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Abstract

Despite the growing focus on reasoning in
Large Language Models (LLMs), particu-
larly through techniques like Chain-of-Thought
prompting, there remains limited analysis on
whether these models are really reasoning or if
performance improvements are mainly due to
the context added to the prompt. Furthermore,
there is a lack of advanced evaluation tasks
assessing natural language reasoning in gener-
ative models. This paper addresses a gap in
the study of reasoning in LLMs by presenting
the first large-scale evaluation of their uncon-
strained natural language reasoning capabili-
ties based on natural language argumentation.
As a result, three main contributions are pro-
duced: (i) the formalisation of a new strategy
designed to evaluate argumentative reasoning
understanding in LLMSs: argument-component
selection; (ii) the creation of the Argument Rea-
soning Tasks (ART) dataset, a new benchmark
based on argument structures for natural lan-
guage reasoning; and (iii) an extensive experi-
mental analysis involving four different models,
pointing out consistently the important limita-
tions of LLMs on natural language reasoning
tasks.

1 Introduction

The question of whether Large Language Mod-
els (LLMs) can perform reasoning is a thorny one.
Not only have there been a wide range of studies
exploring the issue (and coming to wildly differ-
ent conclusions), but techniques such as Chain of
Thought prompting (CoT) (Wei et al., 2022) and
multi-hop Question-Answering (Yang et al., 2018;
Zhu et al., 2024), that purport to place reasoning
at the forefront of LLM interaction, have gener-
ated remarkable performance enhancements and
demanding challenge tasks (Chu et al., 2024). Cou-
pled with high profile marketing touting LL.M rea-
soning capabilities' and anecdotal evidence of both
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spectacular success and spectacular failure, it is no
wonder there has been such an explosion of work
in trying to fairly assess reasoning competence in
LLMs (Miao et al., 2020; Cobbe et al., 2021; Patel
et al., 2021; Talmor et al., 2021; Geva et al., 2021;
Mirzadeh et al., 2024; Han et al., 2024; Valmeekam
et al., 2024; Mehrafarin et al., 2024; Paruchuri et al.,
2024; Tyagi et al., 2024a; Samadarshi et al., 2024;
Shiri et al., 2024; Han et al., 2024). To date, how-
ever, all of this work has focused on artificial, syn-
thetic, toy problems such as arithmetic, logic puz-
zles, and theorem-proving. Though a focus on such
toy problems offers an opportunity to carefully con-
trol variability under laboratory conditions, it also
risks seriously misrepresenting LLM performance
with respect to realistic human reasoning. Even
(Guan et al., 2023), who demonstrate deep weak-
nesses in current LLM capacity, rest their argument
on classical planning, a very narrow and tightly
constrained type of reasoning. What is required is
a vocabulary, a model, a dataset and a set of tasks
that also cover natural, in-situ human reasoning, as
it is expressed in language. This is the domain of
argumentation theory (van Eemeren et al., 2014),
and our goal in this paper is to leverage recent re-
sults in the area to equip us with the tools to assess
LLM performance in realistic settings.

We address this significant challenge by present-
ing the first large-scale evaluation of the natural lan-
guage reasoning capabilities of LLMs based on nat-
ural language argumentation. This paper has, there-
fore, the three following main contributions: (i) we
formalise a new task that we define as argument-
component selection which is designed to evaluate
argumentative reasoning in LLMs; (ii) we create
and release publicly the Argument Reasoning Tasks
(ART) dataset, a new benchmark for argumentation
reasoning consisting of 112,212 multiple-choice
questions covering a total of sixteen different tasks
addressing structural aspects of argumentation; and
(iii) we present a complete set of experiments in-
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volving four open- and closed-weight models as
well as a thorough analysis of the observed results.

2 Related Work

As pointed out in recent work, CoT reasoning can
also be achieved without any prompt engineering,
by just modifying the greedy decoding strategy to
explore alternative top-k decoding paths (Wang and
Zhou, 2024). This finding, despite being presented
as that the models reason intrinsically, it can also
be interpreted as meaning that the models do not
reason at all, they just have different alternative
most likely sequence paths learnt from the train-
ing data, and tuning the input prompt (or adapting
the decoding) allows to select a different decoding
path than the one that provides the direct answer.
Following this important finding, rather than fo-
cusing on how the output of the model is decoded,
the focus should be on studying the model’s ability
to generalise and keep this behaviour labelled as
“reasoning” when addressing problems of different
nature and involving more complex and realistic
reasoning than the ones that are commonly studied
in the literature?.

This aspect has been discussed in recent work
(Valmeekam et al., 2024; Wu et al., 2024), where
the reported results show that with minimal varia-
tions of the standard versions of the tasks included
in the most popular benchmarks used for reason-
ing, the performance of LLMs drops significantly.
These findings challenge the claims that LLMs can
do reasoning and that it allows them to improve
their performance in a broad range of tasks.

In addition to CoT and (multi-hop) QA-related
tasks, other datasets and tasks to evaluate rea-
soning in LLMs have been proposed in the past.
ProofWriter (Tafjord et al., 2021) presents a dataset
to evaluate deductive logical reasoning through for-
mal logic problems. COPA (Roemmele et al., 2011)
and its multilingual version XCOPA (Ponti et al.,
2020) are two datasets created to evaluate causal
reasoning by providing situations and asking to se-
lect the most likely outcome to happen according
to a cause-effect relationship. In this same direc-
tion, SWAG (Zellers et al., 2018) and HellaSWAG
(Zellers et al., 2019) introduce two datasets to eval-
uate commonsense reasoning inference featuring
adversarially generated scenarios in which models
need to determine the most plausible option. The

2And that, therefore, will most likely be also included in
the training data of the latest versions of the popular LLMs

aNLI (Bhagavatula et al., 2019) dataset is proposed
to investigate abductive reasoning. Again, the mod-
els are challenged to identify plausible outcomes
for incomplete information scenarios. FOLIO (Han
et al., 2024) consists of a collection of first order
logic statements to evaluate the reasoning capabili-
ties of LLMs. The models are asked to determine
the truth values of a set of conclusions given some
premises which are presented in both, natural lan-
guage and first-order logic statements. From the
reported results, it is possible to observe how LLMs
struggle to solve this task. Finally, it is also worth
mentioning other recent approaches, which have
proposed the assessment of the reasoning capaci-
ties of LLLMs based on games such as Minesweeper,
grid puzzles, Sudoku or crosswords among others
(Li et al., 2024; Tyagi et al., 2024b; Shah et al.,
2024; Saha et al., 2024).

We can observe, however, that despite being fo-
cused on reasoning-related tasks, none of them
address the problem of non-constrained reasoning
in natural language (e.g., in argumentation), which
is a fundamental aspect for evaluating and under-
standing the actual natural language reasoning ca-
pabilities of LLMs.

3 Theoretical Background

Arguments combine premises and conclusions to
create complex reasoning structures. Argument
theory distinguishes different structural combina-
tions of premises and conclusions: serial (premises
and/or conclusions are supported by premises
themselves) (Beardsley, 1950), linked (multiple
premises support a conclusion together in a com-
bined inferential step) (Thomas, 1973), convergent
(multiple premises independently support the con-
clusion), and divergent (same premise supports
more than one conclusion). With these four types
of argument structure, it is possible to analyse and
understand argumentation in similar ways as multi-
hop and CoT reasoning are commonly studied.
An important challenge in the evaluation of
LLMs on argumentation skills is to ensure that
the reasoning capacities are assessed instead of the
dialogue generation abilities. Their training en-
ables LLMs to create credible textual output based
on probable token combinations. In an argument
continuation task without sufficient limitations, the
model will produce a probable continuation based
on the input text. In this case, it is difficult to evalu-
ate the appropriateness of the created continuation.



Our approach solves the evaluation challenge by
introducing a multiple-choice task, a setup similar
to the ones LSAT tests already used to measure the
reasoning abilities of LLMs in logic games (Malik,
2024). By asking for one or more elements from a
complex argumentative graph structure, the model
needs to identify the correct continuation among a
choice of options from the same argumentative con-
text. This requires the ability to follow and recon-
struct an implicit reasoning path. Tasks targeting
larger chunks of argumentative elements require
a model to choose an appropriate sub-structure as
continuation, which demands deep understanding
of necessary intermediate reasoning steps, similar
to complex multi-hop Q&A tasks.

4 Method

Aimed at providing, for the first time, a method
to consistently evaluate the natural language rea-
soning capabilities of LLMs in argumentation, we
formulate argument-component selection, consist-
ing of a series of sixteen different argumentative
reasoning tasks grouped into four different types of
argumentative structures. This way, the proposed
method allows us to evaluate the natural language
reasoning capabilities of LLMs by asking them to
build and reconstruct natural language arguments.

4.1 Task Formulation

An argument is represented as a structure consist-
ing of a sequence of argument components A =
{a1,as,...,a,} and the relations of inference and
conflict between them R = {F, —}, R : A x A.
Our proposed tasks leverage the argumentative con-
text, C to predict or generate a required argument
component. To facilitate automatic evaluation and
ensure consistency, we restrict the proposed tasks
to selecting missing components from a predefined
set of options. This constraint is crucial as open-
ended generation poses challenges for evaluation,
given that multiple valid components could fulfil
the argument structure. By limiting the options,
we allow the model to focus on identifying the
most appropriate components while enabling reli-
able evaluation against gold-standard answers. We
therefore define a series of Argumentative Reason-
ing Tasks as argument-component selection prob-
lems, where the model must identify the correct
argument component(s) from a set of candidates
to meet some set of structural argumentative crite-
ria. The task requires filling the missing compo-

nents of specific substructures while considering
the entire argument as context. Accordingly, the
model is provided with an argument as a context
C, a partially specified argument substructure (with
missing argument components), and a candidate
setU = {u1,ug,...,ux}, which includes the cor-
rect answer 4. The objective is to select the correct
missing component 4 by evaluating the candidates
for their relevance and alignment with the given
context C. This process is formalized as:

. c
4 = argmax score(u | C),

where score(u | C) measures the semantic and
structural fit of the candidate u within the argu-
ment substructure. The next section outlines the
instantiation of the argument-component selection
formulation into the argumentative reasoning tasks
included in our proposed evaluation method.

4.2 Argumentive Reasoning Tasks (ART)

We design a series of sixteen tasks based on four dif-
ferent types of argument structures: serial, linked,
convergent, and divergent argument. Aimed at eas-
ing its understanding, a visual representation of the
designed tasks can be found in Appendix A.

4.2.1 Serial Reasoning

In serial argument, an argument relation of infer-
ence () is applied sequentially. The model is
tasked with identifying a conclusion, premise, or
intermediate step based on the argument compo-
nent(s) and the entire argument as a context. It
includes the following six tasks:

One-hop Conclusion. With a single instance
of an argument relation of inference (I-), between
a premise, o and a conclusion ,5’, a set is created
of alternative potential conclusions, {/1, ..., O}
(which when taken together with B is referred to
together as the set B), from which the model must
select. Treating the model as a function, f, the
inputs are a set of argument components, plus a
set of context, C. The argument components in
this case are the premise «, and the fact that the
role to be played by the model’s selection is as
the conclusion of a |- relation that has « as its
premise. This role is expressed in the input by a
metavariable X. The model’s result is a binding of
X to f3, one of the elements of B. Formally, given
5 = {BOaB}v“wﬁn}v fla,a k- X} C) ={X:
B}, where 5 € B.

One-hop Premise. The task in this case is to
identify a premise & given a conclusion (3, where



& supports 3 (& F B), from a set of alternative
potential premises A = {ag, a1,...,a,}, which
includes the target premise &. Given the inputs
B, and the fact that the model’s role is to select a
premise for a () relation with /3 as its conclusion
(denoted as Y'), along with a set of context C, the
model f outputs the selected premise. The model’s
result is a binding of Y to &, one of the elements
of A. Formally, given A = {ag,a1,...,an},
fUB, Y FB},C)={Y : &}, where & € A.

Two-hop Conclusion. In a two-hop argument,
there are two sequential inference relations, ().
The first is between a premise o and an intermedi-
ate conclusion 3, and the second is between (5 and
a final conclusion 4. A set of alternative potential
conclusions, {0, 71, - - ., Vn} (referred to together
with 4 as the set D), is created from which the
model must select in the given context C. Formally,
given D = {v0,71,.--,m}: f{a,B,aF B, F
X}C)={X:4}, whered € D.

Two-hop Premise. Following a similar formali-
sation, with two sequential argument relations of
inference, (I-), the first between a premise, &, and
an intermediate conclusion, 3, and the second be-
tween 3 and a final conclusion, -, a set is created
of alternative potential premises, {c, a1, ..., an}
(referred to together with & as the set A), from
which the model must select in the given context C.
Formally, given A = {ap,o1,..., 00}, f({X F
B,8,8F~v,7}C)={X:a}, wheref € A.

One-Intermediate Conclusion. Similarly, in-
termediate conclusion involves two sequential ar-
gument relations of inference, (). The first is
between a premise « and an intermediate conclu-
sion B, and the second is between B and a final
conclusion . A set of alternative potential in-
termediate conclusions, {fo, 51, ..., Bn} (referred
to together with B as the set B), is created from
which the model must select in the given con-
text C. Formally, given B = {Bo, b1, - > , Bnts
fH{o, X Fv,7},C)={X:6}, wheref € B.

Two-Intermediate Conclusions. Two interme-
diate conclusions involve three sequential argu-
ment relations of inference, (F). The first is be-
tween a premise « and the first intermediate con-
clusion B, the second is between B and the sec-
ond intermediate conclusion %, and the third is
between 4 and the final conclusion w. Given the
context C, the model selects B and 4 from a set
of alternative potential intermediate conclusions,

B = {ﬁ(bﬁla"'?ﬁn} and U = {707717"'77”}’

respectively. Formally, given B, U, f({«,w,a F
X,X F Y)Y  whC) = {X : BL{Y
4}, where € B and 4 € U.

4.2.2 Linked Reasoning

In a linked argument, there exists a support relation
where a conclusion [ is supported by a premise «
in combination with another premise 6. It involves
the following variants.

One Linked Premise. Given the context C, the
aim of this task is to identify the premise 6, such
that a A 0 + 5 holds, from a set of alternative
potential linked premises, Z = {60y,01,...,0,}.
Formally, the relation is expressed as, f({a, 8, A
XFBLC)={X:60}, wherefec Z.

Two Linked Premises. Similarly, in two linked
premise, given the context C, the task is to iden-
tify both premises & and 0, such that & A 0 + 3,
from alternative potential linked premises, A =
{ag,01,...,an} and Z = {0,601, ...,60p,}. For-
mally, the relation is expressed as, f({5, X AY I
8},C) = {(X,Y): (4,0)}, whered € A, 0 €
Z.

Linked Reasoning Conclusion. Finally, this
task aims to identify the conclusion B, such that
o A B F f3 holds, from a set of alternative potential
conclusions, B = {5y, 81, .., 6}, in the given
context C. Formally, the relation is expressed as,
f{a,0,an0F X},C) = {X : B}, where e
B.

4.2.3 Convergent Reasoning

In a convergent argument, multiple premises (., 0)
independently support a conclusion 3. It includes
the following variants.

One Convergent Premise. The task is to iden-
tify a premise & that independently supports 3,
given the conclusion 3 and the other premise 6 that
also independently supports (3 in the context C. The
model selects & from a set of alternative potential

premises, A = {ap,a1,...,a,}. Formally, the
relation is expressed as, f({0,5,X + 5},C) =
{X :a}, whereac A.

Two Convergent Premises. Two convergent
premises identifies both & and 0, such that each
independently supports S in the given context C.
The premises & and 6 are selected from the sets
of alternative potential premises { g, a1, ..., o}
and T = {6p,01,...,60,}, respectively. For-
mally, the relation is expressed as, f({8,X F
B,Y  B},C) = {(X,Y) : 4,0}, whereda €
Aandf € T.



Figure 1: Illustration of the data processing for ART. In the argument graph on the left, substructures of the target
task are identified (sub-graph in the middle). Based on these, multiple-choice questions as displayed on the right
are created, where the question (orange dotted outlines) includes the argumentative component together (yellow
square-outlines) with the relevant context (grey) from the complete graph in the left. The correct answer choice
(green full outlines) of the identified argumentative structure is presented alongside with incorrect options sampled

from all other nodes in the graph (grey).

Convergent Reasoning Conclusion. Final, this
task identifies the conclusion B which is inde-
pendently supported by the two premises a and
0. Given the premises «, ¢ and the context C, the
model must select a conclusion B from a set of
potential conclusions B = {5y, 01, ..., Sm }. For-
mally, the relation is expressed as, f ({a,0,a F
X,0F X},0) ={X:3}, wheref} €B.

Alternative Hop. Given a premise «, an inter-
mediate conclusion /3, and a final conclusion w,
each with their respective argument relations of
inference, (), the aim is to find an alternative rea-
soning chain that leads to w. This chain should
involve an alternative premise 6 that supports an in-
termediate conclusion %, which in turn leads to
the final conclusion w. Specifically, the model
must identify an alternative 6 such that § + A
and 4 F w in the given context C. Formally, let
Z = {6y,01,...,0,} be the set of potential al-
ternative premises and U = {~p,71,...,7n} the
set of potential intermediate conclusions. The
model’s task is then to find § € Z and ¥y eU
that satisfy the relation. This is expressed as,
f{o,Byw,a bk B, Fw, X FY)Y Fw},C) =
{X:0},{Y :4}, wherele Z and 4 eU.
Here, 6 is the selected alternative premise from the
set Z and # is the selected intermediate conclusion
from the set U, such that § - v and v I w holds
true.

4.2.4 Divergent Reasoning

In divergent argument, one premise supports multi-
ple conclusions. It involves the following variants.

One Divergent Reasoning Conclusion. This
task identifies one of the conclusions B, 4, which is
supported by the premise . Given the premise «,
and one of the conclusions ~ and the context C, the
model selects B from a set of potential conclusions

{B = Bo,P1,-.-.,Bm}. Formally, the relation is
expressed as, f({a,a - X,a F ~4},C) = {(X
4}, where B € B.

Two Divergent Reasoning Conclusions. This
task identifies two conclusions B and 4, both of
which are supported by the premise «. Given
the premise o and context C, the model selects
B and 4 from a set of potential conclusions { B =
Bo, By Bm} and Z = {y0,m,...,n}. For-
mally, the relation is expressed as, f({a,a F
X,o F Y},0) = {(X,Y) : {B,4}, where § €
Band# € Z.

Divergent Reasoning Premise. Given the con-
clusions 8 and - within a context C, the model
selects & from a set of potential premises A =
{ai,...,an}, such that & supports both /5 and
~. Formally, this relation is defined as, f({X F
B, X F~},C)={X:a}, where & € A.

4.3 Data

To create a robust and comprehensive evaluation,
we incorporate seven corpora spanning diverse do-
mains and argumentative contexts, covering both
monologue and dialogue structures. The corpora
include MTC (Peldszus and Stede, 2015), AAEC
(Stab and Gurevych, 2017), CDCP (Park and
Cardie, 2018), ACSP (Lauscher et al., 2018), AB-
STRCT (Mayer et al., 2020), US2016 (Visser et al.,
2020), and QT30 (Hautli-Janisz et al., 2022).
MTC consists of short argumentative texts orig-
inally in German and translated into English, an-
notated according to Freeman’s macro-structural
theory of argumentation, with argument relations
categorized as supports and attacks. AAEC com-
prises persuasive student essays annotated at the
discourse level, identifying argument components
(claims and premises) and their argumentative rela-
tions as supports and attacks. CDCP is a corpus



Tasks MTC AAEC CDCP ACSP AbstRCT US2016 QT30
Type Variants
Serial 1H-C 290 4841 1033 5789 2288 3379 6488
1H-P 290 4841 1033 5789 2288 3379 6488
2H-C 57 3279 348 759 327 1009 1118
2H-P 57 3279 348 759 327 1009 1118
Int-C 57 3279 348 759 327 1009 1118
2-Int-C 3 569 89 80 8 249 787
Linked 1L-P 17 64 180 511
2L-P 17 64 180 511
LR-C 17 64 180 511
Convergent 1C-P 96 4735 763 2024 1899 1129 397
2C-P 96 4735 763 2024 1899 1129 397
CR-C 96 4735 763 2024 1899 1129 397
AH 57 3279 348 759 327 1009 1118
Divergent 1DR-C 11 184 48 106 386
2DR-C 11 184 48 106 386
DR-P 11 184 48 106 386

Table 1: Updated statistics of task types for each dataset. The task variants are defined as follows: 1H-C (One-hop
Conclusion), Int-C (Intermediate Conclusion), 2H-P (Two-hop Premise), 2-Int-C (Two-Intermediate Conclusions);
1L-P (One Linked Premise), 2L-P (Two Linked Premises), LR-C (Linked Reasoning Conclusion); 1C-P (One
Convergent Premise), 2C-P (Two Convergent Premises), CR-C (Convergent Reasoning Conclusion), AH (Alternative
Hop); 1DR-C (One Divergent Reasoning Conclusion), 2DR-C (Two Divergent Reasoning Conclusions) and DR-P

(Divergent Reasoning Premise).

of user comments on the Consumer Debt Collec-
tion Practices (CDCP) rule, annotated with argu-
mentative structure. It includes two types of sup-
port relations, categorised as Reason and Evidence
which are consolidated into a single support rela-
tion. ACSP is a corpus of scientific publications
in the field of computer graphics, annotated for
argumentative relations, including supports, contra-
dictions, and semantic equivalence. ABSTRCT is
a corpus of abstracts from randomized controlled
trials across various medical domains, annotated to
identify argument components and their relations.
These relations include support, attack, and partial-
attack. US2016 includes transcripts of debates
from the 2016 US presidential election (primary
and general) and related Reddit discussions. An-
notated using Inference Anchoring Theory (IAT),
it captures argumentation and dialogue structures
with relations categorised as supports, attacks, and
rephrases. Finally, QT30 contains transcripts from
the UK’s Question Time, a political talk show, also
annotated with IAT to identify supports, attacks,
and rephrases.

4.4 Data Processing

For each of the sixteen tasks included in our
method, we systematically navigate through the
argument structures available in the seven corpora,
extracting all substructures that conform to the
task specifications presented above. The result-
ing multiple-choice questions are organized into an
input set and a corresponding target answer. The in-

put set comprises the involved types of argumenta-
tive relations and their corresponding components
(excluding the target correct answer), alongside
the concatenation of all the sentences surrounding
the argument component as the context (C'). Four
alternative incorrect answer options are randomly
selected from other arguments outside of the identi-
fied argument substructure. For tasks instantiating
the argument-component selection formulation, if
multiple correct answers are present in an argument,
only one correct answer is included in the list of
options, while other correct answers are excluded
from the pool of incorrect options. For serial rea-
soning task types, any reasoning chain involving
linked arguments is excluded. This exclusion en-
sures that the substructure adequately captures the
logic of the chain, as partial chains that involve
only one argument component do not fully rep-
resent the structure of linked reasoning. Figure
1 summarises the data processing steps, in which
complex and large argument graphs are converted
into five-option multiple-choice questions.

As a result of this process, we present the Argu-
mentative Reasoning Tasks (ART) dataset’. The
ART dataset consists of a total of 112,212 multiple-
choice questions following the sixteen task defi-
nitions, which can also be easily implemented as
prompts as exemplified in Appendix C. Table 1 de-
picts the number of questions divided by task and
corpora that make up our dataset.

3The dataset will be publicly released after the acceptance
of this paper under a CC BY-NC-SA 4.0 license.



Argument-Component Selection

Dataset Model Size Serial Linked Convergent

Divergent

Qwen 2.5 7B 23.78 4+ 13.52
72B 35.59 + 13.49

10.85 & 11.50

9 e
AAEC 18.95 + 19.37

Llama 3.1 8B 12.23 £ 9.87
70B 38.77 £ 8.12

4.15 £ 3.62
16.08 4 20.25

Mistral 7B 29.82 4 14.12 10.4 £ 13.46
GPT GPT-40  49.83 + 17.37 35.78 + 21.50
Qwen 2.5 7B 0.2+0.21 1.75 £ 2.04
MTC 72B 19.51 + 16.29 2.6 +3.40
Llama 3.1 8B 0.16 £ 0.16 1.05 £ 1.50
70B 8.53 £ 11.71 5.46 £ 4.56
Mistral 7B 0.16 + 0.26 0.9 £1.53
GPT GPT-40  49.73 +24.36 11.36 + 11.54
Qwen 2.5 7B 29.97 + 14.84 35.38 £ 25.32 17.45 £ 20.45 0.86 £ 0.80
72B 50.28 + 21.52 51.28 + 16.59 24.68 + 28.54 1.2+ 0.61
CDCP
Llama 3.1 8B 10.33 £7.95 9.23 £12.21 5.85 + 6.66 0.4+04
70B 40.71 £ 17.94 49.74 £ 21.88 21.47 £ 28.40 0.93 £ 0.53
Mistral 7B 22.97 +12.18 12.82 4 14.94 8.85 £ 12.64 0.26 £ 0.46
GPT GPT-40  65.06 + 13.41 68.87 + 14.93 44.94 + 30.31 7.33 +2.52
Qwen 2.5 7B 11.46 £+ 6.28 14.4 £18.73 0.933 £ 0.90
AbStRCT 72B 33.96 + 19.27 29.40 + 33.71 1.46 £ .070
Llama 3.1 8B 4.7 +£3.30 8.9+ 7.01 0.4+0.4
70B 19.054+19 11.12.86 1.33 £+ 0.80
Mistral 7B 10.0 £ 5.77 6.35+9.19 0.33 £0.41
GPT GPT-40  48.61 + 28.90 34.48 +29.19 11.4+3.13
Qwen 2.5 7B 37.13 £19.03 16.05 £ 15.38 9.13 £ 6.77
72B 47.31 + 23.55 25.07 + 15.23 12.8 4 6.43
ACSP
Llama 3.1 8B 12.3 +8.25 4.5 +4.94 2.4+2.42
70B 39.64 £ 13.76 12.433 £ 18.07 8.86 + 6.10
Mistral 7B 26.66 £ 13.47 12.4 £ 14.18 5.86 £ 5.08
GPT GPT-4o 90.47 4 7.34 86.38 + 3.16 41.45 + 14.34
Qwen 2.5 7B 34.12 £19.53 30.55 £ 19.37 20.45 £ 21.46 7.6 +£5.4
72B 49.53 + 27.61 48.33 + 18.86 30.34 + 25.69 10.53 + 6.26
Us2016
Llama 3.1 8B 14.41 £ 6.34 11.66 + 8.67 9.9+ 12.58 2.86 £ 2.71
70B 45.51 £ 25.65 45.18 £ 21.37 26.39 + 26.64 8.06 + 5.98
Mistral 7B 37.95 £ 20.51 20.18 £17.84 12.8 £15.21 4.53 £ 3.70
GPT GPT-4o 58.47 4 12.94 53.03 4 9.32 45.85 + 15.12 37.78 £17.21
Qwen 2.5 7B 31.40+16.96 20.76 + 18.63 11.4 £11.10 20 +18.11
QT30 72B 42.45 + 20.84 45.50 + 16.24 20.33 + 17.02 29.0 £ 15.77
Llama 3.1 8B 9.99 £ 5.15 11.50 £ 10.26 5.8 +4.48 12.33 £ 13.52
70B 36.21 £15.94 43.38 +£20.84 18.10 £ 16.59 23.16 £ 17.40
Mistral 7B 33.98 £ 17.96 20.76 £ 18.63 6.2 +8.22 12.4 £11.78
GPT GPT-4o 53.62 4 23.80 53.04 + 18.66 46.69 + 21.44 41.65 + 15.34

Table 2: Macro averaged Fl-scores and standard devia-
tions for the argument-component selection tasks.

5 Experiments

5.1 Experimental Setup

We evaluate the performance of state-of-the-art
models, including Qwen 2.5 (Yang et al., 2024),
Llama 3.1 (Touvron et al., 2023), Mistral (Jiang
et al., 2023), GPT-4 (Achiam et al., 2023), and
ol%, across a range of complex reasoning tasks
in both few-shot and zero-shot settings. The spe-
cific prompt templates and model hyperparame-
ters, including temperature, top-p sampling, and
inference steps, are detailed in the Appendix B for
reproducibility and transparency. For evaluating
the models on the ART multiple-choice reasoning
tasks, we evaluate model performance using macro
averaged F1-score. The code and dataset are avail-
able at https://github.com/ANONYMOUS (anony-
mous).

5.2 Results and Discussion

Table 2 reports the macro averaged F1-scores and
their standard deviations for each model and type

4https://openai.com/index/
learning-to-reason-with-11lms/

of argument structure. The fine-grained results con-
sidering each of the ART tasks independently has
been included in Appendix D. Having the random
chance baseline (i.e., 20%, one correct answer out
of five options) as a reference, we can observe how
language models could not consistently provide the
correct answers for the ART tasks. This implies
that LLMs may not effectively reason or compre-
hend argumentative reasoning, even if their gener-
ated texts resemble reasoning in appearance, as is
often observed in text generation tasks. These pat-
terns, which can be mistaken for reasoning ability,
result from the model’s capacity to produce fluent
text rather than from an actual ability to parse or
evaluate arguments.

Across all tasks, GPT variants standout, show-
ing better performance compared to the other mod-
els. On average GPT-40 achieves 54.38 £ 25.30,
49.52 £ 22.96, 52.60 £+ 26.53 and 27 £ 10.52 F1-
score on serial, linked, convergent and divergent
types of argument structure respectively. Qwen,
Mistral, and Llama models’ poor performance was
consistent across the board. Despite showing a bet-
ter performance than others, we can also observe
higher standard deviations in the GPT-40 results
(growing as the performance increases), meaning
that there is a big difference in performance be-
tween simple and complex versions of the same
type of argument structure task (e.g., 1H-C, 1H-P
versus 2H-C, 2H-C).

This observation can be generalised to the rest
of the models, which also show significant per-
formance variations across task types and corpora.
Generally the models struggle with task types in-
volving argument substructures as the right answers
(i.e., 2-Int-C and AH), showing a lower perfor-
mance than the random baseline. Notably, with the
exception of GPT-40, all other models, regardless
of their size, performed near zero F1-score when
tasked with selecting alternative reasoning hops
(AH) and two intermediate conclusions (2-Int-C).
For instance, Qwen 2.5:70B achieves 4.25 + 4.92,
3.47 £ 4.72 in AH and 2-Int-C, respectively. This
highlights a significant limitation in handling com-
plex reasoning structures, even for larger model
architectures.

The results for GPT-40 on ACSP constitute sig-
nificant outliers with a macro-average F1-score of
90.47, 86.38, and 41.45 for serial, linked and diver-
gent types of argument structure respectively. The
same model achieves 53.62, 53.04, 41.65 on QT30
for serial, linked and divergent types of argument


https://github.com/ANONYMOUS
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

structure respectively. These results would, in prin-
ciple, mean that GPT-4o0 is capable of effectively
parse and understand natural language reasoning
structures in scientific publications. After a deeper
analysis on the data we observed, however, that on
average ACSP has 324 argument components per
argumentative context C', while US2016, QT30,
AAEC, MTC, ABstRACT, and CDCP involve 17,
15, 15, 5, 7 and 26, respectively. Since the incor-
rect answers are randomly selected from C', ACSP
provides larger space of candidate answers involv-
ing more semantically diverse and distant sets of
answers. This allows to distinguish the correct an-
swer by only focusing on semantic features of the
text.

5.3 Sensitivity Study

In addition to the discussion about the results
achieved by LLMs on ART, we have also analysed
the models’ sensitivity to variations in settings in-
cluding model size and prompt template.

Model Size. The assessment of model sizes
compares the 70B and 405B parameter versions
of Llama 3.1, as well as GPT-40 vs ol-Preview.
The parameter sizes for GPT-40 and ol-Preview
are undisclosed, but according to OpenAl’s release
notes, ol-Preview is designed to handle more com-
plex reasoning tasks compared to GPT-40. Table 3
reports the results of this comparative study on the
2C-P task, which, as highlighted in the previous
results, is among the most challenging. This task re-
quires the correct answer to include two argument
components. The results of the model size sensi-
tivity study show that the performance improves
with the model size’. These findings indicate that
the improvement of the task scales with the size
of the model. This improvement, however, is still
far from claiming a successful performance on the
task. Scaling, therefore, seems not to be a solution
to problems involving complex reasoning in natural
language, having the 405B version of the Llama 3.1
model performing worse than a random baseline.
Even ol-preview, a model that has been described
as reasoning model to solve hard problems, cannot
effectively identify the two correct premises in a
convergent argument.

Prompt Template. Finally, we also investigate
the influence of the prompt phrasing on the model
performance by testing another independently de-
veloped prompt. The two prompts were created

5Under the assumption that ol-preview is the largest model
tested.

Llama 3.1 GPT
70B 405B gpt-4o0 ol-preview
998 18.73 32.18 41.96

Table 3: Sensitivity to model size across different archi-
tectures and variants (2C-P).

Model Prompt-1 Prompt-2
Llama 3.1:70B 16.01 15.40
Mistral 7.25 7.09
Qwen 2.5:72B 16.29 14.61
GPT-40 34.32 35.78

Table 4: Sensitivity to Prompt: Performance of models
on Prompt-1 and Prompt-2 (2H-C,2L-P, 1CP and 2DR-
O).

by two different authors of this paper without be-
ing able to see each other’s prompt, having only
available the formal definition of the selected tasks
(i.e., 2H-C, 2L-P, 1C-P, and DR-C) presented
in Section 4. Table 4 reports the results from
this study, showing a very similar performance on
both prompts, meaning that the phrasing of the
prompt used in our experiment does neither harm
nor boost the model performance for the multiple-
choice argument-component selection task.

6 Conclusion

In this paper, we push forward the boundaries of
knowledge on the reasoning capabilities of LLMs,
a controversial and widely debated topic in the last
years. We do so by asking a simple yet relevant
research question, can LLMs parse and understand
argumentative reasoning structures? Given that
argumentation is the natural way of reasoning in
natural language, if LLMs can reason, they should
be able to parse, understand, and build natural lan-
guage arguments.

From our results, we can observe that not only
LLMs are not capable of understanding argumenta-
tive reasoning structures (let’s not forget that this
means reasoning in natural language), but also that
in some cases where a slightly more challenging ar-
gumentative structure is used, they perform worse
than a random baseline. Our findings, therefore
highlight the needs of developing challenging tasks
to evaluate natural language reasoning, and also
question the reasoning capabilities of LLMs, as it
has been recently suggested in the literature.



Limitations

Due to limitations in the compute budget, this work
assesses very large / expensive models like the
405B parameter version of Llama and o1 only on
a limited subset of ART multiple-choice questions.
Nevertheless, the reported results indicate impor-
tant trends, revealing that despite showing a slight
increase in performance, they are still not capable
of addressing tasks involving complex reasoning.

Further, this paper focuses on the multiple-
choice task setup, assuming that this setup does not
harm the performance of the model. Future work
may investigate the influence of the task setup on
the performance, comparing multiple-choice with
less guided open answer setups.
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A Task Visualisation

To simplify the understanding of the task formali-
sations in Section 4, Figure 2 depicts a sub-set of
tasks from the ART dataset including 1H-C, 1Int-
C, 2H-P, 2H-C, 1DR-C, 2DR-C, AH, and 2Int-C.

B Hyper-Parameters

We utilize the LLaMA 3.1 model in its 8B, 70B,
and 405B configurations (Touvron et al., 2023), ac-
cessed through the 011ama library®. Additionally,
the 7B configuration of the Mistral model (Jiang
et al., 2023) is employed, also via the 011lama li-
brary’. Furthermore, we use the 7B and 72B ver-
sions of the Qwen 2.5 model®, accessed through
the 011ama library®. For GPT variants, we rely on
the API provided by OpenAl for interacting with
the GPT-40 and ol-Preview models. Across the
models we use default parameters including the
temperature and top_k predictions. We do not per-
form any finetuning and only apply prompting to
off-the-shelf models.

C Prompt Templates

Aimed at improving the transparency and repro-
ducibility of the results reported in this paper, Table
21 contains the templates of the prompts that we
used for the different tasks included in ART.

D Complete Results

This appendix section contains the fine-grained re-
sults of the LLMs on the sixteen tasks included in
ART.
D.1 Serial
* One-hop conclusion (1H-C): Table 5.
* One-hop premise (1H-P): Table 6.
* Two-hop conclusion (2H-C): Table 7.
* Two-hop premise (2H-P): Table 8.
 Intermediate conclusion (Int-C): Table 9.

e Two intermediate conclusions (2-Int-C): Ta-
ble 10.

D.2 Linked
* One linked premise (1L-P): Table 11.
* Two linked premises (2L-P): Table 12.

* Linked reasoning conclusion (LR-C): Table
13.

https://ollama.com/library/llama3.1
7https: //0llama.com/library/mistral
8https: //github.com/QwenLM/Qwen
*https://ollama.com/library/qwen2.5
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D.3 Convergent

* One convergent premise (1C-P): Table 14.

* Two convergent premises (2C-P): Table 15.

* Convergent reasoning conclusion (CR-C): Ta-

ble 16.
* Alternative Hop (AH): Table 17.

D.4 Divergent

* One divergent reasoning conclusion (1DR-C):
Table 18.

* Two divergent reasoning conclusions (2DR-

C): Table 19.

* Divergent reasoning premise (DR-P): Table
Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016
GPT-40 68.90 74.34 9846 7498 6221 69.12 69.66
llama3.1:70b  34.80 24.60 37.80 43.60 040 34.80 -
1llama3.1:8b 19.00 5.60 17.40 1580 020 15.83 14.81
mistral 42.40 17.80 29.80 33.10 0.60 5027 5433
qwen2.5:72b  43.14 59.90 5441 67.83 3333 5521 69.19
qwen2.5:7b 32.40 17.40 4020 4080 040 5027 5433

Table 5: 1H-C
Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016
GPT-40 68.12 71.34 9341 71.87 5812 68.90 68.23
llama3.1:70b  42.4 15.2 51.6 48.4 0.4 49.01 67.6
llama3.1:8b 25 82 17.8 224 0.4 10.733  10.218
mistral 27.6 10 36.4 28.6 0 40.25 47.2
qwen2.5:72b 3479 35.64 5296  62.02 3333 52.06 63.60
qwen2.5:7b 37.2 14.2 48 424 0.4 42.6 47.65

Table 6: 1H-P
Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016
GPT-40 25.46 37.62 87.747 53.623 61.66 48.83  54.83
llama3.1:70b  51.00 36.00 4440 3240 040 3560  35.00
llama3.1:8b 18.00 8.00 22.00 9.80 020 14.20 15.40
mistral 20.50 11.40 2920 2640 040 32.80 32.20
qwen2.5:72b  45.00 33.00 54.60 37.60 040 3820  32.00
qwen2.5:7b 33.00 12.00 44.60 32.60 040 3020 2220

Table 7: 2H-C.
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Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016
GPT-40 41.00 39.10 79.31 7043 3333 5443 56.08
llama3.1:70b 3559 38.11 4097 5884 3333 4244  59.62
llama3.1:8b .00 4.60 1020 940 000 95707  20.00
mistral 24.80 9.00 29.00 22.60 0.00 32.46 35.76
qwen2.5:72b 3220 38.11 5098 57.10 3333 49.64 6281
qwen25:7b  17.60 9.40 3360 2580 000 3246 3576
Table 8: 2H-P.
Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-40 55.88 6924 9750 7616 3333 7167  66.66
llama3.1:70b  30.07 49.01 4954 5217 1667 4757  60.10
llama3.1:8b  3.40 1.80 640 460 000 1190 1084
mistral 33.80 11.80 3560 2480 000 47.60  57.00
qwen25:72b  38.46 37.13 69.70 6493 1667 5746  68.79
qwen2.5:7b  21.80 15.80 5520 3600 000 3240 43.59
Table 9: Int-C.
Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-40 39.65 0 86.42 4333 0 8.78 35.40
Llama3.170B  0.53 0 1358 889 0 216 524
Liama 3.1 8B 0 0 0 0 0 013 0
Mistral 0.70 0 0 222 0 0.51 1.21
Qwen 2.5 72B 7.89 0 1.23 12.22 0 2.16 0.81
Qwen257B 070 0 123 222 0 051 121
Table 10: 2-Int-C.
Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-4o - - - 7987 - 6523 7381
llama3.1:70b - - - 6462 - 5754 5889
llama3.1:8b - - - 462 - 1349 1722
mistral - - - 923 - 2560 2667
qwen2.5:7b - - 4923 - 3068 4389
qwen2.5:72b - - - 58.46 - 53.77 57.22
Table 11: 1L-P
AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-4o - - - 5187 - 3156 5812
llama3.1:70b - - - 2462 - 1944 2056
llama3.1:8b - - - 0 - 040 167
mistral - - - 0 - 0.20 0
qwen2.5:7b - - - 6.15 - 9.33 8.33
Table 12: 2L-P
Model AAEC ABstRACT ACSP CDCP Microtext QT30 US2016
GPT-40 - - - 74.87 - 62.34 57.23
1lama3.1:70b - - - 60.00 - 53.17 56.11
llama3.1:8b - - - 23.08 - 20.63 16.11
mistral - - - 29.23 - 36.51 33.89
qwen2.5:7b - - - 50.77 - 39.29 3944
qwen2.5:72b - - - 63.08 - 55.95 61.11
Table 13: LR-C.
Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-40 44,68 2344 8045 4600 346 5498 5135
llama3.1:70b  15.80 18.80 2240 1780 140 18.60  29.20
llama3.1:8b  4.40 14.00 640 640 100 7.00  9.40
mistral 9.00 2.40 2260 720 020 560  18.00
qwen25:72b  22.20 21.20 3460 2480 1.60 27.00 37.00
qwen25:7b 16,60 1240 2680 2080 1.80 1460  27.20

Table 14: 1C-P
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Figure 2: Illustration of selected task types highlighting serial, linked, convergent, and divergent argument structures.
The figure includes task types involving single argument components, two argument components, and substructures
such as alternative reasoning and two intermediate conclusions.

Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-40 20.88 16.90 8563 1885 17.65 2839  36.99
llama3.1:70b  8.34 14.58 390 550 9.80 1382 13.98
llama3.1:8b  3.40 6.60 100 200 000 540 240
mistral 2.80 3.00 040 100 020 2.80 1.20
qwen2.5:72b  9.00 15.40 1060 540 120 1120 12.80
qwen2.5:7b 2.60 3.80 6.00 400 060 5.60 7.00 Model AAEC ABstRACT ACSP CDCP MTC QT30 US2016
llama3.1:70b - 0.2 2.6 0.4 - 6 1.6
Table 15: 2C-P llama3.1:8b - 0 0.2 0 - 0 0
mistral - 0 0 0 - 2 0.8
qwen2.5 - 0 1.4 0 - 4.8 22
qwen2.5:72b - 0.8 5.6 0.6 - 11 3.8
GPT-40 - 7.8 2645  4.56 - 2456 1723
Model AAEC ABStRACT ACSP  CDCP  MTC QT30 US2016
GPT-40 61.898 78.09 8834 87.13866121 2434 73.13 6445
llama3.1:70b  40.2 78.60 33.1 62.6 66 40 62.2 Table 19: 2DR-C
llama3.1:8b 8.8 15 10.6 15 31 108 278
mistral 29.8 20 26.6 272 31 186 32
qwen2.5:72b  44.6 78.6 414 65 76 408 638
qwen2.5:7b 242 414 314 45 46 254 476
Table 16: CR-C.
Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
GPT-40 15.68 19.51 82.12 2779 0 3019 3063
llama3.1:70b 0 0 0.2 0 0 0 0.2
llama3.1:8b 0 0 0 0 0 0 0
mistral 0 0 0 0 0 0 0
qwen2.5:72b 0 2.44 13.69 352 0 236 179
qwen2.5:7b 0 0 0 0 0 0 0 Model AAEC ABStRACT ACSP CDCP MTC QT30 US2016
LLAMA3.1:70B - 1.6 14.8 1.4 - 408 134
. LLAMA3.1:8B - 0.8 5.0 0.8 - 26.8 5.4
Table 17: AH. Mistral - 0.8 8.8 0.8 - 252 8.2
Qwen2.5 - 1.8 14.0 1.6 - 404 130
Qwen2.5:72B - 14 14.8 1.8 - 404 162
GPT-40 - 10.8 456 832 - 485  46.23
AAEC ABStRACT ACSP CDCP Microtext QT30 US2016
LLAMA3.1:70B - 1.6 92 1 - 23 9.2
LLAMA3.1:8B : 0.4 2 0.4 : 102 32 Table 20: DR-P.
Mistral - 0.2 8.8 0 - 10 4.6
Qwen2.5 - 1 12 1 - 168 76
Qwen2.5:72B - 22 18 14 - 356 116
GPT-40 - 154 5234 934 - 5134 4834

Table 18: DR-C.
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Task Type | Prompt

1H-C A one-hop argument involves a single inference step where a Premise directly supports
Conclusion. Consider the following argument: *{argument}’. Given the Premise: ’{premise}’,
your task is to identify which of the following options represents the Conclusion that is directly supported by the Premise.

1H-P A one-hop argument consists of a single inference step where a Premise directly supports
Conclusion. Consider the following argument: ’{argument}’. Given the Conclusion: *{conclusion}’,
your task is to identify which of the following options can serve as the Premise that supports this Conclusion.

1Int-C A two-hop serial argument involves two inference steps: a Premise supports

Conclusion 1 (the intermediate conclusion), and Conclusion 1 further supports a

final Conclusion 2 in a chain. Consider the following argument: ’{argument}’. Given the Premise: *{premise}’,
your task is to identify which of the following options can serve as Conclusion 1 that connects the

Premise to Conclusion 2: *{conclusion_2}’.

2H-C A two-hop serial argument involves two inference steps: a Premise supports

Conclusion 1 (the intermediate conclusion), and Conclusion 1 further supports a

final Conclusion 2 in a chain. Consider the following argument: ’{argument}’. Given the Premise: ’{premise}’ which
supports Conclusion 1: *{conclusion_1}’, your task is to identify which of the following

options can serve as the final Conclusion 2 that is further supported by Conclusion 1.

2H-P A two-hop serial argument involves two inference steps: a Premise supports

Conclusion 1 (the intermediate conclusion), and Conclusion 1 further supports a

final Conclusion 2 in a chain. Consider the following argument: ’{argument}’. Given

Conclusion 2: ’{conclusion_2}” which is supported by Conclusion 1: *{conclusion_1}’, your task is to
identify which of the following options can serve as the Premise that supports Conclusion 1.

2Int-C A three-hop serial argument involves three inference steps: a Premise supports

Conclusion 1, Conclusion 1 supports Conclusion 2, and Conclusion 2 further supports

Conclusion 3 in a chain. Consider the following argument: ’{argument}’. Given the Premise: *{premise}’,

your task is to identify which one of the following options represents Conclusion 1 that is logically supported by the
Premise, and which one represents Conclusion 2 that is supported by Conclusion 1, such that

Conclusion 2 further supports Conclusion 3: *{conclusion_3}’ in the chain.

The missing argument components must logically align with the provided context, ensuring that Conclusion 1 is
supported by the Premise, Conclusion 2 is supported by Conclusion 1, and

Conclusion 3 is supported by Conclusion 2.

1L-P In a linked argument, a conclusion is supported jointly by multiple premises (Premise 1,

Premise 2). Consider the following argument: ’{argument}’. Given the Premise 1: ’{premise_1}’,

your task is to identify which of the following options represents the Premise 2 that, when used jointly with
Premise 1, directly supports the conclusion: ’{conclusion}’.

2L-P In two linked premises, a conclusion is supported jointly by Premise 1 and

Premise 2. Consider the following argument: ’{argument}’. Identify which one of the following represents
Premise 1 and Premise 2, from the given set of alternatives, jointly supporting

the conclusion: ’{conclusion}’.

LR-C In a linked reasoning argument, a conclusion is supported jointly by Premise 1 and

Premise 2. Consider the following argument: ’{argument}’. Given the Premise 1: *{premise_1}’ and
Premise 2: *{premise_2}’, your task is to identify which one of the following options

represents the Conclusion that is jointly supported by Premise 1 and Premise 2.

1C-P In a Convergent argument, a conclusion is independently supported by multiple premises

(Premise 1, Premise 2). Consider the following argument: ’{argument}’. Given the Premise 1: *{premise_1}’,
your task is to identify which of the following options represents the Premise 2 that also independently
supports the Conclusion: ’{conclusion}’.

2C-p In a Convergent argument, a conclusion is independently supported by Premise 1 and Premise 2.
Consider the following argument: ’{argument}’. Identify which one of the following represents
Premise 1 and Premise 2, from the given set of alternatives, independently

supporting the Conclusion: ’{conclusion}’.

CR-C In a Convergent reasoning argument, a Conclusion is independently supported by

Premise 1 and Premise 2. Consider the following argument: ’{argument}’. Given the Premise 1: *{premise_1}’
and Premise 2: ’{premise_2}’, your task is to identify which one of the following options

represents the Conclusion that is independently supported by Premise 1 and Premise 2.

1DR-C In divergent reasoning, a Premise supports multiple Conclusions (Conclusion 1 and Conclusion 2).
Consider the following argument: ’{argument}’. Given the Premise: *{premise}’,

and Conclusion 1: ’{conclusion_1}’, your task is to identify which one of the

following options represents the Conclusion 2 that is also supported by the Premise.

2DR-C In divergent reasoning, a Premise supports multiple Conclusions (Conclusion 1 and Conclusion 2).
Consider the following argument: ’{argument}’. Given the Premise: *{premise}’,

your task is to identify which one of the following represents Conclusion 1 and Conclusion 2,

from the given set of alternatives, that are supported by the Premise in the provided argument.

DR-P In divergent reasoning, a Premise supports multiple Conclusions (Conclusion 1 and Conclusion 2).

Consider the following argument: ’{argument}’.

Given the Conclusion 1: ’{conclusion_1}" and Conclusion 2: ’{conclusion_2}’,

your task is to identify the Premise that supports both Conclusion 1 and Conclusion 2 in the provided argument.

Table 21: Task Types and Corresponding Prompts.
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