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Abstract

Discovering reliable and informative relation-
ships among brain regions from functional
magnetic resonance imaging (fMRI) signals is
essential in phenotypic predictions. Most of the
current methods fail to accurately characterize
those interactions because they only focus on
pairwise connections and overlook the high-order
relationships of brain regions. We propose
that these high-order relationships should be
maximally informative and minimally redundant
(MIMR). However, identifying such high-order
relationships is challenging and under-explored
due to the exponential search space and the
absence of a tractable objective. In response
to this gap, we propose a novel method named
HYBRID which aims to extract MIMR high-
order relationships from fMRI data. HYBRID
employs a CONSTRUCTOR to identify hyperedge
structures, and a WEIGHTER to compute a weight
for each hyperedge, which avoids searching
in exponential space. HYBRID achieves the
MIMR objective through an innovative informa-
tion bottleneck framework named multi-head
drop-bottleneck with theoretical guarantees.
Our comprehensive experiments demonstrate
the effectiveness of our model. Our model
outperforms the state-of-the-art predictive model
by an average of 11.2%, regarding the quality
of hyperedges measured by CPM, a standard
protocol for studying brain connections. Source
code is available at https://github.com/
Graph-and-Geometric-Learning/
HyBRiD.
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1. Introduction
Discovering relations among brain regions toward a spe-
cific phenotypic outcome from fMRI signals has been a
crucial area in neuroimaging research. Reliable and in-
formative relations help neuroscientists and clinical pro-
fessionals to better understand brain functions, and thus
improve clinical diagnosis and treatments (Kucian et al.,
2008; 2006; Li et al., 2015b;a; Satterthwaite et al., 2015;
Wang et al., 2016). However, despite the clear multiplexity
of the brain’s involvement in cognition (Logue & Gould,
2014; Barrasso-Catanzaro & Eslinger, 2016; Knauff & Wolf,
2010; Reineberg et al., 2022), current imaging biomarker de-
tection methods (Shen et al., 2017; Gao et al., 2019; Li et al.,
2021) focus only on the contributing roles of the pairwise
connectivity edges. In contrast, most brain functions involve
distributed patterns of interactions among multiple regions
(Semedo et al., 2019). For instance, executive planning
requires the appropriate communication of signals across
many distinct cortical areas (Logue & Gould, 2014). These
high-order relationships, cannot always be decomposed into
pairwise ones (Battiston et al., 2020; 2021; Bick et al., 2023),
thus allowing them to capture information beyond the reach
of pairwise ones (Do et al., 2020). Consequently, relying
solely on pairwise connectivity, without accounting for the
brain’s complex high-order structure, may result in inconsis-
tent findings and low predictive performance across studies.
Although recently there have been a few works (Zu et al.,
2016; Xiao et al., 2019; Li et al., 2022) working on dis-
covering the high-order relationships of brain regions, they
are unable to effectively extract meaningful patterns. This
is because these methods usually first identify some candi-
dates of high-order relationships and then perform feature
selection. The candidates are obtained by enumerating only
a small portion of all possible relations, or by clustering
methods that are unrelated to the target. As a result, most
informative high-order relations are likely excluded at the
first stage. This inspires us to solve the problem in an end-
to-end manner through a more expressive model and a more
appropriate objective.

In this paper, we aim to identify high-order relationships
that are informative towards a phenotypic outcome, such
as a cognition score. However, unlike pairwise relations,
the number of possible high-order relations is exponential.
To identify the most informative ones from the exponential
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Figure 1: We identify high-order relationships of brain
regions, where hyperedge structures and weights possess
strong relevance to cognition (maximal informativeness).
Meanwhile, they contain the least irrelevant information.

space, we propose our objective: maximally informative and
minimally redundant (MIMR). That is to say, we maximize
the information contained in the high-order relationships
towards a neurological outcome (informativeness) while
diminishing the participation of unrelated brain regions (re-
dundant). Such a criterion, on the one hand, ensures the
predictive performance of these high-order relationships;
on the other hand, it endows the model with the capacity
to identify more succinct and interpretable structures (Yu
et al., 2020; Miao et al., 2022a;b; Chen & Ying, 2023). A
formal definition of the MIMR criterion could be found in
Equation 8 from an information bottleneck point of view.

We formulate high-order relationships as weighted hyper-
edges in a hypergraph, where regions are treated as nodes.
Unlike a traditional graph where edges connect only two
nodes, a hypergraph allows edges, known as hyperedges,
to connect any number of nodes. The hypergraph should
be weighted, and the weights of hyperedges are considered
as strengths of high-order relationships, which contain the
information relevant to the outcome (Figure 1).

However, current methods for hypergraph construction,
which are mostly based on neighbor distances and neighbor
reconstruction (Wang et al., 2015; Liu et al., 2017; Jin et al.,
2019; Huang et al., 2009), are unsuitable in our context for
several reasons: 1) they are unable to learn MIMR hyper-
edges due to the absence of a tractable objective for learning
such hyperedges. 2) they fall short of learning consistent
structures across subjects, which contradicts the belief that
the cognitive function mechanism of healthy human beings
should be similar (Wang et al., 2023b). 3) the number of
hyperedges is restricted to the number of nodes, which may
lead to sub-optimal performance. Furthermore, although
information bottleneck (IB) has been a prevailing solution
to learn MIMR representations in deep learning (Kim et al.,

2021; Alemi et al., 2016; Luo et al., 2019), existing IB
methods focus on extracting compressed representations of
inputs instead of identifying underlying structures such as
hypergraphs. Harnessing the IB framework for identifying
hypergraphs necessitates both architectural innovations and
theoretical derivations.

Proposed Work In this paper, we propose Hypergraph of
Brain Regions via multi-head Drop-bottleneck (HYBRID),
a novel approach for identifying maximally informative
yet minimally redundant high-order relationships of brain
regions. The overall pipeline of HYBRID is depicted in
Figure 2. HYBRID is equipped with a CONSTRUCTOR and
a WEIGHTER. The CONSTRUCTOR identifies the hyperedge
structures of brain regions by learning sets of masks, and
the WEIGHTER computes a weight for each hyperedge. To
advance the IB principle for hyperedge identification, we
further propose multi-head drop-bottleneck and derive its
optimization objective.

HYBRID avoids searching in an exponential space through
learning masks to identify hyperedges, which guarantees
efficiency. Its feature-agnostic masking mechanism design
ensures HYBRID to learn consistent structures across sub-
jects. Moreover, the model is equipped with a number of
parallel heads, each of which is dedicated to a hyperedge.
Through this, HYBRID is able to identify any number of
hyperedges, depending on how many heads it is equipped
with. Additionally, the proposed multi-head drop-bottleneck
theoretically guarantees the maximal informativeness and
minimal redundancy of the identified hyperedges.

We evaluate our methods on the open-source ABIDE dataset
and the restricted ABCD dataset. We quantitatively evaluate
our approach by a commonly used protocol for studying
brain connections, CPM (Shen et al., 2017) (Appendix B),
and show that our model outperforms the state-of-the-art
deep learning models by an average of 11.2% on a com-
prehensive benchmark. Our post-hoc analysis demonstrates
that hyperedges of higher degrees are considered more sig-
nificant, which indicates the significance of high-order rela-
tionships in human brains.

2. Problem Definition & Notations
Input Our dataset is a collection of human subject’s fea-
tures and their phenotypic outcomes, which is represented
by the pair (X,Y ) for each subject. X ∈ RN×d represents
the features for each subject, where N is the number of brain
regions and d is the feature size. Consistent with previous
works (Kan et al., 2022b; Li et al., 2021), the features are
Pearson correlations derived from fMRI time series. Y ∈ R
denotes the phenotypic outcome, such as the intelligent quo-
tient. Section 5 and Appendix D will elaborate more details
about datasets and preprocessing procedures.

2



Learning High-Order Relationships of Brain Regions

Goal Based on the input X , HYBRID aims to learn a
weighted hypergraph of the brain, where regions are nodes.
To achieve this, HYBRID identifies a collection of hy-
peredges H = (h1,h2, · · · ,hK), and assigns weights
w = [w1, w2, · · · , wK ]T for all hyperedges. These hy-
peredges and their weights, which represent strengths of
hyperedges, are expected to be the most informative towards
Y yet the least redundant.

Representation of Hyperedges As mentioned before, we
use H to denote the collection of hyperedge structures and
hk to denote the k-th hyperedge. To associate hyperedges
with node memberships, we use the following representation
for a hyperedge:

hk = mk ⊙X ∈ RN×d, (1)

where mk ∈ {0, 1}N is a mask vector and ⊙ denotes broad-
casting element-wise multiplication. In other words, each
hk is a randomly row-zeroed version of X .

3. Related Work
Hypergraph Construction Existing hypergraph construc-
tion methods are mostly based on neighbor reconstruction
and neighbor distances. For example, the k nearest neighbor-
based method (Huang et al., 2009) connects a centroid node
and its k nearest neighbors in the feature space to form
a hyperedge. Wang et al. (2015); Liu et al. (2017); Jin
et al. (2019); Xiao et al. (2019) further refine these neigh-
bor connections through various regularization. However,
the number of hyperedges of these methods is restricted
to the number of nodes, and hyperedges obtained by these
methods are inconsistent across instances. Cluster-based
approaches learn community structure in a graph (Bannadab-
havi et al., 2023; Ying et al., 2018), which can also be used
to form hyperedges. Zhang et al. (2022; 2018) proposed
to iteratively refine a noisy hypergraph, which is obtained
by the aforementioned methods. Therefore, they share the
same limitations as the aforementioned methods. In addi-
tion, these methods are unable to learn MIMR hyperedges
due to the absence of a tractable objective. Other meth-
ods, such as attributed-based methods (Huang et al., 2015;
Joslyn et al., 2019), are ill-adapted to our context since they
require discrete labels. Different from these methods, we
provide a way to learn a consistent hypergraph through a
deep-learning model. Furthermore, thanks to the proposed
multi-head drop-bottleneck, these hyperedges are theoreti-
cally ensured MIMR.

High-Order Relationships in fMRI Although there are
some methods working on high-order relationships in fMRI,
they have limitations and are inconsistent with our MIMR
objective. Xiao et al. (2019); Li et al. (2022) used the exist-
ing non-learning-based hypergraph construction methods,

which may lead to noisy and inexpressive hypergraphs. Zu
et al. (2016); Santoro et al. (2023) enumerated all hyper-
edges with degrees lower than 3, which can only discover a
tiny portion of all possible hyperedges in exponential space
and is not scalable to a large degree. Rosas et al. (2019)
proposed O-information, which reflects the balance between
redundancy and synergy. The O-information metric is uti-
lized by Varley et al. (2023) to study fMRI data. However,
the objective of these methods is not consistent with ours:
although both of us are quantifying the redundancy of high-
order relations, our method is to learn those that are most
informative toward a cognition score, while theirs is to de-
pict the synergy and redundancy within a system.

Information Bottleneck Information bottleneck (IB)
(Tishby et al., 2000) is a technique in data compression.
The key idea is to extract a summary of data, which contains
the most relevant information to the objective. Alemi et al.
(2016) first employed an IB view of deep learning. After
that, IB has been widely used in deep learning. The applica-
tions span areas such as computer vision (Luo et al., 2019;
Peng et al., 2018), reinforcement learning (Goyal et al.,
2019; Igl et al., 2019), natural language processing (Wang
et al., 2020) and graph learning (Yu et al., 2020; 2022; Xu
et al., 2021; Wu et al., 2020). Unlike these studies that use
IB to extract a compressed representation or a select set of
features, our approach focuses on identifying the underlying
structures of the data.

Connectivity-based Phenotypic Prediction Recently,
deep learning techniques have been increasingly employed
in predicting phenotypic outcomes based on the connectivity
of brain regions. Most works (Ahmedt-Aristizabal et al.,
2021; Li et al., 2019; Cui et al., 2022b; Kan et al., 2022a; Cui
et al., 2022a; Said et al., 2023) model the brain network as
a graph, in which regions act as nodes and pairwise correla-
tions form the edges. These methods predominantly utilize
Graph Neural Networks (GNNs) to capture the connectiv-
ity information for predictions. In addition to GNNs, Kan
et al. (2022b) proposed to use transformers with a specially
designed readout module, leveraging multi-head attention
mechanisms to capture pairwise connectivity. However,
all of these methods heavily rely on pairwise connectivity
and neglect more intricate higher-order relationships. This
oversight, on the one hand, leads to sub-optimal prediction
performances and, on the other hand, prevents domain ex-
perts from acquiring insightful neuroscience interpretations,
given that brain functions often involves multiple regions.

4. Method
Method Overview HYBRID consists of a CONSTRUC-
TOR Fc, a WEIGHTER Fw, and a LINEARHEAD Fl. At a
high level, the CONSTRUCTOR Fc is responsible for iden-

3



Learning High-Order Relationships of Brain Regions

tifying hyperedges H from the data to construct the hyper-
graph. After that, the WEIGHTER Fw calculates a weight
for each hyperedge. Finally, based on all the weights w,
the LINEARHEAD Fl predicts the label Y . An illustration
of this pipeline is shown in Figure 2. The pipeline can be
formulated as

X −−→
Fc

H −−→
Fw

w −→
Fl

Y. (2)

We will elaborate on the details of the architecture below.

4.1. Learning the Hypergraph by Multi-head Masking

Each instance (human subject) is represented by X =
[X1, X2, · · · , XN ]T ∈ RN×d, where Xi ∈ R is a col-
umn vector representing the features of region i. These
regions are nodes in the hypergraph we are going to con-
struct. Hyperedges in the hypergraph can be beneficial in
the learning process below because it is essential to model
the relationships between more than two regions.

Hyperedges Construction In this paragraph, we elabo-
rate on how the CONSTRUCTOR identifies the hyperedges,
i.e. H = Fc(X).

Suppose the number of hyperedges is K, which is a prede-
fined hyperparameter. We assign a head to each hyperedge.
Each head is responsible for constructing a hyperedge by
selecting nodes belonging to that hyperedge.

Specifically, to construct the k-th hyperedge, the CON-
STRUCTOR’s k-th head outputs a column vector mk ∈
{0, 1}N , where each element in the vector corresponds to a
brain region,

mk = [1(pkθ,1),1(p
k
θ,2), · · · ,1(pkθ,N )]T ∈ {0, 1}N , (3)

where pkθ,i ∈ [0, 1], i = 1, 2, · · · , N are learnable probabil-
ities. 1 : [0, 1] 7→ {0, 1} is an indicator function, which is
defined as 1(x) = 1 if x > 0.5 and 1(x) = 0 if x ≤ 0.5.
And mk is a column vector corresponding to the k-th hy-
peredge. Note that since there is no gradient defined for the
indicator operation, we employ the stop-gradient technique
(Oord et al., 2017; Bengio et al., 2013) to approximate it.

In the vector mk, 0 indicates nodes that are masked out, and
1 indicates nodes that are not masked. Nodes that are not
masked are considered to form a hyperedge together. We
use hk to represent the masked version of X

hk = mk ⊙X

= [mk
1X1,m

k
2X2, · · · ,mk

NXN ] ∈ RN×d,
(4)

where ⊙ is the broadcast element-wise multiplication. mk
j

is the j-th element of the vector mk.

We obtain K hyperedges for K sets of masks. We use H to
denote the collection of all hyperedges.

H = (h1,h2, · · · ,hK). (5)

Hyperedge Weighting After obtaining the structure (i.e.
member nodes) of each hyperedge, the WEIGHTER will
calculate each hyperedge’s weight, which is supposed to
indicate the importance of that hyperedge, based on the
member nodes and their features, i.e. w = Fw(H).

These weights are obtained by a Readout module, which is
composed of: 1) summing over all the non-masked nodes
feature-wisely; 2) dim reduction operation.

wk = Readout(hk) = DimReduction(mkThk) ∈ R,
(6)

where wk is the weight of the k-th hyperedge and
DimReduction is an MLP with ReLU activations, where
the output dimension is 1. For all hyperedges, we obtain
K hyperedges in total, w = [w1, w2, · · · , wK ]T ∈ RK .
Finally, these weights will be fed into the final linear head
to predict the label of the instance,

Ŷ = Fl(w) ∈ R. (7)

In contrast to previous hypergraph construction methods (Jin
et al., 2019; Xiao et al., 2019), which identify hyperedges
by refining neighbors and simply aggregating node features,
HYBRID makes these procedures learnable and thus is able
to identify MIMR hyperedges in a data-driven way through
expressive neural networks. The number of hyperedges K
is decided according to the study in Appendix I.1.

Computational Complexity The computational complex-
ity of our model is O(N2K), which is just the same scale
as that of MLPs even though we are addressing a more
challenging task: identifying high-order relationships in an
exponential space. Details of the complexity calculation can
be found in Appendix C.

4.2. Optimization Framework

Since there are no existing IB frameworks that can be ap-
plied in our context, we propose a new IB framework named
multi-head drop-bottleneck to optimize HYBRID. To adopt
an information bottleneck view of HYBRID, we consider
X , Y and H are random variables in the Markovian chain
X ↔ Y ↔ H . According to our MIMR objective, we
optimize

argmax I(H;Y )− βI(H;X), (8)

where I(·; ·) denotes the mutual information. I(H;Y ) cor-
responds to the informativeness and I(H;X) corresponds
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Constructor Weighter Evaluation

 nodes hypergraph hyperedges
weights

CPM

pairwise
weights

Training

Linear Head

Figure 2: Overview of the HYBRID pipeline when the total number of hyperedges K = 3. Hyperedge are in distinct
colors for clarity. The CONSTRUCTOR identifies hyperedges in the hypergraph, where regions are nodes. The WEIGHTER
computes a weight for each hyperedge. These weights, representing strengths of hyperedges, are expected to be informative
in terms of our target Y . There are two separate phases after obtaining weights of hyperedges: 1) Training. The model’s
parameters are trained under the supervision of Y ; 2) Evaluation. The output weights, as well as pairwise weights, are fed
into the CPM (see Appendix B).

Input Masks Attributed
Hyperedges

Hyperedges
Weights

Weighter

Readout

Readout

Readout

Constructor

Figure 3: Architecture details of the CONSTRUCTOR and
the WEIGHTER when the number of nodes N = 6 and
the number of hyperedges K = 3. At a high level, the
CONSTRUCTOR learns the hyperedge structure by masking
nodes. The WEIGHTER computes the weight of each hy-
peredge based on the hyperedge’s member nodes and their
features.

to the redundancy. β is a coefficient trading off informative-
ness and redundancy. Since optimizing the mutual informa-
tion for high-dimensional continuous variables is intractable,
we instead optimize the lower bound of Equation 8. Specifi-

cally, for the first term (informativeness), it is easy to show

I(H;Y ) = H[Y ]−H[Y |H]

= H[Y ] + Ep(Y,H)[log p(Y |H)]

= H[Y ] + Ep(Y,H)[log qϕ(Y |H)]

+ Ep(H)[KL(p(Y |H)|qϕ(Y |H))]

≥ H[Y ] + Ep(Y,H)[log qϕ(Y |H)],

(9)

where H[·] is the entropy computation. Since there is no
learnable component in the entropy of Y , we only need to
optimize the second term Ep(Y,H)[log qϕ(Y |H)]. qϕ can be
considered as a model that predicts Y based on H , which
essentially corresponds to Fl ◦ Fw, where ◦ is the function
composition. In practice, we set qϕ as a Gaussian model
with variance 1 as most probabilistic machine learning mod-
els do for continuous data modeling (Alemi et al., 2016; Luo
et al., 2019; Peng et al., 2018; Kingma & Welling, 2013).

For the second term (redundancy) in Equation 8, we have

Proposition 4.1. (Upper bound of I(H;X) in multi-head
drop-bottleneck)

I(H;X) ≤
K∑

k=1

I(hk;X) ≤
K∑

k=1

N∑
i=1

I(hk
i ;Xi)

=

K∑
k=1

N∑
i=1

H[Xi](1− pkθ,i),

(10)

where hk
i and Xi is the i-th row of hk and X respectively.

pkθ,i is the mask probability in Equation 3. H is the entropy
computation. The equality holds if and only if nodes are
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independent and hyperedges do not overlap. It’s important
to clarify that optimizing Equation 10 does not imply a
penalty for overlaps. The second inequality is inspired by
(Kim et al., 2021). The proof of the proposition can be
found in Appendix A.

Therefore, instead of optimizing the intractable objective
Equations 8, we optimize its upper bound (i.e. loss function)
according to Equations 9 and 10.

L = ∥Y −Fl ◦ Fw ◦ Fc(X)∥22 + β

K∑
k=1

N∑
i=1

H[Xi](1− pkθ,i)

≥ −I(H,Y ) + βI(H,X).
(11)

In conclusion, The learnable components are the shallow em-
beddings in Equation 3, the DimReduction MLP in Equa-
tion 6 and the LINEARHEAD Fl in Equation 7. For how
we choose the trade-off coefficient β, see Appendix I.2 for
more discussions.

5. Experiments
In this section, we conduct experiments to validate the qual-
ity of the learned hyperedges in terms of the predictive
performance towards the cognition phenotype outcome. Fur-
thermore, we conduct ablation studies to validate the key
components in our model. We also analyze our results both
quantitatively and qualitatively.

5.1. Predictive Performance of Hypereges

Datasets We consider two fMRI datasets:

1) Autism Brain Imaging Data Exchange (ABIDE) (Crad-
dock et al., 2013) is an open-source dataset. This dataset
involved resting-state fMRI of patients from 17 international
sites, as well as the anatomical and phenotypic data. Re-
gions are obtained by Craddock 200 atlas (Craddock et al.,
2012). We use the preprocessed version from the official
website. For prediction targets, we choose three intelligence
quotients: FIQ (full-scale intelligence), VIQ (verbal intelli-
gence quotient), and PIQ (performance intelligence).

2) Adolescent Brain Cognitive Development (ABCD) (Casey
et al., 2018) is one of the largest public fMRI datasets. Ac-
cess is limited and requires adherence to a rigorous data
request procedure to acquire the data. The data is collected
from 11, 875 children aged between 9 to 10 years old. The
functional MRI (fMRI) data is collected from children when
they were resting and when they performed three tasks (SST,
EN-back, MID). We use the ABCD imaging data collected
from the baseline (release 2.0) as well as the 2-year follow-
up (release 3.0). In conclusion, we obtain 8 sub-datasets
(we refer to them as datasets from now on) from 2 time-
points under 4 tasks. Regions are obtained by AAL3v1 atlas

(Rolls et al., 2020). For preprocess procedures of the ABCD
dataset, please refer to Appendix D for more details. For
the prediction target, we consider fluid intelligence as our
label. Fluid intelligence reflects the general mental ability
and plays a fundamental role in various cognitive functions.

For region features, consistent with previous connectivity-
based methods (Li et al., 2021; Kan et al., 2022b; Ktena
et al., 2018; Said et al., 2023), we use a region’s Pearson
correlation coefficients to all other regions as the region fea-
tures. Other details of the data preprocessing and statistics
of each dataset are summarized in Appendix D.

Evaluation Metric To evaluate the quality of hyperedges
obtained by HYBRID, we use CPM (Shen et al., 2017), a
standard model that could evaluate the relevance between
the connectivity and the prediction target, due to its high
impact in the community. In the original implementation of
CPM, weights of pairwise edges are obtained by Pearson
correlation between nodes. These weights, as pairwise con-
nectivity, are fed into the CPM. CPM will output a metric
that measures the overall correlation between edges and the
prediction target, which can be considered as a measure of
edge qualities. This process is formulated as

r′ = CPM(wp, Y ), (12)

where wp ∈ RKp denotes the pairwise edge weights and
Kp is the total number of pairwise edges. r′ is a metric
that measures the quality of weights based on positive and
negative correlations to the outcome.

To evaluate the quality of the learned weights for our model,
we replace the pairwise edge weights with the learned high-
order weights wh ∈ RKh , and thus adjust Equation 12
to

r = CPM(wh, Y ), (13)

Comparing r to r′ reflects the quality of learned weights in
terms of the prediction performance since it measures the
overall correlation between weights and the prediction target.
In our model, wh = w, which is the learned hyperedge
weights.

Baselines We compare our method with 3 classes of base-
lines: 1) standard method, which is exactly the classical
method that predicts outcomes based on pairwise edges
(Shen et al., 2017; Dadi et al., 2019; Wang et al., 2021).
The comparison with standard methods shows whether the
high-order connectivity has its advantage over the classi-
cal pairwise one or not. 2) hypergraph construction meth-
ods. We consider kNN (Huang et al., 2009), l1 hypergraph
(Wang et al., 2015), and l2 hypergraph (Jin et al., 2019). 3)
connectivity-based phenotypic prediction methods, which
are state-of-the-art predictive models based on brain connec-
tivity. We consider BrainNetGNN (Mahmood et al., 2021),
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Table 1: r values of our hyperedges compared to baselines on the ABCD dataset. Results are averaged over 10 runs.
Deterministic methods do not have standard deviations.

Type Model SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

Standard pairwise 0.113 0.218 0.099 0.164 0.201 0.322 0.299 0.289

Hypergraph
Construction

kNN 0.115 0.268 0.168 0.127 0.257 0.266 0.238 0.315
l1 hypergraph 0.099 0.223 0.125 0.126 0.145 0.295 0.242 0.259
l2 hypergraph 0.096±0.002 0.197±0.003 0.118±0.003 0.157±0.016 0.203±0.005 0.272±0.004 0.289±0.011 0.307±0.006

Connectivity
based

Prediction

BrainNetGNN 0.227±0.060 0.287±0.043 0.266±0.046 0.221±0.040 0.468±0.058 0.480±0.068 0.506±0.057 0.453±0.028

BrainGB 0.190±0.073 0.214±0.051 0.265±0.048 0.176±0.066 0.447±0.089 0.483±0.077 0.458±0.064 0.432±0.076

BrainGNN 0.262±0.030 0.235±0.032 0.260±0.049 0.185±0.058 0.455±0.028 0.391±0.077 0.445±0.078 0.368±0.041

BrainNetTF 0.327±0.084 0.338±0.056 0.370±0.098 0.334±0.084 0.633±0.178 0.631±0.142 0.629±0.123 0.588±0.138

Ours HYBRID 0.361±0.058 0.348±0.061 0.386±0.060 0.223±0.056 0.738±0.054 0.714±0.037 0.816±0.053 0.730±0.049

Table 2: r values of our hyperedges compared to baselines
on the ABIDE dataset. Results are averaged over 10 runs.
Deterministic methods do not have standard deviations.

Type Model FIQ VIQ PIQ

Standard pairwise 0.052 0.124 0.056

Hypergraph
Construction

kNN 0.023 0.093 0.056
l1 hypergraph 0.043 0.125 0.061
l2 hypergraph 0.148±0.000 0.141±0.014 0.063±0.004

Connectivity
based

Prediction

BrainNetGNN 0.162±0.042 0.199±0.042 0.223±0.025

BrainGB 0.125±0.119 0.154±0.068 0.157±0.053

BrainGNN 0.105±0.041 0.176±0.049 0.159±0.051

BrainNetTF 0.132±0.111 0.176±0.053 0.180±0.054

Ours HYBRID 0.181±0.040 0.204±0.031 0.245±0.042

BrainGNN (Li et al., 2021), and BrainNetTF (Kan et al.,
2022b). BrainGB (Cui et al., 2022a) is a study of different
brain graph neural network designs and we include its best
design as a baseline. Since none of these models are able
to identify hyperedge structures of brain regions, we input
their last layer embeddings (each entry as a weight) into the
CPM model. Note that our weights w are also last layer
embeddings in HYBRID.

Implementation & Training Details Hyperparameter
choices and other details can be found in Appendix E.

Results We report r values by CPM in Table 2 and Table 1.
As we can see, on the ABIDE dataset, HYBRID consistently
outperforms all the baselines on different targets, with an av-
erage improvement of 8.8% compared to the state-of-the-art
model. On the ABCD dataset, HYBRID outperforms the
state-of-the-art predictive models on 7 datasets of ABCD,
with an average improvement of 12.1%. The results demon-
strate our model is able to learn informative hyperedges
towards different phenotypic outcomes from fMRI data of
various brain states. Rest 1 is the only dataset that our model
reaches the second-best. We conduct analyses and propose
the potential reasons in Appendix F.

Further, the comparison between our model and the pairwise

baseline demonstrates the superiority of incorporating high-
order relationships over relying solely on pairwise ones.

Runtime HYBRID outperforms all other deep learning
baselines in efficiency, with 87% faster than the second-
fastest one (BrainNetTF). Refer to Appendix J for more
runtime details.

Ablation Studies We conduct an ablation study on the
effect of our masking mechanism. Specifically, we com-
pare our model with 3 variants: 1) HYBRIDRndMask: Re-
place the learnable masks with random masks with the
same sparsity, initialized at the beginning of training. 2)
HYBRIDNoMask: Do not mask at all, which means all
nodes and their features are visible to each head. 3) HY-
BRIDSoftMask: Remove the indicator function and use pkθ,i
directly in Equation 3. Ablation results are shown in Table
3. We find the original HYBRID and the HYBRIDSoftMask

outperform all other variants, which demonstrates the effect
of learnable masks. Moreover, the original HYBRID is
better than its soft version HYBRIDSoftMask, which demon-
strates our sparse and succinct representations preserve bet-
ter information than smooth ones. Other ablation studies
such as the choices of the number of hyperedges and choices
of β can be found in Appendix I.2.

Additional Experiments on Synthetic Dataset Since
there are no ground-truth hyperedges in real-world datasets
of learning informative hyperedges towards a specific out-
come, we construct a synthetic dataset to verify if our model
can recover the correct hyperedge structure under the MIMR
objective. We use the precision, recall, and F1 score to mea-
sure the correctness of the learned hyperedges with respect
to the ground truth. Although it is challenging to learn hy-
peredges when only supervised by the task label, we find
that our model reaches high performances, with an average
improvement of 28.3% in terms of the F1 score, compared
to the strongest baselines. Details about the synthetic exper-
iments can be found in Appendix G.
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Table 3: Ablation studies on the masking mechanism. Results are averaged over 10 runs.

Model SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

HYBRID 0.361±0.058 0.348±0.061 0.386±0.060 0.223±0.056 0.738±0.054 0.714±0.037 0.816±0.053 0.730±0.049

HYBRIDNoMask 0.297±0.035 0.274±0.057 0.323±0.059 0.221±0.034 0.653±0.036 0.599±0.059 0.757±0.021 0.543±0.038

HYBRIDRndMask 0.256±0.069 0.191±0.046 0.255±0.080 0.190±0.051 0.541±0.069 0.514±0.038 0.598±0.064 0.482±0.083

HYBRIDSoftMask 0.343±0.042 0.314±0.040 0.320±0.055 0.245±0.061 0.707±0.042 0.662±0.058 0.796±0.031 0.655±0.030
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Figure 4: Hyperedge profiles. (a) Hyperedge degree distribution of learned hyperedges. (b) Correlation between hyperedge
degree and significance. (c) Comparison between the number of hyperedges and pairwise edges under different significance
thresholds. The total number of hyperedges is 32. And the total number of pairwise edges is 26, 896.

Additional Experiments on Model Fit We further dis-
cuss the model’s goodness of fit in Appendix H, with
Mean Squared Error (MSE) as the evaluation metric. Our
model outperforms the state-of-the-art model in 9 out of 11
datasets, with an average improvement of 11.9%.

5.2. Further Analysis

In this subsection, we analyze the results of our model. We
mainly use the ABCD dataset in the analysis since it is much
larger than the ABIDE dataset.

Hyperedge Degree Distribution We plot the hyperedge
degree distribution in Figure 4a. We find there are two dis-
tinct clusters in the figure. The first cluster is hyperedges
with degree ≤ 5. 1-degree and 2-degree hyperedges are
special cases of our method: 1-degree hyperedges are in-
dividual nodes, which imply the contribution of individual
regions to the cognition. 2-degree hyperedges reveal the
importance of traditional pairwise connectivity. The other
cluster concentrates around degree 25, which implies the
importance of relationships of multiple regions.

Hyperedges with Higher Degree are More Significant
Since CPM conducts a significance test (details can be found
in Appendix B) on pairwise edges and hyperedges internally
based on a linear regression model, we can obtain a P-value
for each hyperedge from the significance test. We define the
significance of a hyperedge as 1− Pv ∈ [0, 1] where Pv is
the P-value of that hyperedge.

The relationship between hyperedge degree and its signifi-
cance is shown in Figure 4b. In this figure, we find a strong
positive correlation between a hyperedge’s degree and its
significance, which indicates that interactions of multiple
brain regions play more important roles in cognition than
pairwise or individual ones. It is also worth mentioning that
there is a turning point around degree 5, which corresponds
to the valley around 5 in Figure 4a.

High-order relationships are Better than Pairwise Ones
To compare the significance in cognition between pairwise
edges and learned hyperedges, we plot the number of re-
maining edges under different thresholds in Figure 4c. We
find out that the learned hyperedges are much more signif-
icant than pairwise ones. Also note that even if we set the
threshold to an extremely strict value (1× 10−8), there are
still 60% hyperedges considered significant. This evidence
shows that our high-order relationships are much more sig-
nificant than the traditional pairwise connectivity, which
implies relationships involving multiple brain regions could
be much more essential in cognition.

Hyperedge Case Study We visualize the most significant
hyperedge of the EN-back task in Figure 5. We observe
a coordinated interaction of numerous brain regions, each
fulfilling specific roles. Notably, some of these regions serve
multi-functional purposes:

• Memory Processing ParaHippocampal L, Temporal
Mid: Essential for memory encoding and retrieval,
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Figure 5: Visualization of the most significant hyperedge of the EN-back task.

these regions are integral to the EN-back task, facilitat-
ing the recall of previously viewed images.

• Emotional Processing Amygdala R: The amygdala is
crucial for the processing of emotions, such as fear and
pleasure. Since the EN-back task involves emotional
stimuli, it is reasonable that the region is connected by
the hyperedge.

• Visual Processing: Calcarine R, Lingual L,
Fusiform L. These regions are responsible for visual
perception and some of them are related to complex
visual contents like symbols and human faces, which
were presented during the fMRI task.

• Sensory SupraMarginal L: It is responsible for inter-
preting tactile sensors and perceiving limbs location.
Its involvement is likely due to the requirement for
participants to engage in specific physical actions, such
as pressing buttons, during the task. Temporal Mid: It
functions in multi-modal sensory integration.

• Motor Control Cerebellum: It is primarily responsible
for muscle control. Caudate: It plays a crucial role in
motor processes. Its involvement is likely attributed to
participants engaging in physical actions, like pressing
buttons.

• Cognitive Control ACC pre L: In the EN-back task,
this region is likely crucial for maintaining focus, er-
ror detection and correction, conflict management in
working memory, and modulating emotional responses
to the task’s demands.

More visualizations about individual region importance can
be found in Appendix K.

6. Conclusion
In this work, we proposed HYBRID for identifying maxi-
mally informative yet minimally redundant (MIMR) high-
order relationships of brain regions. To effectively optimize
our model, we further proposed a novel information bottle-
neck framework and derived its theory. Our method outper-
forms state-of-the-art models. The result analysis shows the
effectiveness of our model. We expect such advancements
could benefit clinical studies, providing insights into neuro-
logical disorders, and offering improved diagnostic tools in
neurology and other related fields.

Limitations HYBRID only considers static high-order
relations. Given that fMRI tasks are dynamic, including
temporal changes and interactions, it will be interesting to
study the evolution of these high-order relationships.

Additionally, HYBRID does not offer a method for inter-
preting complex high-order relationships. This limitation is
not specific to HYBRID, but is a common challenge in ana-
lyzing such relationships.We propose a hierarchical strategy
that has the potential to interpret them to a certain extent,
which is detailed in Appendix L

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proof of the Upper Bound
In this section, we prove the upper bound of I(H;X) in multi-head drop-bottleneck in Equation 10.

y

x z

Figure 6: The graphical model of random variables X , Y and Z.

Lemma A.1. Given random variables X , Y and Z. Their relationships are described in the graphical model illustrated in
Figure 6. We have

I(X;Y |Z) ≤ I(X;Y ) (14)

Proof.
I(X;Y |Z)− I(X;Y )

=

∫
p(x, y, z) log

p(z)p(x, y, z)

p(x, z)p(y, z)
dxdzdy

−
∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

=

∫
p(x, y, z) log

p(z)p(x, y, z)

p(x, z)p(y, z)
dxdzdy

−
∫

p(x, y, z) log
p(x, y)

p(x)p(y)
dxdydz

=

∫
p(x, y, z) log

p(z)p(x, y, z)p(x)p(y)

p(x, z)p(y, z)p(x, y)
dxdzdy

=

∫
p(x, y, z) log

p(z)p(x, z|y)p(y)p(x)p(y)
p(x, z)p(y, z)p(x, y)

dxdzdy

=

∫
p(x, y, z) log

p(z)p(x|y)p(z|y)p(y)p(x)p(y)
p(x, z)p(y, z)p(x, y)

dxdzdy

=

∫
p(x, y, z) log

p(x)p(z)

p(x, z)
dxdzdy

=

∫
p(x, z) log

p(x)p(z)

p(x, z)
dxdz

= −I(X;Z) ≤ 0

(15)

which finishes the proof.

Corollary A.2. Given the same graphical model 6, we have

I(X,Z;Y ) ≤ I(X;Y ) + I(Z;Y ) (16)

Proof. Using the chain rule of mutual information, we obtain

I(X,Z;Y ) = I(X;Y |Z) + I(Z;Y ) (17)

According to Lemma A.1, we have I(X;Y |Z) ≤ I(X;Y ), which finishes the proof.
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Theorem A.3. For random variables in Equation 10, we have

I(H;X) ≤
K∑

k=1

I(hk;X) (18)

x

hk

K

Figure 7: The graphical model of random variables hk and X

Proof. According to the definitions of X and H , which are described in Section 4, we can draw a graphical model of them
in Figure 7. Define a new random variable hk1:k2 = [hk1 ,hk1+1, · · · ,hk2−1,hk2 ], which is a concatenation from hk1 to
hk2 . According to Corollary A.2 we have

I(H;X) ≤ I(h1, X) + I(h2:K , X)

≤ I(h1, X) + I(h2, X) + I(h3:K , X)

≤ I(h1, X) + I(h2, X) + I(h3, X) + · · ·

≤
K∑

k=1

I(hk;X)

(19)

Theorem A.4. (proposition 1)

I(H;X) ≤
K∑

k=1

N∑
i=1

I(hk
i ;Xi) =

K∑
k=1

N∑
i=1

H[Xi](1− pkθ,i) (20)

Proof. Given Theorem 2. It suffices to prove

I(hk;X) ≤
N∑
i=1

I(hk
i ;Xi) =

N∑
i=1

H[Xi](1− pkθ,i), ∀1 ≤ k ≤ K (21)

And this is exactly the conclusion in (Kim et al., 2021) if we consider hk and X as X and Z respectively in their paper.

B. Connectome-Based Predictive Modeling
Shen et al. (2017); Finn et al. (2015) have shown tremendous promise in recent years in detecting imaging biomarkers by
CPM (connectome-based predictive modeling) (Rosenberg et al., 2015; Dubois et al., 2018; Rosenberg et al., 2020; 2016).
Such a model, based chiefly on functional MRI data, can measure the significance of the input edge weights, which is
revealed by a correlation coefficient that reflects the correlation between the edge weights and the neurological outcomes.
One could expect a large correlation coefficient to indicate the high quality of edge weights. We utilize the CPM as an
evaluation model to evaluate the quality of our learned hyperedges. Here is a pipeline overview of the CPM process:

1. Connectivity Calculation: For each subject, compute the Pearson correlation coefficients for each possible pair of
brain regions. This is based on the fMRI series of those regions.
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2. Edge Significance: Calculate the correlation between each brain connectivity edge and the outcome of interest (e.g.,
cognition scores) across all subjects. The correlation of an edge indicates its significance.

3. Edge Selection: Identify significant connectivity edges. These are the edges where the correlation values are greater
than a predetermined significance threshold.

4. Weight Summation: For each subject, sum the weights of the significant edges identified in the previous step to derive
a single summary score (scalar).

5. Model Fitting: Fit a linear model that predicts the neurological outcomes based on the summed weights, where each
subject is a sample.

6. Model Evaluation: Across all subjects, calculate the correlation of predicted values and the neurological outcomes.
Note that this correlation coefficient is equivalent to the one between the summed weights and the outcomes, and is
exactly the metric r we use to evaluate our hyperedges in Equation 13.

Since positive edges and negative edges will cancel out with each other when being summed, we adopt the combining
strategy in (Boyle et al., 2023).

CPM Measures the Quality of Edge Weights According to step 6, the evaluation of the predictive model could be
measured by the correlation between predicted and ground-truth outcomes (Shen et al., 2017). Since CPM is a linear model
that predicts the outcome based on the sum of significant edge weights, the correlation is equal to the correlation between
the sum and ground-truth outcomes (which is exactly the r in Equation 13). Hence, one can expect a larger correlation if the
edge weights are more correlated (and thus are more predictive).

Significance of Edges in CPM In step 2, CPM obtains a correlation coefficient rk for each edge weight wk and the
cognition score Y across all subjects. Consider a classical hypothesis test H0 : rk = 0, H1 : rk ̸= 0. Assume wk and Y are
drawn from independent normal distribution (corresponds to H0), the probability density function of correlation coefficient
rk is

f(rk) =

(
1− rk

2
)n/2−2

B
(
1
2 ,

n
2 − 1

) ,

where n is the number of samples and B is the beta function. Based on the distribution, we obtain a P -value for the k-th
edge, which is used to measure the significance of the edge.

C. Computational Complexity
Suppose we have N regions as N nodes and K hyperedges. For the CONSTRUCTOR, the unignorable computation is
from the mask operation. The computational complexity of this step for each hyperedge is O(Nd) since it does a pairwise
multiplication operation of a matrix of size N × d. Given that there are K hyperedges, the total complexity is O(NKd). For
the WEIGHTER, the computation is from the dim reduction operation and the linear head. The dim reduction operation is an
MLP. In this work, the hidden dimensions are a fraction of the original feature dimension. Therefore, the complexity of the
dim-reduction MLP is O(d2). The linear head only contributes O(d), which is neglectable. As a result, the computational
complexity of the whole model is O(NKd+ d2) = O(N2K) since the feature dimension is equal to the number of regions
(See Appendix D for features we used). This complexity is just at the same scale as that of MLPs even though we are
addressing a more challenging task: identifying high-order relationships in an exponential space.

D. Dataset details
D.1. Preprocessing of ABCD Dataset

We use the preprocessed ABIDE dataset from the official website. We preprocessed the restricted ABCD dataset ourselves.
Below is the preprocessing procedure of the ABCD dataset.

raw data to voxel-level fMRI time series The fMRI data is processed using BioImage Suite (Joshi et al., 2011). First, we
performed motion correction and slice-time correction using SPM5; and via BioImage Suite, the data were registered to a
standardized 3mm× 3mm× 3mm common space, where we generated masks representing white matter, gray matter, and
cerebrospinal fluid (CSF) and computed the mean time courses for both white matter and CSF. We orthogonalized each
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Table 4: Statistics of datasets we use. ABIDE dataset only contains resting-state fMRI data. ABCD contains resting-state
and task-based data. We use ABCD of 2 timepoints. For example, Rest 1 means resting-state fMRI data from timepoint 1.

Dataset ABIDE ABCD

FIQ VIQ PIQ Rest 1 SST 1 EN-back 1 MID 1 Rest 2 SST 2 EN-back 2 MID 2

#(instances) 1035 1035 1035 1676 1673 1678 1678 1949 1053 1044 1062
length of time series 196 196 196 375 437 362 403 375 437 362 403

gray matter time course with respect to the mean time courses of both white matter and CSF, and we orthogonalized each
gray matter time course to the six motion-related signals via SPM5. We then applied a bandpass Butterworth filter with a
frequency range of 0.02Hz to 0.1Hz to the orthogonalized time courses. We used a Gaussian kernel with a full-width at
half-maximum (FWHM) of 6mm to enhance spatial coherence and spatial smoothing. Lastly, we removed the linear trend
from all signals in accordance with the methodology detailed in (Shen et al., 2013). We deleted scans with more than 0.10
mm mean frame-to-frame displacement. Additional details about the standard preprocessing procedures, such as slice time
and motion correction, and registration to the MNI template can be found in (Greene et al., 2018) and (Horien et al., 2019).

voxel-level fMRI time series to region features The fMRI time series data of a human subject is represented in four
dimensions (3 spatial dimensions + 1 temporal dimension), which can be imagined as a temporal sequence of 3D images.
First, brain images are parceled into regions (or nodes) using the AAL3v1 atlas (Rolls et al., 2020). Following previous
works (Kan et al., 2022b; Li et al., 2021; Thomas et al., 2022), each region’s time series is obtained by averaging all voxels
in that region. Consistent with previous connectivity-based methods (Li et al., 2021; Kan et al., 2022b; Ktena et al., 2018;
Said et al., 2023), for each region, we use its Pearson correlation coefficients to all regions as its features. We randomly split
the data into train, validation, and test sets in a stratified fashion. The split ratio is 8:1:1.

D.2. Dataset Statistics

The statistics of the number of instances and the time series length are summarized in Table 4.

E. Training Details
Due to the data scarcity, we found training on single sub-datasets of the ABCD dataset leads to severe overfitting. To
mitigate this, we train our model as well as all the baselines on all datasets together and report the results individually. Note
that on the ABIDE dataset, we train our model under the three targets separately since we don’t encounter such an issue on
the ABIDE dataset.

Hardware We train our model on a machine with an Intel Xeon Gold 6326 CPU and RTX A5000 GPUs.

Software See Table 5 for the software we used and the versions.

Table 5: Software versions.

software version

python 3.8.13
pytorch 1.11.0

cudatoolkit 11.3
numpy 1.23.3

ai2-tango 1.2.0
nibabel 4.0.2

Hyperparameter Choices The hyperparameters selection is shown in Table 6. Some crucial hyperparameters ablation
experiments can be found in Appendix I.
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Table 6: Hyperparameter choices.

notation meaning value

lr learning rate 1× 10−3

K number of hyperedges 32
β trade-off coefficients information bottleneck 0.2

[h1, h2, h3] hidden sizes of the dim reduction MLP [32, 8, 1]
B batch size 64

F. Why is HYBRID not the Best on the Rest 1 Dataset?
At present, we do not fully understand the reasons for the phenomena observed. The hypotheses outlined below are based
on our preliminary observations and analyses.

Hypothesis 1: Sparsity in Resting-State Connectivity We propose that resting-state connectivity is sparser and more
diffuse compared to task-based connectivity. This assertion is refined from our initial claim that the connectivity relevant to
the phenotypic outcomes during the resting state is notably sparser than during the task-based state.

Upon examining traditional pairwise connections, we summarized the number of significant connections most related to
the phenotypic outcome in Table 7. Our analysis indicates that Rest 1 exhibits the fewest phenotype-related connections,
suggesting that these connections are indeed sparse. We did not evaluate high-order relationships due to the lack of ground
truth data for such connections. Further investigation is required to validate this hypothesis.

SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

# (connections) 3164 3414 2989 2036 3112 3014 2692 3896

Table 7: The number of significant pairwise edges selected by CPM in different tasks and timepoints.

Hypothesis 2: Comparative Quality of Data Across Timepoints We hypothesize that the data quality at timepoint 1 is
inferior to that at timepoint 2. The performance metrics, as shown in the Table 8, are better at timepoint 2 than at timepoint
1. Moreover, timepoint 1 exhibits more severe overfitting compared to timepoint 2. This discrepancy may be attributed to
the higher relevance of the information (pertaining to the outcome) and lower noise levels at timepoint 2. This hypothesis
also requires further verification through detailed investigations and experiments.

SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

train 0.988 0.984 0.984 0.984 0.982 0.977 0.978 0.976
test 0.361 0.348 0.386 0.223 0.738 0.714 0.816 0.730

Table 8: Performances on training and test dataset in different tasks and timepoints.

Conclusion Brain activities during resting states are not driven by external tasks, leading to more diffuse and less
predictable patterns of activation. The low data quality of ABCD timepoint 1 (compared to timepoint 2) even intensifies this
issue. Therefore, high-order relations might not be a good inductive bias on the Rest 1 dataset since the connections might
be much more sparse and involve fewer nodes.

G. Evaluation on Synthetic Dataset
Dataset Synthesis Our synthetic dataset is constructed as follows:

1) Structure Generation: For each hyperedge, we randomly sample the hyperedge degree d from a discrete uniform
distribution between 2 and dmax. After that, we randomly sample d nodes as members of this hyperedge.
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Table 9: Precision, recall and F1 score on synthetic dataset under different K, where K is the number of hyperedges. The
performance of the Random method increases as K increases because the Hungarian algorithm is likely to provide better
matches when there are more candidates.

Metric K = 1 K = 5 K = 10 K = 30

P R F1 P R F1 P R F1 P R F1

Random 0.158 0.094 0.110 0.182 0.170 0.171 0.224 0.218 0.218 0.288 0.250 0.266
kNN 0.533 1.000 0.696 0.247 0.241 0.243 0.144 0.156 0.148 0.139 0.128 0.133

l1 hypergraph 0.160 1.000 0.276 0.180 0.016 0.028 0.135 0.016 0.028 0.256 0.026 0.047
l2 hypergraph 0.987 0.825 0.897 0.412 0.631 0.494 0.276 0.499 0.351 0.233 0.470 0.310

HGCN 0.625 1.000 0.769 0.196 0.477 0.278 0.188 0.379 0.251 0.277 0.364 0.314

HYBRID (Ours) 1.000 1.000 1.000 0.595 0.680 0.631 0.504 0.604 0.549 0.428 0.393 0.401

2) Feature generation: For each hyperedge, we randomly sample a scalar value v from the uniform distribution U(0, 1). We
then randomly sample the features from U(0, 2v) for each node in this hyperedge.

3) Label Generation: For each hyperedge, we calculate the maximum of its node features as the summary of the hyperedge.
We sum the summaries of all hyperedges to get a single value Y as the label of the hypergraph.

Note that consistent with our settings of real-world datasets, the structure is shared across all hypergraphs, while node
features and hyperedge weights are different.

Metrics We use the macro-precision, recall and F1 score to measure the correctness of the learned hyperedges with respect
to the ground-truth ones. Note that when learning on the synthetic dataset, the order of hyperedge may differ from the
ground truths. Therefore, the Hungarian algorithm is employed to match the learned hyperedges with the ground truth. The
precision, recall and F1 score are calculated after matching.

Baselines We use the hyperedge construction methods in Section 5, i.e. kNN(Huang et al., 2009), l1 hypergraph(Wang
et al., 2015) and l2 hypergraph(Jin et al., 2019) as our baselines. Besides, we implement a hypergraph structure learning
model. This is a hypergraph convolutional neural network (HGCN) (Bai et al., 2021), where both the parameters of layers
and the hypergraph structure (the incidence matrix) are learnable.

Implementaton Details The maximum degree dmax is set to 34, which is the maximum degree of hyperedges of the
ABCD dataset according to the analysis in Section 5. The number of nodes is set to 164, which is the number of regions of
AAL3v1 atlas, used in the ABCD experiment. We conduct the experiments under different numbers of hyperedges (i.e.
K = 1, 5, 10, 30).

Results We report the results under different numbers of hyperedges. Although this is a hard task, our model consistently
outperforms all the baselines significantly, with an average improvement of 28.3% in terms of the F1 score. This demonstrates
that our model can learn the hyperedges well under the MIMR objective, without the direct supervision of hyperedge ground
truths. This also inspires us to use automated model evaluation techniques (Wang et al., 2023a; Peng et al., 2023; 2024) on
real-world data in the future where labelled high-order relationships are not readily accessible.

H. Model Fit Performance
We report the goodness of fit of our model and the state-of-the-art baseline in Table 10, with the Mean Square Error (MSE)
as the metric.

Model FIQ VIQ PIQ

BrainNetTF 5.917 5.429 3.355
HYBRID (ours) 3.477 4.331 2.806

Table 10: Performance of the model and baselines (MSE) in fitting the target on the ABIDE dataset.
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Model SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

BrainNetTF 1.153 1.373 1.147 1.244 0.616 0.677 0.720 0.750
HYBRID (ours) 1.031 1.348 1.275 1.470 0.604 0.641 0.543 0.464

Table 11: Performance of the model and baselines (MSE) in fitting the target on the ABCD dataset.

I. More Ablation Studies
I.1. Choices of Number of Hyperedges K

As explained in Section 4, we use K heads for K hyperedges. We study the correlation between the r value and the number
of hyperedges on three datasets:

0 10 20 30 40 50 60
No. of hyperedges K

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

r

dataset
SST 1
SST 2
Rest 2

(a) The performance with increasing the number of hyperedges
through 2, 7, 12, 17, 22, 27, 32, 37, 52, 57, 62 on three datasets.

0.0 0.2 0.4 0.6 0.8 1.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8

r
dataset

Rest 1
SST 1
nBack 1
MID 1
Rest 2
SST 2
nBack 2
MID 2

(b) Performance with increasing β from 0.1 to 1.0 with step 0.1
on all datasets.

Figure 8: Studies on the choice of two key hyperparameters, β and K, in our model.

From Figure 8a, we find that the overall performance increases dramatically before K = 17, but becomes stable and close
to saturation after K = 32. To improve the efficiency while ensuring the performance, we choose K = 32.

I.2. Choices of the Trade-off Coefficient β

In our optimization objective 8, β acts as a trade-off parameter, which is a non-negative scalar that determines the weight
given to the second term relative to the first. To study its fluence to the performance, we plot the model performances on
all datasets under different β in Figure 8b. We can see performances on 3 datasets (Rest 1, SST 2) consistently decrease
when β increases. However, on other 5 datasets (SST 1, MID 1, Rest 2, nBack 2, MID 2), we can observe a peak at β = 0.2.
Accordingly, we adopt β = 0.2.

J. Runtime Comparison
Figure 9 summarizes the per-batch training time of all deep learning models. We find that HYBRID is the most efficient
one, with 87% faster than the second one (BrainNetTF) and at least 1255% faster than the GNN-based ones.
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Figure 10: Visualization of the frequency of each region under different fMRI tasks.
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Figure 9: Training time per batch of all deep learning models.

K. More Visualizations
Task-Based Brain Region Importance To better understand the roles of each brain region in cognition under different
fMRI tasks, we study the frequency at which each region appears in a hyperedge out of all identified hyperedges. The
frequency, which can be considered as a measure of region importance, is visualized in Figure 10. Visual regions (Fusiform,
Cuneus, Calcarine) are especially active due to the intensive visual demands in all three tasks. We found that the Inferior
frontal gyrus, opercular part and the Anterior cingulate cortex, pregenual, recognized for their participation in response
inhibition (Pornpattananangkul et al., 2016), frequently appear in the SST task. This aligns with what the SST task was
designed to test. Interestingly, of the three tasks (SST, EN-back, MID), only EN-back prominently involves the Amygdala, a
key region for emotion processing. This makes sense as EN-back is the only task related to emotion.

Resting-State Brain Region Importance We visualize the region importance of the resting state in Figure 11. Different
from task states, where specific brain regions are activated in response to particular tasks, brain activities during resting
states, are not driven by external tasks, leading to more diffuse and less predictable patterns of activation. This makes it
harder to pinpoint specific interactions or functions.

Putamen Insula_R

Amygdala_R Precentral_R

Calcarine_R

Temporal_Sup_R

Figure 11: Region importance of resting state.
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L. Discussion of the Possible Methods to Interpret Hyperedges
As mentioned in the main text, high-order relationships are much harder to interpret than pairwise ones given the exponential
complexity. Here we propose a potential hierarchical strategy that tries to interpret them.

• Adaptive Clustering Algorithm with Adjustable Granularity: Suppose we have a clustering algorithm, where the
granularity (or number of clusters) can be controlled. The clustering algorithm can cluster brain regions based on their
functions (e.g. motor, visual, . . . ) to different function modules (Shen et al., 2010).

• Initial Analysis at Lower Granularity: Set the granularity at a low level (i.e. small number of clusters). In this
case, the high-order relationships are much easier to interpret (since the degree is low). However, some high-order
relationships will connect to the same set of clusters, thus implying the interactions between the same set of function
modules. For example, high-order relations h1 and h2 both connect to visual, motor, and emotion.

• Refinement through Increased Granularity: Find the high-order relationships that connect to the same set of function
modules, and increase the granularity level, so we can tell the difference between them. For example, h1 may connect
to the left part of the visual module, while h2 connects to the right part.
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