
Under review as submission to TMLR

Learning to Solve Integer Linear Programs
with Davis-Yin Splitting

Anonymous authors
Paper under double-blind review

Abstract

In many applications, a combinatorial problem must be repeatedly solved with similar, but
distinct parameters. Yet, the parameters w are not directly observed; only contextual data d
that correlates with w is available. It is tempting to use a neural network to predict w given
d. However, training such a model requires reconciling the discrete nature of combinatorial
optimization with the gradient-based frameworks used to train neural networks. When the
problem in question is an Integer Linear Program (ILP), one approach to overcome this
training issue is to consider a continuous relaxation of the combinatorial problem. While
existing methods utilizing this approach have shown to be highly effective on small problems,
they do not always scale well to large problems. In this work, we draw on ideas from modern
convex optimization to design a network and training scheme which scales effortlessly to
problems with thousands of variables. Our experiments verify the computational advantage
our proposed method enjoys on two representative problems, namely the shortest path
problem and the knapsack problem.

1 Introduction

Many high-stakes decision problems in healthcare (Zhong & Tang, 2021), logistics and scheduling (Sbihi &
Eglese, 2010; Kacem et al., 2021), and transportation (Wang & Tang, 2021) can be viewed as a two step
process. In the first step, one gathers data about the situation at hand. This data is used to assign a value
(or cost) to outcomes arising from each possible action. The second step is to select the action yielding
maximum value (alternatively, lowest cost). Mathematically, this can be framed as an optimization problem
with a data-dependent cost function:

x⋆(d) ≜ arg min
x∈X

f(x; d). (1)

In this work, we focus on the case where X ⊂ Rn is a finite constraint set and f(x; d) = w(d)⊤x is a
linear function. This class of problems is quite rich, containing the shortest path, traveling salesperson, and
sequence alignment problems, to name a few. Given w(d), solving equation 1 may be straightforward (e.g.
shortest path) or NP-hard (e.g. traveling salesperson problem (Karp, 1972)). However, our present interest
is settings where the dependence of w(d) on d is unknown. In such settings, it is intuitive to learn a mapping
wΘ(d) ≈ w(d) and then solve

xΘ(d) ≜ arg min
x∈X

wΘ(d)⊤x (2)

in lieu of w(d). The observed data d is called the context. As an illustrative running example, consider the
shortest path prediction problem shown in Figure 1, which is studied in Berthet et al. (2020) and Pogančić
et al. (2019).

At first glance, it may appear natural to tune the weights Θ so as to minimize the difference between wΘ(d)
and w(d). However, this is only possible if w(d) is available at training time. Even if this approach is
feasible, it may not be advisable. If wΘ(d) is a near-perfect predictor of w(d) we can expect xΘ(d) ≈ x⋆(d).
However, if there are even small differences between wΘ(d) and w(d) this can manifest in wildly different
solutions (Bengio, 1997; Wilder et al., 2019). Thus, we focus on methods where Θ is tuned by minimizing
the discrepancy between xΘ(d) and x⋆(d).

1

Under review as submission to TMLR

0 20 40 60 80

0

20

40

60

80

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

Figure 1: The shortest path prediction problem (Pogančić et al., 2019). The goal is to find the shortest
path (from top-left to bottom-right) through a randomly generated terrain map from the Warcraft II tileset
(Guyomarch). The contextual data d, shown in (a), is an image sub-divided into 8-by-8 squares, each
representing a vertex in a 12-by-12 grid graph. The cost of traversing each square, i.e. w(d), is shown in
(b), with darker shading representing lower cost. The true shortest path is shown in (c).

The key obstacle in using gradient-based algorithms to tune Θ in such approaches is “differentiating through”
the solution xΘ(d) of equation 2 to obtain a gradient with which to update Θ. Specifically, the combinatorial
nature of X may cause the solution xΘ(d) to remain unchanged for many small perturbations to Θ; yet, for
some perturbations xΘ(d) may “jump” to a different point in X . Hence, the gradient dxΘ

/
dwΘ is always

either zero or undefined. To compute an informative gradient, we follow Wilder et al. (2019) by relaxing
equation 2 to a quadratic program over the convex hull of X with an added regularizer (see equation 8).

Contribution Drawing upon recent advances in convex optimization (Ryu & Yin, 2022) and implicit
neural networks (Fung et al., 2022; McKenzie et al., 2021), we propose a method designed specifically for
“differentiating through” large-scale integer linear programs. Our approach is fast, easy to implement using
our provided code, and, unlike several prior works (e.g. see Pogančić et al. (2019); Berthet et al. (2020)),
trains completely on GPU. Numerical examples herein demonstrate our approach, run using only standard
computing resources, easily scales to problems with tens of thousands of variables. Theoretically, we verify
our approach computes an informative gradient via a refined analysis of Jacobian-free Backpropagation
(JFB) (Fung et al., 2022). In summary, we do the following.

▷ Building upon McKenzie et al. (2021), we use the three operator splitting technique of Davis & Yin
(2017) to propose DYS-Net.

▷ We provide theoretical guarantees for differentiating through the fixed point of a certain non-
expansive, but not contractive, operator.

▷ We numerically show DYS-Net easily handles combinatorial problems with tens of thousands of
variables.

2 Preliminaries

LP Reformulation We focus on optimization problems of the form equation 1 where f(x; d) = w(d)⊤x
and X is the integer or binary points of a polytope, which we may assume to be expressed in standard form
(Ziegler, 2012):

X = C ∩ Zn or X = C ∩ {0, 1}n, where C = {x ∈ Rn : Ax = b and x ≥ 0} . (3)

In other words, equation 1 is an Integer Linear Program (ILP). Similar to works by Elmachtoub & Grigas
(2022); Wilder et al. (2019); Mandi & Guns (2020) and others we replace the model equation 2 with its

2

Under review as submission to TMLR

continuous relaxation, and redefine
xΘ(d) ≜ arg min

x∈C
wΘ(d)⊤x (4)

as a step towards making the computation of dxΘ
/

dwΘ feasible.

Losses and Training Data We assume access to training data in the tuple form (d, x⋆(d)). We focus on
the ℓ2 loss:

L(Θ) ≜ Ed∼D [ℓ2(Θ; d)] , where ℓ2(Θ; d) = ∥x⋆(d) − xΘ(d)∥2, (5)

and D is the distribution of contextual data, although more sophisticated losses can be used with only
superficial changes to our results. In principle we select the optimal weights by solving arg minΘ L(Θ). In
practice, the population risk is inaccessible, and so we minimize empirical risk instead (Vapnik, 1999):

arg min
Θ

1
N

N∑
i=1

ℓ2 (Θ; di) . (6)

Argmin Differentiation For notational brevity, we temporarily suppress the dependence on d. The
gradient of ℓ2 with respect to Θ, evaluated on a single data point is

d
dΘ [ℓ2(Θ)] = d

dΘ
[
∥xΘ − x⋆∥2]

= (xΘ − x⋆)⊤ ∂xΘ

∂wΘ

dwΘ

dΘ .

As discussed in Section 1, x⋆
Θ is piecewise constant as a function of wΘ, and this remains true for the LP

relaxation equation 4. Consequently, for all wΘ, either ∂xΘ/∂Θ = 0 or ∂xΘ/∂Θ is undefined—neither case
yields an informative gradient. To remedy this, Wilder et al. (2019); Mandi & Guns (2020) propose adding
a small amount of regularization to the objective function in equation 4 to make it strongly convex. This
ensures xΘ is a continuously differentiable function of wΘ. We add a small quadratic regularizer, modulated
by γ ≥ 0, to obtain the objective

fΘ(x; γ, d) ≜ wΘ(d)⊤x + γ∥x∥2
2 (7)

and henceforth replace equation 4 by

xΘ(d) ≜ arg min
x∈C

fΘ(x; γ, d). (8)

During training, we aim to solve equation 8 and efficiently compute the derivative ∂xΘ/∂Θ.

3 Related Works

We highlight recent works combining optimization—particularly mixed integer programs—and deep learning.

Optimization Layers Introduced in Amos & Kolter (2017), and studied further in Agrawal et al.
(2019b;c); Bolte et al. (2021); Blondel et al. (2022), an optimization layer is a modular component of a
deep learning framework where forward propagation consists of solving a parametrized optimization prob-
lem. Consequently, backpropagation entails differentiating the solution to this problem with respect to the
parameters. Optimization layers are a promising technology as they are able to incorporate hard constraints
into deep neural networks. Moreover, as their output is a (constrained) minimizer of the objective function,
it is easier to interpret than the output of a generic layer.

Deep Equilibrium Models Bai et al. (2019); El Ghaoui et al. (2021) propose the notion of deep equilib-
rium model (DEQ), also known as an implicit neural network. A DEQ is a neural network for which forward
propagation consists of (approximately) computing a fixed point of a parametrized operator. We note that
equation 8 may be reformulated as a fixed point problem,

Find xΘ such that xΘ = PC (xΘ − α∇xfΘ(xΘ; d)) , (9)

3

Under review as submission to TMLR

where PC is the orthogonal projection1 onto C. Thus, DEQ techniques may be applied to constrained
optimization layers (Chen et al., 2021; Blondel et al., 2022; McKenzie et al., 2021). However, the cost of
computing PC can be prohibitive, see the discussion in Section 4.

Differentiable Combinatorial Optimizers We now narrow our focus to optimization layers for (inte-
ger) linear programs. Wilder et al. (2019) and Elmachtoub & Grigas (2022) are two of the earliest works
applying deep learning techniques to data-driven LPs, and delineate two fundamentally different approaches.
Specifically, Wilder et al. (2019) proposes replacing the LP with a continuous and strongly convex relaxation,
as described in Section 2. This approach is extended to ILPs in Ferber et al. (2020), and to non-quadratic
regularizers in Mandi & Guns (2020). On the other hand, Elmachtoub & Grigas (2022) avoid modifying the
underlying optimization problem and instead propose a new loss function; dubbed the Smart Predict-then-
Optimize (SPO) loss, to be used instead of the ℓ2 loss. We emphasize that the SPO loss requires access to
the true cost vectors w(d), a setting which we do not consider.
Several works define a continuously differentiable proxy for the solution to the unregularized LP equation 4,
which we rewrite here as2

x⋆(w) = arg min
x∈C

w⊤x, (10)

In Berthet et al. (2020), a stochastic perturbation is considered:

x⋆
ε(w) = EZ

[
arg min

x∈C
(w + εZ)⊤

x

]
, (11)

which is somewhat analogous to Nesterov-Spokoiny smoothing (Nesterov & Spokoiny, 2017) in zeroth-order
optimization. Pogančić et al. (2019) define a piecewise-affine interpolant to ℓ(x⋆(w)), where ℓ is a suitable
loss function.
We note a bifurcation in the literature; Wilder et al. (2019); Ferber et al. (2020); Elmachtoub & Grigas
(2022) assume access to training data of the form (d, w(d)), whereas Pogančić et al. (2019); Berthet et al.
(2020); Sahoo et al. (2022) use training data of the form (d, x⋆(d)). Our focus is on the latter setting, and
we refer the reader to Kotary et al. (2021) for a recent survey of this area.

Learning-to-Optimize (L2O) Our work can be situated within the broader learning-to-optimize (L2O)
framework (Chen et al., 2022; Li & Malik, 2017; Chen et al., 2018; Liu et al., 2023), where an optimization
algorithm is learned and its outputs are used to perform inferences. However, traditional L2O methods
use a fixed number of layers (i.e. unrolled algorithms). Our approach attempts to differentiate through the
solution x⋆

Θ and is therefore most closely aligned with works that employ implicit networks within the L2O
framework (Amos & Kolter, 2017; Heaton & Fung, 2023; McKenzie et al., 2021; Gilton et al., 2021; Liu et al.,
2022). We highlight that, unlike many L20 works, our goal is not to learn a faster optimization method
for fully specified problems. Rather, we seek to solve partially specified problems given contextual data by
combining learning and optimization techniques.

Computing the derivative of a minimizer with respect to parameters In all of the aforementioned
works, the same fundamental problem is encountered: ∂xΘ/∂Θ must be computed where xΘ is the solution
of a (constrained) optimization problem with objective function parametrized by Θ. The most common
approach to doing so, proposed in Amos & Kolter (2017) and used in Ruthotto et al. (2018); Wilder et al.
(2019); Mandi & Guns (2020); Ferber et al. (2020), starts with the KKT conditions for constrained optimality:

∂fΘ

∂x
(xΘ) + A⊤λ̂ + ν̂ = 0, Ax − b = 0, D(ν̂)xΘ = 0,

where λ̂ and ν̂ ≥ 0 are Lagrange multipliers associated to the optimal solution xΘ (Bertsekas, 1997) and
D(ν̂) is a matrix with ν̂ along its diagonal. Differentiating these equations with respect to Θ and rearranging

1For a set A ⊆ Rn, PA(x) ≜ arg minz∈A ∥z − x∥.
2For sake of notational simplicity, the dependence on d is implicit.

4

Under review as submission to TMLR

yields 
∂2fΘ
∂x2 A I

A⊤ 0 0
D(ν̂) 0 D(xΘ)




dxΘ
dΘ
dλ̂
dΘ
dν̂
dΘ

 =


∂2fΘ
∂x∂Θ

0
0

 . (12)

The matrix and right hand side vector in equation 12 are computable, thus enabling one to solve for dxΘ
dΘ (as

well as dλ̂
dΘ and dν̂

dΘ). The computational bottleneck in this approach is computing the Lagrange multipliers
at optimality—i.e. λ̂ and ν̂—in addition to xΘ. If x ∈ Rn and A ∈ Rm×n this can be done with a primal-dual
interior point method at a cost of O

(
max{n, m}3)

(Amos & Kolter, 2017).
Using the stochastic proxy equation 11, Berthet et al. (2020) derive a formula for dx⋆

ε/dw which is also an
expectation, and hence can be efficiently approximated using Monte Carlo methods. Pogančić et al. (2019)
show that the gradients of their interpolant are strikingly easy to compute, requiring just one additional solve
of equation 10 with perturbed cost w′. This approach is extended by Sahoo et al. (2022) which proposes to
avoid computing dx⋆

ε/dw entirely, replacing it with the negative identity matrix. This is similar in spirit to
our use of Jacobian-free Backpropagation (see Section 4).

4 DYS-Net

We now introduce our proposed model, DYS-net. We use this term to refer to the model and the training
procedure. Fixing an architecture for wΘ, and an input d, DYS-net computes an approximation to xΘ(d) in
a way that is easy to backpropagate through:

DYS-net(d; Θ) ≈ xΘ ≜ arg min
x∈C

fΘ(x; γ, d). (13)

The Forward Pass As we wish to compute xΘ and ∂xΘ/∂Θ for high dimensional settings (i.e. large n),
we eschew second-order methods (e.g. Newton’s method) in favor of first-order methods such as projected
gradient descent (PGD). With PGD, a sequence {xk} of estimates of xΘ are computed so that xΘ =
limk→∞ xk where

xk+1 = PC
(
xk − α∇xf(xk; γ, d)

)
for all k ∈ N.

This approach works for simple sets C for which there exists an explicit form of PC , e.g. when C is the
probability simplex (Duchi et al., 2008; Condat, 2016; Li et al., 2023). However, for general polytopes C
no such form exists, thereby requiring a second iterative procedure, run at each iteration k, to compute
PC(xk). To avoid this computational expense, we draw on recent advances in the convex optimization liter-
ature3, particularly Davis-Yin splitting or DYS (Davis & Yin, 2017). Specifically, we adapt the architecture
incorporating DYS proposed in McKenzie et al. (2021). To this end, we rewrite C as

C = {x : Ax = b and x ≥ 0} = {x : Ax = b}︸ ︷︷ ︸
≜ C1

∩ {x : x ≥ 0}︸ ︷︷ ︸
≜ C2

= C1 ∩ C2. (14)

While PC is hard to compute, both PC1 and PC2 can be computed cheaply via explicit formulas, once a
singular value decomposition (SVD) is computed for A. We verify this via the following lemma (included
for completeness, as the two results are already known).
Lemma 1. If C1, C2 are as in equation 14 and A is full-rank then:

1. PC1(z) = z − A†(Az − b), where A† = V Σ−1U⊤ and UΣV ⊤ is the compact SVD of A.

2. PC2(z) = ReLU(z) ≜ max{0, z}.

The following theorem allows one to approximate xΘ using only PC1 and PC2 , not PC .
3See Pedregosa & Gidel (2018); Yurtsever et al. (2021) for similar applications of DYS

5

Under review as submission to TMLR

Theorem 2. Let C1, C2 be as in equation 14, and suppose fΘ(x; γ, d) = wΘ(d)⊤x + γ
2 ∥x∥2

2 for any neural
network wΘ(d). For any α ∈ (0, 2/γ) define the sequence {zk} by:

zk+1 = TΘ(zk) for all k ∈ N (15)

where
TΘ(z)≜ z−PC2(z) + PC1((2 − αγ) PC2(z)−z−αwΘ(d)) . (16)

If xk ≜ PC2(zk) then ∥xk+1 − xk∥2
2 = O(1/k).

A full proof is included in Appendix A; here we provide a proof sketch. Substituting the gradient

∇zfΘ(z; γ, d) = wΘ(d) + γz

for FΘ(·, d) into the formula for TΘ(·) given in McKenzie et al. (2021, Theorem 3.2) and rearranging yields
equation 16. Verifying the assumptions of McKenzie et al. (2021, Theorem 3.3) are satisfied is straight-
forward. For example, ∇zfΘ(z; γ, d) is 1/γ-cocoercive by the Baillon-Haddad theorem (Baillon & Haddad,
1977; Bauschke & Combettes, 2009).
The forward pass of DYS-net consists of iterating equation 15 until a suitable stopping criterion is met, which
for simplicity we assume to be a maximum number of iterations.

The Backward Pass From Theorem 2 we deduce the following fixed point condition:

xΘ = PC2(zΘ), for some zΘ ∈ {z : z = TΘ(z)}. (17)

As discussed in McKenzie et al. (2021), instead of backpropagating through every iterate of the forward pass,
we may derive a formula for dxΘ/dΘ by appealing to the implicit function theorem and differentiating both
sides of equation 17:

dzΘ

dΘ = ∂TΘ

∂Θ + ∂TΘ

∂z

dzΘ

dΘ =⇒ JΘ(zΘ) dzΘ

dΘ = ∂TΘ

∂Θ where JΘ(z) = I − ∂TΘ

∂z
. (18)

We notice two immediate problems not addressed by McKenzie et al. (2021): (i) TΘ is not everywhere
differentiable with respect to z, as PC2 is not; (ii) if TΘ were a contraction (i.e. Lipschitz in z with constant
less than 1), then JΘ would be invertible. However, this is not necessarily the case. Thus, it is not clear a
priori that equation 18 can be solved for dzΘ/dΘ. Our key result (Theorem 6 below) is to provide reasonable
conditions under which JΘ(zΘ) is invertible.

Assuming these issues can be resolved, one may compute the gradient of the loss using the chain rule:

dℓ

dΘ = dℓ

dx

dxΘ

dΘ = dℓ

dx

(
dPC1

dz

dzΘ

dΘ

)
= dℓ

dx

dPC1

dz
J −1

Θ
∂TΘ

∂Θ

This approach requires solving a linear system with JΘ which becomes particularly expensive when n is
large. Instead, we use Jacobian-free Backpropagation (JFB) (Fung et al., 2022), also known as one-step
differentiation (Bolte et al., 2024), in which the Jacobian JΘ is replaced with the identity matrix. This leads
to an approximation of the true gradient dℓ/dΘ using

pΘ(xΘ) =
[

∂ℓ

∂x

dPC1

dz

∂TΘ

∂Θ

]
(x,z)=(xΘ,zΘ)

. (19)

We show equation 19 is a valid descent direction by resolving the two problems highlighted above. We
begin by rigorously deriving a formula for ∂TΘ/∂z. Recall the following generalization of the Jacobian to
non-smooth operators due to Clarke (1983).
Definition 3. For any locally Lipshitz F : Rn → Rn let DF denote the set upon which F is differentiable.
The Clarke Jacobian of F is the set-valued function defined as

∂F (z̄) =
{ dF

dz

∣∣
z=z̄

if z̄ ∈ DF

Con
{

limz′→z̄:z′∈DF

dF
dz

∣∣
z=z′

}
if z̄ /∈ DF

Where Con {} denotes the convex hull of a set.

6

Under review as submission to TMLR

Algorithm 1 DYS-Net

1: Inputs:A and b defining C, hyperparameters α, γ, K
2: Initialize: Attach neural network wΘ(·). Compute SVD of A for PC1 formula
3: Forward Pass: Initialize z0. Given wΘ(d) compute z1, . . . , zK using equation 15. Return xK ≜

PC1(zK) ≈ xΘ.
4: Backward Pass: Compute pΘ(xK) ≈ pΘ(xΘ) using equation 19 and return.

The Clarke Jacobian of PC2 is easily computable, see Lemma 9. Define the (set-valued) functions

c(α) ≜ ∂ max(0, α) =


1 if α > 0
0 if α < 0

[0, 1] if α = 0
and c̃(α) =

{
1 if α > 0
0 if α ≤ 0

Then
∂PC2(z̄) =

[
d
dz

ReLU(z)
]

z=z

= diag(c(z)), (20)

where c is applied element-wise. We shall now provide a consistent rule for selecting, at any z̄, an element of
∂PC2(z̄). If zi ̸= 0 for all i then ∂PC2 is a singleton. If one or more zi = 0 then ∂PC2 is multi-valued, so we
choose the element of ∂PC2 with 0 in the (i, i) position for every zi = 0. We write dPC2/dz for this chosen
element, and note that

dPC2

dz

∣∣∣∣
z=z̄

= diag(c̃(z)) ∈ ∂PC2(z̄)

This aligns with the default rule for assigning a sub-gradient to ReLU used in the popular machine learning
libraries TensorFlow(Abadi et al., 2016), PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018),
and has been observed to yield networks which are more stable to train than other choices (Bertoin et al.,
2021).

Given the above convention, we can compute ∂TΘ/∂z, interpreted as an element of the Clarke Jacobian of
TΘ chosen according to a consistent rule. Surprisingly, ∂TΘ/∂z may be expressed using only orthogonal
projections to hyperplanes. Throughout, we let ei ∈ Rn be the one-hot vector with 1 in the i-th position
and zeros elsewhere, and a⊤

i be the i-th row of A. For any subspace H we denote the orthogonal subspace
as H⊥. The following theorem, the proof of which is given in Appendix A, characterizes ∂TΘ/∂z.
Theorem 4. Suppose A is full-rank and H1 ≜ Null(A), H2,z ≜ Span (ei : zi > 0). Then for all ẑ ∈ Rn

∂TΘ

∂z

∣∣∣∣
z=z̄

= PH⊥
1

PH⊥
2,z̄

+ (1 − αγ) · PH1PH2,z̄
. (21)

To show JFB is applicable, it suffices to verify ∥∂TΘ/∂z∥ < 1 when evaluated at zΘ. Theorem 4 enables us
to show this inequality holds when xΘ satisfies a commonly-used regularity condition, which we formalize as
follows.
Definition 5 (LICQ condition, specialized to our case). Let xΘ denote the solution to equation 8. Let
A(xΘ) ⊆ {1, . . . , n} denote the set of active positivity constraints:

A(xΘ) ≜ {i : [xΘ]i = 0}. (22)

The point xΘ satisfies the Linear Independence Constraint Qualification (LICQ) condition if the vectors

{a1, . . . , am} ∪ {ei : i ∈ A(xΘ)} (23)

are linearly independent.
Theorem 6. If the LICQ condition holds at xΘ, A is full-rank and α ∈ (0, 2/γ), then ∥∂TΘ/∂z∥z=zΘ < 1.

7

Under review as submission to TMLR

The significance of Theorem 6, which is proved in Appendix A, is outlined by the following corollary, stating
that using pΘ instead of the true gradient dℓ/dΘ is still guaranteed to decrease ℓ(Θ), at least for small enough
step-size.
Corollary 7. If TΘ is continuously differentiable with respect to Θ at zΘ, the assumptions in Theorem 6
hold and (∂TΘ/∂Θ)⊤(∂TΘ/∂Θ) has condition number sufficiently small, then pΘ(xΘ) is a descent direction
for ℓ with respect to Θ.

Theorem 6 also proves that JΘ(zΘ) in equation 18 is invertible, thus also justifying the use of Jacobian-based
backprop as well as numerous other gradient approximation techniques (Liao et al., 2018; Geng et al., 2021).

Finally, we note that in practice pΘ(xK) is used instead of pΘ(xΘ). Fung et al. (2022, Corollary 0.1)
guarantees that pΘ(xK) will still be a descent direction for K sufficiently large, see also Bolte et al. (2024,
Cor. 1).

Implementation DYS-net is implemented as an abstract PyTorch (Paszke et al., 2019) layer in the pro-
vided code. To instantiate it, a user only need specify A and b (see equation 3) and choose an architecture
for wΘ. At test time, it can be beneficial to solve the underlying combinatorial problem equation 2 exactly
using a specialized algorithm, e.g. commercial integer programming software for the knapsack prediction
problem. This can easily be done using DYS-net by instantiating the test-time-forward abstract method.

5 Numerical Experiments

5.1 Experiments using PyEPO

First, we verify the efficiency of DYS-net by performing benchmarking experiments within the PyEPO (Tang
& Khalil, 2022) framework. We compare DYS-net against three other methods: Perturbed Optimization
(Berthet et al., 2020)—PertOpt-net; an approach using Blackbox Backpropagation (Vlastelica et al., 2019)—
BB-net; and an approach using cvxpylayers (Agrawal et al., 2019a)—CVX-net.

Models We use the PyEPO implementations of Perturbed Optimization, respectively Blackbox Backprop-
agation, as the core of PertOpt-net, respectively BB-net. We use the same architecture for wΘ(d) for all
models4 and use an appropriate combinatorial solver at test time, via the PyEPO interface to Gurobi. Thus,
the methods differ only in training procedure. The precise architectures used for wΘ(d) for each problem
are described in Appendix C, and are also viewable in the accompanying code repository . Interestingly,
we observed that adding drop-out during training to the output layer proved beneficial for the knapsack
prediction problem. Without this, we find that wΘ tends to output a sparse approximation to w supported
on a feasible set of items, and so does not generalize well.

Training We train for a maximum of 100 epochs or 30 minutes, whichever comes first. We use a validation
set for model selection as we observe that, for all methods, the best loss is seldom achieved at the final
iteration. Exact hyperparameters are discussed in the appendix. For each problem size, we perform three
repeats with different randomly generated data. Results are displayed in Figure 2.

Evaluation Given test data {(di, w(di), x⋆(di))}N
i=1 and a fully trained model wΘ(d) we define the regret

as:
r(d) = w(di)⊤ (xΘ(di) − x⋆(di)) . (24)

Note that regret is non-negative, and is zero precisely when xΘ(di) is a solution of equal quality to x⋆(di).
Following Tang & Khalil (2022), we evaluate the quality of wΘ(d) using normalized regret, defined as

r̃ =
∑N

i=1 r(di)∑N
i=1 [w(di)⊤x⋆(di)]

. (25)

4The architecture we use for shortest path prediction problems differs from that used for knapsack prediction problems. See
the appendix for details.

8

Under review as submission to TMLR

DYS
CVX

BB

PertOpt

10 20 30

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Grid Size

1

(a) Normalized Regret

DYS

BB

PertOpt
CVX

10 20 30

101

102

103

Grid Size

1

(b) Train Time (in seconds)

DYS

CVX

BB

PertOpt

0 200 400 600 800

0.1

0.2

0.3

0.4

Number of Items

1

(c) Normalized Regret

DYS

BB

PertOpt

CVX

0 200 400 600 800

101

102

103

Number of Items

1

(d) Train Time (in seconds)

Figure 2: Results for the shortest path and knapsack prediction problems. Figures (a) and (b) show nor-
malized regret and train time for the shortest path prediction problem, while Figures (c) and (d) show
normalized regret and train time for the knapsack prediction problem. Note that the train time in figures
(b) and (d) is the time till the model achieving best normalized regret on the validation set is reached.

5.1.1 Shortest Path Prediction

The shortest path between two vertices in a graph G = (V, E) can be found by:

x⋆ = arg min
x∈X

w(d)⊤x; X = {x ∈ {0, 1}|E| : Ex = b}, (26)

where E is the vertex-edge adjacency matrix, b encodes the initial and terminal vertices, and w(d) ∈ R|E|

is a vector encoding (d-dependent) edge lengths; see Appendix for further details. Here, x⋆ will encode the
edges included in the optimal path. In this experiment we focus on the case where G is the k × k grid
graph. We use the PyEPO Tang & Khalil (2022) benchmarking software to generate training datasets of the
form {(di, x⋆

i ≈ x⋆(di))}N
i=1 where N = 1000 for each k ∈ {5, 10, 15, 20, 25, 30}. The di are sampled from

the five-dimensional multivariate Gaussian distribution with mean 0 and identity covariance. Note that the
number of variables in equation 26 scales like k2, not k.

5.1.2 Knapsack Prediction

In the (0–1, single) knapsack prediction problem, we are presented with a container (i.e. a knapsack) of size
c and I items, of sizes s1, . . . , sI and values w1(d), . . . , wI(d). The goal is to select the subset of maximum
value that fits in the container, i.e. to solve:

x⋆ = arg max
x∈X

w(d)⊤x; X = {x ∈ {0, 1}I : s⊤x ≤ c}

Here, x⋆ encodes the selected items. In the (0–1) k-knapsack prediction problem we imagine the container
having various notions of “size” (i.e. length, volume, weight limit) and hence a k-tuple of capacities c ∈ Rk.
Correspondingly, the items each have a k-tuple of sizes s1, . . . , sI ∈ Rk. We aim to select a subset of
maximum value, amongst all subsets satisfying the k capacity constraints:

x⋆ = arg max
x∈X

w(d)⊤x

X = {x ∈ {0, 1}I : Sx ≤ c}
S =

[
s1 · · · sk

]
∈ Rk×I

(27)

In Appendix B we discuss how to transform X into the canonical form discussed in Section 2. We again use
PyEPO to generate datasets of the form {(di, x⋆

i ≈ x⋆(di))}N
i=1 where N = 1000 for k = 2 and I varying from

50 to 750 inclusive in increments of 50. The di from the five-dimensional multivariate Gaussian distribution
with mean 0 and identity covariance.

9

Under review as submission to TMLR

DYS

BB

PertOpt

CVX

0 20 40 60 80 100

0%

20%

40%

60%

80%

100%

Epochs

1
Figure 3: Accuracy (in percentage) of predicted paths on 5-by-5 grid during training.

grid size number of variables network size
5-by-5 40 500

10-by-10 180 2040
20-by-20 760 8420
30-by-30 1740 19200
50-by-50 4900 53960

100-by-100 19800 217860

Table 1: Number of variables (i.e. number of edges) per grid size for the shortest path prediction problem
of Section 5.2. Third column: number of parameters in wΘ(d) for DYS-Net, CVX-net and PertOpt-net.
For BB-Net, we found a latent dimension that is 20-times larger than the aforementioned three to be more
effective.

5.1.3 Results

As is clear from Figure 2 DYS-net trains the fastest among the four methods, and achieves the best or
near-best normalized regret in all cases.

5.2 Large-scale shortest path prediction

Our shortest path prediction experiment described in Section 5.1.1 is bottlenecked by the fact that the
“academic” license of Gurobi does not allow for shortest path prediction problems on grids larger than 30×30.
To further explore the limits of DYS-net, we redo this experiment using a custom pyTorch implementation
of Dijkstra’s algorithm5 as our base solver for equation 26.

Data Generation We generate datasets D = {(di, x⋆(di)}1,000
i=1 for k-by-k grids where k ∈

{5, 10, 20, 30, 50, 100} and the di are sampled uniformly at random from [0, 1]5, the true edge weights are
computed as w(d) = Wd for fixed W ∈ R|E|×5, and x⋆(d) is computed given w(d) using the aforementioned
pyTorch implementation of Dijkstra’s algorithm. Further details are presented in Appendix C.

Models and Training We test the same four approaches as in Sections 5.1.1 and 5.1.2, but unlike in
these sections we do not use the PyEPO implementations of PertOpt-net or BB-net. We cannot, as the
PyEPO implementations call Gurobi to solve equation 26 which, as mentioned above, cannot handle grids
larger than 30 × 30. Instead, we use custom implementations based on the code accompanying the works
introducing PertOpt (Berthet et al., 2020) and BB (Vlastelica et al., 2019). We use the same architecture
for wΘ(d) for DYS-net, PertOpt-net, and Cvx-net; a two layer fully connected neural network with leaky

5adapted from Tensorflow code available at https://github.com/google-research/google-research/blob/master/
perturbations/experiments/shortest_path.py

10

https://github.com/google-research/google-research/blob/master/perturbations/experiments/shortest_path.py
https://github.com/google-research/google-research/blob/master/perturbations/experiments/shortest_path.py

Under review as submission to TMLR

DYS

BB

PertOpt

CVX

0 50 100
10−3

10−1

101

Grid Size

1

(a) Test MSE Loss

DYS

BB

PertOpt

CVX

0 50 100
100

102

104

Grid Size

1

(b) Training Time (min)

DYS

BB

PertOpt

CVX

0 50 100

10−3

10−1

101

Grid Size

1

(c) Regret Values

Figure 4: Results for the shortest path prediction problem. a) Test MSE loss (left), b) training time in
minutes (middle), and c) regret values (right) vs. gridsize for DYS-Net (proposed) and approaches using
cvxpylayers (Agrawal et al., 2019b) labeled CVX; Perturbed Optimization (Berthet et al., 2020) labeled
PertOpt; and Blackbox Backpropagation (Vlastelica et al., 2019), labeled BB. Note CVX is unable to load
or run problems with gridsize over 30. Dimensions of the variables can be found in Table 1.

ReLU activation functions. For DYS-net and Cvx-net we do not modify the forward pass at test time. For
BB-net we use a larger network by making the latent dimension 20-times larger than that of the first three
as we found this more effective. Network sizes can be seen in Table 1.
We tuned the hyperparameters for each approach to the best of our ability on the smallest problem (5-by-5
grid) and then used these hyperparameter values for all other graph sizes. See Figure 3 for the results of
this training run. We train all approaches for 100 epochs total on each problem using the ℓ2 loss equation 5.

Results The results are displayed in Figure 4. While CVX-net and PertOpt-net achieve low regret for
small grids, DYS-net model achieves a low regret for all grids. In addition to training faster, DYS-net can also
be trained for much larger problems, e.g., 100-by-100 grids, as shown in Figure 4. We found that CVX-net
could not handle grids larger than 30-by-30, i.e. , problems with more than 1740 variables6 (see Table 1).
Importantly, PertOpt-net takes close to a week to train for the 100-by-100 problem, whereas DYS-net takes
about a day (see right Figure 4b). On the other hand, the training speed of BB-net is comparable to that
of DYS-net, but does not lead to competitive accuracy as shown in Figure 4(a). Interpreting the outputs
of DYS-net and CVX-net as (unnormalized) probabilities over the grid, one can use a greedy algorithm to
determine the most probable path from top-left to bottom-right. For small grids, e.g. 5-by-5, this path
coincides exactly with the true path for most d (see Fig. 3).

5.3 Warcraft shortest path prediction

Finally, as an illustrative example, we consider the Warcraft terrains dataset first studied in Vlastelica et al.
(2019). As shown in Figure 1, d is a 96-by-96 RGB image, divided into a 12-by-12 grid of terrain tiles. Each
tile has a different cost to traverse, and the goal is to find the quickest path from the top-left corner to the
bottom-right corner.

Models, Training, and Evaluation We build upon the code provided as part of the PyEPO package
(Tang & Khalil, 2022). We use the same architecture for wΘ(d) for BB-net, PertOpt-net, and DYS-net—a
truncated ResNet18 (He et al., 2016) as first proposed in Vlastelica et al. (2019). The baseline is the same
truncated ResNet18 architecture trained to predict x⋆(d) directly. We train each network for 50 epochs,
except for the baseline, which is trained for 150 epochs. The initial learning rate is 5 × 10−4 and it is
decreased by a factor of 10 after 30 and 40 epochs respectively. PertOpt-net and DYS-net are trained
to minimize the ℓ2 loss equation 5, while BB-net is trained to minimize the Hamming loss as described in
Vlastelica et al. (2019). Given test data {(di, w(di), x⋆(di))}N

i=1, we follow Tang & Khalil (2022) and evaluate

6This is to be expected, as discussed in in Amos & Kolter (2017); Agrawal et al. (2019a)

11

Under review as submission to TMLR

Figure 5: Left two figures: Sample cost matrices for shortest problem considered in Section 5.1.1. Right
two figures: Sample cost matrices for the Warcraft shortest path prediction problem considered in Sec-
tion 5.3. Note that in Section 5.3 the node weighted shortest path prediction problem is considered, while
in Section 5.1.1 the edge weighted variant is solved. For ease of comparison, in the left two figures we have
reshaped the edge cost vector into a node cost matrix.

Algorithm Test Relative Regret Prediction Accuracy Time (in hours)
Baseline 19.1150 0.0% 0.07
BB-net 0.1435 91.43% 5.56
PertOpt-net 0.4566 35.71% 3.15
DYS-net 0.2745 51.43% 4.13

Table 2: Results for the 12-by-12 Warcraft shortest path prediction problem. The low relative regret of
BB-net could be attributed to the “discrete” nature of the true cost vectors as well as its use of the Hamming
loss in training.

a fully trained model wΘ(d) using relative regret:

r̂ =
N∑

i=1

r(di)
w(di)⊤x⋆(di)

(28)

Results The results for this experiment are shown in Table 2. Interestingly, BB-net and PertOpt-net are
much more competitive in this experiment than in the experiements of Sections 5.1.1, 5.1.2, and 5.2. We
attribute this to the “discrete” nature of the true cost vector w(d)—for the Warcraft problem entries of w(d)
can only take on four, well-separated values—as opposed to the more “continuous” nature of w(d) in the
previous experiments. This difference is illustrated in Figure 5.

6 Conclusions

This work presents a new method for learning to solve ILPs using Davis-Yin splitting which we call DYS-net.
We prove that the gradient approximation computed in the backward pass of DYS-net is indeed a descent di-
rection, thus advancing the current understanding of implicit networks. Our experiments show that DYS-net
is capable of scaling to truly large ILPs, and outperforms existing state-of-the-art methods in some settings.
Our experiments also reveal an interesting dichotomy between problems in which entries of w(d) may take
on only a handful of discrete values and problems in which w(d) is more “continuous”. Future work could ex-
plore this dichotomy further, as well as apply DYS-net to additional ILPs, for example the traveling salesman
problem.

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp.
265–283, 2016.

12

Under review as submission to TMLR

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization
layers. In Advances in Neural Information Processing Systems, 2019a.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter. Dif-
ferentiable convex optimization layers. Advances in neural information processing systems, 32, 2019b.

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differentiating through
a cone program. arXiv preprint arXiv:1904.09043, 2019c.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural Information
Processing Systems, 32, 2019.

Jean-Bernard Baillon and Georges Haddad. Quelques propriétés des opérateurs angle-bornés et n-
cycliquement monotones. Israel Journal of Mathematics, 26:137–150, 1977.

Heinz H Bauschke and Patrick L Combettes. The Baillon-Haddad theorem revisited. arXiv preprint
arXiv:0906.0807, 2009.

Yoshua Bengio. Using a financial training criterion rather than a prediction criterion. International journal
of neural systems, 8(04):433–443, 1997.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis Bach.
Learning with differentiable perturbed optimizers. Advances in neural information processing systems, 33:
9508–9519, 2020.

David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numerical influence of ReLU’(0)
on backpropagation. Advances in Neural Information Processing Systems, 34:468–479, 2021.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):334–334,
1997.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian
Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances in neural
information processing systems, 35:5230–5242, 2022.

Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differentiation for
machine-learning and optimization. Advances in neural information processing systems, 34:13537–13549,
2021.

Jérôme Bolte, Edouard Pauwels, and Samuel Vaiter. One-step differentiation of iterative algorithms. Ad-
vances in Neural Information Processing Systems, 36, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax: composable trans-
formations of python+ numpy programs. 2018.

Bingqing Chen, Priya L Donti, Kyri Baker, J Zico Kolter, and Mario Bergés. Enforcing policy feasibility
constraints through differentiable projection for energy optimization. In Proceedings of the Twelfth ACM
International Conference on Future Energy Systems, pp. 199–210, 2021.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and Wotao
Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning Research, 23(189):
1–59, 2022.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of unfolded ista
and its practical weights and thresholds. Advances in Neural Information Processing Systems, 31, 2018.

FH Clarke. Optimization and nonsmooth analysis, wiley-interscience. New York, 1983.

13

Under review as submission to TMLR

Laurent Condat. Fast projection onto the simplex and the ℓ1 ball. Mathematical Programming, 158(1):
575–585, 2016.

Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications. Set-valued
and variational analysis, 25(4):829–858, 2017.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the ℓ1-ball
for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning,
pp. 272–279, 2008.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep learning.
SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):9–26,
2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as a layer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1504–1511, 2020.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. JFB: Jacobian-
free backpropagation for implicit networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2022.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit models.
Advances in Neural Information Processing Systems, 34:24247–24260, 2021.

Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures for inverse problems in
imaging. IEEE Transactions on Computational Imaging, 7:1123–1133, 2021.

Jean Guyomarch. Warcraft ii open-source map editor, 2017. http://github. com/war2/war2edit.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Howard Heaton and Samy Wu Fung. Explainable ai via learning to optimize. Scientific Reports, 13(1):10103,
2023.

Imed Kacem, Hans Kellerer, and A Ridha Mahjoub. Preface: New trends on combinatorial optimization for
network and logistical applications. Annals of Operations Research, 298(1):1–5, 2021.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pp.
85–103. Springer, 1972.

James Kotary, Ferdinando Fioretto, Pascal van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In 30th International Joint Conference on Artificial Intelligence, IJCAI
2021, pp. 4475–4482. International Joint Conferences on Artificial Intelligence, 2021.

Ke Li and Jitendra Malik. Learning to optimize. In International Conference on Learning Representations,
2017.

Qiuwei Li, Daniel McKenzie, and Wotao Yin. From the simplex to the sphere: faster constrained optimization
using the hadamard parametrization. Information and Inference: A Journal of the IMA, 12(3):1898–1937,
2023.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, and
Richard Zemel. Reviving and improving recurrent back-propagation. In International Conference on
Machine Learning, pp. 3082–3091. PMLR, 2018.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards constituting mathemati-
cal structures for learning to optimize. In International Conference on Machine Learning, pp. 21426–21449.
PMLR, 2023.

14

Under review as submission to TMLR

Jiaming Liu, Xiaojian Xu, Weijie Gan, Ulugbek Kamilov, et al. Online deep equilibrium learning for regu-
larization by denoising. Advances in Neural Information Processing Systems, 35:25363–25376, 2022.

Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+ optimisation. Advances in
Neural Information Processing Systems, 33:7272–7282, 2020.

Daniel McKenzie, Howard Heaton, Qiuwei Li, Samy Wu Fung, Stanley Osher, and Wotao Yin. Operator
splitting for learning to predict equilibria in convex games. arXiv e-prints, pp. arXiv–2106, 2021.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17:527–566, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019.

Fabian Pedregosa and Gauthier Gidel. Adaptive three operator splitting. In International Conference on
Machine Learning, pp. 4085–4094. PMLR, 2018.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differentiation
of blackbox combinatorial solvers. In International Conference on Learning Representations, 2019.

Lars Ruthotto, Julianne Chung, and Matthias Chung. Optimal experimental design for inverse problems
with state constraints. SIAM Journal on Scientific Computing, 40(4):B1080–B1100, 2018.

Ernest Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithm Designs via Monotone Operators.
Cambridge University Press, Cambridge, England, 2022.

Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vít Musil, Volodymyr Kuleshov, and Georg Mar-
tius. Backpropagation through combinatorial algorithms: Identity with projection works. In The Eleventh
International Conference on Learning Representations, 2022.

Abdelkader Sbihi and Richard W Eglese. Combinatorial optimization and green logistics. Annals of Opera-
tions Research, 175(1):159–175, 2010.

Bo Tang and Elias Boutros Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library with
linear objective function. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop),
2022.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.

Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differentiation of blackbox
combinatorial solvers. In International Conference on Learning Representations, 2019.

Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial opti-
mization: A survey. Knowledge-Based Systems, 233:107526, 2021.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1658–1665, 2019.

Alp Yurtsever, Varun Mangalick, and Suvrit Sra. Three operator splitting with a nonconvex loss function.
In International Conference on Machine Learning, pp. 12267–12277. PMLR, 2021.

Liwei Zhong and Guochun Tang. Preface: Combinatorial optimization drives the future of health care.
Journal of Combinatorial Optimization, 42(4):675–676, 2021.

Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science & Business Media, 2012.

15

Under review as submission to TMLR

A Appendix A: Proofs

For the reader’s convenience we restate each result given in the main text before proving it.

Theorem 2. Let C1, C2 be as in equation 14, and suppose fΘ(x; γ, d) = wΘ(d)⊤x + γ
2 ∥x∥2

2 for any neural
network wΘ(d). For any α ∈ (0, 2/γ) define the sequence {zk} by:

zk+1 = TΘ(zk) for all k ∈ N (29)

where
TΘ(z)≜ z−PC2(z) + PC1((2 − αγ) PC2(z)−z−αwΘ(d)) . (30)

If xk ≜ PC2(zk) then ∥xk+1 − xk∥2
2 = O(1/k).

Proof. First note that ∇xfΘ(xΘ; γ, d) = wΘ(d) + γx. Because fΘ(xΘ; γ, d) is strongly convex, xΘ is unique
and is characterized by the first order optimality condition:

∇xfΘ(xΘ; d)⊤ (x − xΘ) ≥ 0 for all x ∈ C. (31)

Note that equation 31 can equally be viewed as a variational inequality with operator FΘ(x; d) =
∇xfΘ(xΘ; d). We deduce that zΘ with xΘ = PC2(zΘ) is a fixed point of

TΘ(z) ≜ z−PC2(z) + PC1 (2 · PC2(z)−z−α [wΘ(d) + γPC2(z)]))
= z−PC2(z) + PC1 ((2 − αγ) · PC2(z) − z − αwΘ(d)) (32a)

from McKenzie et al. (2021, Theorem 4.2), which is itself a standard application of ideas from operator
splitting (Davis & Yin, 2017; Ryu & Yin, 2022).
As ∇xfΘ(xΘ; γ, d) is γ-Lipschitz continuous it is also ∇xfΘ is 1/γ-cocoercive by the Baillon-Haddad theorem
(Baillon & Haddad, 1977; Bauschke & Combettes, 2009). McKenzie et al. (2021, Theorem 3.3) then implies
that zk → zΘ but does not give a convergence rate. In fact, the convergence rate can be deduced from known
results; because TΘ is averaged for α < 2/γ the rate follows from Ryu & Yin (2022, Theorem 1).

Next, we state two auxiliary lemmas relating the Jacobian matrices to projections onto linear subspaces.
Lemma 8. If C1 ≜ {x : Ax = b}, for full-rank A ∈ Rm×n, b ∈ Rn with m < n, and H1 ≜ Null(A) then

∂PC1

∂z
= PH1 , for all z ∈ Rn. (33)

Proof. Let A = UΣV ⊤ denote the reduced SVD of A, and note that as A ∈ Rm×n with m < n we have
U ∈ Rm×m, Σ ∈ Rm×m and V ∈ Rn×m. Differentiating the formula for PC1 given in Lemma 1 yields

∂PC1

∂z
= I − A†A, (34)

where A† ≜ V Σ−1U⊤. Note
A†A =

(
V Σ−1U⊤) (

UΣV ⊤)
= V V ⊤, (35)

which is the orthogonal projection onto Range(V) = Range(A⊤). It follows that I − A†A is the orthogonal
projection on to Range(A⊤)⊥ = Null(A).

Lemma 9. Define the multi-valued function

c(α) ≜ ∂ max(0, α) =


1 if α > 0
0 if α < 0
[0, 1] if α = 0

(36)

16

Under review as submission to TMLR

and, for z ∈ Rn, define H2,z ≜ Span(ei : zi > 0). Then

∂PC2(z̄) =
[

d
dz

ReLU(z)
]

z=z

= diag(c(z)), (37)

and adopting the convention for choosing an element of ∂PC2(z̄) stated in the main text:

dPC2

dz

∣∣∣∣
z=z̄

= diag(c̃(z)) = PH2,z
. (38)

Proof. First, suppose z ∈ Rn satisfies zi ̸= 0, for all i ∈ [n], i.e. z is a smooth point of PC2 . Note

d[ReLU(zi)]
dz

= 1 if i = j and zi > 0 and d[ReLU(zi)]
dz

= 0 if i ̸= j or zi < 0. (39)

Thus, the Jacobian matrix is diagonal with a 1 in the (i, i)-th position whenever zi > 0 and 0 otherwise,
i.e. dPC2

dz

∣∣∣
z=z̄

= diag(c(z)). Now suppose zi = 0 for one i. For all z ∈ Rn with zi < 0, the Jacobian dPC2
dz

∣∣∣
z

is well-defined and has a 0 in the (i, i)-th position, while for z ∈ Rn with zi > 0, the Jacobian dPC2
dz

∣∣∣
z

is
well-defined and has a 1 in the (i, i)-th position. Taking the convex hull yields the interval [0, 1] in the
(i, i)-th position, as claimed. The case where zi = 0 for multiple i is similar.

Consequently, the product of dPC2
dz

∣∣∣
z=z̄

and any vector v ∈ Rn equals v if and only if v ∈ Span(ei : zi > 0).
This shows the linear operator is idempotent with fixed point set H2,z, i.e. it is the projection operator
PH2,z

.

Theorem 4. Suppose A is full-rank and H1 ≜ Null(A), H2,z ≜ Span (ei : zi > 0). Then for all ẑ ∈ Rn

∂TΘ

∂z

∣∣∣∣
z=z̄

= PH⊥
1

PH⊥
2,z̄

+ (1 − αγ) · PH1PH2,z̄
. (40)

Proof. Differentiating the expression for TΘ in equation 30 with respect to z yields

∂TΘ

∂z

∣∣∣∣
z=ẑ

= I − dPC2

dz

∣∣∣∣
z=ẑ

+ dPC1

dz

∣∣∣∣
z=y(ẑ)

[
(2 − αγ) · dPC2

dz

∣∣∣∣
z=ẑ

− I

]
(41a)

= I − PH2,ẑ
+ PH1

(
(2 − αγ)PH2,ẑ

− I
)

, for all ẑ ∈ Rn, (41b)

where, for notational brevity, we set y(ẑ) ≜ (2 − αγ) · PC2(ẑ) − ẑ − αwΘ(d) in the first line and the second
line follows from Lemmas 8 and 9. Repeatedly using the fact, for any subspace H ⊂ Rn, PH⊥ = I − PH, the
derivative ∂TΘ/∂z can be further rewritten:

∂TΘ

∂z

∣∣∣∣
z=ẑ

= I − PH2,ẑ
+ (2 − αγ) · PH1PH2,ẑ

− PH1 (42a)

= PH⊥
2,ẑ

+ (2 − αγ) · PH1

(
I − PH⊥

2,ẑ

)
− PH1 (42b)

= PH⊥
2,ẑ

+ PH1 + (1 − αγ) · PH1 − PH1PH⊥
2,ẑ

− (1 − αγ) · PH1PH⊥
2,ẑ

− PH1 (42c)

= (I − PH1)PH⊤
2,ẑ

+ (1 − αγ) · PH1(I − PH⊥
2,ẑ

) (42d)

= PH⊥
1

PH⊥
2,ẑ

+ (1 − αγ) · PH1PH2,ẑ
, for all ẑ ∈ Rn, (42e)

completing the proof.

We use the following lemma to prove Theorem 6.
Lemma 10. If the LICQ condition holds at xΘ, then H⊥

1 ∩ H⊥
2,zΘ

= {0}.

17

Under review as submission to TMLR

Proof. We first rewrite H⊥
1 and H⊥

2,zΘ
. The subspace H⊥

2,zΘ
is spanned by all non-positive coordinates of zΘ.

By equation 17, [xΘ]i = max{0, [zΘ]i}, and so i ∈ A(xΘ) if and only if [zΘ]i ≤ 0. It follows that

H⊥
2,zΘ

≜ Span{ei : [zΘ]i ≤ 0} = Span{ei : i ∈ A(xΘ)} = Span{ei1 , . . . , eiℓ
}, (43)

where we enumerate A(xΘ) via A(xΘ) = {i1, . . . , iℓ}. On the other hand, H⊥
1 = Range(A⊤) =

Span(a1, . . . , am) where a⊤
i denotes the i-th row of A.

Let v ∈ H⊥
1 ∩ H⊥

2,zΘ
be given. Since v ∈ H⊥

1 , there are scalars α1, . . . , αℓ such that v = α1ei1 + · · · + αℓeiℓ
.

Similarly, since v ∈ H⊥
2,zΘ

, there are scalars β1, . . . , βm such that v = β1a1 + · · · + βmam. Hence

0 = v − v =
(
α1ei1 + . . . + αℓeiℓ

)
−

(
β1a1 + . . . + βmam

)
. (44)

By the LICQ condition, {ei1 , . . . , eiℓ
} ∪ {a1, . . . , am} is a linearly independent set of vectors; hence α1 =

. . . = αℓ = β1 = . . . = βm = 0 and, thus, v = 0. Since v was arbitrarily chosen in H⊥
1 ∩ H⊥

2,zΘ
, the result

follows.

Theorem 6. If the LICQ condition holds at xΘ, A is full-rank and α ∈ (0, 2/γ), then ∥∂TΘ/∂z∥z=zΘ < 1.

Proof. By Lemma 10, the LICQ condition implies H⊥
1 ∩ H⊥

2,zΘ
= {0}. This implies that either (i) the first

principal angle τ between these two subspaces is nonzero, and so the cosine of this angle is less than unity,
i.e.

1 > cos(τ) ≜ max
u∈H⊥

1 :∥u∥=1
max

v∈H⊥
2,z :∥v∥=1

⟨u, v⟩, (45)

or (ii) (at least) one of H⊥
1 , H⊥

2,zΘ
is the trivial vector space {0}. In either case, let w ∈ Rn be given. By

Theorem 4, in case (ii)[
∂TΘ

∂z
w

]
z=zΘ

= PH⊥
1

PH⊥
2,zΘ

w + (1 − αγ) · PH1PH2,zΘ
w = (1 − αγ) · PH1PH2,zΘ

w (46)

implying that ∥∥∥∥∂TΘ

∂z
w

∥∥∥∥
z=zΘ

= (1 − αγ)
∥∥∥PH1PH2,zΘ

w
∥∥∥ ≤ (1 − αγ)∥w∥, (47)

where the inequality follows as projection operators are firmly nonexpansive. In case (i), write w = w1 + w2,
where w1 ∈ H2,zΘ and w2 ∈ H⊥

2,zΘ
. Appealing to Theorem 4 again[

∂TΘ

∂z
w

]
z=zΘ

= PH⊥
1

PH⊥
2,zΘ

w + (1 − αγ) · PH1PH2,zΘ
w = PH⊥

1
w2 + (1 − αγ) · PH1w1. (48)

Pythagoras’ theorem may be applied to deduce, together with the fact PH⊥
1

w2 and PH1w1 are orthogonal,

∥∥∥∥∂TΘ

∂z
w

∥∥∥∥2

z=zΘ

=
∥∥∥PH⊥

1
w2

∥∥∥2
+ (1 − αγ)2 · ∥PH1w1∥2

. (49)

Since w2 ∈ H⊥
2,zΘ

, the angle condition (45) implies∥∥∥PH⊥
1

w2

∥∥∥2
= ⟨PH⊥

1
w2, PH⊥

1
w2⟩ = ⟨w2, PH⊥

1
PH⊥

1
w2⟩ = ⟨w2, PH⊥

1
w2⟩ ≤ cos(τ) · ∥w2∥2, (50)

where the third equality holds since orthogonal linear projections are symmetric and idempotent. Because
projections are non-expansive and PH2,zΘ

is linear,

∥PH1w1∥2 = ∥PH1w1 − PH10∥2 ≤ ∥w1 − 0∥2 = ∥w1∥2. (51)

18

Under review as submission to TMLR

Combining (49), (50) and (51) reveals∥∥∥∥∂TΘ

∂z
w

∥∥∥∥2

z=zΘ

≤ cos(τ) · ∥w2∥2 + (1 − αγ)2∥w1∥2 (52a)

≤ max{cos(τ), (1 − αγ)2} ·
(
∥w1∥2 + ∥w2∥2)

(52b)

= max{cos(τ), (1 − αγ)2} · ∥w∥2, (52c)

noting the final equality holds since w1 and w2 are orthogonal. Because (52) holds for arbitrarily chosen
w ∈ Rn, ∥∥∥∥∂TΘ

∂z

∥∥∥∥
z=zΘ

≜ sup
{∥∥∥∥∂TΘ

∂z
w

∥∥∥∥
z=zΘ

: ∥w∥ = 1
}

≤
√

max{cos(τ), (1 − αγ)2} < 1, (53)

where the final inequality holds by (45) and the fact α ∈ (0, 2/γ) implies 1 − αγ ∈ (−1, 1), as desired.

Corollary 7. If TΘ is continuously differentiable with respect to Θ at zΘ, the assumptions in Theorem 6
hold and (∂TΘ/∂Θ)⊤(∂TΘ/∂Θ) has condition number sufficiently small, then pΘ(xΘ) is a descent direction
for ℓ with respect to Θ.

Proof. From the proof of Theorem 6 we see that TΘ is contractive with constant Γ =√
max{cos(τ), (1 − αγ)2} and so the main theorem of (Fung et al., 2022), guaranteeing pΘ is a descent

direction, as long as the condition number of (∂TΘ/∂Θ)⊤(∂TΘ/∂Θ) is less than 1/Γ.

Remark 11. Similar guarantees, albeit with less restrictive assumptions on ∂TΘ/∂Θ, can be deduced from
the results of the recent work (Bolte et al., 2024).

B Derivation for Canonical Form of Knapsack Prediction Problem

For completeness, we explain how to transform the k-knapsack prediction problem into the canonical form
equation 8, and how to derive the standardized representation of the constraint polytope C. Recall that the
k-knapsack prediction problem, as originally stated, is

x⋆ = arg max
x∈X

w⊤x where X = {x ∈ {0, 1}ℓ : Sx ≤ c} and S =
[
s1 · · · sℓ

]
∈ Rk×ℓ (54)

We introduce slack variables y1, . . . , yk so that the inequality constraint Sx ≤ c becomes

−Sx + c ≥ 0 =⇒ −Sx + c = y and y ≥ 0

=⇒
[
S Ik

] [
x
y

]
= c

We relax the binary constraint xi ∈ {0, 1} to 0 ≤ xi ≤ 1. We add additional slack variables z1, . . . , zℓ to
account for the upper bound:

1 − xi ≥ 0 =⇒ 1 − xi = zi and zi ≥ 0 =⇒
[
Iℓ×ℓ 0ℓ×k Iℓ×ℓ

] x
y
z

 = 1 (55)

Putting this together, define

A =
[

−S −Ik×k 0k×ℓ

Iℓ×ℓ 0ℓ×k Iℓ×ℓ

]
∈ R(k+ℓ)×(2ℓ+k) and b =

[
−c
1ℓ

]
∈ Rk+ℓ (56)

Finally, redefine x =
[
x y z

]⊤ and w =
[
−w 0k 0ℓ

]
(where we’re using −w to switch the argmax to

an argmin) and obtain:

x⋆ = arg min
x∈Conv(X)

w⊤(d)x + γ∥x∥2
2 where Conv(X) = {x : Ax = b and x ≥ 0} (57)

19

Under review as submission to TMLR

C Experimental Details

C.1 Additional Data Details for Knapsack Problem

As mentioned, we use PyEPO (Tang & Khalil, 2022) to generate the training data. Specifically, d ∈ R5 is
sampled from the multivariate Gaussian distribution with mean 0 and covariance I. Then, B ∈ Rn×5 is
sampled where each Bij = +1 with probability 0.5 and −1 with probability 0.5. The associated cost vector
w(d) is computed as

[w(d)]i =
[

1
3.5deg

(
1√
5

(Bd)i + 3
)deg

+ 1
]

· ϵij

where deg = 4 and ϵij is sampled uniformly from the interval [0.5, 1.5].

C.2 Additional Training Details for Knapsack Problem

For all models we use an initial learning rate of 10−3 and a scheduler that reduces the learning rate whenever
the validation loss plateaus. We also used weight decay with a parameter of 5 × 10−4. All networks were
trained using a AMD Threadripper Pro 3955WX: 16 cores, 3.90 GHz, 64 MB cache, PCIe 4.0 CPU and an
NVIDIA RTX A6000 GPU.

C.3 Additional Model Details for Large-Scale Shortest Path Problem

Our implementation of PertOpt-net used a PyTorch implementation7 of the original TensorFlow code8

associated to the paper Berthet et al. (2020). We experimented with various hyperparameter settings for 5-
by-5 grids and found setting the number of samples equal to 3, the temperature (i.e. ε) to 1 and using Gumbel
noise to work best, so we used these values for all other shortest path experiments. Our implementation of
BB-net uses the blackbox-backprop package9 associated to the paper Pogančić et al. (2019). We found
setting λ = 5 (see Pogančić et al. (2019) for a description of this hyperparameter) to work best for 5-by-5
grids, so we use this value for all other shortest path experiments.

C.4 Additional Training Details for Shortest Path

We use the MSE loss to train DYS-net, PertOpt-net, and CVX-net. We tried using the MSE loss with
BB-net but this did not work well, so we used the Hamming (also known as 0–1) loss, as done in Pogančić
et al. (2019).

To train DYS-net and CVX-net, we use an initial learning rate of 10−2 and use a scheduler that reduces the
learning rate whenever the test loss plateaus—we found this to perform the best for these two models. For
PertOpt-net we found that using a fixed learning rate of 10−2 performed the best. For BB-net, we performed
a logarithmic grid-search on the learning rate between 10−1 to 10−4 and found that 10−3 performed best;
we also attempted adaptive learning rate schemes such as reducing learning rates on plateau but did not
obtain improved performance.

All networks were trained using a AMD Threadripper Pro 3955WX: 16 cores, 3.90 GHz, 64 MB cache, PCIe
4.0 CPU and an NVIDIA RTX A6000 GPU.

D Additional Experimental Results

In Figure 6, we show the test loss and training time per epoch for all three architectures: DYS-net, CVX-net,
and PertOpt-net for 10-by-10, 20-by-20, and 30-by-30 grids. In terms of MSE loss, CVX-net and DYS-net
lead to comparable performance. In the second row of Figure 6, we observe the benefits of combining the
three-operator splitting with JFB (Fung et al., 2022); in particular, DYS-net trains much faster. Figure 7
shows some randomly selected outputs for the three architectures once fully trained.

7See code at github.com/tuero/perturbations-differential-pytorch
8See code at github.com/google-research/google-research/tree/master/perturbations
9See code at https://github.com/martius-lab/blackbox-backprop

20

github.com/tuero/perturbations-differential-pytorch
github.com/google-research/google-research/tree/master/perturbations
https://github.com/martius-lab/blackbox-backprop

Under review as submission to TMLR

10-by-10 20-by-20 30-by-30

Test MSE Loss

0 25 50 75 100
epochs

10 2

10 1

100

101

DYS
CVX
PertOpt
BB

0 25 50 75 100
epochs

10 2

10 1

100

101

102
DYS
CVX
PertOpt
BB

0 25 50 75 100
epochs

10 2

10 1

100

101

102 DYS
CVX
PertOpt
BB

Training Time (in minutes)

0 25 50 75 100
epochs

0

20

40

60

80
DYS
CVX
PertOpt
BB

0 25 50 75 100
epochs

0

100

200

300
DYS
CVX
PertOpt
BB

0 25 50 75 100
epochs

0

200

400

600

800 DYS
CVX
PertOpt
BB

Figure 6: Comparison of of DYS-Net, cvxpylayers (Agrawal et al., 2019a), PertOptNet (Berthet et al.,
2020), and Blackbox Backpropagation-net (BB-Net) (Pogančić et al., 2019) for three different grid sizes:
10 × 10 (first column), 20 × 20 (second column), and 30 × 30 (third column). The first row shows the MSE
loss vs. epochs of the testing dataset. The second row shows the training time vs. epochs.

21

Under review as submission to TMLR

True Path DYS-net CVX-net PertOpt-net
10-by-10

20-by-20

30-by-30

Figure 7: True paths (column 1), paths predicted by DYS-net (column 2), CVX-net (column 3), and
PertOpt-net (column 4). Samples are taken from different grid sizes: 10-by-10 (row 1), 20-by-20 (row
2), and 30-by-30 (row 3).

22

	Introduction
	Preliminaries
	Related Works
	DYS-Net
	Numerical Experiments
	Experiments using PyEPO
	Shortest Path Prediction
	Knapsack Prediction
	Results

	Large-scale shortest path prediction
	Warcraft shortest path prediction

	Conclusions
	Appendix A: Proofs
	Derivation for Canonical Form of Knapsack Prediction Problem
	Experimental Details
	Additional Data Details for Knapsack Problem
	Additional Training Details for Knapsack Problem
	Additional Model Details for Large-Scale Shortest Path Problem
	Additional Training Details for Shortest Path

	Additional Experimental Results

