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Abstract

Conditional neural text generation models gen-001
erate high-quality outputs, but often concen-002
trate around a mode when what we really want003
is a diverse set of options. We present a004
search algorithm to construct lattices encoding005
a massive number of generation options. First,006
we restructure decoding as a best-first search,007
which explores the space differently than beam008
search and improves efficiency by avoiding009
pruning paths. Second, we revisit the idea010
of hypothesis recombination: we can identify011
pairs of similar generation candidates during012
search and merge them as an approximation.013
On both summarization and MT, we show that014
our algorithm encodes thousands of diverse op-015
tions that remain grammatical and high-quality016
into one lattice. This algorithm provides a017
foundation for building downstream genera-018
tion applications on top of massive-scale di-019
verse outputs.1020

1 Introduction021

Although pre-trained text generation models022

(Lewis et al., 2020; Raffel et al., 2020) have023

achieved impressive results across a range of tasks,024

these models do not always deliver what system025

developers want. Machine generated text may be026

non-factual (Kryscinski et al., 2020; Maynez et al.,027

2020; Goyal and Durrett, 2021) or toxic (Gehman028

et al., 2020). We might patch these problems by029

applying discriminators over the output (Holtzman030

et al., 2018; Yang and Klein, 2021) to enforce these031

properties post-hoc; we could, for instance, apply a032

secondary model as a reranker over a small collec-033

tion of outputs. However, if the generator returns a034

homogeneous set of candidates, we may fail to find035

any usable generation output. What if generation036

models could return massive numbers of candi-037

dates rather than a few outputs with optimal score?038

With a large set of candidates, our secondary model039

1Code and demo will be available on GitHub.

Beam Search Output 

A Cardiff recycling company has gone into bankruptcy. 
A Cardiff waste management company has gone into bankruptcy. 
A Cardiff waste processing company has gone into bankruptcy. 
A Cardiff waste processing plant has gone into bankruptcy.

…
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waste management

processing plant
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Figure 1: A lattice of outputs yielded by path recombi-
nation is a more efficient way to represent and explore
related generation outputs compared to beam search.

could more easily find an acceptable one without 040

having to take more extreme steps like re-training 041

the initial generation model. Output diversity has 042

separately been established as a useful goal for for 043

applications such as dialogue and story generation 044

(Li et al., 2016; Fan et al., 2019). 045

Standard approaches including beam search 046

(BS) and sampling methods fall short of our goal. 047

Beam search uses significant computational re- 048

sources to explore similar hypotheses, and much 049

of the computation in the search process is in- 050

vested into paths that could be acceptable gen- 051

eration outputs, but are ultimately pruned. Sam- 052

pling approaches like nucleus sampling (Holtzman 053

et al., 2020), although achieving better diversity 054

than beam search, often re-discover seen hypothe- 055

ses and can be harder to control for quality. A 056

central problem with both methods is that they do 057

not handle very similar hypotheses efficiently. 058

In this paper, we present a decoding framework 059

with two key components. First, we argue that a 060

modified best-first search (BFS) is the right way 061

to explore the search space. We augment standard 062

best-first search with a depth-first path completion 063

strategy: we eagerly expand each node until we 064

reach an EOS token, thereby guaranteeing that each 065

node is part of some completed path returned to 066

the user. This generation strategy avoids exploring 067

large numbers of states which end up being pruned. 068
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BFS is also more flexible than static beam search069

and can prioritize exploration in more uncertain070

parts of the generation.071

Second, our algorithm returns a massive number072

of generation options encoded in a lattice, with dif-073

ferent hypotheses recombined in an approximate074

fashion. Beam search preserves similar outputs075

such as “A Cardiff recycling company has gone076

into” and “A Cardiff waste management company077

has gone into” as different states. However, these078

prefixes actually have very similar distributions of079

following words under the model; if we identify080

states like this, we can recombine them (Figure 2)081

and treat them as the same from the perspective082

of future continuations. In Figure 1, we show an083

illustration of the lattice structure this recombina-084

tion can form for document summarization. We085

broaden a recombination method used previously086

in beam search for machine translation (Och et al.,087

2001; Zhang et al., 2018), enabling us to compactly088

encode large number of generation candidates and089

achieve dense lattices.090

We show results for both document summariza-091

tion and machine translation in three language pairs.092

For each setting, we show that our lattice encodes a093

large number of high-quality candidates, including094

good matches with annotated reference generations.095

We further show that a variant of our method can096

still achieve strong results with a lower number of097

nodes expanded than the baselines, suggesting that098

this can be a path towards saving computational099

resources. We believe that computing thousands100

of high-quality generation candidates within a sin-101

gle compact data structure can provide a powerful102

starting point for various downstream purposes: di-103

versity, factuality, customizability, and more.104

2 Problem & Setup105

We define our algorithm in the context of condi-106

tional text generation (Sutskever et al., 2014; Bah-107

danau et al., 2014). Conditional text generation108

is formulated as sequence transformation from a109

source input x to target output y = (y1, . . . , yn)110

via a neural text generation model parameterized111

by θ. Each yi is a symbol in a vocabulary V .112

The probability of a decoded sequence is p(y |113

x; θ) =
∏n

t=1 p(yt | y<t,x; θ). Decoding text114

from a model can be framed as a search problem,115

where the search objective is to find the output se-116

quence that maximizes the conditional probability117

under the model: argmaxŷ p(ŷ | x; θ). Because118

Path to Merge

Merge Target
A Cardiff waste company has gone into bankruptcy

recycling plant has gone into
𝒪.pop()

Apply 
recombination

Check for possible 
recombinations

Pop from  
pop the node with 
highest score from 
search frontier 

𝒪

𝒪

.

Y

Expand a nodeN

After recombination:
A Cardiff waste company has gone into bankruptcy

recycling plant has gone into

.

deleted

Figure 2: Our search algorithm. At each step, the al-
gorithm pops a node from search frontier O, checks
for possible recombinations with existing nodes, and
merges the nodes if a match is found. “waste company”
and “recycling plant” are interchangeable paraphrases
which do not affect the continuation from the model’s
perspective.

p(ŷt | ŷ<t,x; θ) depends on the entire generated se- 119

quence so far, this decoding problem is intractable 120

to solve exactly. 121

While typically the goal of decoding is to find the 122

hypothesis with the highest possible model score, 123

we instead focus on finding a large set of “good 124

enough” hypotheses. That is, finding a set Y: 125

argmax
Y

|Y| s.t. p(y | x; θ) > ε for all y ∈ Y (1) 126

for some threshold ε. ε emerges naturally by adjust- 127

ing search hyperparameters to control the number 128

of returned hypotheses. Our goal in this paper is to 129

design an algorithm that can efficiently find Y . 130

Notation We encode predicted generation can- 131

didates ŷ in a lattice. A lattice L = (N,E) is a 132

directed graph where each node represent a word 133

token and paths defined by directed edges encode 134

candidates. A path π in L from a unique start- 135

of-sequence node nsos to any node n represents a 136

(partially) decoded string, consisting of the words 137

in that path. All completed paths start with nsos 138

and end at (potentially different) end-of-sequence 139

nodes neos. The search graph L is constructed it- 140

eratively through a search procedure. We maintain 141

the closed graph C with explored nodes and edges 142

as well as a search frontier O, a set consisting of 143

successors to nodes currently in the graph. For 144

each node, there are |V| possible successors. 145

We define the search budget as the number of 146

nodes expanded from the search frontier. Our ex- 147

periments will seek to compare different methods 148

using the same search budget. We will define this 149

more precisely in Sec. 6. 150
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Algorithm 1 Best-first search with depth-first com-
pletion and path recombination
Input: Generation model θ with vocabulary V , search bud-

get b, O and C denote open set (max priority queue)
and closed set, isRecomb and doRecomb are functions
checking and running path recombination.

Output: All completed paths P
1: O ← {(∞,nsos)}, C ← ∅, expanded← 0.
2: while expanded < b do
3: ĥ← O.pop()
4: if isRecomb(ĥ, C) then
5: doRecomb(ĥ, C)
6: continue
7: end if
8: if ĥ 6= EOS then
9: vgreedy = argmaxv∈V p(v | ĥ,x; θ)

10: for v ∈ V do
11: score← s(v, ĥ)
12: if v = vgreedy then
13: score←∞ // depth-first completion
14: end if
15: O ← O ∪ (score, nv)
16: end for
17: expanded← expanded+ 1
18: end if
19: C ← C ∪ ĥ
20: end while

Inadequacies of Beam Search Beam search has151

several properties that make it inadequate for our152

goal, including that it optimizes for the wrong ob-153

jective, lacks diversity, and aggressively prunes154

hypotheses that could still be useful. We show155

experiments on these aspects in Appendix A.156

3 Modified Best-first Search157

As established in the previous section, beam search158

prunes many paths that would potentially yield159

high-quality summaries and wastes computational160

resources expanding nodes that aren’t included in a161

final search graph. We tackle this issue by changing162

from beam search to best-first search (BFS) (Hart163

et al., 1968; Pearl, 1984). BFS prioritizes searching164

over nodes according to a scoring function, giving165

us more flexibility in how we explore the space.166

Our chief modification of the base algorithm is a167

heuristic we call depth-first completion.168

Depth-first Path Completion Neural text gen-169

eration is a search problem with large branching170

factor (V) and deep search depth (sequence length).171

As a result, applying BFS with the scoring function172

being the model score of a state often leads to a173

broad search that rarely returns a valid path. One174

solution to this problem is to incorporate a heuris-175

tic based on length. Model score is monotonically176

decreasing as a sequence grows in length, so prior177

A
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(-1.8, company)
… …
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∞
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… …
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Figure 3: Depth-first completion. The red node is the
current node being expanded. We depth-first expand a
sequence of nodes (in blue) to get a completed path.

work (Wu et al., 2016; Zhang et al., 2018; Meister 178

et al., 2020b) has used a length reward term to alle- 179

viate this issue.2 We found that, even with a length 180

heuristic, BFS will still have “dangling” nodes that 181

are not part of any path to an EOS (goal) token, and 182

it might return few or no valid hypotheses. 183

Recognizing our objective from Equation 1, we 184

can take a simple step to ensure that every node 185

ends up on some completed path: eagerly do a 186

greedy search from each node until we reach neos 187

or exceed a maximum length. In Algorithm 1, we 188

implement this by modifying the priority of the 189

highest scored token with∞ (line 12), so it will be 190

explored depth-first immediately after the current 191

time step. In Figure 3, we show an illustrative 192

example of depth-first completion. 193

Search Algorithm We describe BFS with depth- 194

first completion in Algorithm 1. The algorithm is 195

a modified best-first search algorithm applied to 196

text generation. s(·) is a function to evaluate the 197

value of a path. Typically it is defined as s(y) = 198∑
log p(yt | y<t). b is the budget for total model 199

calls to neural text generation model. Note that 200

isRecomb and doRecomb do not invoke the neural 201

generation model, so they do not count towards the 202

computation budget we defined here. In practice, 203

we only consider top 5 expansions rather than the 204

whole vocabulary V for line 10. 205

4 Path Recombination 206

Path recombination, also known as hypothesis re- 207

combination, was originally proposed and used in 208

phrase-based machine translation (Och et al., 2001; 209

Koehn et al., 2003; Zhang et al., 2018). The idea 210

of path recombination is to combine similar paths 211

if what the model predicts for them in the future 212

2This can be considered a heuristic like in (weighted) A∗

search, but it is not necessarily admissible or consistent. Inter-
preting it this way does make our approach best-first search
with modified scores, hence why we describe it this way.
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A Cardiff waste company has gone into bankruptcy

recycling plant has gone into

.

1 2 3 4

5 6 7 8

2 3 41

6 7 85

…

…

2 3 41

6 7 85

…

…

(a) RCB (b) ZIP

Figure 4: Illustration of two path recombination strate-
gies, RCB and ZIP. Orange lines are the merging edges
(MRG) built by recombination. Dotted lines and circles
are removed after recombination. The key difference
of RCB and ZIP is how much the recombination propa-
gates, 1 step or n steps.

is the same, reflecting a similar dynamic program-213

ming principle as the Viterbi algorithm. We focus214

on finding hypotheses which approximately exhibit215

this property, and show that merging them can yield216

high-quality outputs. Figure 2 shows an example of217

recombination. The two hypotheses being merged218

here roughly convey the same intent, and it turns219

out that the shared suffix “has gone into” is a strong220

indicator that the model will treat them similarly in221

the rest of the generation.222

Prerequisites of Recombination Theoretically,223

two search states should only be recombined if they224

yield the exact same distribution over future gen-225

eration decisions (see strong equivalence in Ap-226

pendix B). However, this is intractable even to227

check approximately; we define a weaker criterion:228

Definition 4.1 (Weak equivalence). Let a and b be229

two prefix strings starting with nsos. a and b are230

weakly equivalent if greedy completions of these231

two strings are the same: argmaxy P (y | a) =232

argmaxy′ P (y
′ | b).233

This criterion can be checked empirically, but it is234

still not practical to do so during search itself.235

To approximate equivalence, we define a sim-236

ilarity function merge(h, ĥ) to determine if an237

expanded node ĥ should be merged with an ex-238

isting expanded node h. A similar recombination239

idea was explored in Zhang et al. (2018). Fol-240

lowing their work, we explore a family of rule-241

based heuristics for merging. There are two rules:242

(1) two strings share a common n-gram suffix,243

(2) the length difference of two strings is less244

than α. Assume that the canonical paths for h245

and ĥ are lengths l and l̂, then merge(h, ĥ) =246

1[π(h)l−n+1,...,l = π(ĥ)l̂−n+1,...,l̂ ∧ |l − l̂|< α]247

where α and n are hyper-parameters.3 For a large 248

enough value of n, note that the shared suffixes en- 249

courage hypotheses like this in Figure 4 that share 250

large parts of the structure already. 251

Prior Work: BSZBEAM Zhang et al. (2018) 252

use their merging criterion in the context of beam 253

search for neural machine translation. If the merg- 254

ing criteria hold, ĥ will be recombined with h. 255

However, ĥ will not be considered as a future 256

merging candidate. We call this merging strategy 257

ZBEAM. We implement this model together with 258

its merging criteria and denote it as BSZBEAM. 259

This strategy is tailored to beam search and, as we 260

discuss later, explores a more limited set of merges 261

than one might want to consider. 262

Canonical Paths After recombination, a single 263

node may represent multiple different possible sen- 264

tence prefixes. If an edge is created due to the 265

extension of search graph via model’s prediction, 266

we call it a GEN edge. Otherwise, the edge is cre- 267

ated due to path recombination, and we call it a 268

MRG edge. We define the notion of a canonical 269

path, which represents the single path used to score 270

candidate expansions. 271

Definition 4.2 (Canonical Path). Let n be a node. 272

The canonical path to n is defined as the unique 273

path from nsos to n consisting only of GEN edges. 274

Theorem 4.1. For any node n in the graph except 275

nsos, there exists exactly one canonical path. 276

We present the proof in Appendix. C. We define the 277

path of a node n, π(n), as returning the sequence of 278

words corresponding to the canonical path of that 279

node. Expanding n computes P (y | π(n)) under 280

the neural model. 281

5 Recombination Mechanism 282

We illustrate the two major recombination tech- 283

niques we introduce, RCB and ZIP, in Figure 4. 284

RCB: Generalization of ZBEAM ZBEAM has 285

a major limitation: a limited set of merging candi- 286

dates. The potential merge candidates in ZBEAM 287

are only nodes in the current beam hypotheses and 288

their previous steps, so the method cannot merge 289

3In Zhang et al. (2018), there is one extra constraint re-
quiring P (ĥ | x) < P (h | x), which requires that the path
getting recombined has lower model score than the existing
path. However, we found that model score is not always a
good indicator for merging, as suggested in Fig. 7, partially
because it is challenging to calibrate scores across different
sequence lengths, so we disregard this constraint.
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with nodes from earlier timesteps. For example,290

“A waste plant has gone into” cannot be merged291

with the hypothesis with ending in node 4 shown292

in Figure 4. The proposed generalization, RCB,293

addresses this limitation. We index all of the nodes294

in the lattice across all timesteps by their n-grams295

using a hash table, making it O(1) time to look296

up an n-gram pattern and retrieve potential merge297

candidates if they exist.298

ZIP: Recombining More If we take a closer299

look at RCB in Figure 4, we see that even in the300

merged structure, nodes 3 and 7 and nodes 2 and 6301

are preserved as separate. They do not pass the re-302

combination criterion themselves, but these nodes303

are part of the suffix matched strings, still corre-304

spond to the same words, and have the same di-305

rectly generated next word. There is reason to be-306

lieve that these might be equivalent as well. Hence,307

we explore a variant called ZIP that propagates the308

merge backwards through the lattice. This change309

relaxes the merging criterion and up to n pairs of310

nodes are combined when a merge is identified,311

leading to a more compact lattice. We describe312

some of the details in Appendix D.313

6 Evaluation314

To evaluate the proposed methods, we conduct ex-315

periments on abstractive text summarization and316

machine translation. Our evaluation focuses on two317

questions: (1) how large and diverse are our lat-318

tices; (2) are the candidates encoded in the lattices319

high quality and grammatical?320

6.1 Datasets & Base Models321

We obtain all the models and certain baseline decod-322

ing methods from the Transformers library (Wolf323

et al., 2020). Since our methods are inference tech-324

niques with rule based heuristics, we do not re-325

train any models. For summarization, we use326

XSum (Narayan et al., 2018), a popular English327

news summarization dataset. We sample 100 ex-328

amples from the validation set. The base model we329

use is BART-large-XSum (Lewis et al., 2020).330

For machine translation, we study our models on331

the English-French (en-fr) pairs from WMT 2014332

(Bojar et al., 2014) and Chinese-to-English (zh-333

en) pair from WMT 2019 (Barrault et al., 2019).334

We use mBART (Liu et al., 2020), a state-of-the-art335

neural machine translation model. We set the max336

decoding length to be twice the input length, so it337

varies per example.338

6.2 Search Budget 339

To fairly compare the resource usage of all meth- 340

ods, we define the search budget as the number of 341

calls to the neural model, equivalent to the number 342

of nodes expanded.4 With beam size k and maxi- 343

mum length T , beam search methods are given a 344

theoretical budget of kT . We could simply allow 345

best-first search and sampling methods to expand 346

this number of nodes. However, since hypotheses 347

may terminate before they reach EOS, empirically 348

there is a gap between effective length (the aver- 349

age generated hypothesis length) and max length 350

for both beam search and sampling. To balance 351

the computation used across the different methods, 352

we apply a correction factor so that the different 353

methods are expanding the same number of nodes 354

in aggregate. We increase the beam size k by 50% 355

for translation, from 8 to 12, and 25% for summa- 356

rization, from 16 to 20, for our baseline methods: k 357

to BS, DBS, NCLS, TEMP, and BSZBEAM. This 358

correction was empirically determined to balance 359

the number of nodes expanded between our method 360

and the baselines. We emphasize that this correc- 361

tion improves the baseline performance relative to 362

our methods. 363

6.3 Search Algorithms 364

We implemented GREEDY, BS, DBS, NCLS, and 365

TEMP as baseline methods. NCLS0.9 represents 366

nucleus sampling method with p = 0.9. We refer 367

to Appendix E for detailed descriptions. We also 368

experiment with basic BFS without path recombi- 369

nation, but including our depth-first path comple- 370

tion technique to ensure that finished hypotheses 371

are produced. BSZBEAM is our implementation 372

of Zhang et al. (2018). We integrate RCB with nu- 373

cleus sampling and best-first search as NCLSRCB 374

and BFSRCB. We also test BFS with the ZIP strat- 375

egy. lBFSZIP is a resource-efficient version of 376

BFSZIP where only 25% of the search budget is 377

used, exploring what this method can achieve with 378

a lower budget given its more aggressive merges. 379

6.4 Evaluation Metrics 380

We describe our metrics to evaluate both quality 381

and diversity. Several of our methods build on 382

ROUGE and BLEU (Papineni et al., 2002; Post, 383

4We incur negligible overhead from rule-based matching
in the merging step, as well as the computational costs of
computing diversity term in DBS and modifying sampling
distributions in sampling methods.
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Diversity OR SP GRM
↑ ↑ ↑ ↓ ↑ ↑ ≥ ↓

Model |path| N1 N2 SBL ED R2 R2 ERR

GREEDY 1 22 23 100 0 17.3 17.3 0.5%
BS 20 42 61 87 31 26.3 17.7 0.3%

DBS 19 59 91 79 53 25.5 15.9 0.5%
NCLS0.8 20 124 237 57 72 30.2 14.5 0.5%
NCLS0.9 20 143 273 50 76 28.1 13.3 0.8%
TEMP1.5 20 170 319 51 82 26.6 11.6 1.4%

BFS 30 88 167 68 60 30.1 15.6 0.4%

+ Path Recombination
BSZBEAM 4,701 66 118 75 51 33.0 16.0 0.7%

NCLS0.8RCB 52 167 308 53 79 28.8 13.0 1.0%
NCLS0.9RCB 36 207 363 50 87 25.9 11.0 1.7%

BFSRCB 7,758 111 239 65 64 35.8 15.2 0.8%
BFSZIP 95,744 124 274 53 77 36.8 13.2 1.4%

lBFSZIP 297 58 92 80 49 29.2 15.2 0.8%

Table 1: Results decoding text summaries on XSum.
Diversity metrics are rounded to integers to save space.
We use ↑, ↓ and ≥ to denote the desired trend, the
higher the better, the lower the better, or good if it
passes some threshold. Among the methods with path
recombination excluding lBFSZIP, we highlight the
best , second and third best , and the worst one.

2018) for evaluating the generated text compared384

to reference summaries or translations.385

Diversity-oriented Metrics We evaluate the di-386

versity of generated texts with the following met-387

rics. (1) |path| is the average number of unique388

paths in the produced lattice.5 (2) Number of389

unique n-grams encoded in the lattice; this cap-390

tures a different type of diversity than the number391

of paths, since there could be many paths reusing392

the same words. N1 and N2 are average number of393

novel unigrams and bigrams in the graph. (3) SBL394

is the average self-BLEU among m samples (Zhu395

et al., 2018). The samples are drawn from a uni-396

form random walk from nsos. The range of SBL is397

[0, 100]. (4) ED is the average edit-distance among398

m samples. We set m = 5 in our experiment.399

Quality: Grammaticality We adopt GECToR400

a neural grammatical error correction model401

(Omelianchuk et al., 2020) to automatically assess402

the grammaticality of generated texts. We report403

GRMERR(%), the average number of grammar er-404

rors per token, for all English-output experiments.405

Quality: Oracle Reference Match Given the406

reference, we find the path with highest ROUGE407

or BLEU over all found paths. Oracle ROUGE408

5Due to the exponentially growing number of paths in
some of our models, we cap the number of paths from nsos
to each node to C = 104.

is defined as OR(Y,y∗) = maxy∈Y(R2(y,y∗)). 409

This metric captures both quality and diversity: the 410

algorithm needs to find something close to the refer- 411

ence, but a diverse lattice will have a higher chance 412

of exhibiting a good candidate all else being equal. 413

Quality: Average Reference Match Although 414

our method focuses on deriving diverse text sum- 415

maries or translations, we aim to guarantee that the 416

generated text is highly relevant to the generation 417

target and is of high quality in general. We sample 418

1,000 paths from the lattice with replacement and 419

evaluate the average ROUGE or BLEU compared 420

to the reference. We denote this metric as SP. 421

7 Results 422

Text Summarization We present the experimen- 423

tal results on the dev set of XSum in Table 1. Full 424

results are kept in Table 4 for reference. Among 425

non-recombination methods, BS and DBS are the 426

least diverse methods. Sampling based methods 427

including TEMP are generally more diverse, but the 428

oracle ROUGE is lower than that of BFS. Given 429

the sacrificed text quality (lower sample ROUGE 430

and more grammar errors) of sampling based meth- 431

ods, we argue that modified best-first search is 432

a strong decoding strategy even without path 433

recombination. The bottom half shows all meth- 434

ods with path recombination techniques. Recom- 435

bination significantly improves the diversity of 436

generated outputs, with a much higher number 437

of paths. The self-BLEU of the recombination 438

variants are lower than their non-recombination 439

counterparts. 440

In terms of search quality, the proposed BFSRCB 441

and BFSZIP methods obtain significantly higher or- 442

acle ROUGE compared to all other methods. We 443

show these results later in Figure 9: our approach 444

can find much better oracle solutions, even com- 445

pared with beam search method with quadruple the 446

amount of computation resources. The design of 447

the oracle ROUGE metric is also motivated by a 448

real use case: if you want a specific summary (e.g., 449

a summary covering a specific entity or topic), does 450

it exist in the search graph? Higher oracle ROUGE 451

indicates a closer match, meaning a strategy using 452

some kind of reranking model could help find the 453

user’s preferred outputs. 454

Comparison: RCB & ZIP The ZIP method 455

yields even more diverse output at the cost of text 456

quality. There are a few reasons for this: 1) recom- 457
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zh-en fr-en
Diversity OR SP GRM Diversity OR SP GRM

↑ ↑ ↑ ↓ ↑ ↑ ≥ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ≥ ↓
Model |path| N1 N2 SBL ED BL BL ERR |path| N1 N2 SBL ED BL BL ERR

GREEDY 1 35 40 100 0 24.7 24.7 0.5% 1 28 31 100 0 40.0 40.0 0.9%
BS 12 45 63 95 20 32.2 25.0 0.2% 12 37 50 93 13 52.6 38.1 1.0%

DBS 11 55 84 89 59 29.7 20.5 0.5% 11 45 67 88 37 46.4 30.5 1.1%
NCLS0.8 12 94 188 72 82 31.5 17.5 0.7% 11 62 107 80 46 51.0 31.2 1.0%
NCLS0.9 12 110 226 67 94 30.4 15.8 0.9% 12 75 134 77 57 48.3 27.4 1.2%
TEMP1.5 12 140 280 62 105 27.0 12.7 1.3% 12 102 184 69 71 43.7 21.6 1.6%

BFS 18 60 104 86 54 32.7 20.7 0.5% 27 59 102 84 37 53.2 33.7 1.1%

+ Path Recombination
BSZBEAM 18,336 64 117 77 65 40.1 19.1 0.8% 16,729 59 107 77 43 61.2 28.2 1.3%

NCLS0.8RCB 81 138 263 67 91 26.8 13.9 1.1% 344 140 246 64 67 48.2 26.6 1.2%
NCLS0.9RCB 38 188 343 58 114 23.9 10.6 1.7% 123 205 352 55 92 41.1 20.2 2.1%

BFSRCB 17,535 81 171 76 72 42.1 19.4 0.9% 47,577 85 193 68 52 64.6 25.3 1.6%
BFSZIP 59,020 94 205 66 88 42.4 15.5 1.4% 146,163 111 259 56 63 56.8 16.9 2.5%

lBFSZIP 511 50 75 89 38 33.0 21.2 0.7% 4,531 50 81 82 35 59.5 29.4 1.4%

Table 2: Results on WMT14 Fr-En and WMT19 Zh-En. Columns are the same as for summarization, although
BLEU is used instead of ROUGE. Trends are roughly similar, with BFSRCB providing high diversity at good
quality and lBFSZIP offering a strong tradeoff between computational resources and diversity.

bination of more nodes makes the lattice denser,458

increasing the number of paths but also potential459

errors; 2) elimination of unexplored children from460

merged branch reduces the waste of exploration461

which means ZIP can explore more hypotheses462

than RCB. With the same amount of computational463

resources, ZIP explores a larger search space while464

RCB explores a smaller collection more reliably.465

lZIP exploits the efficiency of ZIP to achieve high466

diversity, and by searching through fewer states, it467

manages to achieve higher quality as well.468

Machine Translation We show the result on ma-469

chine translation in Table 2 and 6. Results on470

translation tasks show the consistent gains of di-471

versity from path recombination models. In Ta-472

ble 2, we show two translation tasks where the473

target language is English. BFSRCB works better474

than BFSZIP because it disables some aggressive475

and bad merges which explores bad hypotheses.476

Compared to summarization, we found the search477

space in MT to be more constrained, so there was478

less room for aggressive merging and exploration479

to improve over RCB. Our lower-resource method,480

lBFSZIP approach, actually performs quite well481

on most metrics with only 25% of search budget.482

It has better diversity performance than any non-483

recombination methods, and comes with quality484

better than most of the recombination methods.485

The usage of BFS and path recombination methods486

like BFSRCB and BFSZIP is promising for being487

able to find a better cost-diversity tradeoff in MT.488

2 4 6
n

0.00

0.25

0.50

0.75

EM

RCB

2 4 6
n

ZIP

L
2
4
8

Figure 5: Empirical verification of merging criteria.
We experiment with n = {2, 4, 6} for n-gram suf-
fix matching. We sample 1,000 recombinations from
BFSRCB and BFSZIP respectively, and run greedy in-
ference based on merged hypotheses. We use Exact
Match (EM) to measure how often two merged hy-
potheses give the same greedy future generations con-
sidering the next L tokens after the merge.

Validating the Merging Criterion Our merging 489

criterion is fundamentally an approximation of the 490

equivalence criteria described in Section 4. Our 491

question is: what fraction of nodes merged by 492

our merging criterion satisfy the weak equiva- 493

lence assumption? We conduct an experiment 494

to verify this on XSum. We compute the greedy 495

completion for L timesteps and check whether the 496

continuation of the base candidates would be the 497

same. In Figure 5, we show the fraction of merged 498

pairs for which the generations match exactly un- 499

der three values of the recombination criterion. For 500

BFSRCB, when using n = 4 the greedy continua- 501

tion over 4 timesteps is the same 71.2% of the time. 502

For BFSZIP it is the same 62.5% of the time. Fol- 503

lowing the weak equivalence criterion is a strong 504
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Figure 6: Two examples on XSum by lBFSZIP. The
start of sentence is denoted in dark color, and all the
endings are in gray. We combine tokens to phrases
when possible for visualization purpose. More exam-
ples are presented in Appendix. I.

indication that these hypotheses can admit many of505

the same continuations. RCB is more reliable than506

ZIP, but both methods show moderate adherence507

to the equivalence criterion.508

Error Analysis & Visualization In Figure 6, we509

present two examples on XSum by lBFSZIP. The510

upper example has more word level recombination511

and paraphrasing while the bottom one has more512

ways of ending and more diverse content coverage.513

We show more examples on both summarization514

and translation in Appendix. I.515

We manually examine the output and found a516

few common types of errors introduced by our algo-517

rithm. (1) Factual errors at high entropy nodes. Our518

approach assumes that high-scoring candidates un-519

der the model are good quality, but this assumption520

is violated in certain cases, like when the model521

attempts to hallucinate information. For example,522

given the prefix “The company, founded in” will523

cause the model to guess answers like “1989” or524

“1999”. Encoding all of these in the lattice is incor-525

rect. However, we did not see significant factual526

errors introduced by merging specifically. (2) Ag-527

gressive bad merges. In the upper example in Fig-528

ure 6, the cluster of “GPs”, “nurses”, “paramedics”529

is an example case. The lattice encodes paths like530

“GPs, nurses and nurses should ...”. This could be531

fixed by heuristics or rules in future work.532

8 Related Work 533

The techniques used in this work partially reflect an 534

outgrowth of a few lines of literature: understand- 535

ing the behavior of text generation models (Xu 536

et al., 2020; Xu and Durrett, 2021; Zhong et al., 537

2021), investigations into beam search (Stahlberg 538

and Byrne, 2019; Meister et al., 2020a), and studies 539

of diversity in generation. 540

In terms of search strategies, best-first beam 541

search (Meister et al., 2020b) is a method integrat- 542

ing best-first search with beam search. Some other 543

variants of search have also been studied in previ- 544

ous work (Meister et al., 2021b,a). Beam search 545

has been critically examined in some recent work 546

(Huang et al., 2017; Stahlberg and Byrne, 2019), 547

but largely of focused on specific challenges in MT. 548

As for diverse generation, neural text degener- 549

ation has been discussed in Radford et al. (2019); 550

Holtzman et al. (2020); Welleck et al. (2020), 551

which led to an interest in diverse generation mod- 552

els. Diverse text generation has been studied in 553

previous work (Yu et al., 2017), including in dia- 554

logue (Li et al., 2016), story generation (Fan et al., 555

2019), and particularly paraphrasing (Iyyer et al., 556

2018; Goyal and Durrett, 2020). Our method can 557

also diversify content coverage (Gehrmann et al., 558

2018) and word choice (Cao and Wang, 2021). 559

9 Discussion & Conclusion 560

We presented an algorithm for decoding in text 561

generation with two main components: best-first 562

search to more efficiently structure exploration 563

of the space and hypothesis recombination to en- 564

code summaries in a lattice structure. We showed 565

that across summarization and machine translation, 566

these lattices successfully encode large numbers of 567

high-quality generation options. 568

There are a few limitations of our method. First, 569

we currently benchmark these techniques using 570

number of nodes expanded, not wall clock time. 571

There are strategies for parallelizing the BFS ex- 572

pansion (Shu and Nakayama, 2018), but it remains 573

to be seen how this parallelism compares to the par- 574

allelism achieved by beam search. Regardless, the 575

dramatically larger number of hypotheses we return 576

outweighs efficiency differences for now. Second, 577

we focus on auto-regressive methods in this paper. 578

However, we believe our framework could also be 579

applied and adopted to non auto-regressive genera- 580

tion models (Song et al., 2021). 581
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Figure 7: Correlation of ROUGE-2 and model score
in beam search. For each example, we compare the
hypothesis with the highest model score, h∗, with all
other hypotheses. x and y-axis show the gaps of R2 and
model score. The Pearson’s ρ is 0.092 which suggests
very low correlation between R2 and model score.

A Inadequacies of Beam Search884

As we have alluded to, beam search is inadequate885

for our goal for several reasons.886

Better Model Score ; Better Hypothesis The887

most critical issue is that beam search is designed to888

efficiently approximate argmax ŷ = p(ŷ | x; θ),889

but the optimal model score is neither our goal890

nor a guarantee of a good hypothesis. In Figure 7,891

we compare the correlation of model score and892

ROUGE under beam search for text summariza-893

tion. The Pearson correlation between these two894

variables is very weak. Beyond ROUGE score, the895

example in Fig. 1 shows that the main differences896

between these summaries may be minor differences897

in surface realization that have little effect on our898

qualitative judgments of summary quality. Find-899

ing the best model score does not substantially900

improve the quality over a near-optimal model901

score. Allocating resources to eke out slight im-902

provements over the greedy hypothesis, as beam903

search does, is a poor use of resources for most904

applications.905

Lack of Diversity in (Diverse) Beam Search906

Are the model outputs from BS and DBS di-907

verse? We use Self-BLEU (SBL) (Zhu et al.,908

2018) to measure the BLEU score for randomly909

sampled pairs from each algorithm’s output. The910

lower the self-BLEU, the more dissimilar the pairs911

are. On decoding summaries on XSum, the SBL912

for BS/DBS are 87/79 while a nucleus sampling913

method can achieve 57/50 depending on configu-914

ration. Although DBS slightly improves the diver-915

sity compared to the original variant, the overlap916

of outputs from beam search based method is917

still very high, and the diversity remains a chal-918
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Figure 8: Results of BS/DBS on XSum with larger
beam size k, compared to a proposed model introduced
later (blue star) with equivalent beam size k = 16. We
consider sample ROUGE-2 lower than 13 as low rel-
evance/quality generations. Diversity of BS does not
scale well with k and DBS generations become low
quality.

k 16 8
D XSum zh-en fr-en en-fr

BS 71.3% 63.3% 54.0% 59.2%
DBS 71.2% 56.1% 50.4% 55.7%

Table 3: Pruning ratio of BS and DBS on different
tasks and datasets with beam size k. We report the av-
erage percentage of explored nodes getting pruned and
not appearing in a finished hypothesis.

lenge. 919

Poor Scaling Behavior In spite of these short- 920

comings, perhaps beam search could still be viable 921

with larger beam sizes if more computational re- 922

sources are available. We experiment with beam 923

sizes of 2{4,5,6,7} and see how diversity scales with 924

beam size. In Figure 8, we found that the exponen- 925

tial increase of beam size does not scale with the 926

increase of number of novel bigram in beam search. 927

In DBS, the diversity does ramp up, but the qual- 928

ity of the generated text is getting very bad very 929

soon. For BS and DBS, increasing beam size is 930

not an effective solution for better diversity. We 931

also show that increasing beam size does not scale 932

well in terms of finding better hypotheses, which is 933

shown in Appendix. G. 934

Poor Efficiency from Pruning One final issue 935

with beam search is that most of its computation 936

is not even useful in producing finished hypothe- 937

ses; that is, the set Y of answers produced does not 938

contain most of the nodes expanded in the typi- 939

cal course of operation. We conduct an empiri- 940

cal pruning study on a summarization dataset and 941

three translation datasets and show the results in 942

12



Table 3. For all studied cases, beam search and di-943

verse beam search prunes over half of the expanded944

nodes. Many pruned hypotheses are not truly un-945

grammatical or low quality, but are merely slightly946

less likely than other nodes. How we can preserve947

more of the explored lattice and do so efficiently is948

addressed in the next section by our use of best-first949

search.950

B Strong Equivalence of Path951

recombination952

In the strictest form, recombining two hypotheses953

assumes the following equivalence between them:954

Definition B.1 (Strong equivalence). Let a and b955

be two prefix strings starting with nsos. a and b956

are strongly equivalent if P (y | a) = P (y | b)957

holds for all y.958

Merging such states in the search tree is valid with959

no loss of information, as any expanded node will960

receive the same score under both prefixes. How-961

ever, this assumption is not realistic since seq2seq962

models condition on the entire sequence so far, and963

any tiny perturbation changes the predicted distri-964

bution. To relax the assumption, we then propose965

the weak alternative.966

C Proof of Theorem 4.1967

Proof by induction. Base case: we begin with just968

nsos in the lattice, which has exactly one canonical969

path consisting of itself.970

Inductive case: assume every node in the lat-971

tice has exactly one canonical path. We have to972

consider two cases when expanding a node in the973

lattice:974

(1) Expanding the node as normal. In this case,975

the node is on the search frontier due to its parent976

node n′ being expanded, which establishes a GEN977

edge from n′ to n. Since n′ has exactly one canon-978

ical path, n then has exactly one canonical path979

consisting of the canonical path to n′ extended to980

n.981

(2) Applying recombination. This operation only982

adds MRG edges and deletes nodes, neither of983

which have any impact on the canonical paths.984

D Implementation Details: ZIP985

We summarize the key differences of ZBEAM, RCB986

and ZIP in Table 5. In ZIP, nodes that are already987

expanded might be removed from the lattice due to988

recombination. For example, in Figure 4, node 6989

and 7 are removed in this fashion. In general, we 990

handle this by re-mapping the eliminated node to 991

its surviving counterpart. Any reference to node 7 992

is routed to node 3, or whatever node 3 is mapped 993

to. This procedure is defined and implemented as a 994

union-find data structure. 995

Deduplication of Unexplored Successors After 996

the ZIP procedure, we also remove the unexplored 997

successors of the merged nodes, like node 6, 7, and 998

8 in Fig. 4. We show a more detailed example in 999

Figure 10. In ZIP, we will merge node 3 and node 1000

6. If we take a closer look at the successors of these 1001

two nodes, the distributions could be similar and in 1002

fact are expected to be if the equivalence criteria 1003

hold. We remove the unexplored direct successors 1004

of the merged node as part of the merging process, 1005

and the surviving node (node 3) captures these with 1006

similar probabilities regardless. 1007

E Baselines 1008

GREEDY is the deterministic greedy decoding 1009

method that always selects the highest probability 1010

token as prediction. The equivalent beam size for 1011

this approach is 1 since we only run one pass. 1012

BS & DBS stand for beam search and its variant 1013

diverse beam search (Vijayakumar et al., 2016). In 1014

our configuration, we use Hamming distance as the 1015

diversity function and set the diversity strength to 1016

1.5, following Vijayakumar et al. (2016). 1017

NCLS is the nucleus sampling method proposed 1018

in Holtzman et al. (2020), which encourages quality 1019

by truncating the distribution over the vocabulary 1020

with a parameter p before sampling. We experi- 1021

ment it with p = 0.9 and p = 0.8. 1022

TEMP changes the temperature of softmax func- 1023

tion to reshape the prediction distribution (Ficler 1024

and Goldberg, 2017). We set the temperature pa- 1025

rameter τ = 1.5 so the prediction picks more low- 1026

scored tokens than τ = 1. 1027

F Implementation Details: Beam Search 1028

In our beam search implementation, the size of the 1029

search frontier O is up to the beam size k. When 1030

a path is completed, we move it from the search 1031

frontierO to a completed set F to free up the beam 1032

for exploring unfinished hypotheses. Naturally, fin- 1033

ished hypotheses F in the end can be of variable 1034

length. After reaching the max generation step T , 1035

we sort all hypotheses in F according to the model 1036
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Figure 9: Oracle R2 of BS/DBS with larger beam size
k. Blue star represents BFSRCB with equivalent k =
16.
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Figure 10: An illustration of removing unexplored hy-
potheses from search frontier in ZIP.

score. Following common practice in libraries such1037

as Transformers (Wolf et al., 2020), we return a1038

number of completed hypotheses equal to the beam1039

size.1040

G Budget Scaling Behavior: Optimality1041

As a search algorithm, how do BS and DBS with1042

larger beam size perform at finding solutions close1043

to the reference? We compare the oracle R2 of1044

BS/DBS with larger beam size in Figure 9. The1045

oracle R2 increases slowly as k doubles, but our1046

model BFSRCB with k = 16 achieves 35.8, much1047

higher than all BS/DBS cases.1048

H Results of WMT14 English to French1049

Table 6 shows an additional experiment on English-1050

French. We do not evaluate on grammaticality due1051

to the GECToR model being specialized to English.1052

The results show broadly similar trends as those in1053

Figure 2, discussed in the main text.1054

I Examples1055

We show three examples with visualization in Fig-1056

ure 11,12 and 13. We use PyVis as the visu-1057

alization tool.6 More examples are available at 1058

anonymized. 1059

J Computational Considerations 1060

Resources Used All experiments were con- 1061

ducted on a server with 32GB RAM and Intel Xeon 1062

E5-2630 CPU, using a single NVIDIA GTX1080. 1063

The total computational budget in GPU hours is 1064

within 50 hours for experiments in text summariza- 1065

tion and machine translation. 1066

Memory and Runtime Although the final lat- 1067

tices returned encode large numbers of paths, they 1068

do not take large amounts of memory. Because the 1069

number of nodes in a lattice is no larger than the 1070

number of node expansion operations during beam 1071

search, it is always less than the search budget and 1072

can be stored compactly. 1073

Moreover, the wall clock time of our BFS- 1074

Recomb strategy is manageable, on the order of 1075

between 1 and 10 seconds for summarization. As 1076

mentioned in the Conclusion, additional paral- 1077

lelism can be combined with our BFS search to 1078

further improve the time and make it comparable 1079

to beam search. However, even this version of 1080

the algorithm can be “embarrassingly” parallelized 1081

across examples to improve efficiency. 1082

Descriptive Statistics We randomly sample 100 1083

data instances from the validation set for each 1084

dataset, and they are used by all methods. When 1085

sampling is needed, we take 1,000 samples for 1086

each data instance, so all the metrics are reported 1087

on 100,000 translations/summaries for one dataset. 1088

K Risks 1089

By generating additional outputs from a generation 1090

model, we may cause a system to produce outputs 1091

that are biased, factually inaccurate, or contain hal- 1092

lucinations. However, we do not believe these risks 1093

are substantially increased from the original model. 1094

Moreover, because we present many options, we 1095

believe our approach more appropriately reflects 1096

the model’s uncertainty over its output. 1097

6https://github.com/WestHealth/pyvis
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<s>

Figure 11: Visualization of one example output for beam search on XSum. nsos is labeled. Each color represents
one unique ending.
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<s>

Figure 12: Visualization of one example output for BFSRCB on XSum.
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Figure 13: Visualization of one example output for BFSZIP on XSum.
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Diversity Oracle Sample GRM
↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ≥ ≥ ≥ ↓

Model |path| N1 N2 SBL ED R1 R2 RL R1 R2 RL ERR

GREEDY 1 22 23 100 0 41.4 17.3 33.5 41.4 17.3 33.5 0.5%
BS 20 42 61 87 31 47.6 26.3 40.3 41.5 17.7 33.6 0.3%

DBS 19 59 91 79 53 47.0 25.5 39.1 38.5 15.9 30.3 0.5%
NCLS0.8 20 124 237 57 72 50.4 30.2 44.2 37.4 14.5 29.5 0.5%
NCLS0.9 20 143 273 50 76 48.0 28.1 42.2 36.1 13.3 28.5 0.8%
TEMP1.5 20 170 319 51 82 45.0 26.6 38.5 34.1 11.6 26.3 1.4%

BFS 30 88 167 68 60 50.8 30.1 44.0 39.0 15.6 30.8 0.4%

+ Path Recombination
BSZBEAM 4,701 66 118 75 51 52.2 33.0 45.7 40.0 16.0 32.3 0.7%

NCLS0.8RCB 52 167 308 53 79 49.0 28.8 41.8 35.0 13.0 27.8 1.0%
NCLS0.9RCB 36 207 363 50 87 44.6 25.9 38.7 32.1 11.0 25.1 1.7%

BFSRCB 7,758 111 239 65 64 55.2 35.8 49.3 38.5 15.2 30.8 0.8%
BFSZIP 95,744 124 274 53 77 55.6 36.8 48.8 36.8 13.2 28.7 1.4%

lBFSZIP 297 58 92 80 49 49.6 29.2 42.8 38.8 15.2 31.0 0.8%

Table 4: Full results for all methods decoding text summaries on XSum.

Method ALGOS CAND LEN DEDUP

BSZBEAM BS last step 1 N
RCB any all 1 N
ZIP any all n Y

Table 5: Key differences in path recombination meth-
ods. BSZBEAM is the recombination method used in
Zhang et al. (2018). ALGOS shows which search or
decoding methods this method is used with. CAND
is where the merge candidates come from in the lat-
tice. LEN reflects how many nodes are recombined per
operation. DEDUP denotes whether duplicates on the
merged branch will be removed from heap.

Diversity OR SP
↑ ↑ ↑ ↓ ↑ ↑ ≥

Model |path| N1 N2 SBL ED BL BL

GREEDY 1 32 35 100 0 28.5 28.5
BS 12 42 57 93 13 37.8 27.5

DBS 10 51 73 89 38 33.1 22.7
NCLS0.8 12 95 171 72 56 35.4 20.4
NCLS0.9 12 116 214 66 73 33.4 17.6
TEMP1.5 12 150 274 61 89 28.4 13.1

BFS 17 62 98 85 35 38.8 25.0

+ Path Recombination
BSZBEAM 17,508 67 117 78 40 46.4 21.2

NCLS0.8RCB 59 151 261 67 78 29.3 16.3
NCLS0.9RCB 32 190 317 53 101 26.9 12.6

BFSRCB 18,663 90 180 74 42 46.6 20.8
BFSZIP 49,507 104 213 65 53 45.9 16.7

lBFSZIP 386 49 70 88 25 39.5 25.7

Table 6: Results on machine translation WMT14 En-
glish to French. BFSRCB and BFSZIP are strong in
both diversity and quality.
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