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ABSTRACT

Antimicrobial peptide discovery is challenged by the astronomical size of pep-
tide space and the relative scarcity of active peptides. Generative models provide
continuous latent “maps” of peptide space, but conventionally ignore decoder-
induced geometry and rely on flat Euclidean metrics, rendering exploration and
optimization distorted and inefficient. Prior manifold-based remedies assume
fixed intrinsic dimensionality, which critically fails in practice for peptide data.
Here, we introduce PepCompass, a geometry-aware framework for peptide ex-
ploration and optimization. At its core, we define a Union of κ-Stable Rie-
mannian Manifolds Mκ, a family of decoder-induced manifolds that captures
local geometry while ensuring computational stability. We propose two local ex-
ploration methods: Second-Order Riemannian Brownian Efficient Sampling,
which provides a convergent second-order approximation to Riemannian Brow-
nian motion, and Mutation Enumeration in Tangent Space, which reinter-
prets tangent directions as discrete amino-acid substitutions. Combining these
yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algo-
rithm for local activity optimization. Finally, we introduce Potential-minimizing
Geodesic Search (PoGS), which interpolates between prototype embeddings
along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides
with favorable activity. In-vitro validation confirms the effectiveness of PepCom-
pass: PoGS yields four novel seeds, and subsequent optimization with LE-BO dis-
covers 25 highly active peptides with broad-spectrum activity, including against
resistant bacterial strains. These results demonstrate that geometry-informed ex-
ploration provides a powerful new paradigm for antimicrobial peptide design.

1 INTRODUCTION

Efficient exploration of peptide space is notoriously difficult. At the global level, there are more than
3.3 × 1032 combinatorially possible amino acid sequences of length at most 25. At the local level,
each peptide of length 25 has nearly 1000 neighbors within an edit radius of one. Moreover, only
a small fraction of amino acid sequences correspond to antimicrobial peptides (AMPs), which have
high activity against bacteria Szymczak & Szczurek (2023); Szymczak et al. (2025). This extreme
combinatorial complexity renders AMP discovery by brute-force exploration intractable. To address
this challenge, we turn to one of the most prolific inventions of humankind: maps.

Since the dawn of civilization, maps have provided a structured way to support both local and global
navigation, driving scientific discovery. In modern machine learning, latent-space generative mod-
els such as VAEs, GANs, WAEs, and normalizing flows (Bond-Taylor et al., 2021) enable building
continuous latent representations—maps—of peptides. Such maps have already facilitated the dis-
covery of promising new AMPs (Szymczak et al., 2023; Oort et al., 2021; Wang et al., 2022; Das
et al., 2020). The standard workflow assumes that once the model is trained, its latent space together
with the decoder properly models a set of valid, synthetizable peptides. The latent space is typically
chosen to be Rd with a flat Euclidean metric, enabling direct application of existing exploration
and optimization algorithms. However, such flat representations suffer from a significant flaw: they
ignore the differential geometry induced by the decoder, leading to distortions in distances.

Typical approaches attempting to circumvent this problem assume the manifold hypothesis (Bengio
et al., 2012) and use the pullback metric (Arvanitidis et al., 2018). However, recent work (Loaiza-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Ganem et al., 2024; Brown et al., 2022; Wang & Wang, 2024) has shown that the manifold hypoth-
esis does not withstand empirical scrutiny for image data, where sets of images are better modeled
as unions or CW-complexes of manifolds with varying low dimensionality (we refer to Appendix A
for Related Work). We show that peptide spaces suffer from a similar issue and introduce decoder-
derived Union of κ-Stable Riemannian Manifolds Mκ, which captures both the complex structure
of peptide space and its local geometry, with computational stability controlled by a parameter κ. In-
tuitively, we cut the globally distorted map into a set of charts that enable efficient and distortion-free
exploration and optimization.

Building upon the union-of-manifolds structure, we introduce PepCompass, a geometry-informed
framework for peptide exploration and optimization at both global and local levels. At the global
level, we propose Potential-minimizing Geodesic Search (PoGS), which models geodesic curves
between known prototype peptides to identify promising seeds for further optimization (Figure 1A).
We represent geodesics as energy-minimizing curves in peptide space and augment them with a
potential function encoding antimicrobial activity. This biases exploration toward regions not only
similar to the starting prototypes but also exhibiting higher activity. In doing so, our method extends
standard local analogue search around a single prototype into a bi-prototype, controllable regime.

For local search on a single manifold from the family Mκ, we designed two geometry-informed ap-
proaches: Second-Order Riemannian Brownian Efficient Sampling (SORBES) and Mutation Enu-
meration in Tangent Space (MUTANG). SORBES is a provably convergent, second-order approxi-
mation of the Riemannian Brownian motion (Schwarz et al., 2022; Herrmann et al., 2023), serving
as a Riemannian analogue of local Gaussian search. MUTANG addresses the discrete nature of
peptide space by reinterpreting the local tangent space not as continuous vectors but as discrete
mutations, directly corresponding to amino-acid substitutions. This reinterpretation provides both
interpretability and efficiency, enabling enumeration of a given peptide’s neighbours. We further
combine SORBES and MUTANG into an iterative Local Enumeration procedure that densely pop-
ulates the neighbourhood of a given peptide with valid, diverse neighbours. Finally, integrating this
enumeration with a Bayesian optimization scheme yields an efficient Local Enumeration Bayesian
Optimization procedure (LE-BO; see Figure 1B,C).

In vitro microbiological assays demonstrated unprecedented, 100% success rate of PepCompass in
AMP optimization. Using PoGS we derived four peptide seeds, all of which showed significant
antimicrobial activity. Further optimization of these seeds with LE-BO yielded 25/25 highly active
peptides with broad-spectrum activity, including activity against multi-resistant bacterial strains.
Code is available at https://anonymous.4open.science/r/pep-compass-2ABF.
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Figure 1: PepCompass overview.

2 METHODS

2.1 BACKGROUND

Let Decθ ∈ C∞ : Z → X be the deterministic decoder mapping latent vectors z ∈ Rd to position-
factorized peptide probabilities Decθ(z) ∈ RL×A (with L the maximum peptide length and A the
size of the amino acid alphabet A extended with a padding token pad, and RL×A - set of matrices
of shape (L,A)). Define

X = Decθ(Z) ⊂ RL×A, p(z) = argmax(Decθ(z), dim = 1) ∈ AL,

2
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where p(z) denotes the decoded peptide sequence. Intuitively, X is a continuous probabilistic ap-
proximation of the peptide space (with Z as its map), from which the concrete peptides are decoded
back using the p operator. For clarity, we drop explicit parameter dependence and simply write Dec

instead of Decθ. We additionally introduce D̂ec : Z → RLA and X̂ = D̂ec(Z), i.e. the flattened
versions of Dec and X .

A common approach is to equip Z with the standard Euclidean inner product ⟨·, ·⟩Rd , and use the
associated Euclidean distance as a base for exploration. However, this ignores the geometry induced
by the decoder, which, under the manifold hypothesis, can be accounted for using the pullback
metric (Bengio et al., 2012; Arvanitidis et al., 2018).

Pullback metric Under the manifold hypothesis, D̂ec is full rank (i.e. rank JD̂ec(z) = d for all
z ∈ Z , where JD̂ec(z) ∈ R(LA)×d is the decoder Jacobian), and (Z, GD̂ec) is a d-dimensional
Riemannian manifold (do Carmo, 1992) where GD̂ec is a natural, decoder-induced pullback metric
on Z given by:

GD̂ec(z) = JD̂ec(z)
⊤JD̂ec(z) ∈ Rd×d, (1)

for z ∈ Z . To simplify notation, let us set GDec = GD̂ec. Now, for a tangent space TzZ at a point z
and tangent vectors u, v ∈ TzZ ,

⟨u, v⟩Dec
z = u⊤GDec(z) v. (2)

Note that D̂ec : (Z, GDec)→ (X̂, ⟨·, ·⟩RLA) is an isometric diffeomorphism.

When the manifold hypothesis fails: union of manifolds Previous work demonstrates that the
manifold hypothesis often fails for complex data such as images (Loaiza-Ganem et al., 2024; Brown
et al., 2022; Wang & Wang, 2024), and the data is better represented as unions of local manifolds
of varying dimension, typically lower than that of the latent space. However, the previous methods
defined the submanifolds based on pre-specified datasets and could not generalize to new data.

2.2 UNION OF κ-STABLE RIEMANNIAN MANIFOLDS

Assuming that the manifold hypothesis is indeed violated and that a given generative model has
learned to faithfully capture the lower-dimensional structure in the data, it should be reflected in the
decoder having rank strictly smaller than the latent dimensionality. We verified this phenomenon for
antimicrobial peptides data in two state-of-the-art latent generative models (Das et al., 2018; Szym-
czak et al., 2023) (see Appendix B). This implies that the GDec is not of full rank, and consequently
the pair (Z, GDec) does not constitute a Riemannian manifold.

To address this, we equip each point z ∈ Z with a local, potentially lower-dimensional manifold,
which we further enrich with a Riemannian structure from the pullback metric. In contrast to pre-
vious methods, we adapt a decoder-dependent approach in the submanifold definition, enabling
generalization to any point encoded in the latent space. Namely, we decompose Z as a union of
locally κ-stable Riemannian submanifolds (κ ≥ 0)

Mκ = {Mκ
z : z ∈ Z}, Mκ

z =
(
Wκ
z , GDec

)
,

where each Wκ
z ∋ z is an open affine submanifold of Z of maximal dimension (denoted as kκz and

refered to as κ−stable dimension), such that the pullback metric GDec restricted to Wκ
z , denoted

GDec|Wκ
z

, has full rank and satisfies the κ-stability condition

inf
v∈TzW

κ
z

⟨v,v⟩Rd=1

⟨v, v⟩Dec
z > κ2.

Intuitively, Wκ
z removes degenerated (non-active) directions of the decoder, ensuring that all eigen-

values of GDec|Wκ
z

are bounded below by κ. This guarantees numerical stability for geometric
computations requiring inversion of GDec. Note, that similarly to the full-rank case, ˆDec|Wκ

z
:

(Wκ
z , GDec)→ (D̂ec(Wκ

z ), ⟨·, ·⟩RLA) is an isometric diffeomorphism.

The explicit SVD-based construction of Wκ
z is deferred to Appendix C. For stability near bound-

aries, we also use contracted domains Wκ
z (α) = {z + α(v − z) : v ∈Wκ

z } and Mκ
z (α) =

(Wκ
z (α), GDec), with α ∈ (0, 1).

3
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2.3 SORBES - SECOND-ORDER RIEMANNIAN BROWNIAN EFFICIENT SAMPLING

Having a stable Riemannian approximation Mκ
z of X in the vicinity of a point z ∈ Z , we now

describe how to explore it efficiently within the local neighbourhood of z. Our goal is to simulate
a Riemannian Brownian motion for a time T starting from z that is a Riemannian equivalent of a
local Gaussian perturbation z + ϵ, ϵ ∼ N (0, T ). To this end, we introduce the SORBES (Second-
Order Riemannian Brownian efficient Sampling) procedure, described in Algorithm 1. SORBES
improves the flat Gaussian noise by exploring only active local subspace Wκ

z , it is isotropic w.r.t. to
the decoder geometry, and respects the local curvature of Mκ

z .

Algorithm 1 SORBES
Require: z ∈ Z , κ ≥ 0, step size ϵ, diffusion time T , α = 0.99

1: Initialize zϵ0 ← z, stopped← False, σ ← 0 (σ tracks diffusion time)
2: Wκ

z , GDec ←Mκ
z

3: for i = 1 to ⌊ Tϵ2 ⌋ do
4: Sample a unit tangent direction v ∈ Sκz = {u ∈ TzMκ

z : ⟨u, u⟩Dec
z = 1}

5: Set v ←
√
kκz v

6: if not stopped then
7: Update (Γ denotes the local Christoffel symbol for Mκ

z )

zϵi = zϵi−1 + ϵv︸︷︷︸
first-order

geodesic approximation

− ϵ2Γ(zϵi−1)[v, v]︸ ︷︷ ︸
second-order

geodesic approximation

,

8: σ ← σ + ϵ2 (diffusion time update)
9: if zϵi /∈Wκ

z (α) then
10: stopped← True
11: end if
12: else
13: zϵi ← zϵi−1 (absorbed state)
14: end if
15: end for
16: return (zϵi )0≤i≤⌊ T

ϵ2
⌋, σ

Before introducing the key theoretical property of this algorithm, let’s recall the crucial notation.
For A ⊂Mκ

z , Ac is the complement of A in Mκ
z . Let dMκ

be the geodesic distance on Mκ
z w.r.t. to

the pullback metric, and dMκ
z
(x,A) = infy∈A dMκ

z
(x, y) for x ∈Mκ

z and A ⊂Mκ
z . Let Ric be the

Ricci curvature. Then the key theoretical property of the Algorithm 1 is summarized by:
Theorem 1. Let (Zϵi )i≥0 be the sequence produced by Algorithm 1, for Mκ

z (α) with α ∈ (0, 1) and
diffusion horizon T > 0, and define its continuous-time interpolation

Zϵ(t) := Zϵ⌊ϵ−2t⌋, t ≥ 0.

Let Rzκ = dMκ
z
(z, (Wκ

z )
c), and suppose L ≥ 1 satisfies

sup
x∈Mκ

z (α)

RicMκ
z
(x) ≥ −L2.

Then for T <
(Rκ

z )
2

4kκzL
, as ϵ → 0, the process Zϵ converges in distribution to Riemannian Brownian

motion stopped at the boundary of Mκ
z (α), with respect to the Skorokhod topology, on a set CTκ,z ⊂

Ω such that
P
(
CTκ,z

)
≥ 1− exp

(
− (Rκ

z )
2

32T

)
.

For the proof, see Appendix D. Intuitively, in the small–step limit, our algorithm converges to Rie-
mannian Brownian motion on Mκ

z (α), stopped at the boundary, with the deviation probability de-
caying exponentially in the inverse time horizon. Theorem 1 extends the main convergence result
of Schwarz et al. (2022) to possibly non-compact manifolds. Importantly, Schwarz et al. (2022)

4
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showed that achieving this convergence requires a second-order correction term (capturing the ef-
fect of Christoffel symbols), rather than the commonly used naive first-order update. This motivates
our use of the second-order scheme in Algorithm 1. In Appendix E (Algorithm 4), we describe
SORBES-SE (Stable/Efficient), an implementation of SORBES that approximates the second-
order correction using finite differences. It employs an adaptive step size ϵ that adjusts to the local
curvature of the space, while still preserving the convergence guarantees.

2.4 MUTANG - MUTATION ENUMERATION IN TANGENT SPACE

To further exploit the manifold structure ofMκ
z , modelling the neighborhood of a point z ∈ Z , let us

observe that the ambient tangent space TD̂ec(z)D̂ec(Wκ
z ) identifies directions in peptide space along

which the decoder output is the most sensitive. We interpret these directions as defining a mutation
space for the decoded peptide p(z), providing candidate amino-acid substitutions.

Formally, let Uκ(z) (see Equation 8) denote an orthonormal basis of TD̂ec(z)D̂ec(Wκ
z ) in the am-

bient space (Figure 2A–B), and let uj ∈ RLA be the j-th basis vector. We reshape uj into matrix
form

∆Dec(j)(z) = reshape(uj , (L,A)) ∈ RL×A. (3)

Intuitively, each entry ∆Dec(j)(z)ℓ,a measures the first-order sensitivity of the probability assigned
to amino acid Aa at position ℓ, thereby suggesting a possible substitution. To extract candidate
mutations, we introduce a sensitivity threshold θmut > 0 and declare that∣∣∆Dec(j)(z)ℓ,a

∣∣ ≥ θmut ⇒ add mutation p(z)ℓ → a, (4)

where p(z)ℓ is the current residue at position ℓ. Applying this rule across all j = 1, . . . , kκz yields a
mutation pool

P ⊆ {1, . . . , L} × A.

To enumerate candidate peptides, for each sequence position ℓ we define the set of admissible
residues (Figure 2C) as

Sℓ = {Aa | (ℓ, a) ∈ P } ∪ {p(z)ℓ},
i.e., all suggested mutations together with the identity residue. The complete candidate set is then
obtained as the Cartesian product (Figure 2D):

C(p(z)) =

L∏
ℓ=1

Sℓ = { y ∈ ΣL : yℓ ∈ Sℓ ∀ℓ }. (5)

The details of MUTANG are provided in Appendix F (Algorithm 5).

C
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Figure 2: Tangent space as mutation space and local enumeration. A) Around an example
peptide GTP we consider two orthogonal peptide-space tangent directions ∆Dec(j) obtained from
the SVD of the decoder Jacobian at the peptide code. Each direction suggests a specific substitution:
T1→K and P2→C. B) Each ∆Dec(j) is reshaped into an L×A map (rows: amino acids; columns:
positions). C) Thresholded entries define per-position sets of admissible residues (identity always
included). D) The candidate set is the Cartesian product C(GTP) =

∏
ℓ Sℓ.
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2.5 LOCAL ENUMERATION

We aim to densely populate the neighbourhood of a single prototype peptide with valid, diverse
candidates. Starting from a seed peptide p with latent code z0, we launch multiple Riemannian ran-
dom walk trajectories using the SORBES algorithm (Sec. 2.3). At the start and after each step, the
current latent state is decoded into a peptide and augmented with additional variants generated by
MUTANG (Sec. 2.4). Additionally, to account for local dimension variability, we re-estimate the
κ-stable submanifold Mκ

z at each step of the random walk. The union of all decoded walk steps and
tangent-space mutations yields a compact, high-quality local candidate set around p. LOCALENU-
MERATION is presented in Algorithm 2.

Algorithm 2 LOCALENUMERATION

Require: seed peptide p, κSORBES, κMUTANG ≥ 0, number of trajectories M , walk time budget
Twalk, nominal step size ϵ, mutation threshold θmut

1: Encode p to latent z0; C ← {p}
2: for m = 1 to M do
3: z ← z0; t← 0
4: C ← C ∪ MUTANG(z, κMUTANG, θmut)
5: while t < Twalk do
6: (( , z), σ)← SORBES-SE(z, κSORBES, ϵ,STEPmax=1) (single step of SORBES-SE)
7: t← t+ σ2; C ← C ∪ {p(z)}
8: C ← C ∪ MUTANG(z, κMUTANG, θmut)
9: end while

10: end for
11: return C (local candidate set)

2.6 LE-BO - LOCAL ENUMERATION BAYESIAN OPTIMIZATION

Finally, we integrate our LOCALENUMERATION algorithm into a Bayesian optimization (Garnett,
2023) framework for peptide design, which we term Local Enumeration Bayesian Optimization
(LE-BO). Instead of performing costly optimization of the acquisition function in the latent space,
which typically relies on Euclidean-distance kernels and ignores both the latent geometry and the
discrete nature of peptides, we use surrogate Gaussian process models (Seeger, 2004), defined di-
rectly in the peptide space. The acquisition function is optimized by locally enumerating peptides
in the vicinity of the most promising candidates and then selecting the peptide that maximizes the
acquisition value. To further encourage exploration and increase the diversity of discovered can-
didates, we employ the ROBOT scheme (Maus et al., 2023), which promotes searching across a
broader set of promising regions. Details of LE-BO are presented in Algorithm 3.

2.7 POGS - POTENTIAL-MINIMIZING GEODESIC SEARCH

Given two prototype peptides with latent vectors za and zb, we aim to generate seeds, i.e., analogues
that are jointly similar to both vectors and have high predicted activity. To this end, we construct
a discrete geodesic-like curve connecting za and zb, interpreted physically as a system with kinetic
energy (geometric term) and an added potential energy (property term). This provides a natural
tradeoff between similarity to both seeds and the desired molecular property.

Because the decoder Jacobian may have varying rank, we avoid intrinsic pullback computations
and work in the ambient peptide-probability space RLA. For a sequence of latent waypoints Z =

{z0=za, z1, . . . , zN=zb}, we define their decoded logits Xk = log(D̂ec(zk)), and approximate
curve length using chord distances ∥Xk+1 − Xk∥2. This extrinsic metric serves as a first-order
surrogate for geodesic energy, bypassing costly Christoffel evaluations and remaining stable under
rank variability.

We define the total energy of a discrete path Z as

Eλ,µ(Z) =

N−1∑
k=0

∥Xk+1 −Xk∥22︸ ︷︷ ︸
kinetic term: geometric similarity

+ λ

N∑
k=0

Φ(Xk)︸ ︷︷ ︸
potential term: property bias

+ µ

N−1∑
k=0

∥zk+1 − zk∥22︸ ︷︷ ︸
latent regularizer

, (6)

6
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Algorithm 3 LE-BO
Require: ORACLE function to be optimized; seed pseed; maximum budget Bmax; trust region dis-

tance dtrust; number of ROBOT evaluations per iteration kROBOT; diversity threshold dROBOT; a
surrogate Gaussian Process GP model with GP. acquistion function.

1: pcurrent := pbest := pseed, D := {pseed}, E = {(pseed,ORACLE(pseed)}
2: for iter := 1 to ⌊Bmax/kROBOT⌋ do
3: D := D ∪ LOCALENUMERATION(pcurrent) Explore the neighborhood of pcurrent
4: GP := GP.fit(E) Fit the surrogate GP model
5: Dtrust := {p ∈ D | Levenshtein(p, pbest) ≤ dtrust} Define the trust region
6: for i := 1 to kROBOT do
7: piROBOT := argmaxp∈Dtrust

GP. acquistion(p)

8: E := E ∪ {(piROBOT,ORACLE(pROBOT))}
9: Dtrust := Dtrust \ {p ∈ D | Levenshtein(p, piROBOT) ≤ dROBOT} ROBOT diversity filtering

10: end for
11: pcurrent := argmin1≤i≤kROBOT ORACLE(piROBOT)
12: if ORACLE(pcurrent) ≥ ORACLE(pbest) then
13: pbest := pcurrent
14: end if
15: end for
16: return pbest

where Φ is the property prediction (e.g. negative log MIC), λ ≥ 0 balances geometry vs. property,
and µ ≥ 0 regularizes latent jumps to discourage large chords in Z . The first term corresponds to
kinetic energy (favoring smooth, short ambient curves), the second to a potential energy that biases
toward low Φ, and the third acts as a stabilizer ensuring robustness of the chord points in the latent
space.

To perform optimization and search, we initialize Z by straight-line interpolation in latent space,
and later optimize Eλ,µ(Z) w.r.t. Z using ADAM solver. During optimization, only the interior
points z1, . . . , zN−1 are updated. Given an optimized path Z, we decode each zi to a peptide pi
and remove consecutive duplicates, obtaining a peptide path (p′0, . . . , p

′
N ′) of length N ′. We call a

peptide p′k a seed if its potential satisfies Φ(p′k) ≤ θpot for a threshold θpot. A peptide p′k is called a
well if it is a seed and also a local minimum of the potential Φ along the peptide path. The detailed
algorithm is presented in Appendix G (Algoritm 6).

3 RESULTS

3.1 POGS EVALUATION

To evaluate the POGS procedure, we applied it for the HydrAMP model (Szymczak et al., 2023),
using average standardized MIC predictions against 3 Escherichia coli strains (E. coli ATCC11775,
AIG221 and AIG222) of a APEX-derived transformer prediction (Wan et al., 2024) (Appendix H)
as the potential function. 300 prototype pairs (za, zb) were drawn from the Veltri dataset (Veltri
et al., 2018), restricted to active peptides (average MIC ≤ 32µg/ml against 3 E. coli strains) with
edit distance between prototypes ≥ 10.

For each pair za and zb, we compared three paths between za and zb: straight Euclidean interpola-
tion, PoGS without potential, and full PoGS ; Sec. 2.7), measuring chord latent and ambient lengths,
decoded peptide path lengths, and property-based counts of seeds and wells. PoGS hyperparametrs
and metrics are described in Appendix G. PoGS achieved shorter ambient paths, and substantially
more seeds and wells (Table 1), showing that property-aware potentials enrich trajectories for active
candidates.

3.2 LE-BO EVALUATION

We next evaluated our LE-BO algorithm on a black-box peptide optimization task with a budget
of 1400 evaluations. Optimization was initialized from four seed peptides derived using PoGS

7
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Table 1: PoGS results. Comparison of straight interpolation, geodesic (no potential), and property-
extended geodesic. Reported are latent length, ambient length, peptide path per length, and counts
of seeds and wells.

Method Latent length Ambient length Peptide path length Potential Seeds Wells
Straight interpolation 6.43 ± 0.13 1601.56 ± 57.04 71.25 ± 6.12 -501.00 ± 23.92 11.70 ± 5.54 2.50 ± 1.90
POGS w.o. potential (λ = 0) 7.98 ± 0.18 1240.03 ± 40.72 66.68 ± 4.23 -603.34 ± 15.12 18.90 ± 8.40 6.40 ± 3.20
POGS (λ = 0.01) 9.02 ± 0.09 1432.55 ± 19.98 77.12 ± 6.12 -785.45 ± 34.12 22.70 ± 10.49 12.60 ± 4.45

for λ = 0.01 and µ = 0.1 (Sec. 2.7): KY14, KF16, KK16, FL14, as well as two previously
described AMPs (mammuthusin-3, hydrodamin-2) (Wan et al., 2024). The optimization procedure
was repeated 10 times, and for each run the best value achieved across all optimization steps was
recorded and reported in Table 3.3. LE-BO hyperparameters are described in Appendix I.

We compared LE-BO against a diverse set of state-of-the-art methods, including generative models:
HydrAMP (Szymczak et al., 2023) with different creativity hyperparameter τ and PepCVAE (Das
et al., 2018); the diffusion-based model LaMBO-2 (Gruver et al., 2023); evolutionary strategies: La-
tent CMA-ES and Relaxed CMA-ES (Hansen, 2016), where the former operates in the HydrAMP
latent space and the latter optimizes directly on a continuous relaxation of one-hot sequence en-
codings, AdaLead (Sinai et al., 2020), PEX (Ren et al., 2022); GFlowNet-based approaches: GFN-
AL (Jain et al., 2022) and GFN-AL-δCS (Kim et al., 2025); the reinforcement learning method
DyNA-PPO (Angermueller et al., 2020); probabilistic methods: CbAS (Brookes et al., 2019) and
Evolutionary BO (Sinai et al., 2020); the insertion-based Joker method (Porto et al., 2018); and
greedy Random Mutation (González-Duque et al., 2024). Comparison to competitor latent BO
methods SAASBO (Eriksson & Jankowiak, 2021), Hvarfner’s Vanilla BO (Hvarfner et al., 2024),
and LineBO (Kirschner et al., 2019) was not feasible due to their relative computational inefficiency:
while LE-BO finalized within 2 hours, for all those methods, a single run of the same number of
1400 steps within HydrAMP latent space did not finish within a week.

Figure 3: Antimicrobial peptide success rates across
MIC thresholds. Success rate is defined as the frac-
tion of generated peptides with MIC below the speci-
fied threshold against at least one tested strain. Results
are based on experimental validation against 19 bacte-
rial strains, including 8 MDR isolates.

Additionally, we conducted an ablation
study on LE-BO variants to isolate the
effects of random walks and mutation
enumeration. These variants modify the
ENUMERATELOCAL sub-procedure in Al-
gorithm 2. The Euclidean walk vari-
ant replaces SORBES with a naive Eu-
clidean random walk in the latent space.
The mutation-disabled variant omits MU-
TANG. Finally, the walk-disabled variant
uses only a single MUTANG without ran-
dom walks.

As the optimized black-box function, we
used the APEX MIC regressor (Wan et al.,
2024), with the objective of minimization.
We minimize the average log2 MIC across
three E. coli strains, reporting the mean
over the best results from 10 repeated op-
timization runs (Table 3.3).

LE-BO achieved the best performance on
five out of six prototypes, outperforming all baselines except for FL14, where it ranked second.
The Ablated LE-BO variant with Euclidean walk and enabled mutations achieved the second-best
performance on four out of six prototypes, underscoring the importance of mutation enumeration
in the optimization process. These ablations further confirmed that both Riemannian random walks
and mutations are essential for consistently achieving low MIC values.

3.3 WET-LAB VALIDATION

To validate the computational predictions from PoGS and LE-BO, we conducted comprehensive
in vitro antimicrobial testing of the generated peptides. A total of 29 novel peptides were experi-
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Table 2: Minimal log2 MIC values achieved by each optimization method. Reported values are the
mean and standard deviation over 10 runs. The top row shows the predicted log2 MIC of seeds
before optimization. The first block reports baseline results, the second block shows ablations, and
the last row presents our method. Bold: best overall value for a prototype. Underline: second-best.

Method KY14 KF16 KK16 FL14 mammuthusin-3 hydrodamin-2

log2 MIC value (seed) 2.88 3.39 2.71 4.00 4.30 6.96

GFN-AL 2.73 ± 0.27 3.20 ± 0.19 2.63 ± 0.17 3.73 ± 0.47 4.30 ± 0.00 3.85 ± 0.76
GFN-AL-δCS 1.91 ± 0.19 1.74 ± 0.20 1.79 ± 0.08 2.06 ± 0.42 3.02 ± 0.19 1.77 ± 0.41
PEX 1.39 ± 0.07 1.48 ± 0.09 1.54 ± 0.14 1.27 ± 0.27 2.65 ± 0.09 1.14 ± 0.11
Joker 4.66 ± 2.04 3.98 ± 1.52 3.79 ± 1.61 4.22 ± 1.08 6.49 ± 1.75 6.28 ± 0.33
Random Mutation 1.23 ± 0.26 1.17 ± 0.13 0.97 ± 0.40 1.02 ± 0.59 2.12 ± 0.80 0.69 ± 0.19
LaMBO-2 1.88 ± 0.25 2.11 ± 0.20 1.72 ± 0.18 1.76 ± 0.32 2.75 ± 0.15 2.17 ± 0.35
Relaxed CMA-ES 1.92 ± 0.13 1.83 ± 0.28 1.87 ± 0.30 1.93 ± 0.40 2.86 ± 0.29 1.66 ± 0.34
Latent CMA-ES 1.81 ± 0.33 2.07 ± 0.56 1.72 ± 0.29 1.72 ± 0.20 2.17 ± 0.60 1.87 ± 0.44
CbAS 2.88 ± 0.00 3.39 ± 0.00 2.71 ± 0.00 4.00 ± 0.00 4.30 ± 0.00 5.50 ± 0.93
DyNAPPO 1.45 ± 0.36 1.31 ± 0.22 1.34 ± 0.20 0.73 ± 0.53 2.42 ± 0.54 0.82 ± 0.39
Evolutionary BO 1.65 ± 0.23 1.45 ± 0.42 1.50 ± 0.12 1.70 ± 0.19 2.68 ± 0.12 1.28 ± 0.33
AdaLead 0.87 ± 0.49 1.01 ± 0.28 0.93 ± 0.24 0.51 ± 0.38 2.30 ± 0.28 0.66 ± 0.21
PepCVAE 3.66 ± 0.00 2.87 ± 0.01 3.14 ± 0.11 2.12 ± 0.00 4.30 ± 0.00 6.74 ± 0.06
HydrAMP τ = 5.0 2.35 ± 0.08 2.03 ± 0.12 1.88 ± 0.10 2.19 ± 0.12 3.19 ± 0.27 2.39 ± 0.38
HydrAMP τ = 2.0 2.60 ± 0.03 2.27 ± 0.02 2.11 ± 0.11 2.81 ± 0.30 3.99 ± 0.01 5.02 ± 0.28
HydrAMP τ = 1.0 2.86 ± 0.01 2.27 ± 0.00 2.35 ± 0.00 3.72 ± 0.35 4.27 ± 0.10 6.09 ± 0.01

Walk Mutation

Ablated LE-BO

Euclidean – 1.37 ± 0.27 1.33 ± 0.23 1.24 ± 0.18 1.29 ± 0.17 0.91 ± 0.37 1.16 ± 0.24
SORBES-SE – 1.37 ± 0.22 1.42 ± 0.22 1.12 ± 0.35 1.18 ± 0.20 1.07 ± 0.50 1.12 ± 0.13
– ✓ 1.71 ± 0.20 1.46 ± 0.40 1.82 ± 0.13 1.24 ± 0.13 1.90 ± 0.42 1.12 ± 0.20
Euclidean ✓ 0.65 ± 0.18 0.71 ± 0.18 0.83 ± 0.32 0.87 ± 0.22 0.78 ± 0.45 0.80 ± 0.18

LE-BO SORBES-SE ✓ 0.50 ± 0.24 0.60 ± 0.29 0.50 ± 0.14 0.60 ± 0.22 0.50 ± 0.38 0.58 ± 0.34

mentally evaluated: 4 seed peptides discovered through PoGS bi-prototype geodesics with property-
aware potentials, and 25 analogs derived from these 4 seeds through LE-BO optimization for E. coli
activity. These peptides were tested against a panel of 19 bacterial strains, including 8 multidrug-
resistant (MDR) isolates (Appendix J), to assess both broad-spectrum activity and efficacy against
clinically relevant resistant pathogens. We compared the success rate of PepCompass to previ-
ous methods that were also validated experimentally (HydrAMP (Szymczak et al., 2023), AMP-
Diffusion (Torres et al., 2025), CLaSS (Das et al., 2020), Joker (Porto et al., 2018)). To this end, for
each activity threshold, we computed the fraction of tested peptides that were active against at least
one bacterial strain with this activity thershold.

As demonstrated in Figure 3, with unprecedented 100% success rate for the standard activity thresh-
old of 32µg/ml and 82% rate at much more demanding threshold of 4µg/ml, PepCompass achieved
superior performance across various MIC thresholds compared to previous methods, maintaining
high success rates even when evaluated specifically against MDR strains. The experimental results
confirmed the expected activity increase from prototypes to seeds to analogs for Gram-negative bac-
teria, directly validating our optimization strategy that targeted E. coli activity. Indeed, while the
generated peptides showed some activity against Gram-positive bacteria (Figure 8), the clear en-
hancement from optimization was primarily observed against Gram-negative pathogens (Figure 9).

CONCLUSIONS

By leveraging Riemannian latent geometry, interpretable tangent-space mutations, and potential-
augmented geodesics, PepCompass enables efficient navigation of and optimization within peptide
space across global and local scales. One of possible limitation of our approach is the reliance on the
Eucleadian-distance based metric on decoder outputs in the ambient space. However, any other met-
rics that would better capture the ambient manifold could easily be incorporated. Already now, our
computational experiments demonstrate superior performance over state-of-the-art baselines, and
wet-lab validation confirms unprecedented success rates, with all tested peptides showing activity
in vitro, including activity against multidrug-resistant pathogens. These results establish geometry-
aware exploration as a powerful new paradigm for controlled generative design in vast biological
spaces.
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REPRODUCIBILITY STATEMENT

All proofs, together with their explanations and underlying assumptions, are provided in Appen-
dices B, C and D. All implementation details and hyperparameters used in the experiments are listed
in Appendices E, F, G, H and I. Additionally, we release the source code and experimental con-
figurations necessary to reproduce the key results. Full details of wet-lab validation procedure are
described in Appendix J.

ETHICS STATEMENT

This work includes methods generally applicable to peptide design. An example of potential mali-
cious use of PepCompass would include optimization of peptide toxicity. However, the intention of
this paper is to instead provide tools facilitating the design of therapeutic peptides.

LLM USAGE

Large Language Models (LLMs) were used in this work to improve the clarity and structure of the
text. Their use was limited to rephrasing and stylistic refinement. In addition, LLMs were employed
to support the search of related work, helping to verify the accuracy of claims about prior research.
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APPENDIX

A RELATED WORK

Riemannian latent geometry. Deep generative models can be endowed with Riemannian struc-
ture (do Carmo, 1992) by pulling back the ambient metric through the decoder Jacobian (Arvanitidis
et al., 2018; 2020; Shao et al., 2018). This allows distances and geodesics to reflect data geometry
rather than Euclidean latent coordinates. However, most approaches assume a single smooth man-
ifold of fixed dimension. Evidence from both theory and experiments shows that data often lie on
unions of manifolds with varying intrinsic dimension or CW-complex structures (Lou, 2023; Brown
et al., 2022; Wang & Wang, 2024). In practice, existing methods either restrict the latent to very
low dimensions (≤ 8) or inflate the metric with variance terms to ensure full rank (Arvanitidis et al.,
2020; Detlefsen et al., 2022), but these ignore extrinsic geometry. Our model instead decomposes
the latent into Riemannian submanifolds of varying dimensions, enabling principled geometry across
heterogeneous regions.

Brownian motion and random walks. Latent Brownian motion has been used as a prior for VAEs
(Kalatzis et al., 2020) and for Riemannian score-based modeling (De Bortoli et al., 2022). But these
approaches rely on first-order updates. Convergence results for geodesic random walks show that
correct Riemannian and sub-Riemannian Brownian motion requires second-order approximations
(Schwarz et al., 2022; Herrmann et al., 2023). Our method explicitly incorporates this requirement,
yielding diffusion-consistent walks where previous methods diverge.

Tangent spaces and interpretability. Tangent-space analysis has mostly been applied in vision,
where interpretable latent directions are discovered in GANs or diffusion models via Jacobian or
eigen decompositions (Shen et al., 2020; Park et al., 2021; Wang et al., 2024; Alemi et al., 2023).
Frames induced by augmentations provide another lens on local tangent geometry (Schneider et al.,
2022). We are the first to provide an interpretable tangent space in peptide sequence models, where
tangent vectors correspond directly to biologically meaningful mutations.

Geodesics and potentials. Geodesics are widely used for interpolation and counterfactual reason-
ing in latent space (Pegios et al., 2024; Blondel et al., 2024). Yet these are typically free geodesics.
We extend the concept with potentials, leveraging the Jacobi metric (Gibbons, 2015) so that peptide
traversals account for both geometry and biochemical preferences.

Applications in molecules and proteins. Geometry-aware latent models have been used for
chemical-space exploration (Zhong et al., 2022; Winter et al., 2022), molecule optimization (Feng
et al., 2021), and protein sequence modeling (Cao et al., 2022; Detlefsen et al., 2022). Our ap-
proach complements these by combining: (i) varying-dimension latent decomposition, (ii) second-
order consistent Brownian walks, (iii) interpretable tangent spaces via mutations, and (iv) potential-
augmented geodesics tailored to peptide design.

B κ-STABLE DIMENSION OF THE PEPCVAE (DAS ET AL., 2018) AND
HYDRAMP SZYMCZAK ET AL. (2023) MODELS

To quantify how the κ-stable dimension varies across the latent space, we sampled 1,000 points
from the HydrAMP (Szymczak et al., 2023) training set and computed their κ-stable dimensions
under both the PepCVAE (Das et al., 2018) and HydrAMP (Szymczak et al., 2023) models. We
set κ = 10−8, corresponding to the precision of the float32 format commonly used in neural
network computations. This choice ensures that no eigenvalue of the inverse metric tensor exceeds
108, thereby avoiding numerical instabilities.
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Figure 4: Stable rank and peptide statistics. A–B) Distributions of the κ-stable dimension (κ =
10−8) for HydrAMP (A) and PepCVAE (B) across sampled peptides. C–D) Scatter plots of peptide
length versus κ-stable dimension for HydrAMP (C) and PepCVAE (D), revealing a clear positive
correlation: longer peptides tend to yield higher stable dimensions.

As shown in Figure 4A, the κ-stable dimension was always strictly below the latent dimensionality
(64) of both models. This indicates that the effective local dimensionalities of the peptide spaces
are substantially smaller than the nominal latent dimension. Furthermore, when comparing peptide
length (Figure 4B) to κ-stable dimension (Figure 4C), we observe a clear positive correlation: longer
peptides systematically yield higher κ-stable dimensions. Intuitively, this suggests that longer se-
quences admit more locally meaningful perturbations, which naturally translate into a richer set of
candidate substitutions. This observation further justifies our MUTANG strategy (§2.4), as it allo-
cates a larger and more diverse mutation pool precisely where biological sequence length provides
greater combinatorial flexibility.

C CONSTRUCTION OF κ-STABLE MANIFOLDS

In this section we will introduce a construction of κ-stable Riemannian submanifolds, namely

Mκ = {Mκ
z : z ∈ Z}, Mκ

z =
(
Wκ
z , GDec

)
,

where each Wκ
z ∋ z is an open affine submanifold of maximal dimension (denoted kκz ) through z,

such that the pullback metric GDec restricted to Wκ
z , denoted GDec|Wκ

z
, has full rank and satisfies

the κ-stability condition
inf

v∈TzW
κ
z

⟨v,v⟩Rd=1

⟨v, v⟩Dec
z > κ2.

For this, we will use the truncated-SVD of a flattened decoder Jacobian JD̂ec. Let

JD̂ec(z) = U(z) Σ(z)V (z)⊤

be the thin SVD of the decoder Jacobian, with singular values σ0(z) ≥ σ1(z) ≥ · · · ≥ 0, and
Σ(z) = diag ((σ0, σ1, . . . , σd−1)). Now let us note that:

GDec(z) = JD̂ec(z)
⊤JD̂ec(z) = V (z)Σ2(z)V (z)⊤, (7)

and define the κ-stable dimension:

kκz = #{ i : σi(z)2 > κ }.
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Truncating SVD-decomposition to first kκz singular values gives

Uκ(z) ∈ R(LA)×kκz , Σκz ∈ Rk
κ
z×k

κ
z , V κ(z) ∈ Rd×k

κ
z , (8)

with truncated Jacobian:
Jκ
D̂ec

= U(z)κΣ(z)κV (z)κ ∈ RLA×d.

We then define the affine subspace (together with its parametrization)

Vκz = {ϕκz (x) : x ∈ Rk
κ
z }, ϕκz (x) = z + V κ(z)x.

Restricting the decoder to Vκz gives Decκz = D̂ec ◦ϕκz , with Jacobian
JDecκz (0) = Uκ(z)Σκ(z), (9)

which has full column rank kκz . By the inverse function theorem, there exists a neighborhood Ŵκ
z =

B(0, rκz ) such that Decκz (Ŵ
κ
z ) is a smooth kκz -dimensional manifold. Its pullback metric is

GDecκz
(0) =

(
Σκ(z)

)2
, (10)

with eigenvalues {σi(z)2 : σi(z)
2 > κ}, all ≥ κ.

Finally, set Wκ
z = ϕκz (Ŵ

κ
z ). Then

Mκ
z = (Wκ

z , GDec),

and (ϕκz )
−1 is a diffeomorphic isometry between (Wκ

z , GDec) and (Ŵκ
z , GDecκz

). From this and
Eq. 10 it follows that Mz

κ satisfies the κ-stability condition.

The maximality of kκz follows from the fact that if there existed an affine subspace W̄ z
κ with

dim(W̄ z
κ ) > kκz such that GDec|W̄κ

z
has full rank and satisfies the κ-stability condition, then we

could define
W̄κ
z ∩ (Wκ

z )
⊥ =

{
w ∈ W̄ z

κ : ∀v ∈Wκ
z , ⟨v, w⟩Euc = 0

}
⊂ W̄κ

z ,

as the subspace of W̄κ
z orthogonal to Wκ

z . Since dim(W̄ z
κ ) > dim(W z

κ ), it follows that
dim

(
W̄κ
z ∩ (Wκ

z )
⊥) > 0. By construction

W̄κ
z ∩ (Wκ

z )
⊥ ⊂ span{V (z):,kκz , . . . , V (z):,d}.

what implies that for all v ∈ W̄κ
z ∩ (Wκ

z )
⊥ it holds that

v = akκz V (z):,kκz + · · ·+ ad−1V (z):,d−1,

for some akκz , . . . , ad−1 ∈ R. Now take v ∈ W̄κ
z ∩ (Wκ

z )
⊥ such that ⟨v, v⟩Euc = 1. Equation 7 then

implies
⟨v, v⟩Dec

z = a2kκz σ
2
kκz
∥V (z):,kκz ∥

2 + · · ·+ a2d−1σ
2
d−1∥V (z):,d∥2 (11)

≤ κ
(
a2kκz ∥V (z):,kκz ∥

2 + · · ·+ a2d−1∥V (z):,d−1∥2
)

(12)

= κ, (13)

which contradicts the assumption that V̄ κz satisfies the κ-stability condition.

Note. This construction cannot be replaced by a direct Frobenius theorem argument, since kκz = ℓ
at a point does not imply that kκ is constant in a neighborhood (see Appendix C.1).

C.1 ON THE LOCAL INSTABILITY OF κ-STABLE DIMENSION

Recall that kκz = #{ i : σi(z) >
√
κ } counts the number of singular values of JDec(z) exceeding

the threshold
√
κ. While kκz is well defined at every point z, it need not be locally constant. In

particular, singular values of JDec(z) depend continuously on z, but they can cross the threshold
√
κ

arbitrarily close to a given point. Hence, even if kκz = ℓ at some z, there may exist nearby points z′
with kκz′ > ℓ (see Figure 5).

This observation prevents a direct application of the Frobenius or constant rank theorem, which
require a rank function that is constant in a neighborhood. Our construction in Sec. 2.1 circumvents
this issue by working with an open set Wκ

z around z on which the rank remains constant, thereby
ensuring that both Mκ

z and Dec(Wκ
z ) are smooth kκz -dimensional submanifolds.
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Figure 5: Example of a local non-stability of a κ-stable dimension. A function f(x) = x3 + κx
has a stable rank kκ equal to 1 everywhere except of 0. So in every neighbourhood of 0, a stable
rank is different than 0, thus preventing the application of a Frobenious theorem.

D PROOF OF THEOREM 1

In this section we prove the main theorem of the paper. As preparation, we first recall the definition
of Riemannian Brownian motion, starting with the compact case.

Riemannian Brownian Motion (compact case). Let (M, g) be a smooth, compact, connected,
d-dimensional Riemannian manifold with Riemannian metric g. A Riemannian Brownian motion
on M is a continuous stochastic process

B = {Bt}t≥0

defined on a filtered probability space (Ω,F , {Ft}t≥0,P), satisfying:

1. B0 = x ∈M ′ almost surely, for some fixed starting point x ∈M .
2. The sample paths t 7→ Bt are almost surely continuous and adapted to the filtration {Ft}.
3. For every smooth function f ∈ C∞(M), the process

f(Bt)− f(B0)− 1
2

∫ t

0

(∆gf)(Bs) ds

is a real-valued local martingale, where ∆g denotes the Laplace–Beltrami operator associ-
ated with g.

4. The generator of Bt is 1
2∆g , i.e.

lim
t→0

E[f(Bt)]− f(x)
t

= 1
2 (∆gf)(x), ∀f ∈ C∞(M).

Extension to the non-compact case: smooth spherical-cap compactification. Our manifolds
of interest, Mκ

z (α), α ∈ (0, 1), z ∈ Z , are open subsets of Mκ
z and therefore non-compact.

To define Brownian motion in this setting, one needs to control the behaviour of paths near the
boundary. Classical approaches include: (i) compactification (Wang, 2010), (ii) stopping the process
at the boundary (Hsu, 2002b), or (iii) reflecting it (Du & Hsu, 2021). In our work we adopt a
compactification strategy via a smooth spherical cap (see Figure 6), followed by stopping on the
boundary of a natural embedding of Mκ

z (α).

Concretely, let kκz be the κ-stable dimension and consider the unit sphere

S
kκz
1 ⊂ Rk

κ
z+1.

Take an atlas of this sphere consisting of two charts (U1, ψ1), (U2, ψ2) such that U1, U2 ⊂ Rkκz
ψ1(U1) ∪ ψ2(U2) = S

kκz
1 , with αW̄κ

z ⊂ U1 (αW̄
κ
z = {αv : v ∈ W̄κ

z }) and

ψ1 ◦ ψ−1
2 (U2) ∩ W̄κ

z = ∅.
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Let Gψi
be the pullback metric on Ui induced by ψi.

Choose a smooth bump function b ∈ C∞ such that
b ≡ 1 on (23α+ 1

3 )W̄
κ
z , b ≡ 0 on ( 13α+ 2

3 )W̄
κ
z .

We then define the compactified manifoldMκ
z (α) with charts {(U1, ψ1), (U2, ψ2)} and Riemannian

metric on U1 given by
G = bGDecκz + (1− b)Gψ1 ,

where

Decκz (x) =

{
Decκz (x), x ∈ αW̄κ

z ,

0, otherwise.
By construction, there is a natural isometric embedding

Mκ
z (α) ↪→Mκ

z (α).

This compactification allows us to invoke convergence results for Brownian motion on compact
manifolds, while ensuring that in the region of interest the geometry coincides with that of the
original κ-stable manifold.

Figure 6: Sphere-cap manifold compactification Mκ
z . The figure illustrates how the Mκ

z manifold
is compactified by capping off the spherical domain with the appropriate boundary conditions.

Theorem (Main Theorem). Let (Zϵi )i≥0 be the sequence produced by Algorithm 1, for Mκ
z (α) with

α ∈ (0, 1) and diffusion horizon T > 0, and define its continuous-time interpolation

Zϵ(t) := Zϵ⌊ϵ−2t⌋, t ≥ 0.

Let Rzκ = dMκ
z
(z, αWκ

z )
c), and suppose L ≥ 1 satisfies

sup
x∈Mκ

z (α)

RicMκ
z
(x) ≥ −L2.

Then for T <
(Rκ

z )
2

4kκzL
, as ϵ → 0, the process Xϵ converges in distribution to Riemannian Brownian

motion stopped at the boundary of Mκ
z (α), with respect to the Skorokhod topology, on a set CTκ,z ⊂

Ω such that
P
(
CTκ,z

)
≥ 1− exp

(
− (Rκ

z )
2

32T

)
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Let Mκ
z (α) be the spherical-cap compactification of Mκ

z (α). Schwarz et al. (2022) showed
that the non-stopped version of Algorithm 1, extended to Mκ

z (α), produces a process Zϵ that con-
verges to B in the Skorokhod topology on Mκ

z (α).

For a closed set A define the exit time

TXA = inf{t ∈ [0, T ] : X(t) /∈ A} ∧ T

Both TXϵ

αWκ
z

and TBαWκ
z

are valid stopping times (by right-continuity and because (Wκ
z )
c is closed),

and (from the construction of the Algorithm 1:

Zϵ = Zϵ
Xϵ

·∧αWκ
z

Convergence in Skorokhod topology does not automatically imply convergence of stopping times
(see Appendix D.1 for a counterexample). However, for the high-probability event

CTκ,z = {ω ∈ Ω : ∀ t ∈ [0, T ], Bt(ω) ∈ αWκ
z } ,

we have that ∃ϵ0 such that ∀ϵ > ϵ0,

TX
ϵ

αWκ
z
≡ T, TBαWκ

z
≡ T,

and thus convergence holds on CTκ,z .

It remains to lower-bound P(CTκ,z). Observe that

Ω \ CTκ,z ⊂ DT
κ,z =

{
ω ∈ Ω : ∃t ∈ [0, T ], dMκ

z
(Bt(ω), z) ≥ Rκz

}
.

Hence
P(CTκ,z) ≥ 1− P(DT

κ,z).

Lemma 1 (Exit-time bound). Suppose L ≥ 1 satisfies

sup
x∈Mκ

z (α)

RicMκ
z
(x) ≥ −L2.

Let TRκ
z

be the first exit time of Riemannian Brownian motion from

BMκ
z
(B0, R

κ
z ) = {x ∈Mκ

z (α) : dMκ
z
(B0, x) < Rκz}.

Then

P(TRκ
z
≤ T ) ≤ exp

(
− (Rκ

z )
2

8T

(
1− 2TkκzL

(Rκ
z )

2

)2)
.

Proof. Let r(x) = dMκ
z
(B0, x) and write rt := r(Bt). On Mκ

z the function r is smooth. The
semimartingale decomposition of rt (see, e.g., (Hsu, 2002a, Eq. (3.6.1))) gives

r2t ≤ 2

∫ t

0

rs dβs +

∫ t

0

rs∆r(Bs) ds + t,

where β is a real Brownian motion adapted to B, and we have used that the local time term is
nonnegative and can be dropped to obtain an inequality.

By the Laplacian comparison theorem (Ricci(·) ≥ −(kκz − 1)L2), for r > 0,

∆r ≤ (kκz − 1)L coth(Lr) ≤ (kκz − 1)
(
L+ 1

r

)
,

hence
r∆r ≤ (kκz − 1)

(
Lr + 1

)
.

Up to the first exit time TRκ
z
:= inf{t ≥ 0 : rt ≥ Rκz} we have rs ≤ Rκz , so

rs∆r(Bs) ≤ (kκz − 1)
(
LRκz + 1

)
≤ kκzL + kκz ≤ 2 kκzL,
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using L ≥ 1. Therefore, for t = TRκ
z
∧ T ,

r2t ≤ 2

∫ t

0

rs dβs + 2 kκzL t + t ≤ 2

∫ t

0

rs dβs + 2 kκzL t + t. (14)

On the event {TRκ
z
≤ T} we have t = TRκ

z
and rt ≥ Rκz , hence from equation 14

(Rκz )
2 ≤ 2

∫ TRκ
z

0

rs dβs + 2 kκzLT.

Rearranging, ∫ TRκ
z

0

rs dβs ≥
(Rκz )

2 − 2 kκzLT

2
.

Set Mt :=
∫ t
0
rs dβs, a continuous martingale with quadratic variation ⟨M⟩t =

∫ t
0
r2s ds ≤ (Rκz )

2t
up to time TRκ

z
. By the Dambis–Dubins–Schwarz theorem there exists a standard Brownian motion

W such that MTRκ
z
=Wη with η = ⟨M⟩TRκ

z
≤ (Rκz )

2TRκ
z
≤ (Rκz )

2T on {TRκ
z
≤ T}. Thus,

{TRκ
z
≤ T} ⊂

{
Wη ≥

(Rκz )
2 − 2 kκ(z)LT

2

}
.

Using the Gaussian tail bound together with η ≤ (Rκz )
2T (and the reflection principle),

P
(
TRκ

z
≤ T

)
≤ exp

(
−
(
(Rκz )

2 − 2 kκzLT
)2

8 (Rκz )
2 T

)
= exp

(
− (Rκz )

2

8T

(
1− 2 kκzLT

(Rκz )
2

)2)
,

which is the claimed bound.

Applying the lemma, if T <
(Rκ

z )
2

4kκzL
, then

P(DT
κ,z) = P(TRκ

z
≤ T ) ≤ exp

(
− (Rκ

z )
2

32T

)
,

which yields
P(CTκ,z) ≥ 1− exp

(
− (Rκ

z )
2

32T

)
.

Remark. The lemma shows that the probability of exiting the ball of radius Rκz before time T
decays exponentially in (Rκ

z )
2

T , up to curvature- and rank-dependent constants. Intuitively, this means
that with overwhelming probability the Riemannian Brownian motion (and hence our random walk
in the ϵ → 0 limit) remains confined inside BMκ

z ((z,R
κ
z ) for all t ≤ T . This high-probability

control is what allows us to restrict attention to the event CTκ,z in the proof of Theorem 1.

D.1 ON STOPPING TIMES AND SKOROHOD CONVERGENCE

An important subtlety in the proof of Theorem 1 is that convergence of processes in the Skorohod
topology does not, in general, imply convergence of associated stopping times. Figure 7 illustrates
this phenomenon with a simple deterministic example.

Let Xt = sin(t), and consider the approximating sequence of processes

Xn
t =

(
1− 1

n

)
sin(t).

Clearly Xn → X uniformly on compact time intervals, hence also in the Skorohod topology. How-
ever, the stopping time defined as

T = inf{t ≥ 0 : Xt = 1}
does not converge along this sequence. Indeed, T = π/2 for X , but for every finite n, the process
Xn never reaches 1 and therefore Tn =∞. Thus, despite Xn → X in Skorohod topology, we have
Tn ̸→ T .

In the proof of Theorem 1 we avoid this issue by restricting to the high-probability set CTκ,z where
the Brownian path remains in the interior of the ball. On this event the stopping times agree with T ,
ensuring consistency with the limiting process.
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Figure 7: Skorohod convergence does not imply convergence of stopping times. The black
dashed curve shows Xt = sin(t), which reaches 1 at t = π/2 (red dot). The colored curves show
approximations Xn

t = (1 − 1
n ) sin(t), converging uniformly to Xt. However, none of the Xn

t
ever reach 1, so their stopping times for hitting level 1 are infinite. This illustrates that Skorohod
convergence of processes does not guarantee convergence of stopping times defined by hitting closed
sets.

E SORBES IMPLEMENTATION DETAILS

We now provide practical details for the implementation of the SORBES algorithm.

Approximating Jacobian. The decoder Jacobian JD̂ec can be obtained exactly using one decoder
forward pass and LA backward passes, where LA is a dimensionality of ambient space. To reduce
computational cost, we approximate it via finite differences. Specifically, the i-th column of the
Jacobian is approximated as

∂D̂ec

∂zi
(z) ≈ D̂ec(z + εei)− D̂ec(z)

ε
, (15)

where ei denotes the i-th standard basis vector in the latent space Z and ε > 0 is a small pertur-
bation parameter. This approximation requires only d + 1 decoder forward passes, where d is a
dimensionality of latent space, providing a substantial reduction in computational overhead.

Sampling a unit tangent direction. We adopt the efficient implementation of Schwarz et al.
(2022), which exploits a thin SVD of the decoder Jacobian to orthogonalize tangent directions.

Approximating Γ(z)[v, v]. Computing Christoffel symbols directly requires evaluating first
derivatives of the metric, which is computationally expensive and numerically unstable. Instead,
we use an extrinsic approach: the covariant derivative of a curve can be obtained from its Euclidean
acceleration in the ambient space, projected back onto the tangent space (do Carmo, 1992). Con-
cretely, for a point z ∈ Z , z′ ∈ Wκ

z and a probe radius ρ > 0, we approximate the extrinsic
acceleration of a decoded curve along v ∈ Tz′Mκ

z by a second-order central difference:

az,κex (v; z′, ρ) ≈ D̂ec(z′ + ρv)− 2 D̂ec(z′) + D̂ec(z′ − ρv)
ρ2

. (16)

Projecting back to the latent tangent space using the Moore–Penrose pseudoinverse of the truncated
Jacobian yields an efficient approximation of the Christoffel correction:

Γ(z′)[v, v] ≈ c(v; z′, ρ) = Jκ
D̂ec

(z′)+ aex(v; z
′, ρ), c(v; z′, ρ) ∈ Rk

κ
z . (17)
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Adaptive step size ϵ. Since the computation of Christoffel symbols involves the (pseudo)inverse
of the Jacobian, small values of κ may amplify numerical noise. In this case, the update

zϵi = zϵi−1 + ϵv − ϵ2Γ[v, v] = zϵi−1 +∆(ϵ),

may become unreasonably large in the ambient Euclidean metric on Uκz , making the algorithm
unstable.

To control this, we adapt the step size ϵ so that the update norm never exceeds a predefined threshold
∆max:

ϵ∆max = min
{
ϵ′ > 0 : ∥∆(ϵ′)∥ ≥ ∆max

}
∨ ϵ,

where a∨ b = max{a, b}. This guarantees that the step size is never smaller than the nominal ϵ, but
shrinks adaptively whenever the second-order correction is large.

SORBES (Stable/Efficient). We refer to the resulting algorithm with adaptive step size control
and extrinsic approximation of Christoffel symbols (Sec. 2.3) as SORBES-SE. This variant is nu-
merically stable in ill-conditioned regions of the decoder geometry while preserving the efficiency
of the original scheme.

Algorithm 4 SORBES-SE
Require: z ∈ Z , κ ≥ 0, step size ϵ, diffusion time T , maximum number of steps STEPmax,

α = 0.99, stability threshold ∆max = 0.5
1: Wκ

z , GDec ←Mκ
z

2: zϵ0 ← z,
3: stopped← False,
4: σ ← 0, (σ tracks diffusion time)
5: step = 0,
6: while σ < T and step < STEPmax do
7: Sample a unit tangent direction v ∈ Sκz = {u ∈ TzMκ

z : ⟨u, u⟩Dec
z = 1}

8: Set v ←
√
kκz v

9: if not stopped then
10: Compute trial update ∆(ϵ)← ϵv − ϵ2Γ(z)[v, v]
11: Adaptive adjustment: If ∥∆(ϵ)∥ > ∆max, shrink step size:

ϵ ← min{ ϵ′ > 0 : ∥∆(ϵ′)∥ ≤ ∆max }

and recompute ∆(ϵ).
12: Update latent coordinate:

zϵi ← zϵi−1 +∆(ϵ)

13: σ ← σ + ϵ2 (update of diffusion time)
14: if zϵi /∈Wκ

z (α) then
15: stopped← True
16: end if
17: else
18: zϵi ← zϵi−1 (absorbing state)
19: end if
20: step← step+ 1 (step update)
21: end while
22: return (zϵi )0≤i≤step, σ

F MUTANG - MUTATION ENUMERATION IN TANGENT SPACE

The detailed description of MUTANG algorithm is presented in Algorithm 5.

G POGS

Below we present the details of PoGS training and evaluation metrics:
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Algorithm 5 MUTANG
Require: latent z ∈ Z; κ ≥ 0; token threshold θtok.

1: Set Uκz , k
κ
z as in Equation 8

2: p← p(z)
3: P ← ∅
4: for j = 1 to kκz do
5: ∆Dec(j) ← reshape(Uκ(z):,j , (L,A))
6: for ℓ = 1 to L do
7: for each a ∈ A do
8: if

∣∣∆Dec
(j)
ℓ,a

∣∣ ≥ θtok then
9: P ← P ∪ {(ℓ, a)}

10: end if
11: end for
12: end for
13: end for
14: for ℓ = 1 to L do
15: Sℓ ← {a : (ℓ, a) ∈ P} ∪ {pℓ} (identity included)
16: end for
17: C(p(z))←

∏L
ℓ=1 Sℓ

18: return C(p(z))

PoGS hyperparameters:

• PoGS without potential: λ = 0 and µ = 0.1,
• Full PoGS: λ = 0.01 and µ = 0.1.
• All: θpot = 5.

PoGS metrics:

• chord ambient length:
N−1∑
k=0

∥Xk+1 −Xk∥2

• chord latent length:
N−1∑
k=0

∥zk+1 − zk∥2

For computation of seeds and wells, we excluded first and last 20% of a peptide path were excluded
to avoid trivial rediscovery.

For each pair, the chord length N was determined dynamically as

N = ⌊ρ · ∥za − zb∥2⌋ ,
where ρ is the point density hyperparameter (set to ρ = 90 in our experiments). This construction
guarantees that longer trajectories in the latent space are sampled more densely than shorter ones,
preserving a uniform resolution across geodesics of varying length. The geodesic points {zi}ni=1
were optimized using the Adam optimizer with learning rate η = 10−3 and weight decay 10−5. We
applied a ReduceLROnPlateau scheduler, which decreased the learning rate by a factor of 0.8
whenever no improvement in the loss was observed for a number of iterations equal to the patience
hyperparameter. The endpoints za and zb were kept fixed throughout the optimization by zeroing
their gradients at every step.

H APEX-POTENTIAL FOR POGS

The APEX predictor (Wan et al., 2024) estimates minimum inhibitory concentration (MIC) values
against 11 bacterial strains, but it operates on concrete peptide sequences. In Potential-Minimizing
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Algorithm 6 POGS
Require: seeds za, zb, potential function Φ, nb of segments N , weights λ, µ, steps T ,

1: Initialize z0 ← za, zN ← zb, z1:N−1 by linear interpolation in latent space
2: for t = 1 to T do
3: Xk ← log(Dec)(zk) for k = 0..N
4: Compute energy Eλ(Z) as in equation 6
5: Take a gradient step on z1:N−1 to minimize Eλ(Z)
6: end for
7: return {p(zk)}Nk=0

Geodesic Search (PoGS), optimization proceeds over latent-space chords, i.e., intermediate points
z that decode to position-factorized distributions over peptides rather than single sequences:

Dec(z) ∈ RL×A,
where L is the maximum peptide length and A = 21 is the amino-acid alphabet augmented with
padding. To enable PoGS, we first distill the sequence-level APEX potential into a surrogate that
accepts peptide distributions.

Dataset construction. Peptides from the HydrAMP training set (Szymczak et al., 2023) were
encoded into latent codes z. In order to obtain multiple distributions from a single peptide, we then
created four clones z′ of latent codes z. We applied a 2×2 perturbation scheme: two clones were
injected with Gaussian noise N(0, 0.05), and two were left unchanged. Finally, these four latent
codes were decoded to Dec(z′), using a softmax scaling with temperature of 1.0 for one pair (noisy
and non-noisy) and a temperature of 1.5 to the other pair, resulting in four distributions per peptide.
This yielded 1,060,000 peptide distributions in total. For each Dec(z′), we enumerated the N = 20
most-probable sequences(

P0(z
′), . . . , PN−1(z

′)
)

with probabilities
(
p0(z

′), . . . , pN−1(z
′)
)
,

applied APEX to each Pi(z′) to obtain MIC vectors MICPi(z′) ∈ R11, and defined the distribution’s
expected MIC vector via the probability-weighted average

Φtrue
MIC

(
Dec(z′)

)
=

N−1∑
i=0

MICPi(z′) ·
pi(z

′)∑N−1
j=0 pj(z′)

∈ R11.

Training protocol and standardization. We split the dataset into 80% train, 10% validation, and
10% test in such a way that no two sets contain distributions originating from the same peptide. Let
µ, σ ∈ R11 be the per-strain mean and standard deviation computed on the training set. Targets
were z-scored componentwise:

yz =
y − µ
σ

.

We trained an encoder-only transformer that operates on distributions Dec(z) ∈ RL×A and predicts
z-scored MIC vectors in R11:

Φmodel
MIC : Dec(z) 7→ R11.

Architecture: three transformer encoder layers (four heads), embedding dimension 128, feed-
forward dimension 256, dropout 0.05. Optimization used Adam (learning rate 10−4) for 15 epochs
with mean-squared error (MSE) loss on z-scored targets:

LMSE =
1

11

∥∥Φmodel
MIC (Dec(z))− yz

∥∥2
2
.

Final potential used by PoGS. PoGS operates on flattened log-probabilities. Let X ∈ RL·A be
the flattened log-probability vector. We reconstruct a valid distribution using PyTorch-style opera-
tions:

P (X) = softmax
(
X. reshape(L,A), dim = 1

)
∈ [0, 1]L×A,

where dim=1 is the amino-acid dimension. The surrogate outputs a z-scored MIC vector
m̂z(X) = Φmodel

MIC

(
P (X)

)
∈ R11.

Restricting to the three target E. coli strains (index set IE. coli), the scalar property potential used by
PoGS is

Φ(X) = 1⊤[m̂z(X)
]
IE. coli

.
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I LE-BO HYPERPARAMETERS

We enumerate all hyperparameter values of our optimization algorithm LE-BO and all its sub-
algorithms.

• Algorithm 3 LE-BO - Local Enumeration Bayesian Optimization

– Trust region distance dtrust = 2.
– Number of ROBOT evaluations per iteration kROBOT = 3.
– Diversity threshold dROBOT = 2.
– Following the approach of Eberhardt et al. (2024), as a surrogate model, we use

a Gaussian Process GP with the Tanimoto similarity kernel Szedmak & Bach (2025),
applied to the MAP4 fingerprints of peptides Capecchi et al. (2020).

– Aquisition function GP. acquistion was chosen to be Log Expected Improvement.

• Algorithm 2 LOCALENUMERATION

– κSORBES = 0.01.
– κMUTANG = 10−6.
– Number of trajectories M = 10.
– Walk time budget Twalk = 0.1.
– Nominal step size ϵ = 0.1.
– Mutation threshold θmut

• A probe radius ρ > 0 in the second-order central difference approximation of the extrinsic
acceleration (Equation 16) ρ = 0.05.

• Step of the finite-difference approximation of the decoder Jacobian (Equation 15) ε = 0.05.

J WET-LAB VALIDATION

J.1 PEPTIDE SYNTHESIS AND CHARACTERIZATION

Peptides were synthesized on an automated peptide synthesizer (Symphony X, Gyros Protein Tech-
nologies) by standard Fmoc-based solid-phase peptide synthesis (SPPS) on Fmoc-protected amino
acid–Wang resins (100–200 mesh). The following preloaded resins were employed with their
respective loading capacities (100 µmol scale): Fmoc-Asn(Trt)-Wang Resin (0.510 mmol g−1),
Fmoc-His(Trt)-Wang Resin (0.480 mmol g−1), Fmoc-Leu-Wang Resin (0.538 mmol g−1), Fmoc-
Lys(Boc)-Wang Resin (0.564 mmol g−1), Fmoc-Phe-Wang Resin (0.643 mmol g−1), Fmoc-
Thr(tBu)-Wang Resin (0.697 mmol g−1), Fmoc-Trp(Boc)-Wang Resin (0.460 mmol g−1), Fmoc-
Tyr(tBu)-Wang Resin (0.520 mmol g−1). In addition to preloaded resins, standard Fmoc-protected
amino acids were employed for chain elongation, including: Fmoc-Ala-OH, Fmoc-Cys(Trt)-OH,
Fmoc-Glu(OtBu)-OH, Fmoc-Phe-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Ile-OH, Fmoc-
Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Met-OH, Fmoc-Asn(Trt)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-
Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Val-OH, Fmoc-Trp(Boc)-OH, and Fmoc-Tyr(tBu)-OH.
N,N-Dimethylformamide (DMF) was used as the primary solvent throughout synthesis. Stock solu-
tions included: 500 mmol L−1 Fmoc-protected amino acids in DMF, a coupling mixture of HBTU
(450 mmol L−1) and N-methylmorpholine (NMM, 900 mmol L−1) in DMF, and 20% (v/v) piperi-
dine in DMF for Fmoc deprotection. After synthesis, peptides were deprotected and cleaved from the
resin using a cleavage cocktail of trifluoroacetic acid (TFA)/triisopropylsilane (TIS)/dithiothreitol
(DTT)/water (92.8% v/v, 1.1% v/v, 0.9% w/v, 4.8% w/w) for 2.5 hours with stirring at room tem-
perature. The resin was removed by vacuum filtration, and the peptide-containing solution was
collected. Crude peptides were precipitated with cold diethyl ether and incubated for 20 min at
−20 °C, pelleted by centrifugation, and washed once more with cold diethyl ether. The result-
ing pellets were dissolved in 0.1% (v/v) aqueous formic acid and incubated overnight at −20 °C,
followed by lyophilization to obtain dried peptides. For characterization, peptides were dried, re-
constituted in 0.1% formic acid, and quantified spectrophotometrically. Peptide separations were
performed on a Waters XBridge C18 column (4.6 × 50 mm, 3.5 µm, 120 Å) at room temperature
using a conventional high-performance liquid chromatography (HPLC) system. Mobile phases were
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water with 0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B). A lin-
ear gradient of 1–95% B over 7 min was applied at 1.5 mL min−1. UV detection was monitored
at 220 nm. Eluates were analyzed on Waters SQ Detector 2 with electrospray ionization in positive
mode. Full scan spectra were collected over m/z 100–2,000. Selected Ion Recording (SIR) was used
for targeted peptides. Source conditions were capillary voltage 3.0 kV, cone voltage 25–40 V, source
temperature 120 °C, and desolvation temperature 350 °C. Mass spectra were processed with Mass-
Lynx software. Observed peptide masses were compared with theoretical values, and quantitative
analysis was based on integrated SIR peak areas.

J.2 BACTERIAL STRAINS AND GROWTH CONDITIONS

The bacterial panel utilized in this study consisted of the following pathogenic strains: Acineto-
bacter baumannii ATCC 19606; A. baumannii ATCC BAA-1605 (resistant to ceftazidime, gen-
tamicin, ticarcillin, piperacillin, aztreonam, cefepime, ciprofloxacin, imipenem, and meropenem);
Escherichia coli ATCC 11775; E. coli AIC221 [MG1655 phnE 2::FRT, polymyxin-sensitive con-
trol]; E. coli AIC222 [MG1655 pmrA53 phnE 2::FRT, polymyxin-resistant]; E. coli ATCC BAA-
3170 (resistant to colistin and polymyxin B); Enterobacter cloacae ATCC 13047; Klebsiella pneu-
moniae ATCC 13883; K. pneumoniae ATCC BAA-2342 (resistant to ertapenem and imipenem);
Pseudomonas aeruginosa PAO1; P. aeruginosa PA14; P. aeruginosa ATCC BAA-3197 (resistant
to fluoroquinolones, β-lactams, and carbapenems); Salmonella enterica ATCC 9150; S. enterica
subsp. enterica Typhimurium ATCC 700720; Bacillus subtilis ATCC 23857; Staphylococcus au-
reus ATCC 12600; S. aureus ATCC BAA-1556 (methicillin-resistant); Enterococcus faecalis ATCC
700802 (vancomycin-resistant); and Enterococcus faecium ATCC 700221 (vancomycin-resistant).
P. aeruginosa strains were propagated on Pseudomonas Isolation Agar, whereas all other species
were maintained on Luria-Bertani (LB) agar and broth. For each assay, cultures were initiated from
single colonies, incubated overnight at 37 °C, and subsequently diluted 1:100 into fresh medium to
obtain cells in mid-logarithmic phase.

J.3 MINIMAL INHIBITORY CONCENTRATION (MIC) DETERMINATION

MIC values were established using the standard broth microdilution method in untreated 96-well
plates. Test peptides were dissolved in sterile water and prepared as twofold serial dilutions ranging
from 1 to 64 µmol L−1. Each dilution was combined at a 1:1 ratio with LB broth containing
4 × 106 CFU mL−1 of the target bacterial strain. Plates were incubated at 37 °C for 24 h, and
the MIC was defined as the lowest peptide concentration that completely inhibited visible bacterial
growth. All experiments were conducted independently in triplicate.

J.4 DETAILED WET-LAB VALIDATION RESULTS
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Figure 8: Antimicrobial activity against Gram-positive bacterial strains by seed family. Bar
chart shows the number of Gram-positive strains (out of 5 total) against which each peptide achieved
MIC ≤ 32 µg/ml, organized by seed family (Seed-1 through Seed-4). Within each family, results
are shown for prototypes (P1, P2; orange), seeds (S; blue), and analogs (A1-A7; green). Numbers
above bars indicate the count of active strains for each peptide.

Figure 9: Antimicrobial activity against Gram-negative bacterial strains by seed family. Bar
chart shows the number of Gram-negative strains (out of 14 total) against which each peptide
achieved MIC ≤ 32 µg/ml, organized by seed family (Seed-1 through Seed-4). Within each fam-
ily, results are shown for prototypes (P1, P2; orange), seeds (S; blue), and analogs (A1-A7; green).
Numbers above bars indicate the count of active strains for each peptide.
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