
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CREDIT-BUDGETED ICPC-STYLE CODING: WHEN
LLM AGENTS MUST PAY FOR EVERY DECISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Contemporary coding-agent benchmarks applaud “first correct answer,” silently
assuming infinite tokens, container minutes, and developer patience. In produc-
tion, every LLM call, test re-run, and rollback incurs hard cost; agents that cannot
budget these resources are dead on arrival. We close the gap with USACOArena,
an ICPC-inspired arena where agents pay deterministic credits for every prompt,
compilation, test, or rollback. A task becomes a cost–benefit negotiation under
uncertainty: is a second sample worth 15% of the remaining budget, or should
the agent pivot to a cheaper heuristic? Real-time deduction exposes decision pro-
files hidden from static leaderboards: the tax of over-specialized generators, the
ROI of early-exit heuristics, and the compound interest of lightweight scaffold-
ing. Even identically seeded agents diverge in self-play, revealing a rich policy
space where the same model oscillates between spendthrift submission sprees and
parsimonious exploration. Released as a reproducible benchmark and zero-shot
curriculum, USACOArena provides the traces, credit engine, and six state-of-the-
art decision logs to catalyze research on coding agents that know when to stop.

1 INTRODUCTION

As Large Language Models (LLMs) master the syntax of correct code, the next frontier is coding
agents that decide what to code, how long to persist, and when to walk away—skills that are pro-
cedural, not declarative. These meta-decisions—sizing a task, rationing a budget, abandoning a
dead-end—cannot be scraped from static repositories; they must be forged in tight feedback loops.
Imagine a 500-token cap: does the agent burn 400 on a greedy heuristic that later fails hidden tests,
or pause and pivot to dynamic programming? No dataset records the optimal choice; it is revealed
only through interaction.

Consequently, the missing ingredient is not more data but a crucible: a cheap, objective, repeatable
environment where every decision is punished or rewarded within milliseconds. Competitive pro-
gramming is that crucible. Each task is a self-contained, perfect-information game: rules, budget,
and grader are all disclosed up-front, isolating raw decision-making from the noise of real-world
codebases. Pass/fail is binary and costs milliseconds, letting us iterate on policy instead of waiting
for cloud builds. The tech industry already uses contests as a proxy for general problem-solving
ability; we simply extend the same logic to agents.

Complex software engineering benchmarks (Jimenez et al., 2023; Yang et al., 2024; 2025a; Jain
et al., 2025b; Zhou et al., 2025; Badertdinov et al., 2025) remain invaluable, yet they target a differ-
ent skill stack: long-horizon planning amid missing documentation, legacy APIs, and asymmetric
information. Competitive puzzles strip away those confounders, much as chess—simpler than war,
yet rich enough to birth modern game-playing AI—so we can measure how an agent reasons under
pressure, not merely what it knows.

In this paper, we introduce USACOArena, an interactive arena built on the foundations of the ACM
International Collegiate Programming Contest (ICPC). We chose the ACM-ICPC format because
its all-or-nothing scoring system—where solutions receive points only if they pass all test cases—
directly promotes the development of robust, “zero-bug” solutions. This demand for absolute cor-
rectness is not just a feature of the game. It is a direct proxy for the reliability required of agents
performing high-stakes, real-world tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Capability GapUSACOArena
Competitive Pressure Resource Constraint

Assess Task Difficulty？

Flexibly abandon？

Make intelligent trade-offs？

Manage a budget？

SWE-Bench

I still have a lot of
credit, so I can try
more questions to get
a higher score

There is a big gap
between me and No.1,
so I firstly solve the
high score problems

Find specific,
external knowledge？

I have seen this pattern
before. ’asyncio’ ……

Reveal

An ’async def’ function,
which is supposed to run a
network task in the
background……

I haven't seen this
pattern before……

Reveal Knowledge Gap

Mathematical Logic
Algorithm Library
Programming
Language
Competition Rule

Open and Transparent

README.md
Config.json

Partly Visible Problem Details Unit
Tests

Unit
Tests

Debug

Debug

Figure 1: A comparative illustration of two evaluation paradigms for coding agents. Top: In an
information-asymmetric environment like Software Engineering, where crucial information may
be only partly visible, an agent’s success can depend on possessing specific, external knowledge.
The evaluation primarily reveals a Knowledge Gap. Bottom: In our information-symmetric envi-
ronment, USACOArena, all rules and algorithmic knowledge are transparent. Agents must make
decisions under Competitive Pressure and a Resource Constraint. This design isolates the decision-
making process itself, revealing a Capability Gap in core skills such as managing a budget, assessing
task difficulty, and making intelligent trade-offs.

However, an environment designed for humans cannot be directly used for agents. The key human
constraint of time, for example, is an unfair metric for LLMs due to network latency. To build a fair
and reproducible testbed, we make a key adaptation: we translate time into an agent-native resource
called credit. Every significant action, from LLM inference to local testing, consumes credits from
a finite budget. This design transforms problem-solving into a process of cost-benefit analysis. It
compels the agent to reveal its ability to manage resources and make intelligent trade-offs.

We conduct comprehensive experiments in USACOArena that go beyond simple rankings to reveal
the decision-making profiles of leading LLM agents. Our analysis uncovers distinct problem-solving
approaches, such as Gemini-2.5-pro’s aggressive strategy and GPT-5-Codex’s conservative one. We
further isolate the impact of design choices through controlled “civil war” experiments within the
GPT-5 family, finding that code-specialization can enhance reliability at the cost of initiative, while
a well-designed agentic framework can boost overall performance. These results demonstrate that
USACOArena measures the effectiveness of an agent’s approach, not just its raw capability.

Finally, to probe the depth of our environment’s decision space, we conduct a series of self-play
experiments. By pitting two identical instances of the top-performing agent Gemini-2.5-pro against
each other, we remove model capability as a variable and focus purely on the emergent decision-
making process. The results show a striking diversity of outcomes; the competitions rarely end in a
tie, with each agent discovering different paths through the problem space. This demonstrates that
USACOArena is not a simple, deterministic puzzle but a complex environment that elicits varied
and path-dependent behaviors. This further highlights the potential of our arena to serve not only as
a testbed, but also as a dynamic training ground for cultivating more strategically capable agents.

In summary, our contributions are as follows:

• We introduce a methodology for evaluating coding agents based on their decision-making
skills under resource constraints, shifting the focus beyond simple code correctness.

• We present USACOArena, an arena inspired by the ACM-ICPC, featuring a credit-based
system designed to rigorously measure agent performance.

• We provide a comprehensive analysis of leading agents, revealing deep differences in their
problem-solving approaches that are invisible in static tests.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Our research is positioned at the intersection of two key areas: the advancement of code generation
models and the emergence of LLM-based agents. We introduce a new evaluation paradigm that
bridges a critical gap between them by providing a dynamic arena to measure the code correctness
and strategic resource management capabilities of agents.

2.1 LLMS FOR CODE AND THE RISE OF STATIC BENCHMARKS

Recent breakthroughs in Large Language Models (LLMs) have significantly advanced automated
code generation. Models from OpenAI (OpenAI, 2025b), Anthropic (Anthropic, 2025a;b), and
others (Guo et al., 2024; Wei et al., 2024; DeepSeek-AI et al., 2024; Cummins et al., 2024; Liu
et al., 2024) have demonstrated powerful coding abilities across various benchmarks. To assess
these capabilities, a suite of evaluation benchmarks has been developed. Early benchmarks like
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) establish functional correctness as
the primary metric. The scope of evaluation later expands to more complex domains, including
algorithmic competition problems (Li et al., 2022; Shi et al., 2024) and real-world software engi-
neering tasks (Jimenez et al., 2023; Li et al., 2025; Liu et al., 2025). Recent efforts have further
improved evaluation rigor with live problem sets (Jain et al., 2024; Zheng et al., 2025), robust rank-
ing systems (Quan et al., 2025; Yang et al., 2025b), multiple function calls (Zhuo et al., 2025),
language-driven coding (Deng et al., 2025) and interactive debugging (Yuan et al., 2025).

However, these benchmarks share a fundamental limitation: they are static and non-interactive. By
focusing exclusively on the correctness of the final code output (the “what”), they fail to measure the
strategic decision-making process (the “why”). Factors such as the efficiency of the development
process, resource management, and balancing trade-offs under constraints remain unevaluated.

2.2 THE EMERGENCE OF CODING AGENTS

To move beyond simple code generation, sophisticated agentic frameworks have emerged, fea-
turing diverse architectures, including coder-tester co-evolution (Wang et al., 2025b), generator-
verifier pairs (Jain et al., 2025a), policy-critic models (Xie et al., 2025), and retriever-generator
pipelines (Wang et al., 2025a), as well as internal reasoning mechanisms such as feedback loops and
explanation-driven repair (Jiang et al., 2025; Gehring et al., 2025). Additionally, Multi-Agent Sys-
tems like AutoGPT (Significant Gravitas), MetaGPT (Hong et al., 2024), AgentVerse (Chen et al.,
2024b), OpenHands (Wang et al., 2024), and others (Ma et al., 2024; Gao et al., 2024; Chen et al.,
2024a; Yang et al., 2024; Xia et al., 2024; Aggarwal et al., 2025) have been built on multi-agent
platforms employ complex workflows to solve programming tasks.

Despite their architectural complexity, the effectiveness of these agents is still primarily measured
using the same static benchmarks. This creates a disconnect: an agent could take a costly and
inefficient path, making thousands of attempts to find a solution, but this entire process is invisible
in an evaluation that only scores the final, correct output. The strategic competence of these agents
remains largely unobserved and unquantified.

2.3 THE MISSING PARADIGM: RESOURCE-AWARENESS EVALUATION

In the domain of Reinforcement Learning, learning from experience in an interactive environment
has been the key to achieving superhuman performance. Works such as SWE-rebench (Badertdinov
et al., 2025) and R2E-Gym (Jain et al., 2025b) focus on generating large-scale, executable environ-
ments from real-world or synthetic data, providing crucial training grounds for agents. Evaluation
frameworks like ColBench (Zhou et al., 2025) and TheAgentCompany (Xu et al., 2025) are being
developed to improve and measure agent performance on complex, multi-step tasks.

However, these systems are limited by a shared premise: their "environment" primarily serves as
an execution sandbox, focusing the evaluation solely on the correctness of the final code artifact. In
contrast, USACOArena is designed to evaluate not only an agent’s ability to produce correct code but
also its capacity for strategic resource management. This is accomplished through a comprehensive
scoring and credit model that extends beyond simple correctness checks, forcing agents to make
trade-offs that are central to superhuman intelligent behavior.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Problem
Corpus

Online
Judge

I find a solution, so I
Submit Code

I solved a problem, so I
View New Problem

I am stucked, so I
Request Hint

i

USACOArena
Gemini-2.5-pro

GPT-5-Codex

Status
Manager

MCP

Leaderboard Qwen3-235b

Credit Limit

Error Penalty

I’m in 1st place, so I
Terminate

Claude-4-Sonnet

Textbook
Guide

VS

VS

VS

MCP MCP

MCP

Figure 2: An overview of the USACOArena environment, designed to evaluate the strategic
decision-making of coding agents. Inspired by ACM-style programming contests, the environment
situates multiple competing agents within a formal system governed by a Credit Limit and Error
Penalty. Agents interact with the competition system through a standardized communication proto-
col (MCP). The diagram illustrates the dynamic nature of the competition, where agents must make
diverse strategic choices—such as submitting a solution, requesting a hint, or terminating to pre-
serve a high rank—based on their internal state and the real-time Leaderboard.

3 USACOARENA: AN ACM-INSPIRED ARENA FOR CODING AGENTS

This section details the design and construction of USACOArena, an interactive environment en-
gineered to evaluate the strategic decision-making of coding agents. Grounded in the principles
of human competitive programming, our methodology moves beyond static correctness checks to
create a rigorous and reproducible evaluation framework. We first articulate the foundational design
principles of our arena, justifying our adoption and adaptation of the ACM-ICPC competition format
and our choice of the USACO problem corpus (Section 3.1). We then describe the specific scoring
and credit model that operationalizes resource constraints and strategic trade-offs (Section 3.2). Fi-
nally, we detail the system architecture and communication protocol designed to ensure fair and
standardized agent interaction (Section 3.3).

3.1 FOUNDATIONAL DESIGN: ADAPTING THE ACM-ICPC FORMAT

To create a meaningful testbed for coding agents, we deliberately model USACOArena on the ACM
International Collegiate Programming Contest (ICPC), whose format aligns closely with the de-
mands of real-world software development. The ACM-ICPC’s all-or-nothing scoring system and
broad problem set reward the rapid development of robust, “zero-bug” solutions—a critical capa-
bility for any agent intended for practical application. This philosophy stands in contrast to other
paradigms like the IOI, which favor theoretical optimization over immediate correctness. A detailed
justification for this design choice is provided in Appendix B.

Operationalizing the ACM-ICPC format for contemporary agents, however, requires two key adap-
tations. First, given that the extreme difficulty of official ACM-ICPC problems would yield a sparse
evaluation signal for current models, we source our problem corpus from the USA Computing
Olympiad (USACO). Its tiered difficulty structure (Bronze to Platinum) provides a challenging yet
tractable gradient that allows for effective differentiation of agent capabilities. Each competition
uses 12 problems to mirror the scale of the ACM-ICPC World Finals, and we draw from the latest
season to create a “living benchmark” that mitigates data contamination.

Second, we translate the core human constraint of time into a unified, agent-centric resource: credit.
Physical time is an unreliable metric for API-based LLM agents due to network latency. Instead,
each agent receives a fixed credit budget, and all significant actions consume credits. This mechanic

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

transforms the evaluation into a resource management task, compelling agents to make strategic
decisions that directly parallel a human’s cognitive trade-offs under pressure.

To ensure the competition focuses on strategy rather than basic competence, we establish a quali-
fication standard: an agent must be able to solve at least one Bronze-level problem (details in Sec-
tion 4.1). Formally, an agent’s interaction within the USACOArena environment is a policy π that
produces a final result tuple: (Score,Consumed Credit). The agent’s objective is to maximize
its score, subject to the hard constraint that its action costs do not exceed the credit budget:

max
π

Score(π) subject to Caction(π) ≤ Climit (1)

3.2 SCORING AND CREDIT MODEL: OPERATIONALIZING ACM-ICPC RULES

To operationalize the principles outlined in Section 3.1, USACOArena employs an explicit model
for scores and credits. These mechanics are designed to directly mirror the incentives and pressures
of the ACM-ICPC, thereby creating a rigorous evaluation of an agent’s strategic competence.

Ranking and Scoring. The ranking system, as illustrated in the middle of Figure 2, is a direct
adaptation of the ACM-ICPC rules. Agents are ranked primarily by their total score, with the total
consumed credit serving as the tie-breaker, analogous to the number of problems solved and total
time in an ACM-ICPC contest. The score itself is a weighted sum of all fully accepted (AC) prob-
lems, with higher points awarded for more difficult tiers (e.g., Silver over Bronze). Crucially, and
in keeping with the ACM-ICPC’s emphasis on correctness, no partial credit is awarded for solutions
that fail any test cases.

The Credit Model. The credit system, which models a human’s allocation of time, is composed of
two distinct components: costs incurred for taking actions and penalties for incorrect submissions.

Action Costs are the resources an agent spends to make progress. Every strategic action has a cost,
creating meaningful trade-offs:

• LLM Inference Cost: This is the analogue to a human’s “thinking time”. The cost is
normalized by the model’s API price to account for the varying quality of generated tokens
(see Appendix F). More powerful, expensive models thus consume more credit, forcing a
trade-off between reasoning quality and resource efficiency.

• Hint and Test Cost: These costs are proxies for the time a human would spend consulting
resources or performing local debugging. They incentivize agents to use these actions
judiciously (details in Appendix I).

Penalty Costs are incurred for each incorrect submission (e.g., Wrong Answer, Time Limit Ex-
ceeded). This mechanism directly mirrors the time penalties in the ACM-ICPC that punish ineffi-
cient trial-and-error strategies.

This distinction between action costs and penalties is critical to the competition’s dynamics. An
agent’s session is terminated only if its action costs exceed the budget (Caction = CLLM + Chint +
Ctest ≤ Climit). However, the final ranking tie-breaker is based on the total consumed credit, which
includes penalties (Cconsumed = Caction + Cpenalty). This design motivates agents to not only solve
problems but to do so with high efficiency and accuracy.

3.3 SYSTEM ARCHITECTURE AND COMMUNICATION PROTOCOL

To ensure robust and standardized agent interaction, our system architecture is built around a turn-
based communication loop inspired by the Model Context Protocol (MCP) (Anthropic, 2024). At
each turn, the USACOArena server transmits the complete competition state—including consumed
credit, current score, the public leaderboard, etc. —to the agent in a structured JSON object. The
agent then responds with a formatted action, such as SUBMIT_SOLUTION. This protocol-driven
design is critical for the integrity of our evaluation. It guarantees that every agent operates with
identical information and within the same action space, thereby isolating strategic capability as the
primary variable under assessment. All code submissions are executed in a sandboxed online judge
emulator for security. This standardized, secure architecture makes USACOArena a reproducible
and extensible platform, allowing other researchers to easily integrate and evaluate their own agents.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) USACO 2024 December (b) USACO 2025 January

(c) USACO 2025 February (d) USACO 2025 US Open

Figure 3: Average agent scores and consumed credit across the four contests of the 2024–
2025 USACO season. Each subplot shows the results for a single contest, with agents sorted by
rank. Blue bars represent the average score (left axis), while the orange line indicates the average
consumed credit (right axis, log scale). Error bars and the shaded area denote the standard deviation
over five independent runs; for clarity, only agents that achieved a non-zero average score are shown.
The results reveal a stable and significant performance hierarchy: across all four contests of varying
difficulty, Gemini-2.5-pro and GPT-5-Codex consistently rank first and second, respectively.

4 EXPERIMENT

Our experimental evaluation demonstrates the utility of USACOArena in characterizing the capabil-
ities of modern coding agents. We first detail the experimental setup, covering the problem corpus,
agent construction, and the qualification process (Section 4.1). We then present the main competition
results, providing a robust ranking of leading LLM agents and a qualitative analysis of their inter-
active strategies (Section 4.2). Following this, we probe the behavioral patterns of different agent
architectures (Section 4.3) and conclude by exploring emergent behaviors in a self-play context,
highlighting USACOArena’s potential as a training environment for future reinforcement learning
applications (Section 4.4).

4.1 EXPERIMENTAL SETUP

All experiments are conducted following the ACM-inspired competition rules detailed in Section 3.
Our setup is designed to be rigorous, transparent, and grounded in realistic competitive scenarios.

Problem Corpus and Difficulty Baselining. The evaluation is conducted across the 48 problems
from the four contests of the complete 2024–2025 USACO season: the 2024 December, 2025 Jan-
uary, 2025 February, and 2025 US Open contests. To establish a grounded reference for the difficulty
of these novel problems, we first conducted a preliminary baselining study with a high-performing
agent (Gemini-2.5-pro) across the entire problem set. This analysis, detailed in Appendix C, informs
our interpretation of agent performance in the main experiments.

Agent Construction. The participants in our study are LLM-based agents, each constructed by
pairing a base LLM with a prompt that outlines the objective rules of the competition. Crucially,
the prompt is non-prescriptive; it informs the agent that its goal is to achieve the highest possible
rank but provides no explicit strategic guidance. This design ensures that the observed strategies

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

are emergent from the agent’s own reasoning capabilities. The full system prompt is provided in
Appendix H, and a detailed list of the models used is in Appendix F.

Competitor Qualification. To ensure our experiments primarily test strategic decision-making
rather than fundamental coding ability, we establish a qualification standard. An agent must suc-
cessfully solve the easiest Bronze-level problem from a contest’s problem set to qualify for that
specific competition. This filtering process yielded a consistent roster of top-tier models for all four
contests. The complete results for all contests are detailed in Appendix D.

4.2 MAIN COMPETITION: PERFORMANCE AND STRATEGIC ANALYSIS

To ensure the robustness and generalizability, we evaluate agents across the four distinct contests of
the 2024–2025 USACO season. Each contest is run five times, and the results presented in Figure 3
are the average of those runs. For this experiment, we select GPT-5-Codex as the representative for
the GPT-5 series, as it is specifically optimized for agentic coding tasks (OpenAI, 2025a).

A Stable Two-Tier Hierarchy. The results reveal a consistent two-tier performance hierarchy
across all four contests. Gemini-2.5-pro and GPT-5-Codex invariably secure the first and second
ranks, respectively, demonstrating a significant and reliable capability gap between these top-tier
agents and the rest of the field, whose performance is far more volatile. For clarity, the figure only
displays agents that achieve a non-zero average score in each contest.

In-Depth Analysis of Top-Tier Agents. While the main competition results establish a clear per-
formance hierarchy, they do not fully explain why one agent consistently outperforms another. The
final scores are merely the outcome of a complex, dynamic decision-making process. To understand
the underlying strategic differences that lead to victory, this section provides an in-depth analysis of
the two top-performing agents: Gemini-2.5-pro and GPT-5-Codex.

A deeper look at the data reveals a fascinating para-
dox. As summarized in Table 1, GPT-5-Codex
demonstrates a significantly higher peak capabil-
ity, achieving a maximum score of 29 compared to
Gemini-2.5-pro’s 19. This confirms its potential to
solve more difficult, higher-value problems. How-
ever, it is Gemini-2.5-pro that achieves a better aver-
age rank and a win rate more than double that of its
competitor (68.4% vs. 31.6%). This performance
inversion points directly to the decisive role of com-
petitive strategy.

The strategic profiles in Figure 4 explain this out-
come, revealing a clear difference. Gemini-2.5-
pro’s profile is characterized by an aggressive, high-
volume strategy. Its plot extends outward on the At-
tempted Problems and Submission Counts axes,
indicating it attempts more problems to maximize
scoring opportunities. This “breadth-first” approach
treats credit as a resource to be actively spent in ex-
change for broader coverage.

In stark contrast, GPT-5-Codex adopts a conserva-
tive, “perfectionist” strategy. Its profile is heav-
ily skewed toward near-perfect First-Submit Ac-
curacy and Problems Solve Rate. This risk-averse
approach prioritizes precision, but severely limits its
problem coverage, causing it to forego attempts on
many potentially solvable problems.

Table 1: Comparison of Agent Profile Metrics
for Gemini-2.5-pro and GPT-5-Codex.

Agent Avg. Rank Win Rate Max Score Min Score
Gemini-2.5-pro 1.3± 0.47 70.0% 19 4
GPT-5-Codex 1.7± 0.47 30.0% 29 3

Gemini-2.5-pro
GPT-5-Codex

Credit Consumption

Submission
Precision

First-Submit AccuracyProblems Solve Rate

Attempted
Problems

Submission Counts

100%

100%

100%100%

180.0

800.0

Figure 4: Strategic Profiles of Top-Tier
Agents. Submission Precision is the percent-
age of AC submissions out of all submission
attempts; Problems Solve Rate is the percent-
age of AC problems out of all attempted prob-
lems; and First-Submit Accuracy is the per-
centage of problems solved on the first at-
tempt out of all successfully solved problems.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This analysis resolves the performance paradox: Gemini-2.5-pro wins by being a more effective
competitor, not necessarily a superior problem-solver. This distinction is best understood through
the exploration-exploitation trade-off. Gemini-2.5-pro’s strategy is one of aggressive exploration; it
attempts many problems to maximize broad coverage and its cumulative score, accepting a lower
precision rate as a necessary cost. In contrast, GPT-5-Codex’s cautious perfectionism is a form of
pure exploitation. Its risk-averse approach limits its attempts to only high-confidence problems,
causing it to miss many scoring opportunities and turning its precision into a strategic liability.

This distinction highlights a key finding of our work. Gemini-2.5-pro’s success demonstrates that
in a competitive setting, a strategy of broad exploration can outperform a more capable but overly
conservative exploitation strategy. This implies that optimal performance in a complex, resource-
constrained environment like USACOArena requires more than just raw problem-solving accuracy.
For the field to advance, this suggests that developing an agent’s decision-making framework—
its ability to assess risk and manage resources—is as important as enhancing its core capabilities.
True expertise in this domain lies in an agent’s ability to dynamically balance the trade-off between
exploring all viable opportunities and exploiting the most promising ones.

Impact of Contest Difficulty. The varying difficulty of the contests highlights the extent of this
performance gap. While more agents achieve non-zero scores in accessible contests, the most chal-
lenging one—the USACO 2025 US Open–showcases a dominant performance by Gemini-2.5-pro.
Its score of 14.6 establishes a vast lead over GPT-5-Codex (3.0), suggesting that high-difficulty
problems strongly accentuate the top agent’s strengths. A detailed breakdown is in Appendix E.

Limitations in Agent Self-Assessment. However, a deeper analysis of agent behavior reveals a
widespread deficiency in strategic self-assessment. Lower-ranked agents often mismanage resources
by attempting problems far beyond their capabilities, forgoing points on easier tasks. Paradoxi-
cally, the top-performing agent exhibits the opposite flaw: despite being capable of solving high-
value Platinum problems (see Appendix C), Gemini-2.5-pro consistently defaults to safer, lower-
scoring problems. This suggests that even the most advanced agents currently lack sophisticated
risk-assessment and strategic planning.

4.3 PROBING AGENT ARCHITECTURE: A CASE STUDY ON THE GPT-5 FAMILY

To isolate the impact of different design choices, we conduct controlled “civil war” experiments
within the GPT-5 family. We run two head-to-head matchups: the base GPT-5 against its code-
specialized variant, GPT-5-Codex; and GPT-5-Codex against Codex-CLI, a version augmented with
an agentic framework. Each matchup is run three times on the challenging US Open contest problem
set, with the averaged results reported in Table 2. In our analysis, submission precision is defined as
the ratio of correct submissions to the total number of attempts.

Our experiments reveal key trade-offs in agent development. In the first matchup, the specialized
GPT-5-Codex adopts a far more cautious approach than its base model. It frequently uses the TEST
action to ensure high submission precision, but its reluctance to attempt uncertain problems limited
its overall score. This suggests that code-specialization enhances reliability, potentially at the cost

Table 2: Performance and Strategy Comparison within the GPT-5 Agent Family. The value in
parenthesis indicates the head-to-head win rate for each agent within its matchup.

Agent Win Rate Avg. Score Avg. Credit Attempted Submission
Consumed Problems Precision (%)

Experiment 1: Generalist vs. Specialist

GPT-5 (Base) 100% 20.3 14M 26 12.9%
GPT-5-Codex 0% 8.0 8M 16 68.2%

Experiment 2: Specialist vs. Agentic Framework

GPT-5-Codex 0% 5 4M 16 44.4%
Codex-CLI 100% 9.5 15M 21 52.4%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Loser 12 Points

Winner

0 10 20 30 40 50 60 70

Quickly solve 3
Bronze problems

Competitor A
Competitor B

Solve Problems

Continuously solve
2 Silver problems

Strive to solve 2
Gold questions

Trapped by the
Silver problems

Frequently switch between
Silver and Gold problems

Trapped by the Gold
and Platinum problems

17 Points

Sc
or

e

Action Step

(b)(a)

Figure 5: Emergent behavioral diversity and strategic divergence in self-play. (a) Final scores
and credit consumed across nine competitions between identical gemini-2.5-pro agents, re-
vealing a wide spectrum of outcomes with no trivial correlation between cost and performance.
(b) A trajectory analysis of a single match provides a granular explanation, showing how different
strategic paths lead to a decisive win-loss result. This demonstrated diversity, resulting from com-
plex path-dependent decisions, validates USACOArena’s suitability as a rich training environment.

of problem-solving initiative. The second matchup shows that the agentic framework on Codex-CLI
significantly improves performance, achieving a much higher score and win rate while maintaining
the same high precision. This demonstrates that a well-designed architecture can directly boost a
model’s performance, though this may come with higher resource consumption.

4.4 EMERGENT BEHAVIORAL DIVERSITY IN SELF-PLAY

To investigate whether a top agent’s performance is deterministic, we conduct a series of self-play
experiments, pitting two identical instances of gemini-2.5-pro against each other. The results
reveal a striking diversity of behaviors. As shown in Figure 5(a), the outcomes across 18 competi-
tors are highly variable, rarely ending in a tie, and showing no simple correlation between credit
consumed and final score. A trajectory analysis of a single match (Figure 5(b)) provides a granular
explanation for this variance. It shows how different, path-dependent strategic choices—such as a
methodical, bottom-up approach versus getting stuck on difficult problems—can lead to a decisive
win-loss outcome.

These findings yield a key insight: USACOArena is not a simple puzzle but a complex and sensi-
tive environment that can reveal critical inconsistencies in an agent’s decision-making. This demon-
strated behavioral diversity, where a single policy can produce a wide range of outcomes, is a crucial
prerequisite for improvement through learning-based methods. Therefore, our self-play experiments
validate USACOArena not only as a robust evaluation testbed but also suggest its potential as a dy-
namic training ground for future research into cultivating more capable agents.

5 CONCLUSION

In this work, we introduce USACOArena, an interactive arena designed to measure an agent’s ability
to make effective decisions under resource constraints. By translating the human constraint of time
into an agent-native resource of credit, our environment transforms problem-solving into a process of
cost-benefit analysis. Our experiments reveal the deep strategic profiles of leading agents, such as the
trade-off between aggressive exploration and conservative precision. Finally, self-play experiments
between identical agents confirm that USACOArena is a complex, non-deterministic environment,
highlighting its potential not just as a benchmark, but as a training ground for future learning-based
approaches to cultivate more strategically capable agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The core methodology of our envi-
ronment and the complete experimental setup are detailed in Section 3 and Section 4, respectively.
The appendix provides exhaustive details necessary for reproduction, including: the full problem
corpus from the 2024-2025 USACO season (Appendix C); comprehensive qualification and main
competition results (Appendix D and E); a list of all large language models used (Appendix F);
all competition hyperparameters (Appendix G); and the exact system prompt provided to the agents
(Appendix H). The complete source code for the USACOArena environment, agent wrappers, and
evaluation scripts will be made publicly available in an open-source repository upon publication.

REFERENCES

Vaibhav Aggarwal, Ojasv Kamal, Abhinav Japesh, Zhijing Jin, and Bernhard Schölkopf. Dars:
Dynamic action re-sampling to enhance coding agent performance by adaptive tree traversal.
arXiv preprint arXiv:2503.14269, 2025.

Anthropic. Introducing the model context protocol, 2024. URL https://www.anthropic.
com/news/model-context-protocol. Accessed: 2025-09-21.

Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, 05
2025a.

Anthropic. Claude Opus 4.1. https://www.anthropic.com/news/claude-opus-4-1,
08 2025b.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik,
Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench:
An automated pipeline for task collection and decontaminated evaluation of software engineering
agents, 2025. URL https://arxiv.org/abs/2505.20411.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan
Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task graphs,
2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
and Hugh Leather. Meta large language model compiler: Foundation models of compiler opti-
mization, 2024. URL https://arxiv.org/abs/2407.02524.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024. URL https://arxiv.org/abs/2406.11931.

10

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-opus-4-1
https://arxiv.org/abs/2505.20411
https://openreview.net/forum?id=EHg5GDnyq1
https://arxiv.org/abs/2407.02524
https://arxiv.org/abs/2406.11931

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Le Deng, Zhonghao Jiang, Jialun Cao, Michael Pradel, and Zhongxin Liu. Nocode-bench: A bench-
mark for evaluating natural language-driven feature addition, 2025. URL https://arxiv.
org/abs/2507.18130.

Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Ze Yu Zhang, Lin Zhu, Chen
Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, and Jingren Zhou. Agentscope: A flexible yet
robust multi-agent platform. CoRR, abs/2402.14034, 2024.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve.
RLEF: Grounding code LLMs in execution feedback with reinforcement learning. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=PzSG5nKe1q.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin
Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative frame-
work, 2024. URL https://arxiv.org/abs/2308.00352.

Arnav Kumar Jain, Gonzalo Gonzalez-Pumariega, Wayne Chen, Alexander M Rush, Wenting Zhao,
and Sanjiban Choudhury. Multi-turn code generation through single-step rewards. In Forty-
second International Conference on Machine Learning, 2025a. URL https://openreview.
net/forum?id=aJeLhLcsh0.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Naman Jain, Jaskirat Singh, Manish Shetty, Tianjun Zhang, Liang Zheng, Koushik Sen, and Ion
Stoica. R2e-gym: Procedural environment generation and hybrid verifiers for scaling open-
weights SWE agents. In Second Conference on Language Modeling, 2025b. URL https:
//openreview.net/forum?id=7evvwwdo3z.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, Soneya Binta Hossain, Baishakhi Ray, Varun
Kumar, Xiaofei Ma, and Anoop Deoras. Ledex: training llms to better self-debug and explain
code. In Proceedings of the 38th International Conference on Neural Information Processing
Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, Zhiyin Yu, He Du, Ping Yang, Dahua Lin, Chao Peng, and Kai
Chen. Prompting large language models to tackle the full software development lifecycle: A
case study. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di
Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st International Conference on Com-
putational Linguistics, pp. 7511–7531, Abu Dhabi, UAE, January 2025. Association for Compu-
tational Linguistics. URL https://aclanthology.org/2025.coling-main.502/.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and LINGMING ZHANG.
Evaluating language models for efficient code generation. In First Conference on Language Mod-
eling, 2024. URL https://openreview.net/forum?id=IBCBMeAhmC.

11

https://arxiv.org/abs/2507.18130
https://arxiv.org/abs/2507.18130
https://openreview.net/forum?id=PzSG5nKe1q
https://openreview.net/forum?id=PzSG5nKe1q
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2308.00352
https://openreview.net/forum?id=aJeLhLcsh0
https://openreview.net/forum?id=aJeLhLcsh0
https://openreview.net/forum?id=7evvwwdo3z
https://openreview.net/forum?id=7evvwwdo3z
https://aclanthology.org/2025.coling-main.502/
https://openreview.net/forum?id=IBCBMeAhmC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaiyuan Liu, Youcheng Pan, Yang Xiang, Daojing He, Jing Li, Yexing Du, and Tianrun Gao. Pro-
jectEval: A benchmark for programming agents automated evaluation on project-level code gen-
eration. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 20205–20221,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.1036. URL https://aclanthology.org/2025.
findings-acl.1036/.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. Alibaba ling-
maagent: Improving automated issue resolution via comprehensive repository exploration. arXiv
preprint arXiv:2406.01422, 2024.

OpenAI. Gpt-5-codex, 2025a. URL https://openai.com/index/
introducing-upgrades-to-codex/. Accessed: 2025-09-23.

OpenAI. Introducing GPT-5. https://openai.com/index/introducing-gpt-5, 08
2025b.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
generation of llms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257, 2025.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve
olympiad programming? arXiv preprint arXiv:2404.10952, 2024.

Significant Gravitas. AutoGPT. URL https://github.com/Significant-Gravitas/
AutoGPT.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI
Software Developers as Generalist Agents, 2024. URL https://arxiv.org/abs/2407.
16741.

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, Ruikai Zhang, Yuchi Ma, and Zibin Zheng.
RLCoder: Reinforcement Learning for Repository-Level Code Completion . In 2025 IEEE/ACM
47th International Conference on Software Engineering (ICSE), pp. 1140–1152, Los Alamitos,
CA, USA, May 2025a. IEEE Computer Society. doi: 10.1109/ICSE55347.2025.00014. URL
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00014.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit
tester via reinforcement learning, 2025b. URL https://arxiv.org/abs/2506.03136.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empow-
ering code generation with OSS-instruct. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 52632–52657. PMLR, 21–27 Jul 2024. URL https:
//proceedings.mlr.press/v235/wei24h.html.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint, 2024.

Zhihui Xie, Jie chen, Liyu Chen, Weichao Mao, Jingjing Xu, and Lingpeng Kong. Teaching lan-
guage models to critique via reinforcement learning. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=UVoxPlv5E1.

Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z. Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin, Zhe Su,
Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou, and Graham
Neubig. Theagentcompany: Benchmarking llm agents on consequential real world tasks, 2025.
URL https://arxiv.org/abs/2412.14161.

12

https://aclanthology.org/2025.findings-acl.1036/
https://aclanthology.org/2025.findings-acl.1036/
https://openai.com/index/introducing-upgrades-to-codex/
https://openai.com/index/introducing-upgrades-to-codex/
https://openai.com/index/introducing-gpt-5
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00014
https://arxiv.org/abs/2506.03136
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://openreview.net/forum?id=UVoxPlv5E1
https://arxiv.org/abs/2412.14161

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Yang, Carlos Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, Diyi Yang, Sida Wang, and Ofir Press.
Swe-bench multimodal: Do ai systems generalize to visual software domains? In The Thirteenth
International Conference on Learning Representations, 2025a. URL https://openreview.
net/forum?id=riTiq3i21b.

Lei Yang, Renren Jin, Ling Shi, Jianxiang Peng, Yue Chen, and Deyi Xiong. Probench: Bench-
marking large language models in competitive programming. arXiv preprint arXiv:2502.20868,
2025b.

Xingdi Yuan, Morgane M Moss, Charbel El Feghali, Chinmay Singh, Darya Moldavskaya, Drew
MacPhee, Lucas Caccia, Matheus Pereira, Minseon Kim, Alessandro Sordoni, and Marc-
Alexandre Côté. debug-gym: A text-based environment for interactive debugging, 2025. URL
https://arxiv.org/abs/2503.21557.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, et al. Livecodebench pro: How do olympiad medalists
judge llms in competitive programming? arXiv preprint arXiv:2506.11928, 2025.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks, 2025. URL
https://arxiv.org/abs/2503.15478.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and Le-
andro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

A STATEMENT ON LLM USAGE

Throughout the preparation of this manuscript, we utilized a large language model (Google’s Gem-
ini) as a collaborative writing assistant. The model’s contributions were primarily focused on the
articulation and presentation of our research. Specific tasks included refining the paper’s narrative
structure and logical flow, condensing and polishing sentences for clarity and impact, suggesting
alternative terminology to strengthen key arguments, and providing feedback on the design and
captions of figures. The core scientific contributions—including the initial research ideation, the
design and implementation of the USACOArena environment, the execution of experiments, and
the analysis of the results—were conceived and conducted entirely by the human authors. The role
of the LLM was that of a writing partner and editor. We are disclosing its use here to maintain full
transparency regarding our research and writing process.

B FOUNDATIONS IN COMPETITIVE PROGRAMMING STANDARDS

The design of USACOArena is deeply rooted in the well-established standards of human compet-
itive programming. This appendix provides a detailed rationale for our two foundational design
choices: (1) the adoption of a competitive programming format as the evaluation paradigm, and (2)
the specific selection of the ACM-ICPC ruleset over other formats, such as the IOI. These choices
are crucial for creating an evaluation framework that measures the capabilities most relevant to the
practical application of coding agents in real-world software engineering contexts.

13

https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://arxiv.org/abs/2503.21557
https://arxiv.org/abs/2503.15478
https://openreview.net/forum?id=YrycTjllL0

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.1 THE RATIONALE FOR A COMPETITIVE EVALUATION PARADIGM

Current static benchmarks for code generation, such as HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), primarily evaluate an agent’s ability to produce functionally correct
code for isolated, well-defined problems. While valuable, this static pass/fail approach fails to
capture the dynamic, resource-constrained decision-making process that defines true autonomous
agency. It assesses what an agent can produce, but not how or why it arrives at a solution.

For decades, programming competitions have served as the de facto standard for assessing human
intelligence in computational problem-solving. They provide a holistic evaluation by creating an
environment where participants must:

• Manage Finite Resources: Operate under strict constraints (e.g., time, computational re-
sources), forcing strategic allocation of effort.

• Prioritize Tasks: Analyze a set of diverse problems, assess their difficulty, and strategi-
cally decide the order in which to tackle them.

• Balance Trade-offs: Make critical decisions between solution optimality, implementation
speed, and correctness risk.

By situating agents in a competitive arena, we move beyond measuring mere correctness and begin
to quantify these crucial agentic abilities. The competitive format transforms the evaluation from a
simple test of knowledge into a rigorous assessment of strategy, efficiency, and performance under
pressure, providing a far richer and more meaningful signal of an agent’s true capabilities.

B.2 WHY ACM-ICPC OVER IOI? A FRAMEWORK FOR ENGINEERING-ALIGNED
EVALUATION

While both the ACM International Collegiate Programming Contest (ICPC) and the International
Olympiad in Informatics (IOI) are premier competitions, their underlying philosophies and mechan-
ics are tailored to measure different skills. We deliberately model USACOArena on the ACM-ICPC
because its format is substantially more aligned with the values and demands of professional soft-
ware engineering. The goal is to evaluate coding agents as potential engineering collaborators, not
as pure research tools. This alignment is evident across several key dimensions.

Evaluation Paradigm: Breadth and Pragmatism vs. Depth and Originality. The ACM-ICPC
is fundamentally a test of problem-solving breadth and rapid implementation. A typical contest
features a large number of problems (8–13) to be solved within a tight five-hour window. This
structure rewards a broad, practical knowledge of standard algorithms and data structures, and the
ability to quickly recognize a problem pattern and apply a known, reliable solution. This directly
parallels the day-to-day reality of a software engineer, who must efficiently address a wide variety
of tasks, from implementing new features to fixing bugs, by applying the right tool for the job.

In contrast, the IOI is a test of algorithmic depth and creative invention. With only a few (typ-
ically three) highly complex problems per day, it challenges participants to devise novel or highly
optimized algorithms, often pushing the boundaries of known techniques. This format is more
akin to academic research or work in a specialized R&D lab. For an agent intended to serve as a
general-purpose coding assistant, the broad-based, pragmatic skill set measured by the ICPC is a
more relevant benchmark.

Scoring Philosophy: The Imperative of Zero-Bug Correctness. A defining feature of the ACM-
ICPC is its all-or-nothing scoring system. A submission earns credit if and only if it passes every
single hidden test case. A solution that fails on a single edge case is equivalent to one that fails com-
pletely. This binary outcome brutally enforces the concept of robustness and correctness, which is
the bedrock of reliable software engineering. In a production environment, code with a “99% pass
rate” is simply buggy code, and a single critical failure can have catastrophic consequences. The
ICPC format, therefore, directly measures an agent’s ability to produce zero-bug solutions.

Furthermore, the ICPC’s penalty system—which adds a fixed time penalty for each incorrect sub-
mission on a problem that is eventually solved—explicitly disincentivizes a careless trial-and-error

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

approach. It rewards careful planning, local testing, and a deep consideration of edge cases before
submission, all of which are hallmarks of a disciplined engineering process.

The IOI, conversely, employs a partial-credit system, awarding points based on the number of
test cases a solution correctly handles. This is excellent for measuring incremental progress and
rewarding clever heuristics that solve a subset of the problem. However, it does not instill the same
absolute imperative for correctness that the ICPC format does. For an agent destined for real-world
deployment, the ICPC’s unforgiving standard of correctness is a far more meaningful and critical
measure of its reliability.

Alignment with Engineering Values: Efficiency and Delivery over Theoretical Optimality.
The intense time pressure and large problem set of the ACM-ICPC naturally encourage competi-
tors to find the simplest, most direct path to a correct solution. The goal is not necessarily to
write the most theoretically optimal or elegant code, but to write correct and efficient enough code
to pass within the given constraints, and to do so quickly. This mindset perfectly mirrors the agile,
delivery-focused nature of modern software development, where delivering a working, maintainable
feature on schedule is paramount, and premature optimization is a well-known anti-pattern.

The IOI’s focus on a small number of extremely difficult problems, in contrast, incentivizes the
pursuit of theoretical optimality. The challenge often lies in shaving off logarithmic factors in
complexity or designing a complex algorithm that precisely meets stringent time and memory limits.
While an exceptional display of algorithmic prowess, this is often a form of over-engineering in a
typical software development context. An agent that rapidly delivers a correct O(N logN) solution
is often more valuable than one that spends immense resources to discover a complex O(N) solution,
especially when the former is sufficient for the task at hand.

In summary, by adopting the ACM-ICPC format, we are explicitly choosing to evaluate coding
agents against a set of criteria that prioritize the core values of software engineering: broad appli-
cability, rigorous correctness, and the efficient delivery of robust solutions under constraints. This
makes USACOArena not just a test of algorithmic knowledge, but a direct measure of an agent’s
potential as a practical and reliable engineering tool.

C PROBLEM CORPUS AND DIFFICULTY BASELINING

Corpus Philosophy The problem corpus for USACOArena is not a fixed, static set. It is a living
collection that mirrors the official USACO contest schedule. For each of the four contests in a
USACO season, we adopt the official 12-problem set—three problems each for Bronze, Silver, Gold,
and Platinum levels—as the basis for a distinct USACOArena competition. This approach ensures
that our benchmark stays current with the evolving difficulty and style of competitive programming
problems and avoids any potential bias from manual problem curation.

Difficulty Baselining Study To provide an empirical baseline of difficulty for the novel problems
in the 2024-2025 season, we conduct an analysis using a top-tier agent, Gemini-2.5-pro. Each of
the 48 problems is run with ample resources to assess its inherent solvability by a state-of-the-art
model. The results of this study, presented in Table 3, are not used to select or filter problems, but
rather to provide a grounded reference for analyzing agent performance in the main experiments.
For example, this data helps us understand when an agent fails on a problem that is known to be
solvable, indicating a potential strategic failure rather than a fundamental capability gap.

Table 3: Difficulty baselining results for the 48 problems of the USACO 2024-2025 season, using
Gemini-2.5-pro. This data provides a grounded reference for expected problem difficulty in our
main experiments.

Problem ID Level Result Test Cases Cons. Credit LLM Calls Sub.
1526 platinum WA 1/20 10167024 48 37
1525 platinum WA 1/15 10306989 45 36

Continued on next page

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: – continued from previous page

Problem ID Level Result Test Cases Cons. Credit LLM Calls Submissions
1524 platinum TLE 1/16 10018138 63 49
1523 gold TLE 1/20 10151386 57 47
1522 gold AC 15/15 1446214 6 1
1521 gold AC 25/25 2818862 18 8
1520 silver AC 17/17 2936761 17 14
1519 silver AC 12/12 7132837 36 27
1518 silver WA 0/18 10131801 55 45
1517 bronze AC 11/11 510085 3 1
1516 bronze AC 11/11 204672 2 1
1515 bronze AC 12/12 137433 3 1
1502 platinum WA 0/20 10164077 45 21
1501 platinum WA 1/19 10035673 55 42
1500 platinum WA 1/13 10065047 54 38
1499 gold AC 18/18 252597 2 1
1498 gold TLE 1/20 10012120 52 45
1497 gold AC 21/21 2939562 10 3
1496 silver AC 12/12 583964 4 2
1495 silver AC 18/18 628954 4 3
1494 silver TLE 1/18 10099233 53 35
1493 bronze AC 13/13 214167 2 1
1492 bronze AC 11/11 201263 2 1
1491 bronze AC 16/16 104275 2 1
1478 platinum WA 2/19 10175416 45 38
1477 platinum TLE 1/14 10031850 46 28
1476 platinum AC 23 735288 4 3
1475 gold WA 4/18 10129632 50 39
1474 gold AC 23/23 2377487 12 10
1473 gold AC 16/16 1723281 8 2
1472 silver AC 15/15 1368787 10 8
1471 silver AC 16/16 411089 3 1
1470 silver AC 23/23 420372 3 1
1469 bronze AC 13/13 153411 2 1
1468 bronze AC 11/11 420033 4 3
1467 bronze AC 12/12 472262 4 2
1454 platinum WA 1/20 10146203 70 26
1453 platinum TLE 1/18 10067438 84 19
1452 platinum AC 15/15 571806 3 2
1451 gold AC 16/16 1151155 6 4
1450 gold AC 23/23 4026173 26 13
1449 gold AC 20/20 1119907 6 5
1448 silver AC 13/13 2734345 11 2
1447 silver AC 11/11 2035808 8 1
1446 silver AC 11/11 1649536 8 5
1445 bronze AC 13/13 373173 3 2
1444 bronze AC 16/16 102214 3 1
1443 bronze AC 13/13 311834 2 1
1430 platinum TLE 4/24 10106758 55 45
1429 platinum TLE 1/22 10170320 56 41
1428 platinum AC 25/24 7526267 40 32
1427 gold AC 20/20 1213337 7 4
1426 gold AC 20/20 479578 3 1
1425 gold AC 23/23 374396 3 2
1424 silver AC 16/16 528027 3 1
1423 silver AC 15/15 951701 5 2

Continued on next page

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: – continued from previous page

Problem ID Level Result Test Cases Cons. Credit LLM Calls Submissions
1422 silver WA 1/21 10032808 74 44
1421 bronze TLE 2/11 10098563 66 51
1420 bronze AC 11/11 173543 2 1
1419 bronze AC 26/26 221140 2 1

D PARTICIPANT QUALIFICATION RESULTS

To ensure that the agents evaluated in our main experimentspossess a baseline of functional com-
petency, we implemented a qualification stage for each of the four USACO contests. The core
requirement was for an agent to successfully solve the single easiest Bronze-level problem from the
respective contest set. Only agents that achieved an ’Accepted’ (AC) status on this prerequisite task
were included in the full, multi-problem competitive runs analyzed in the main paper.

The following tables (Table 4 through Table 7) provide the detailed performance results for this
qualification task across the four contests. These results not only justify our selection of participants
for the main analysis but also offer a preliminary glimpse into the vast performance disparities
among the models. Even on these relatively simple entry-level problems, we observe significant
variance in resource consumption (Consumed Credit) and efficiency (Submissions), foreshadowing
the more complex strategic differences analyzed in the main text.

Table 4: Representative qualification results for the USACO 2024 December Contest. Agents are
required to solve the easiest Bronze problem 1445. Cons. Credit means Consumed Credit.

Model Result Cons. Credit LLM Calls Submissions Qualified

Gemini-2.5-Pro AC 373,173 3 2 Yes
GPT-5-Codex AC 26,986 3 1 Yes
Claude-4-Sonnet AC 57,405 3 2 Yes
DeepSeek-V3.1 AC 69,514 19 7 Yes
DeepSeek-V3 AC 536,880 130 47 Yes
Kimi-K2-0905 AC 449,065 35 17 Yes
Qwen3-235B AC 495,102 49 7 Yes
GLM-4.5 AC 7,725 2 1 Yes

Table 5: Representative qualification results for the USACO 2025 January Contest. To qualify,
agents were required to solve at least one of the three available Bronze problems (1467, 1468,
1469).

Model Result Cons. Credit LLM Calls Submissions Qualified

Gemini-2.5-Pro AC 472,262 4 2 Yes
GPT-5-Codex AC 177,127 9 1 Yes

Claude-4-Sonnet
WA 10,035,455 168 90

NoTLE 10,037,109 508 232
TLE 10,013,656 227 127

DeepSeek-V3.1 AC 497,429 121 46 Yes
Kimi-K2-0905 AC 2,605,011 196 89 Yes
Qwen3-235B AC 99,574 10 5 Yes
GLM-4.5 AC 245,624 29 5 Yes

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Representative qualification results for the USACO 2025 February Contest. Agents are
required to solve the easiest Bronze problem 1491. Cons. Credit means Consumed Credit.

Model Result Cons. Credit LLM Calls Submissions Qualified

Gemini-2.5-Pro AC 104,275 2 1 Yes
GPT-5-Codex AC 19,739 3 1 Yes
Claude-4-Sonnet AC 57,486 3 2 Yes
DeepSeek-V3.1 AC 14,048 5 1 Yes
DeepSeek-V3 AC 6,918 4 1 Yes
Kimi-K2-0905 AC 213,684 18 9 Yes
Qwen3-235B AC 122,844 12 3 Yes
GLM-4.5 AC 7,474 2 1 Yes

Table 7: Representative qualification results for the USACO 2025 US Open Contest. Agents are
required to solve the easiest Bronze problem 1515. Cons. Credit means Consumed Credit.

Model Result Cons. Credit LLM Calls Submissions Qualified

Gemini-2.5-Pro AC 137433 3 1 Yes
GPT-5-Codex AC 37583 4 1 Yes

Claude-4-sonnet AC 813746 20 9 Yes
DeepSeek-V3.1 AC 1153921 257 47 Yes
DeepSeek-V3 AC 239910 55 17 Yes

Kimi-K2 AC 1366068 95 23 Yes
Qwen3-235B AC 308213 24 4 Yes

GLM-4.5 AC 245624 29 5 Yes

E DETAILED RESULTS OF MAIN COMPETITION

This section provides the detailed results from our main experiment, where each qualified agent
competed in the full 12-problem USACOArena contest. To account for the stochastic nature of agent
performance and potential variations in LLM API responses, each agent completed the competition
five times. The results presented in the main paper are the average of these five runs.

Table 8 presents the aggregated performance metrics for each agent, including the average rank,
score, and consumed credit, along with their standard deviations. We also provide a breakdown of
the average credit consumption across the main categories—LLM inference, hints, and penalties—
to offer deeper insight into each agent’s prevailing strategy. The agents are sorted by their final
average rank, determined first by average rank and then by average score and consumed credit.

Table 8: Aggregated results from the main experiment, averaged over 5 runs across four contests.
The data shows each agent’s final rank, score, and credit consumption, reflecting their strategic
priorities. Values are presented as mean ± standard deviation.

Model Avg. Rank Avg. Score Avg. Consumed Credit Inference Credit Hint Credit Penalty Credit
Gemini-2.5-pro 1.30 ± 0.47 14.00 ± 3.88 13,762,787 ± 4.3M 13.76M ± 4.3M 2.5K ± 2.5K 4.1K ± 1.9K
GPT-5-Codex 1.70 ± 0.47 9.39 ± 7.59 4,707,464 ± 3.1M 4.71M ± 3.1M 1.1K ± 2.0K 0.3K ± 0.3K
Qwen3-235b 4.00 ± 1.59 1.61 ± 0.92 11,732,391 ± 6.9M 11.17M ± 6.5M 560.2K ± 375.7K 3.6K ± 2.6K
GLM-4.5 4.35 ± 1.57 2.33 ± 2.28 7,249,215 ± 4.0M 7.06M ± 3.9M 161.7K ± 93.2K 22.7K ± 16.8K
DeepSeek-V3 5.70 ± 1.13 0.11 ± 0.32 194,050 ± 0.2M 0.17M ± 0.2M 19.8K ± 24.9K 1.2K ± 1.3K
DeepSeek-V3.1 6.00 ± 1.30 0.06 ± 0.24 253,013 ± 0.4M 0.23M ± 0.4M 21.9K ± 32.7K 1.4K ± 2.7K
Kimi-K2-0905 6.00 ± 1.45 0.72 ± 1.18 1,337,561 ± 2.0M 1.32M ± 2.0M 10.0K ± 17.2K 3.0K ± 4.2K
Claude-4-sonnet 6.95 ± 1.36 0.39 ± 0.61 1,285,766 ± 0.8M 1.28M ± 0.8M 1.4K ± 1.7K 1.1K ± 0.6K

The raw, run-by-run data for each agent, including detailed action logs and final scores for each of
the five trials, are available in the supplementary material for full reproducibility.

The aggregated results highlight key strategic differences. For example, while GPT-5 and Gemini-
2.5-pro are the clear top performers, GPT-5 consistently consumes less credit across all categories,
indicating a more efficient problem-solving process. The credit breakdown also reveals that lower-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

tier models often accumulate significant penalty credit without a corresponding increase in score,
suggesting a tendency towards inefficient trial-and-error strategies.

F LARGE LANGUAGE MODEL DETAILS

Our evaluation leverages a diverse suite of Large Language Models (LLMs) to ensure a comprehen-
sive analysis of agent capabilities within the USACOArena. Table 9 provides a detailed breakdown
of the models employed in our study, including their provider and associated costs. All pricing data,
specified in U.S. dollars per million input and output tokens respectively, was retrieved from Arti-
ficial Analysis1 in September 2025. This selection represents a cross-section of the contemporary
LLM landscape, encompassing models with varied architectures, parameter scales, and economic
costs, thereby facilitating a robust and multifaceted analysis of agent performance.

Table 9: Specifications of Large Language Models used in our evaluation. Costs are denoted in USD
per million tokens.

Provider Model Input Cost Output Cost

OpenAI GPT-5-2025-08-07 $1.25 $10.00
GPT-5-Codex $1.25 $10.00

Google Gemini 2.5 Pro $1.25 $10.00

Anthropic Claude-Sonnet-4-20250514 $3.00 $15.00

DeepSeek DeepSeek-v3 $0.27 $1.10
DeepSeek-v3.1 $0.27 $1.10

Alibaba Cloud Qwen3-235B-A22B-Instruct-2507 $0.70 $2.80

Moonshot AI Kimi-K2-0905 $1.00 $2.75

Zhipu AI GLM-4.5 $0.59 $2.19

1https://artificialanalysis.ai

19

https://artificialanalysis.ai

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G USACOARENA HYPERPARAMETERS

The main experiments conducted in this study utilize a standardized default configuration for the
USACOArena environment. This configuration, which is highly customizable to facilitate diverse
research questions, is detailed in Table 10.

Table 10: USACOArena Competition Configuration Parameters

Parameter Description Default Value

Basic Setup
max_credits_per_participant Maximum credits per participant 20,000,000

Scoring System
bronze_score Points for Bronze problems 1
silver_score Points for Silver problems 2
gold_score Points for Gold problems 5
platinum_score Points for Platinum problems 10

LLM Inference
agent_temperature Model generation temperature 0.7

Hint Request Costs
level_0_hint Strategy hints cost 500
level_1_hint Textbook knowledge cost 1,000
level_2_hint Knowledge-specific content cost 1,000
level_3_hint Similar problems cost 1,500
level_4_hint Example problems cost 1,500

Test Code Costs
test_code Base cost per test request 10

Penalty System
WA_penalty Penalty for Wrong Answer 100
RE_penalty Penalty for Runtime Error 100
CE_penalty Penalty for Compile Error 100
TLE_penalty Penalty for Time Limit Exceeded 100
MLE_penalty Penalty for Memory Limit Exceeded 100

Problem Distribution
total_problems Total number of problems 12
bronze_problems Bronze difficulty count 3
silver_problems Silver difficulty count 3
gold_problems Gold difficulty count 3
platinum_problems Platinum difficulty count 3

H PROMPT FOR USACOARENA EVALUATION

The following box details the complete prompt structure provided to agents in the USACOArena
competition. The prompt is designed as a purely objective specification of the environment. It
comprehensively delineates the foundational components of the competition: the governing rules,
the format for communicating game state, the complete set of available actions, and the structure
of action results. Crucially, the prompt deliberately refrains from offering any strategic guidance
or heuristics. This ensures that all observed strategies are properties of the agent’s autonomous
decision-making process, rather than a reflection of guidance embedded in the instructions

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

An Example Prompt for Evaluating Agentic LLMs in USACOArena

SYSTEM PROMPT

You are a competitive programming agent participating in a coding competition. You will receive the cur-
rent state of the competition and results of your previous actions. Your goal is to solve as many problems
as possible (achieve ’Accepted’ status).
Your final ranking is determined first by your total score. The score is a weighted sum of the problems you
solve, with harder problems (e.g., Platinum) being worth more than easier ones (e.g., Bronze). If scores
are tied, the agent with the lower total of (actual consumed credit + penalties) ranks higher.
You start with a limited credit budget, and many actions consume credit. You will be terminated from
the competition when your actual consumed credit reaches the limit.
Credit is consumed in three main ways:

1. LLM Inference: Generating responses, which consumes credit based on the number of tokens
you use.

2. Purchasing Hints: Using hints to help solve problems.
3. Testing Code: Running your code against test cases before final submission.

IMPORTANT:
• Penalties from wrong submissions affect your ranking tie-breaker but do NOT count toward

termination.
• In this competition, solving problems is much more important than minimizing the consumed

credit. So you should try your best to solve as many problems as possible.
Please respond with a JSON object containing ’action’ and ’parameters’ fields.

USER PROMPT

COMPETITION RULES
• Credit System:

– Each participant starts with a total of 20,000,000 credit limit.
– Credit is consumed by three main sources: LLM Inference, Purchasing Hints, and Testing

Code.
– Your participation ends when your actual consumed credit reaches the limit.

• Scoring Rules:
– Your Final Score is the sum of points from all problems you solve completely.
– No partial credit is awarded.
– Points are weighted by difficulty: Bronze (1), Silver (2), Gold (5), Platinum (10).

• Penalties: A penalty of 100 points is incurred for CE, MLE, RE, TLE, and WA submissions.
• Ranking and Tie-Breaking: Rank is determined by Final Score. Ties are broken by the lower

(Actual Consumed Credit + Penalties).
• Programming Languages: C++17, Java, and Python3 are available.

YOUR STATUS
• Name: <agent_name>
• Consumed Credit: <consumed_credit>
• Solved Problems: <solved_list>
• Current Score: <score>
• Penalty: <penalty>

AVAILABLE PROBLEMS
• <problem_id_1>

• <problem_id_2>

• ...

CURRENT RANKINGS
1. <Agent 1>: Score <S1>, Credit+Penalty: <C1> [ACTIVE]
2. <Agent 2>: Score <S2>, Credit+Penalty: <C2> [TERMINATED]
...

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

AVAILABLE ACTIONS
1. VIEW_PROBLEM: View problem details.

2. GET_HINT: Get a hint for a problem (consumes credit). Levels 0-4 are available.

3. SUBMIT_SOLUTION: Submit a solution.

4. TEST_CODE: Test code with custom test cases (consumes credit).

5. TERMINATE: End participation.

RESPONSE FORMAT
Please respond using the following JSON format:

{
"action": "<action_name>",
"parameters": {
// Fill in parameters according to the action type

}
}

I THE FIVE-TIERED HINT SYSTEM IN USACOARENA

To rigorously evaluate an agent’s ability to make strategic decisions under resource constraints, we
engineered a sophisticated five-tiered hint system within USACOArena. This system is not merely
a help feature; it functions as an economic model where information is a commodity with varying
costs and utilities. Agents must perform a cost-benefit analysis to decide if, when, and what type
of hint to purchase. This design allows us to observe and quantify an agent’s resource management
and problem-solving strategies.

Level 0: Strategic Guidance (500 Credit) This foundational hint provides high-level, static in-
formation about competitive programming.

• Function: It delivers a pre-compiled document containing the core philosophy of com-
petitive programming, a comprehensive debugging checklist, and general contest strategies
(e.g., time management). The contents are derived from USACO Guide2.

• Mechanism: The system retrieves the full content from a static JSON file
(/dataset/corpuses/USACO_strategy.json). The API call is parameter-free
({"hint_level": 0}).

• Strategic Purpose: This low-cost hint is intended for the early stages of a competition,
allowing an agent to establish a baseline understanding of the meta-game without spending
significant resources.

Level 1: Problem-Specific Textbook Content (1,000 Credit) This hint offers theoretical knowl-
edge directly relevant to a specific problem.

• Function: It provides a concise, relevant excerpt from a competitive programming text-
book that explains the theoretical concepts or algorithms needed for a given problem.

• Mechanism: Upon receiving a problem_id, the system automatically extracts key al-
gorithmic and data structure terms from the problem description. It then employs a BM25
search algorithm to find the most relevant section in a 2.8MB textbook corpus which is de-
rived from Algorithms for Competitive Programming3. The top result is returned, truncated
to 1,000 characters.

• Strategic Purpose: This is for agents that can identify a knowledge gap related to a prob-
lem but do not know the name of the required algorithm. It tests the agent’s ability to
recognize when it needs theoretical grounding.

2https://usaco.guide
3https://cp-algorithms.com

22

https://usaco.guide
https://cp-algorithms.com

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Level 2: Knowledge-Targeted Textbook Content (1,000 Credit) Similar to Level 1, this hint
also retrieves textbook content, but with a key difference in agent interaction.

• Function: It provides a detailed explanation of a specific algorithm or data structure ex-
plicitly named by the agent.

• Mechanism: Instead of a problem_id, the agent must provide a hint_knowledge
keyword (e.g., "segment tree"). The system uses this keyword directly in its BM25 search
against the same textbook corpus.

• Strategic Purpose: This hint is for a more advanced scenario where an agent correctly
identifies the required algorithm by name but needs to learn its implementation details. It
tests an agent’s self-awareness of its specific knowledge deficits.

Level 3: Similar Problem Retrieval (1,500 Credit) This high-cost hint provides a concrete,
solved example of a similar problem.

• Function: It returns a full problem description, along with a complete, vetted solution and
explanation, for a problem that is semantically similar to the one the agent is currently
working on.

• Mechanism: The system uses the current problem_id’s text (description and samples)
as a query for a BM25 search against the entire USACO problem library derived from US-
ACO Guide4, excluding problems from the current competition. The most similar problem
is returned.

• Strategic Purpose: This is a powerful tool for agents that are completely stuck on the
problem-solving approach. Its high cost forces the agent to consider whether viewing a
direct analogy is worth the significant credit expenditure.

Level 4: Curated Example Problems (1,500 Credit) This is the most targeted hint, designed to
provide practice on a specific topic at a specific difficulty.

• Function: It retrieves a complete example problem (description, solution, complexity anal-
ysis) that matches both a user-specified difficulty level and a knowledge keyword.

• Mechanism: The system filters the entire USACO problem library based on both
problem_difficulty (e.g., "Bronze") and hint_knowledge (e.g., "complete
search") tags provided by the agent.

• Strategic Purpose: This hint allows an agent to request a targeted exercise, simulating a
human’s process of looking for practice problems. It tests the agent’s ability to formulate a
precise learning objective.

4https://usaco.guide

23

https://usaco.guide

	Introduction
	Related Work
	LLMs for Code and the Rise of Static Benchmarks
	The Emergence of Coding Agents
	The Missing Paradigm: Resource-Awareness Evaluation

	USACOArena: An ACM-Inspired Arena for Coding Agents
	Foundational Design: Adapting the ACM-ICPC Format
	Scoring and Credit Model: Operationalizing ACM-ICPC Rules
	System Architecture and Communication Protocol

	Experiment
	Experimental Setup
	Main Competition: Performance and Strategic Analysis
	Probing Agent Architecture: A Case Study on the GPT-5 Family
	Emergent Behavioral Diversity in Self-Play

	Conclusion
	Statement on LLM Usage
	Foundations in Competitive Programming Standards
	The Rationale for a Competitive Evaluation Paradigm
	Why ACM-ICPC over IOI? A Framework for Engineering-Aligned Evaluation

	Problem Corpus and Difficulty Baselining
	Participant Qualification Results
	Detailed Results of Main Competition
	Large Language Model Details
	USACOArena Hyperparameters
	Prompt for USACOArena Evaluation
	The Five-Tiered Hint System in USACOArena

