 8.85 ± 12.64 0.26 ± 0.46

GPT GPT-4o 65.06 ± 13.41 68.87 ± 14.93 44.94 ± 30.31 7.33 ± 2.52

AbstRCT

Qwen 2.5 7B 11.46 ± 6.28 - 14.4 ± 18.73 0.933 ± 0.90
72B 33.96 ± 19.27 - 29.40 ± 33.71 1.46 ± .070

Llama 3.1 8B 4.7 ± 3.30 - 8.9 ± 7.01 0.4 ± 0.4
70B 19.05±19 - 11.12.86 1.33 ± 0.80

Mistral 7B 10.0 ± 5.77 - 6.35 ± 9.19 0.33 ± 0.41

GPT GPT-4o 48.61 ± 28.90 - 34.48 ± 29.19 11.4 ± 3.13

ACSP

Qwen 2.5 7B 37.13 ± 19.03 - 16.05 ± 15.38 9.13 ± 6.77
72B 47.31 ± 23.55 - 25.07 ± 15.23 12.8 ± 6.43

Llama 3.1 8B 12.3 ± 8.25 - 4.5 ± 4.94 2.4 ± 2.42
70B 39.64 ± 13.76 - 12.433 ± 18.07 8.86 ± 6.10

Mistral 7B 26.66 ± 13.47 - 12.4 ± 14.18 5.86 ± 5.08

GPT GPT-4o 90.47 ± 7.34 - 86.38 ± 3.16 41.45 ± 14.34

US2016

Qwen 2.5 7B 34.12 ± 19.53 30.55 ± 19.37 20.45 ± 21.46 7.6 ± 5.4
72B 49.53 ± 27.61 48.33 ± 18.86 30.34 ± 25.69 10.53 ± 6.26

Llama 3.1 8B 14.41 ± 6.34 11.66 ± 8.67 9.9 ± 12.58 2.86 ± 2.71
70B 45.51 ± 25.65 45.18 ± 21.37 26.39 ± 26.64 8.06 ± 5.98

Mistral 7B 37.95 ± 20.51 20.18 ± 17.84 12.8 ± 15.21 4.53 ± 3.70

GPT GPT-4o 58.47 ± 12.94 53.03 ± 9.32 45.85 ± 15.12 37.78 ± 17.21

QT30

Qwen 2.5 7B 31.40±16.96 20.76 ± 18.63 11.4 ± 11.10 20 ± 18.11
72B 42.45 ± 20.84 45.50 ± 16.24 20.33 ± 17.02 29.0 ± 15.77

Llama 3.1 8B 9.99 ± 5.15 11.50 ± 10.26 5.8 ± 4.48 12.33 ± 13.52
70B 36.21 ± 15.94 43.38 ± 20.84 18.10 ± 16.59 23.16 ± 17.40

Mistral 7B 33.98 ± 17.96 20.76 ± 18.63 6.2 ± 8.22 12.4 ± 11.78

GPT GPT-4o 53.62 ± 23.80 53.04 ± 18.66 46.69 ± 21.44 41.65 ± 15.34

Table 2: Macro averaged F1-scores and standard devia-
tions for the argument-component selection tasks.

5 Experiments515

5.1 Experimental Setup516

We evaluate the performance of state-of-the-art517

models, including Qwen 2.5 (Yang et al., 2024),518

Llama 3.1 (Touvron et al., 2023), Mistral (Jiang519

et al., 2023), GPT-4 (Achiam et al., 2023), and520

o14, across a range of complex reasoning tasks521

in both few-shot and zero-shot settings. The spe-522

cific prompt templates and model hyperparame-523

ters, including temperature, top-p sampling, and524

inference steps, are detailed in the Appendix B for525

reproducibility and transparency. For evaluating526

the models on the ART multiple-choice reasoning527

tasks, we evaluate model performance using macro528

averaged F1-score. The code and dataset are avail-529

able at https://github.com/ANONYMOUS (anony-530

mous).531

5.2 Results and Discussion532

Table 2 reports the macro averaged F1-scores and533

their standard deviations for each model and type534

4https://openai.com/index/
learning-to-reason-with-llms/

of argument structure. The fine-grained results con- 535

sidering each of the ART tasks independently has 536

been included in Appendix D. Having the random 537

chance baseline (i.e., 20%, one correct answer out 538

of five options) as a reference, we can observe how 539

language models could not consistently provide the 540

correct answers for the ART tasks. This implies 541

that LLMs may not effectively reason or compre- 542

hend argumentative reasoning, even if their gener- 543

ated texts resemble reasoning in appearance, as is 544

often observed in text generation tasks. These pat- 545

terns, which can be mistaken for reasoning ability, 546

result from the model’s capacity to produce fluent 547

text rather than from an actual ability to parse or 548

evaluate arguments. 549

Across all tasks, GPT variants standout, show- 550

ing better performance compared to the other mod- 551

els. On average GPT-4o achieves 54.38 ± 25.30, 552

49.52± 22.96, 52.60± 26.53 and 27± 10.52 F1- 553

score on serial, linked, convergent and divergent 554

types of argument structure respectively. Qwen, 555

Mistral, and Llama models’ poor performance was 556

consistent across the board. Despite showing a bet- 557

ter performance than others, we can also observe 558

higher standard deviations in the GPT-4o results 559

(growing as the performance increases), meaning 560

that there is a big difference in performance be- 561

tween simple and complex versions of the same 562

type of argument structure task (e.g., 1H-C, 1H-P 563

versus 2H-C, 2H-C). 564

This observation can be generalised to the rest 565

of the models, which also show significant per- 566

formance variations across task types and corpora. 567

Generally the models struggle with task types in- 568

volving argument substructures as the right answers 569

(i.e., 2-Int-C and AH), showing a lower perfor- 570

mance than the random baseline. Notably, with the 571

exception of GPT-4o, all other models, regardless 572

of their size, performed near zero F1-score when 573

tasked with selecting alternative reasoning hops 574

(AH) and two intermediate conclusions (2-Int-C). 575

For instance, Qwen 2.5:70B achieves 4.25± 4.92, 576

3.47± 4.72 in AH and 2-Int-C, respectively. This 577

highlights a significant limitation in handling com- 578

plex reasoning structures, even for larger model 579

architectures. 580

The results for GPT-4o on ACSP constitute sig- 581

nificant outliers with a macro-average F1-score of 582

90.47, 86.38, and 41.45 for serial, linked and diver- 583

gent types of argument structure respectively. The 584

same model achieves 53.62, 53.04, 41.65 on QT30 585

for serial, linked and divergent types of argument 586

7

https://github.com/ANONYMOUS
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/


structure respectively. These results would, in prin-587

ciple, mean that GPT-4o is capable of effectively588

parse and understand natural language reasoning589

structures in scientific publications. After a deeper590

analysis on the data we observed, however, that on591

average ACSP has 324 argument components per592

argumentative context C, while US2016, QT30,593

AAEC, MTC, ABstRACT, and CDCP involve 17,594

15, 15, 5, 7 and 26, respectively. Since the incor-595

rect answers are randomly selected from C, ACSP596

provides larger space of candidate answers involv-597

ing more semantically diverse and distant sets of598

answers. This allows to distinguish the correct an-599

swer by only focusing on semantic features of the600

text.601

5.3 Sensitivity Study602

In addition to the discussion about the results603

achieved by LLMs on ART, we have also analysed604

the models’ sensitivity to variations in settings in-605

cluding model size and prompt template.606

Model Size. The assessment of model sizes607

compares the 70B and 405B parameter versions608

of Llama 3.1, as well as GPT-4o vs o1-Preview.609

The parameter sizes for GPT-4o and o1-Preview610

are undisclosed, but according to OpenAI’s release611

notes, o1-Preview is designed to handle more com-612

plex reasoning tasks compared to GPT-4o. Table 3613

reports the results of this comparative study on the614

2C-P task, which, as highlighted in the previous615

results, is among the most challenging. This task re-616

quires the correct answer to include two argument617

components. The results of the model size sensi-618

tivity study show that the performance improves619

with the model size5. These findings indicate that620

the improvement of the task scales with the size621

of the model. This improvement, however, is still622

far from claiming a successful performance on the623

task. Scaling, therefore, seems not to be a solution624

to problems involving complex reasoning in natural625

language, having the 405B version of the Llama 3.1626

model performing worse than a random baseline.627

Even o1-preview, a model that has been described628

as reasoning model to solve hard problems, cannot629

effectively identify the two correct premises in a630

convergent argument.631

Prompt Template. Finally, we also investigate632

the influence of the prompt phrasing on the model633

performance by testing another independently de-634

veloped prompt. The two prompts were created635

5Under the assumption that o1-preview is the largest model
tested.

Llama 3.1 GPT

70B 405B gpt-4o o1-preview

9.98 18.73 32.18 41.96

Table 3: Sensitivity to model size across different archi-
tectures and variants (2C-P).

Model Prompt-1 Prompt-2

Llama 3.1:70B 16.01 15.40
Mistral 7.25 7.09
Qwen 2.5:72B 16.29 14.61
GPT-4o 34.32 35.78

Table 4: Sensitivity to Prompt: Performance of models
on Prompt-1 and Prompt-2 (2H-C,2L-P, 1CP and 2DR-
C).

by two different authors of this paper without be- 636

ing able to see each other’s prompt, having only 637

available the formal definition of the selected tasks 638

(i.e., 2H-C, 2L-P, 1C-P, and DR-C) presented 639

in Section 4. Table 4 reports the results from 640

this study, showing a very similar performance on 641

both prompts, meaning that the phrasing of the 642

prompt used in our experiment does neither harm 643

nor boost the model performance for the multiple- 644

choice argument-component selection task. 645

6 Conclusion 646

In this paper, we push forward the boundaries of 647

knowledge on the reasoning capabilities of LLMs, 648

a controversial and widely debated topic in the last 649

years. We do so by asking a simple yet relevant 650

research question, can LLMs parse and understand 651

argumentative reasoning structures? Given that 652

argumentation is the natural way of reasoning in 653

natural language, if LLMs can reason, they should 654

be able to parse, understand, and build natural lan- 655

guage arguments. 656

From our results, we can observe that not only 657

LLMs are not capable of understanding argumenta- 658

tive reasoning structures (let’s not forget that this 659

means reasoning in natural language), but also that 660

in some cases where a slightly more challenging ar- 661

gumentative structure is used, they perform worse 662

than a random baseline. Our findings, therefore 663

highlight the needs of developing challenging tasks 664

to evaluate natural language reasoning, and also 665

question the reasoning capabilities of LLMs, as it 666

has been recently suggested in the literature. 667
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Limitations668

Due to limitations in the compute budget, this work669

assesses very large / expensive models like the670

405B parameter version of Llama and o1 only on671

a limited subset of ART multiple-choice questions.672

Nevertheless, the reported results indicate impor-673

tant trends, revealing that despite showing a slight674

increase in performance, they are still not capable675

of addressing tasks involving complex reasoning.676

Further, this paper focuses on the multiple-677

choice task setup, assuming that this setup does not678

harm the performance of the model. Future work679

may investigate the influence of the task setup on680

the performance, comparing multiple-choice with681

less guided open answer setups.682

Acknowledgments683

References684

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama685
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,686
Diogo Almeida, Janko Altenschmidt, Sam Altman,687
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.688
arXiv preprint arXiv:2303.08774.689

Monroe Curtis Beardsley. 1950. Practical Logic. En-690
glewood Cliffs, NJ, Prentice-Hall.691

Chandra Bhagavatula, Ronan Le Bras, Chaitanya692
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-693
nah Rashkin, Doug Downey, Scott Wen-tau Yih, and694
Yejin Choi. 2019. Abductive commonsense reason-695
ing. arXiv preprint arXiv:1908.05739.696

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang697
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,698
Bing Qin, and Ting Liu. 2024. Navigate through enig-699
matic labyrinth a survey of chain of thought reason-700
ing: Advances, frontiers and future. In Proceedings701
of the 62nd Annual Meeting of the Association for702
Computational Linguistics (Volume 1: Long Papers),703
pages 1173–1203.704

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,705
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias706
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro707
Nakano, et al. 2021. Training verifiers to solve math708
word problems. arXiv preprint arXiv:2110.14168.709

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,710
Dan Roth, and Jonathan Berant. 2021. Did aristotle711
use a laptop? a question answering benchmark with712
implicit reasoning strategies. Transactions of the713
Association for Computational Linguistics, 9:346–714
361.715

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,716
and Subbarao Kambhampati. 2023. Leveraging pre-717
trained large language models to construct and utilize718

world models for model-based task planning. In Ad- 719
vances in Neural Information Processing Systems, 720
volume 36, pages 79081–79094. Curran Associates, 721
Inc. 722

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent- 723
ing Qi, Martin Riddell, Wenfei Zhou, James Coady, 724
David Peng, Yujie Qiao, Luke Benson, Lucy Sun, 725
Alexander Wardle-Solano, Hannah Szabó, Ekate- 726
rina Zubova, Matthew Burtell, Jonathan Fan, Yixin 727
Liu, Brian Wong, Malcolm Sailor, Ansong Ni, Liny- 728
ong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexan- 729
der Fabbri, Wojciech Maciej Kryscinski, Semih 730
Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo 731
Zhou, Caiming Xiong, Rex Ying, Arman Cohan, and 732
Dragomir Radev. 2024. FOLIO: Natural language 733
reasoning with first-order logic. In Proceedings of 734
the 2024 Conference on Empirical Methods in Natu- 735
ral Language Processing, pages 22017–22031. Asso- 736
ciation for Computational Linguistics. 737

Annette Hautli-Janisz, Zlata Kikteva, Wassiliki Siskou, 738
Kamila Gorska, Ray Becker, and Chris Reed. 2022. 739
Qt30: A corpus of argument and conflict in broad- 740
cast debate. In Proceedings of the 13th Language 741
Resources and Evaluation Conference, pages 3291– 742
3300. European Language Resources Association 743
(ELRA). 744

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 745
sch, Chris Bamford, Devendra Singh Chaplot, Diego 746
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 747
laume Lample, Lucile Saulnier, et al. 2023. Mistral 748
7b. arXiv preprint arXiv:2310.06825. 749

Anne Lauscher, Goran Glavaš, and Simone Paolo 750
Ponzetto. 2018. An argument-annotated corpus of 751
scientific publications. In Proceedings of the 5th 752
Workshop on Argument Mining, pages 40–46. 753

Yinghao Li, Haorui Wang, and Chao Zhang. 2024. As- 754
sessing logical puzzle solving in large language mod- 755
els: Insights from a minesweeper case study. In 756
Proceedings of the 2024 Conference of the North 757
American Chapter of the Association for Computa- 758
tional Linguistics: Human Language Technologies 759
(Volume 1: Long Papers), pages 59–81. Association 760
for Computational Linguistics. 761

Saumya Malik. 2024. Lost in the logic: An evaluation 762
of large language models’ reasoning capabilities on 763
lsat logic games. arXiv preprint. 764

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020. 765
Transformer-based argument mining for healthcare 766
applications. In ECAI 2020, pages 2108–2115. IOS 767
Press. 768

Houman Mehrafarin, Arash Eshghi, and Ioannis Kon- 769
stas. 2024. Reasoning or a semblance of it? a diag- 770
nostic study of transitive reasoning in llms. In Pro- 771
ceedings of the 2024 Conference on Empirical Meth- 772
ods in Natural Language Processing, pages 11647– 773
11662. 774

9

https://doi.org/10.18653/v1/2024.naacl-long.4
https://doi.org/10.18653/v1/2024.naacl-long.4
https://doi.org/10.18653/v1/2024.naacl-long.4
https://doi.org/10.18653/v1/2024.naacl-long.4
https://doi.org/10.18653/v1/2024.naacl-long.4
https://doi.org/10.48550/ARXIV.2409.19012
https://doi.org/10.48550/ARXIV.2409.19012
https://doi.org/10.48550/ARXIV.2409.19012
https://doi.org/10.48550/ARXIV.2409.19012
https://doi.org/10.48550/ARXIV.2409.19012


Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.775
2020. A diverse corpus for evaluating and developing776
english math word problem solvers. In Proceedings777
of the 58th Annual Meeting of the Association for778
Computational Linguistics, pages 975–984.779

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,780
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.781
2024. Gsm-symbolic: Understanding the limitations782
of mathematical reasoning in large language models.783
arXiv preprint arXiv:2410.05229.784

Joonsuk Park and Claire Cardie. 2018. A corpus of785
erulemaking user comments for measuring evalua-786
bility of arguments. In Proceedings of the Eleventh787
International Conference on Language Resources788
and Evaluation (LREC 2018).789

Akshay Paruchuri, Jake Garrison, Shun Liao, John Her-790
nandez, Jacob Sunshine, Tim Althoff, Xin Liu, and791
Daniel McDuff. 2024. What are the odds? language792
models are capable of probabilistic reasoning. arXiv793
preprint arXiv:2406.12830.794

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.795
2021. Are nlp models really able to solve simple796
math word problems? In Proceedings of the 2021797
Conference of the North American Chapter of the798
Association for Computational Linguistics: Human799
Language Technologies, pages 2080–2094.800

Andreas Peldszus and Manfred Stede. 2015. An anno-801
tated corpus of argumentative microtexts. In Argu-802
mentation and Reasoned Action: Proceedings of the803
1st European Conference on Argumentation, Lisbon,804
volume 2, pages 801–815.805

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska,806
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A Task Visualisation931

To simplify the understanding of the task formali-932

sations in Section 4, Figure 2 depicts a sub-set of933

tasks from the ART dataset including 1H-C, 1Int-934

C, 2H-P, 2H-C, 1DR-C, 2DR-C, AH, and 2Int-C.935

B Hyper-Parameters 936

We utilize the LLaMA 3.1 model in its 8B, 70B, 937

and 405B configurations (Touvron et al., 2023), ac- 938

cessed through the Ollama library6. Additionally, 939

the 7B configuration of the Mistral model (Jiang 940

et al., 2023) is employed, also via the Ollama li- 941

brary7. Furthermore, we use the 7B and 72B ver- 942

sions of the Qwen 2.5 model8, accessed through 943

the Ollama library9. For GPT variants, we rely on 944

the API provided by OpenAI for interacting with 945

the GPT-4o and o1-Preview models. Across the 946

models we use default parameters including the 947

temperature and top_k predictions. We do not per- 948

form any finetuning and only apply prompting to 949

off-the-shelf models. 950

C Prompt Templates 951

Aimed at improving the transparency and repro- 952

ducibility of the results reported in this paper, Table 953

21 contains the templates of the prompts that we 954

used for the different tasks included in ART. 955

D Complete Results 956

This appendix section contains the fine-grained re- 957

sults of the LLMs on the sixteen tasks included in 958

ART. 959

D.1 Serial 960

• One-hop conclusion (1H-C): Table 5. 961

• One-hop premise (1H-P): Table 6. 962

• Two-hop conclusion (2H-C): Table 7. 963

• Two-hop premise (2H-P): Table 8. 964

• Intermediate conclusion (Int-C): Table 9. 965

• Two intermediate conclusions (2-Int-C): Ta- 966

ble 10. 967

D.2 Linked 968

• One linked premise (1L-P): Table 11. 969

• Two linked premises (2L-P): Table 12. 970

• Linked reasoning conclusion (LR-C): Table 971

13. 972

6https://ollama.com/library/llama3.1
7https://ollama.com/library/mistral
8https://github.com/QwenLM/Qwen
9https://ollama.com/library/qwen2.5
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D.3 Convergent973

• One convergent premise (1C-P): Table 14.974

• Two convergent premises (2C-P): Table 15.975

• Convergent reasoning conclusion (CR-C): Ta-976

ble 16.977

• Alternative Hop (AH): Table 17.978

D.4 Divergent979

• One divergent reasoning conclusion (1DR-C):980

Table 18.981

• Two divergent reasoning conclusions (2DR-982

C): Table 19.983

• Divergent reasoning premise (DR-P): Table984

20.985

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 68.90 74.34 98.46 74.98 62.21 69.12 69.66
llama3.1:70b 34.80 24.60 37.80 43.60 0.40 34.80 -
llama3.1:8b 19.00 5.60 17.40 15.80 0.20 15.83 14.81
mistral 42.40 17.80 29.80 33.10 0.60 50.27 54.33
qwen2.5:72b 43.14 59.90 54.41 67.83 33.33 55.21 69.19
qwen2.5:7b 32.40 17.40 40.20 40.80 0.40 50.27 54.33

Table 5: 1H-C

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 68.12 71.34 93.41 71.87 58.12 68.90 68.23
llama3.1:70b 42.4 15.2 51.6 48.4 0.4 49.01 67.6
llama3.1:8b 25 8.2 17.8 22.4 0.4 10.733 10.218
mistral 27.6 10 36.4 28.6 0 40.25 47.2
qwen2.5:72b 34.79 35.64 52.96 62.02 33.33 52.06 63.60
qwen2.5:7b 37.2 14.2 48 42.4 0.4 42.6 47.65

Table 6: 1H-P

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 25.46 37.62 87.747 53.623 61.66 48.83 54.83
llama3.1:70b 51.00 36.00 44.40 32.40 0.40 35.60 35.00
llama3.1:8b 18.00 8.00 22.00 9.80 0.20 14.20 15.40
mistral 20.50 11.40 29.20 26.40 0.40 32.80 32.20
qwen2.5:72b 45.00 33.00 54.60 37.60 0.40 38.20 32.00
qwen2.5:7b 33.00 12.00 44.60 32.60 0.40 30.20 22.20

Table 7: 2H-C.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 41.00 39.10 79.31 70.43 33.33 54.43 56.08
llama3.1:70b 35.59 38.11 40.97 58.84 33.33 42.44 59.62
llama3.1:8b 8.00 4.60 10.20 9.40 0.00 9.5707 20.00
mistral 24.80 9.00 29.00 22.60 0.00 32.46 35.76
qwen2.5:72b 32.20 38.11 50.98 57.10 33.33 49.64 62.81
qwen2.5:7b 17.60 9.40 33.60 25.80 0.00 32.46 35.76

Table 8: 2H-P.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 55.88 69.24 97.50 76.16 33.33 71.67 66.66
llama3.1:70b 30.07 49.01 49.54 52.17 16.67 47.57 60.10
llama3.1:8b 3.40 1.80 6.40 4.60 0.00 11.90 10.84
mistral 33.80 11.80 35.60 24.80 0.00 47.60 57.00
qwen2.5:72b 38.46 37.13 69.70 64.93 16.67 57.46 68.79
qwen2.5:7b 21.80 15.80 55.20 36.00 0.00 32.40 43.59

Table 9: Int-C.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 39.65 0 86.42 43.33 0 8.78 35.40
Llama 3.1 70B 0.53 0 13.58 8.89 0 2.16 5.24
Llama 3.1 8B 0 0 0 0 0 0.13 0
Mistral 0.70 0 0 2.22 0 0.51 1.21
Qwen 2.5 72B 7.89 0 1.23 12.22 0 2.16 0.81
Qwen 2.5 7B 0.70 0 1.23 2.22 0 0.51 1.21

Table 10: 2-Int-C.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o – – – 79.87 – 65.23 73.81
llama3.1:70b – – – 64.62 – 57.54 58.89
llama3.1:8b – – – 4.62 – 13.49 17.22
mistral – – – 9.23 – 25.60 26.67
qwen2.5:7b – – – 49.23 – 39.68 43.89
qwen2.5:72b – – – 58.46 – 53.77 57.22

Table 11: 1L-P

AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o – – – 51.87 – 31.56 58.12
llama3.1:70b – – – 24.62 – 19.44 20.56
llama3.1:8b – – – 0 – 0.40 1.67
mistral – – – 0 – 0.20 0
qwen2.5:7b – – – 6.15 – 9.33 8.33

Table 12: 2L-P

Model AAEC ABstRACT ACSP CDCP Microtext QT30 US2016

GPT-4o – – – 74.87 – 62.34 57.23
llama3.1:70b – – – 60.00 – 53.17 56.11
llama3.1:8b – – – 23.08 – 20.63 16.11
mistral – – – 29.23 – 36.51 33.89
qwen2.5:7b – – – 50.77 – 39.29 39.44
qwen2.5:72b – – – 63.08 – 55.95 61.11

Table 13: LR-C.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 44.68 23.44 89.45 46.00 3.46 54.98 51.35
llama3.1:70b 15.80 18.80 22.40 17.80 1.40 18.60 29.20
llama3.1:8b 4.40 14.00 6.40 6.40 1.00 7.00 9.40
mistral 9.00 2.40 22.60 7.20 0.20 5.60 18.00
qwen2.5:72b 22.20 21.20 34.60 24.80 1.60 27.00 37.00
qwen2.5:7b 16.60 12.40 26.80 20.80 1.80 14.60 27.20

Table 14: 1C-P
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Figure 2: Illustration of selected task types highlighting serial, linked, convergent, and divergent argument structures.
The figure includes task types involving single argument components, two argument components, and substructures
such as alternative reasoning and two intermediate conclusions.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 20.88 16.90 85.63 18.85 17.65 28.39 36.99
llama3.1:70b 8.34 14.58 3.90 5.50 9.80 13.82 13.98
llama3.1:8b 3.40 6.60 1.00 2.00 0.00 5.40 2.40
mistral 2.80 3.00 0.40 1.00 0.20 2.80 1.20
qwen2.5:72b 9.00 15.40 10.60 5.40 1.20 11.20 12.80
qwen2.5:7b 2.60 3.80 6.00 4.00 0.60 5.60 7.00

Table 15: 2C-P

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 61.898 78.09 88.34 87.13866121 24.34 73.13 64.45
llama3.1:70b 40.2 78.60 33.1 62.6 6.6 40 62.2
llama3.1:8b 8.8 15 10.6 15 3.1 10.8 27.8
mistral 29.8 20 26.6 27.2 3.1 18.6 32
qwen2.5:72b 44.6 78.6 41.4 65 7.6 40.8 63.8
qwen2.5:7b 24.2 41.4 31.4 45 4.6 25.4 47.6

Table 16: CR-C.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

GPT-4o 15.68 19.51 82.12 27.79 0 30.19 30.63
llama3.1:70b 0 0 0.2 0 0 0 0.2
llama3.1:8b 0 0 0 0 0 0 0
mistral 0 0 0 0 0 0 0
qwen2.5:72b 0 2.44 13.69 3.52 0 2.36 7.79
qwen2.5:7b 0 0 0 0 0 0 0

Table 17: AH.

AAEC ABstRACT ACSP CDCP Microtext QT30 US2016

LLAMA3.1:70B - 1.6 9.2 1 - 23 9.2
LLAMA3.1:8B - 0.4 2 0.4 - 10.2 3.2
Mistral - 0.2 8.8 0 - 10 4.6
Qwen2.5 - 1 12 1 - 16.8 7.6
Qwen2.5:72B - 2.2 18 1.4 - 35.6 11.6
GPT-4o - 15.4 52.34 9.34 - 51.34 48.34

Table 18: DR-C.

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

llama3.1:70b - 0.2 2.6 0.4 - 6 1.6
llama3.1:8b - 0 0.2 0 - 0 0
mistral - 0 0 0 - 2 0.8
qwen2.5 - 0 1.4 0 - 4.8 2.2
qwen2.5:72b - 0.8 5.6 0.6 - 11 3.8
GPT-4o - 7.8 26.45 4.56 - 24.56 17.23

Table 19: 2DR-C

Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016

LLAMA3.1:70B - 1.6 14.8 1.4 - 40.8 13.4
LLAMA3.1:8B - 0.8 5.0 0.8 - 26.8 5.4
Mistral - 0.8 8.8 0.8 - 25.2 8.2
Qwen2.5 - 1.8 14.0 1.6 - 40.4 13.0
Qwen2.5:72B - 1.4 14.8 1.8 - 40.4 16.2
GPT-4o - 10.8 45.6 8.32 - 48.5 46.23

Table 20: DR-P.
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Task Type Prompt
1H-C A one-hop argument involves a single inference step where a Premise directly supports

Conclusion. Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’,
your task is to identify which of the following options represents the Conclusion that is directly supported by the Premise.

1H-P A one-hop argument consists of a single inference step where a Premise directly supports
Conclusion. Consider the following argument: ’{argument}’. Given the Conclusion: ’{conclusion}’,
your task is to identify which of the following options can serve as the Premise that supports this Conclusion.

1Int-C A two-hop serial argument involves two inference steps: a Premise supports
Conclusion 1 (the intermediate conclusion), and Conclusion 1 further supports a
final Conclusion 2 in a chain. Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’,
your task is to identify which of the following options can serve as Conclusion 1 that connects the
Premise to Conclusion 2: ’{conclusion_2}’.

2H-C A two-hop serial argument involves two inference steps: a Premise supports
Conclusion 1 (the intermediate conclusion), and Conclusion 1 further supports a
final Conclusion 2 in a chain. Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’ which
supports Conclusion 1: ’{conclusion_1}’, your task is to identify which of the following
options can serve as the final Conclusion 2 that is further supported by Conclusion 1.

2H-P A two-hop serial argument involves two inference steps: a Premise supports
Conclusion 1 (the intermediate conclusion), and Conclusion 1 further supports a
final Conclusion 2 in a chain. Consider the following argument: ’{argument}’. Given
Conclusion 2: ’{conclusion_2}’ which is supported by Conclusion 1: ’{conclusion_1}’, your task is to
identify which of the following options can serve as the Premise that supports Conclusion 1.

2Int-C A three-hop serial argument involves three inference steps: a Premise supports
Conclusion 1, Conclusion 1 supports Conclusion 2, and Conclusion 2 further supports
Conclusion 3 in a chain. Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’,
your task is to identify which one of the following options represents Conclusion 1 that is logically supported by the
Premise, and which one represents Conclusion 2 that is supported by Conclusion 1, such that
Conclusion 2 further supports Conclusion 3: ’{conclusion_3}’ in the chain.
The missing argument components must logically align with the provided context, ensuring that Conclusion 1 is
supported by the Premise, Conclusion 2 is supported by Conclusion 1, and
Conclusion 3 is supported by Conclusion 2.

1L-P In a linked argument, a conclusion is supported jointly by multiple premises (Premise 1,
Premise 2). Consider the following argument: ’{argument}’. Given the Premise 1: ’{premise_1}’,
your task is to identify which of the following options represents the Premise 2 that, when used jointly with
Premise 1, directly supports the conclusion: ’{conclusion}’.

2L-P In two linked premises, a conclusion is supported jointly by Premise 1 and
Premise 2. Consider the following argument: ’{argument}’. Identify which one of the following represents
Premise 1 and Premise 2, from the given set of alternatives, jointly supporting
the conclusion: ’{conclusion}’.

LR-C In a linked reasoning argument, a conclusion is supported jointly by Premise 1 and
Premise 2. Consider the following argument: ’{argument}’. Given the Premise 1: ’{premise_1}’ and
Premise 2: ’{premise_2}’, your task is to identify which one of the following options
represents the Conclusion that is jointly supported by Premise 1 and Premise 2.

1C-P In a Convergent argument, a conclusion is independently supported by multiple premises
(Premise 1, Premise 2). Consider the following argument: ’{argument}’. Given the Premise 1: ’{premise_1}’,
your task is to identify which of the following options represents the Premise 2 that also independently
supports the Conclusion: ’{conclusion}’.

2C-P In a Convergent argument, a conclusion is independently supported by Premise 1 and Premise 2.
Consider the following argument: ’{argument}’. Identify which one of the following represents
Premise 1 and Premise 2, from the given set of alternatives, independently
supporting the Conclusion: ’{conclusion}’.

CR-C In a Convergent reasoning argument, a Conclusion is independently supported by
Premise 1 and Premise 2. Consider the following argument: ’{argument}’. Given the Premise 1: ’{premise_1}’
and Premise 2: ’{premise_2}’, your task is to identify which one of the following options
represents the Conclusion that is independently supported by Premise 1 and Premise 2.

1DR-C In divergent reasoning, a Premise supports multiple Conclusions (Conclusion 1 and Conclusion 2).
Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’,
and Conclusion 1: ’{conclusion_1}’, your task is to identify which one of the
following options represents the Conclusion 2 that is also supported by the Premise.

2DR-C In divergent reasoning, a Premise supports multiple Conclusions (Conclusion 1 and Conclusion 2).
Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’,
your task is to identify which one of the following represents Conclusion 1 and Conclusion 2,
from the given set of alternatives, that are supported by the Premise in the provided argument.

DR-P In divergent reasoning, a Premise supports multiple Conclusions (Conclusion 1 and Conclusion 2).
Consider the following argument: ’{argument}’.
Given the Conclusion 1: ’{conclusion_1}’ and Conclusion 2: ’{conclusion_2}’,
your task is to identify the Premise that supports both Conclusion 1 and Conclusion 2 in the provided argument.

Table 21: Task Types and Corresponding Prompts.
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