
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECAPA: HIERARCHICAL PREDICTIVE CORRECTION
TO MITIGATE CASCADING FAILURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision–Language–Action (VLA) agents follow instructions to perform multi-step
tasks in multimodal environments. To support planning and execution in such
settings, many approaches typically adopt structured post-hoc or rely on fixed de-
composition and rigid alignment to improve success rate. However, once an inter-
mediate subgoal or action is mis-specified and without a flexible correction mech-
anism, local errors propagate through subsequent steps and eventually accumulate
into cascading failures in long-horizon reasoning. To mitigate this compounding
effect, we propose Reflective Contrastive Alignment and Planning Architecture
(ReCAPA), a framework that uses predictive correction to anticipate deviations
and adjust representations across three levels: actions, subgoals, and trajectories.
Semantic alignment is enforced at all levels using a Sinkhorn-based module and
a Score-field module. The corrective signals, derived from predictive correction
and alignment mechanisms, jointly update the execution network during train-
ing, enabling it to flexibly adjust fine-grained steps to remain aligned with the
overall intent. We further introduce two new metrics to quantify error propaga-
tion and recovery processes in tasks. Experiments show that ReCAPA achieves
competitive results on embodied agent benchmarks such as VisualAgentBench,
MineDojo, and MAP-THOR, outperforming strong proprietary and open-source
Large Language Model (LLM) baselines.

1 INTRODUCTION

VLA agents powered by LMMs are increasingly applied to long-horizon tasks in embodied envi-
ronments, such as household manipulation, indoor navigation, and multi-turn human-robot dialogue
(Jiang et al., 2023). These tasks require perception, planning, and grounded execution under natural
language guidance. Yet many systems struggle to generalize across multi-step environments, as they
lack structured visual–language grounding and often collapse under semantic drift and cascading er-
rors(Comanici et al., 2025; Anthropic, 2024a; Achiam et al., 2023).

Recent VLA agents such as Re-ReST (Dou et al., 2024), LLaMAR (Nayak et al., 2025), and City-
NavAgent (Zhang et al., 2025) shift the focus from fine-grained token-level decisions to subplans,
which serve as goal-oriented anchors that reduce the risk of step-by-step error accumulation. Both
TrajPrompt (Tsao et al., 2024) and PRET(Lu et al., 2024) incorporate alignment between instruc-
tions and trajectories through semantic matching or trajectory fidelity, thereby strengthening the
coherence between task intent and execution. However, semantic drift and error propagation remain
the key bottlenecks of long-horizon reasoning. On one hand, post-hoc correction and predefined
segmentation makes it difficult to flexibly adjust its actions when the environment or task changes.
On the other hand, relying only on local-level alignment without global corrective signals leads to
each step being optimized in isolation, thereby drifting from the overall intent easily. In benchmarks
such as VirtualHome(Puig et al., 2018) and AI2-THOR(Kolve et al., 2017), even a single subgoal
error can degrade the performance of subsequent steps by over 60% (Zhong et al., 2024; Zhu et al.,
2021). In sum, current agents may encounter execution–goal divergence and cumulative rollout
errors, increasing the risk of cascading failures over time.

Addressing cascading failures across different temporal scales is critical: action errors may com-
pound rapidly in the short term, whereas strategy misalignments unfold more slowly and gradually
distort the overall plan. These distinct propagation patterns suggest that effective correction should

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Align

walk into kitchen

turn off leavepick upwalk

turn off leavepick up

Update

Gradient

Encoder

Agent: original plan
Step 1：Walk into the kitchen .
Step 2：Clean the table.

Step 3：Turn off the light .
Put away the cloth.

 Execution Network
��(��|��−�+1:�)

Refinement

Agent: refined plan

Step 1：Walk into the kitchen .
Step 2：Clean the table.

Step 4：Turn off the light .
Step 3：Put away the clothes.

[WALK] (kitchen) then [PICK UP] (cloth) then [WIPE] (table)(cloth) then
[PUTAWAY] (cloth) then [TURN_OFF] (light) then [LEAVE] (kitchen)

wipe

Clean the kitchen table and leave.

VerifyAlign

Subgoal-Level

Action-Level

Align

wipe put away+ +

Align Align

+

Hierarchical Predictive Contrastive Correction

miss

Output

CorrectionPrediction

Analysis

Environment

Total steps taken:
21 steps

Final stateClean the
kitchen table

and leave. Template
Agent

Decompose

CorrectionPrediction

Trajectory-Level

Clean the kitchen
table and leave.

VerifyAlign

Clean the kitchen table and leave.

Clean the kitchen table and leave.

Figure 1: Overview of the ReCAPA framework. The LLM first generates the agent’s original plan
through task decomposition. Hierarchical Predictive Contrastive Correction module executes the
task and produces fine-grained corrective signals to guide execution updates.

span multiple levels, requiring consistent alignment across steps and overall goal. Yet many methods
reflect only at a single layer, inevitably leaving other level propagation unchecked (Sun et al., 2023)
(Zhou et al., 2024). To address this, representations are refined during training through higher-level
supervision that enforce cross-level consistency alignment. At inference time, the execution network
can anticipate deviations early, favor behavior compositions consistent with task intent.

Guided by the above considerations, we propose ReCAPA as shown in Figure 1. ReCAPA seper-
ates trajectories into action-, subgoal-, and trajectory-levels. Unlike prior methods that rely on
fixed decomposition and apply only after errors occur, ReCAPA proactively introduces Hierarchical
Predictive Contrastive Correction (HPCC) and cross-level alignment signals to prevent errors from
compounding. These alignment signals are obtained by comparing trajectory embeddings with the
prompt embeddings, using a Sinkhorn-based (Cuturi, 2013) global module and a Score-fieldSong
et al. (2021) local module. The Sinkhorn-based module aligns the overall trajectory distribution
with the prompt, providing a global indicator at the trajectory-level that guides ReCAPA to reflect
on task intent. In parallel, the Score-field module provides step-specific alignment across the remain-
ing two levels. At the subgoal-level, HPCC forecasts the trajectory-level representation while the
module evaluates the fit between trajectory rollouts and prediction, updating their parameters when
inconsistencies arise. At the action-level, ReCAPA predicts the subgoal representation and uses
prompt-based scores to revise fine-grained execution errors. Together, HPCC and prompt-trajectory
alignment enable early, cross-level corrections that reduce drift.

To properly assess these benefits, evaluation should go beyond success rate (SR) to also capture
how errors propagate, accumulate, and dissipate throughout execution, which existing benchmarks
largely overlook. To fill this gap, we introduce two diagnostic metrics in long-horizon reasoning:
Error Propagation Rate (EPR) quantifies how mistakes compound across steps, and Propagation
Attenuation Coefficient (PAC) measures how errors attenuate or dissipate over time. Together, these
metrics capture how failures both spread and decay, providing diagnostic tools to evaluate ReCAPA’s
stability. Our contributions demonstrate the following advancements:

• We propose ReCAPA, a framework operationalizes hierarchical correction by coupling
multi-level predictive representations with prompt–trajectory distributional alignment, al-
lowing deviations to be anticipated and corrected earlier in the rollout.

• We introduce two diagnostic metrics for error propagation in long-horizon reasoning: EPR
quantifies the propagation of errors across future steps, while PAC captures the system’s
ability to recover by measuring how quickly post-error dissipates.

• ReCAPA outperforms strong LMM baselines in terms of success rate, achieving +5.65%
on VisualAgentBench, +9% on MineDojo, and +7% on MAP-THOR.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Decomposition Approaches Task decomposition has been explored in methods such as HIRO
(Nachum et al., 2018) which executes fixed interval subgoals and EPO (Zhao et al., 2024) which ap-
plies reward modeling for hierarchical planning. LLaMAR (Nayak et al., 2025) and CityNavAgent
(Zhang et al., 2025) both follow pre-defined multi-stage subgoal pipelines, but they introduce novel
modifications to improve task execution success. LLaMAR improves upon multi-stage task decom-
position and policy optimization, while CityNavAgent decomposes subgoals and uses memory of
past trajectories to aid planning. However, these static approaches may struggle to adapt when the
initial decomposition is flawed, leading to errors in dynamic environments.

Error-Correction Mechanisms To address rigid planning, later works introduced feedback-based
corrections. ReAct (Yao et al., 2023a), Reflexion (Shinn et al., 2023), and WALL-E (Zhou et al.,
2024) provide step-level or episodic updates. AdaPlanner (Sun et al., 2023) revises subplans based
on feedback to adapt to changing environments, while R3V (Cheng et al., 2024) self-reflects by gen-
erating multiple candidate paths and selecting to improve its trajectories. Although these methods
incorporate dynamic error-correction mechanisms and can adapt through feedback from the environ-
ment or their own internal processes, they still find it challenging to maintain consistency between
the steps and the higher-level intent at different stages of task execution.

Integration Attempts To maintain higher-level consistency during corrections, recent research
has explored frameworks that integrate decomposition with semantic alignment. For example, Tra-
jPrompt (Tsao et al., 2024) and HiP (Ajay et al., 2023) leverage vision–language information by
mapping intermediate task steps into a shared semantic space defined by language and visual fea-
tures. However, these methods primarily focus on aligning substeps, which can result in correct
subgoals but failed actions, making it difficult to maintain consistent alignment between overall in-
tent and fine-grained operations. In contrast, ReCAPA enforces cross-level predictive: lower levels
forecast higher-level representations, and deviations trigger top-down corrections that use alignment
signals to pull local decisions back to global goals and mitigate error propagation early.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

Most existing methods rely on pre-defined segmentation or post-hoc , which are hard to flexibly
correct mistakes and often lead to failures. In addition, local alignment is often insufficient, as it
lacks global feedback to correct misordered segments or handle ambiguous cases. To overcome
this, we introduce prediction to expose deviations early and correct them. During training, ReCAPA
takes trajectory segments, prompt embeddings, and visual observations as input, with Hierarchical
Predictive Contrastive (HPCC) representing trajectories at three levels. Prompt–trajectory alignment
provides signals to guide local steps to stay aligned with overall task intent. These steps define the
training losses, which are backpropagated through the execution network to guide action and object
choices.

At inference, ReCAPA uses environmental observations, the prompt, and historical trajectories as
inputs. The execution network generates trajectories, while the LLM (GPT-4o-mini) provides task
decompositions and completion markers. The three-tier correction mechanism refines the trajectory
by resampling actions, adjusting subtasks, and using Sinkhorn for prompt alignment.

3.2 HIERARCHICAL PREDICTIVE CONTRASTIVE

At the core of ReCAPA, HPCC predicts higher-level semantics from lower-level steps and reflects
back corrective signals, supportng consistent task representations. HPCC structures reasoning into
three levels: actions, which capture how fine-grained steps compose into short-term subgoals (e.g.,
[GRAB], [WALK], [WIPE] → cleaning); subgoals, which forecast trajectory outcomes and enforce
causal order (e.g., washing before drying); and trajectories, which encode the task’s overall intent
and outcome, anchoring prompt–trajectory alignment.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Hierarchical Predictive Contrastive Correction

Action-Level

Trajectory-Level

Subgoal-Level

Input Execution Network

History:
[�{�−�+1}, �{�−�+2}, ..., ��]

State:

Contrastive Learning

�����

+
����

����

�����
��� �����

�����
��� ����

Prompt

+

��
�

����� =�L
/�hNegative Contrast

(-)

(+)
Positive Contrast

(��)Embedding Gradient

...

...

Input:
��������[����, ��������| �������]

Transformer

MLP

Execution Gradient (���)

Pr
ed

ic
t Total Loss

Align

Prompt

Trajectory

Score-field

 Prompt

Trajectory

Score-fieldPr
ed

ic
t

Align

Cross-Level Correction

����

����

�����

Cross-Level Correction

Align

Compare

Compare

Prompt

Trajectory

Sinkhorn

Figure 2: Overview of the ReCAPA training process. In ReCAPA, state, history, and prompt are
encoded into hierarchical correction, with predictive and alignment losses guiding the execution
network to produce discrete actions.

3.2.1 CROSS-LEVEL PREDICTION

HPCC takes the trajectory as input and turns it into multi-level representations at the action, sub-
goal, and trajectory scales. Fine-grained actions combine to form higher-level subgoals, which to-
gether structure the task and encode sequential behavior patterns to anticipate overall task semantics.
Specifically, at each level l ∈ {action, subgoal}, the model predicts the representation at level l+ 1,
based on a segment collection T l. A trajectory segment collection T l(optionally concatenated with
visual embeddings from environment observations) at level l is encoded by a Transformer-based
module El

ϕ into zl, then processed by an MLP predictor f lθ to yield ẑl+1 = f lθ(z
l). The predicted

representation ẑl+1 is then refined through the corrective mechanisms.

3.2.2 CORRECTIVE PATHWAY

Beyond prediction, a corrective pathway is introduced to propagate top–down indicators, allowing
higher-level intent to continuously guide lower-level representations and prevent drift. Whenever
the cross-level predictor’s estimate ẑl+1 deviates from the target embedding zl+1, the higher-level
representation provides a corrective target to regularize the lower-level embedding zl. The target
embedding zl+1 is obtained from the encoder at level (l + 1) and serves as a supervisory reference
for the predictor.

Intuitively, lower-level embeddings should remain aligned with the semantic guidance provided by
the higher level; otherwise, deviations at finer levels may accumulate and propagate upward. To
prevent this drift, the higher-level embedding is used as a supervisory reference to regularize the pre-
dicted lower-level representation. Concretely, the cross-level contrastive loss Llpred is implemented
as an InfoNCE objective on (ẑl+1, zl+1), encouraging the predicted representation to stay close
to the intended higher-level signal while distinguishing it from distractors. During optimization,
gradients are backpropagated only to the level-l encoder, while the level-(l + 1) target is detached:

Llpred = − log
exp

(
sim(ẑl+1, zl+1)/τ

)
exp (sim(ẑl+1, zl+1)/τ) +

∑
j wj exp

(
sim(ẑl+1, zl+1

neg,j)/τ
) , (1)

where ẑl+1 represents the predicted output for level l+1 as the anchor, zl+1 (computed by El+1
ϕ on

T l+1) is the positive sample, and the set {zl+1
neg,j} contains negative samples that act as distractors,

each associated with a non-negative weight wj to emphasize ambiguous or challenging examples,
while a temperature parameter τ > 0 adjusts similarity sharpness and gradient stability.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 PROMPT-TRAJECTORY ALIGNMENT

We introduce two complementary modules for prompt–trajectory alignment: a global Sinkhorn-
based alignment, which leverages Optimal Transport (OT)(Peyré & Cuturi, 2018) to provide dis-
tributional consistency between trajectories and prompts, and a local Score-field alignment, which
learns corrective gradients to adjust fine-grained actions toward the higher-level direction.

3.3.1 SINKHORN-BASED ALIGNMENT

The Sinkhorn-based alignment module provides a global objective that aligns entire trajectories with
the instruction prompt. It uses a distributional alignment approach, enabling the entire trajectory to
flexibly align with the task’s semantic structure without requiring exact token-by-token matching,
thus handling ambiguous or misaligned segments more effectively. It takes the trajectory distribution
µ and the prompt embedding ν as input, and outputs a distributional alignment loss. To quantify the
distributional discrepancy between the trajectory and the prompt, we employ the entropy-regularized
optimal transport distance, leading to the following Sinkhorn divergence Formally, the Sinkhorn
divergence is defined as:

Lsinkhorn(µ, ν) = OTϵ(µ, ν)− 1
2OTϵ(µ, µ)− 1

2OTϵ(ν, ν), (2)

where OTϵ denotes the entropy-regularized OT cost between distributions. Minimizing Lsinkhorn
encourages trajectory embedding to align semantically with the prompt in latent space.

3.3.2 SCORE-FIELD ALIGNMENT

The Score-field module provides a local objective that complements the global Sinkhorn alignment
by adding the fine-grained corrections it lacks, pulling deviated actions back toward the global intent.
It takes state embeddings zl and the prompt embedding p as input, and outputs localized corrective
gradients.

The score network sψ(z
l,p), an MLP, is trained to approximate this field with a denoising objective.

Given state–prompt pairs (zl,p), the network perturbs zl with Gaussian noise ϵ ∼ N (0, σ2I) and
learns to predict the denoising score −ϵ/σ2:

Lscore = E(zl,p),ϵ∼N (0,σ2I)

[
∥sψ(zl + ϵ,p)− (−ϵ/σ2)∥22

]
. (3)

It trains sψ to model a vector field that points towards high-density regions of the prompt-defined
distribution. Consequently, any trajectory state zl that lies in a low-density region indicating a
deviation from the prompt’s semantic intent is assigned a strong gradient by sψ . This gradient
signal, when incorporated into the overall objective, forces deviant state representations to shift
towards configurations more consistent with the prompt.

3.4 TRAINING AND INFERENCE

At the first stage, we pre-train Transformer encoders with a contrastive task on trajectory segments.
A window of state–action sequences is encoded and trained with InfoNCE (Eq. 3) using positives
from the same trajectory and negatives from GPT-4o-mini. This yields a structured embedding space
where each level not only separates valid from invalid patterns but also encodes the plausibility and
sequential dependencies of trajectory segments. These structured embeddings form the basis for
reliable cross-level alignment and effective corrective feedback.

Then we optimize ReCAPA with a joint objective that combines HPCC’s predictive losses and
prompt–trajectory alignment losses across hierarchical levels:

Ltotal =
∑

l∈{action, subgoal}

(
λlpredL

l
pred + λlscoreL

l
score

)
+ λsinkhornLsinkhorn. (4)

The hyperparameters λlpred, λlscore, and λsinkhorn balance the predictive, score-field, and Sinkhorn
losses. Llpred encourages forecasting of higher-level outcomes from lower-level segments, while
Llscore and Lsinkhorn enforce semantic consistency with the prompt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

During training, we concatenate each visual embedding with the current subgoal text, feed a his-
tory window into a Transformer. The joint objective Ltotal propagates gradients by the chain rule
so corrective signals from higher levels reach the execution network. The MLP in execution net-
work outputs discrete logits, which are used to guide action and object choices based on the learned
task representation. At inference, LLM (GPT-4o-mini) provides task decompositions and com-
pletion markers, serving as supervisory signals that trigger subgoal switching and trajectory-level
re-evaluation. ReCAPA applies hierarchical biases: at the action-level, we select Top-K candidates,
align their semantics with the subgoal text, re-rank using similarity and logits, and resample if scores
are low; for the subgoal-level, a sliding window encodes state–action sequences and computes the
similarity between the current and next windows, the LLM guides switching to the better-aligned
subtask; at the trajectory-level, Sinkhorn evaluates prompt–trajectory alignment, when misalignment
grows, increases the action acceptance threshold to enforce more conservative selection.

3.5 ERROR PROPAGATION METRICS

Standard metrics such as SR or Success weighted by Path Length measure whether a task is eventu-
ally completed, but they do not fully capture how errors accumulate or dissipate during execution.
In long-horizon reasoning, this distinction is critical: two agents may achieve the same final suc-
cess rate, yet one suffers from cascading failures while the other recovers from early slips. Without
tracking such dynamics, existing metrics can mask important differences in robustness. To address
this gap, we introduce two formal measures that characterize error propagation and recovery.

Error Propagation Rate (EPR). Let et ∈ {0, 1} denote the step-level error, with t0 as the first error
time. The EPR at lag k is defined as:

EPRk = Pr(et0+k = 1 | et0 = 1)− Pr(et0+k = 1 | et0 = 0). (5)

For example, EPR3 = 0.4 means the probability of another error three steps later increases by
40% compared to the case without an initial error. Moreover, with ergodic rollouts and proper
conditioning, the estimator ÊPRk is consistent, i.e., ÊPRk

p−→ EPRk (Appendix E).

Propagation Attenuation Coefficient (PAC). PAC is directly defined as:

PAC = −slope(∆, ln Pr (et0+∆ = 1 | et0 = 1)) , (6)

which measures the exponential decay rate of post-error risk: larger values indicate quicker recovery,
while smaller values reveal that the system remains exposed to error accumulation.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

To address trajectory drift and long-horizon planning, we evaluate ReCAPA on three benchmarks.
MAP-THOR provides 120 interactive scenes while MineDojo is a Minecraft-based benchmark with
3,142 tasks. VisualAgentBench includes OmniGibson (household tasks) and Minecraft (naviga-
tion/crafting), measured by Average Success Rate (AVG) and F1. In addition to standard metrics,
we report EPR and PAC to quantify error spread and recovery.

In ablations, the baseline w/o HPCC removes the HPCC module, while HPCC-AS (Ac-
tion+Subgoal), HPCC-AT (Action+Trajectory), and HPCC-ST (Subgoal+Trajectory) use only two-
level combinations; HPCC-Full includes all three. PPO replaces HPCC with Proximal Policy Op-
timization (Schulman et al., 2017), serving as a flat RL baseline. We also implement HIRO with
two-level subgoal control, augmented with Sinkhorn and Score-field alignment. The baseline w/o
Alignment removes all alignment losses, while Alignment-Full includes both. KL+Score-field re-
places Sinkhorn with KL divergence while retaining Score-field.

For HPCC, we set an 8-step horizon at the action-level, adapt the subgoal horizon per benchmark,
and treat the full sequence as the trajectory segment during training. At inference, trajectory win-
dows are applied in a sliding manner over recent steps, where each new state–action pair shifts the
window forward. With these hierarchical settings in place, ReCAPA adopts a mixed training proto-
col. On VisualAgentBench and MAP-THOR, we emphasize cross-domain transfer, pre-training on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on MAP-THOR(Nayak et al.) across models and metrics. MAP-THOR
assessed via Success Rate (SR), Transport Rate (TR), Coverage, and Balance; Coverage measures
successful interactions, while Balance captures the evenness of contributions to subtasks.

Model SR TR Coverage Balance
Single-LM/Agent Baselines
ReAct (Yao et al., 2023b) 0.34 0.72 0.92 0.67
CoT (Wei et al., 2023) 0.14 0.59 0.87 0.62
SmartLLM (Kannan et al., 2024) 0.11 0.23 0.91 0.45
CoELA (Zhang et al., 2023) 0.25 0.46 0.76 0.73

Multi-Modal/LLM-Enhanced Baselines
GPT-4o (Hurst et al., 2024) 0.51 0.85 0.95 0.83
LLaVA (Liu et al., 2023) 0.54 0.84 0.91 0.75
IDEFICS-2 (Laurençon et al., 2024) 0.57 0.86 0.94 0.78
CogVLM (Wang et al., 2024) 0.61 0.89 0.95 0.80
GPT-4V (Achiam et al., 2023) 0.66 0.91 0.97 0.82
LLaMAR (Nayak et al., 2025) 0.68 0.90 0.95 0.85
ReCAPA 0.75 0.93 0.95 0.93

Figure 3: Left: Success rate curves across varying task lengths. Middle: EPR trends showing error
propagation at different lags. Right: PAC decay rates on MAP-THOR.

ProcTHOR (Deitke et al., 2022) and Behavior1K (Li et al., 2024a) and directly evaluating without
fine-tuning. On MineDojo, we report both zero-shot and fine-tuned results, with fine-tuning adapted
on LLM-generated trajectories for three iterations (Iter-3). All baselines follow their original proto-
cols. Further details are in Appendix B.

4.2 RESULTS AND ANALYSIS

Table 1, 2 and Table 3 summarize results across benchmarks. ReCAPA shows strong multi-task
performance with an AVG. score of 58.65, excelling in manipulation and crafting on VisualAgent-
Bench. On MAP-THOR, ReCAPA surpasses baselines with the highest SR of 0.75, TR of 0.93, and
Balance of 0.93, though Coverage lags slightly behind GPT-4V. On MineDojo, ReCAPA outper-
forms prior LLM agents, leading 8/10 long-horizon tasks with higher success rates. It also achieves
the lowest EPRk and most favorable PAC trajectory as task length grows; e.g., at k = 10 on Om-
niGibson, EPR10 is 0.082 versus around 0.3 for GPT-4o-mini and Gemini-2.5, and > 0.45 for
Claude-4-sonnet as shown in Figure 3. Residual errors dissipate fastest for ReCAPA, reflected in
the strongest PAC value in Figure 4. Additional comparisons appear in Appendix C.

To further assess the contributions of ReCAPA’s core components, we conduct ablation studies tar-
geting the HPCC and prompt-trajectory alignment modules across four different benchmarks as
shown in Table 4. Removing HPCC leads to the largest performance drop, with SR on Behavior
falling to 59.3 compared to 72.2 for HPCC-Full, confirming the importance of multi-level predictive.
HIRO reaches 63.4 on Behavior and 62.7 on VirtualHome, higher than PPO at 60.2 and 60.6, but
generally underperforms HPCC variants. Trajectory-level variants show clear gains, with HPCC-AT
achieving 0.73 on MAP-THOR and HPCC-ST 0.69, both stronger than HPCC-AS. For alignment,
Sinkhorn and Score-field are complementary: Sinkhorn alone gives higher scores than Score-field
most of the time, and using both together achieves the best overall performance. KL+Score-field
achieves the highest score of 67.0 on the Minecraft task in VisualAgentBench.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance of different models on VisualAgentBench which include OmniGibson and
Minecraft ((Li et al., 2023) (Mojang Studios, 2011). AVG. denotes the overall average score.

Model AVG. OmniGibson Minecraft
Open-LMMs (Fine-tuning)
Qwen-VL (Bai et al., 2023) 9.90 1.7 18.1
CogVLM2 (Hong et al., 2024) 13.55 6.6 20.5
LLaVA-NeXT (Li et al., 2024b) 16.60 9.4 23.8
GLM-4V (GLM et al., 2024) 14.35 8.8 19.9
InternVL-2 (Chen et al., 2024) 22.20 16.0 28.4

Proprietary-LMMs (Prompting)
qwen-vl-max (Bai et al., 2023) 2.65 0.0 5.3
Claude-3.5-Sonnet (Anthropic, 2025b) 40.15 24.3 56.0
GPT-4V (preview) (Achiam et al., 2023) 41.95 36.5 47.4
GPT-4o (Hurst et al., 2024) 48.30 41.4 55.2
Claude-4-Sonnet (Anthropic, 2025a) 50.25 42.6 57.9
GPT-4o mini (Zhu et al., 2023) 54.15 46.7 61.6
Gemini 2.5 Flash (Comanici et al., 2025) 53.00 43.9 62.1
ReCAPA (Our work) 58.65 50.6 66.7

Figure 4: Results on VisualAgentBench. The left two plots show the EPR and PAC curves on
OmniGibson, while the right two plots show the EPR and PAC curves on MineCraft. Shaded regions
indicate 95% confidence intervals across three random seeds.

4.3 DISCUSSION

Our results show that ReCAPA not only achieves higher success rates but also stabilizes execu-
tion by suppressing cascading failures and recovering from them. Across benchmarks, it generally
outperforms strong proprietary and open-source LMMs. On VisualAgentBench and MineDojo, its
advantage is clearest in compositional reasoning tasks, where it decomposes goals into valid sub-
goals and maintains multi-step consistency. On MAP-THOR, it demonstrates stronger robustness in
long-horizon planning and balanced manipulation across diverse scenes. The lower coverage relative
to GPT-4V arises because ReCAPA’s hierarchical favors structural consistency and high-confidence
interactions, while GPT-4V’s broader exploration touches more objects. This reflects a fundamental
trade-off in embodied agents: broader exploration increases coverage, while consistent enhances
stability, and long-horizon reasoning requires balancing both.

Beyond overall success rates, we further analyze error propagation dynamics using our proposed
EPR and PAC metrics. ReCAPA achieves the lowest EPR across benchmarks, showing that the
impact of early mistakes dissipates more quickly than in other LMMs. This indicates that while
errors remain, ReCAPA limits their spread and prevents small deviations from escalating into full
failures. Similarly, ReCAPA maintains the highest PAC trajectory, indicating that errors dissipate
more rapidly, and longer tasks provide more opportunities for recovery rather than compounding
drift. Taken together, the two metrics highlight complementary aspects of robustness, with low
EPR reflecting error prevention and high PAC reflecting error recovery, which prior evaluations
often overlooked. More broadly, EPR and PAC provide a useful lens for analyzing long-horizon
reasoning and may encourage future evaluation to move beyond stepwise accuracy toward explicitly
quantifying how agents prevent and dissipate cascading errors.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of several tasks selected from the MineDojo(Fan et al., 2022b) benchmark,
covering simple resource gathering and multi-step synthesis or animal interactions. All reported
values correspond to SR. The visual encoder is replaced with MINECLIP(Fan et al., 2022a).

TASK

MINEAGENT (YU ET AL., 2024) 0.00 0.00 0.00 0.00 0.00 - - - -
MINEAGENT (AUTOCRAFT) 0.00 0.03 0.00 0.00 0.46 0.50 0.33 0.35 0.00
PLAN4MC (YUAN ET AL., 2023) 0.30 0.30 0.53 0.37 0.83 0.53 0.43 0.33 0.17
RL-GPT (ZERO-SHOT) (LIU ET AL., 2024) 0.26 0.30 0.53 0.47 0.79 0.53 0.43 0.35 0.30
RL-GPT (ITER-3) 0.65 0.65 0.67 0.67 0.85 0.56 0.46 0.38 0.32
RECAPA (ZERO-SHOT) 0.57 0.43 0.67 0.60 0.83 0.67 0.53 0.35 0.30
RECAPA (ITER-3) 0.63 0.65 0.80 0.73 0.95 0.73 0.60 0.53 0.40

Table 4: This ablation study aims to address the role of layers and alignment strategies on four
benchmarks (Li et al., 2025) (Shridhar et al., 2021). All reported values correspond to SR.

Method EmbodiedAgentInterface AlfWorld VisualAgentBench MAP-THOR

Behavior VirtualHome OmniGibson Minecraft

w/o-HPCC 59.3 60.1 80 42.7 56.3 0.63
PPO 60.2 60.6 79 41.5 57.8 0.59
HIRO 63.4 62.7 94 44.0 60.2 0.63
HPCC-AS 63.6 61.4 86 43.4 62.5 0.65
HPCC-AT 65.1 70.9 94 47.9 57.5 0.73
HPCC-ST 66.3 66.3 91 48.1 60.4 0.69
HPCC-Full 72.2 70.5 96 50.6 66.7 0.75

w/o-Alignment 65.8 67.2 92 46.1 62.4 0.69
Sinkhorn 66.1 69.4 95 49.3 65.6 0.74
Score-field 64.4 67.9 92 46.8 66.3 0.72
KL + score-field 70.3 68.1 95 49.6 67.0 0.74
Alignment-Full 72.2 70.5 96 50.6 66.7 0.75

In ablation studies, by linking global trajectories with local actions or subgoals, HPCC-AT and
HPCC-ST reduce the drift of locally steps from global goals. This suggests that effective long-
horizon reasoning requires cross-level guidance, whereas LLMs, though large, often optimize only
for local coherence and struggle to maintain consistency over extended horizons. HIRO executes
fixed-interval subgoals open-loop, so when the environment shifts it lacks flexible adjustments
and actions drift from global goals easily. HPCC instead introduces an adaptive correction strat-
egy, where cross-level feedback adjust local actions and keep them aligned with global goals. For
alignment, KL+Score-field’s sensitivity strongly penalizes minor mismatches; in Minecraft, where
distributions are skewed, this sensitivity helps capture rare but decisive events. However, it also
destabilizes signals, making KL-based alignment less reliable than Alignment-Full, which achieves
stronger overall performance across most tasks.

5 CONCLUSION

To mitigate semantic drift in long-horizon reasoning for embodied agents, we proposed ReCAPA, a
framework that integrates hierarchical correction with prompt-trajectory alignment. Experiments on
VisualAgentBench, MineDojo and MAP-THOR both demonstrate that ReCAPA outperforms strong
baselines. While ReCAPA achieves strong empirical results, it exhibits two key limitations. (1) The
correction mechanism operates through discrete scoring at the levels, lacking continuous stepwise
feedback to correct deviations during rollout; and (2) the hierarchical generation module employs
deterministic mappings for computing next-layer embeddings, which restricts the model to a single
trajectory path per subgoal and fails to capture the uncertainties in hierarchical planning. To ad-
dress these limitations, we propose an uncertainty-gated corrective framework that injects alignment
residuals as stepwise signals during rollout, while large residuals trigger diffusion-based branching
for multiple plausible continuations. Future work will implement and evaluate these extensions to
enhance reasoning and generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, Samuel Adler, Jacob Ahern, Sandhini Agarwal, Lillian Ahmad, Ilge Akkaya,
et al. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2023.
arXiv:2303.08774.

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenen-
baum, Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models
for hierarchical planning, 2023. URL https://arxiv.org/abs/2309.08587.

Anthropic. Claude 3 model card. https://www.anthropic.com/news/claude-3, 2024.
Accessed: 2025-09-03.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, June 2024a. News release.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www.anthropic.com/
index/claude-3-model-card, 2024b. Accessed: 2025-07-24.

Anthropic. Claude sonnet 4. https://www.anthropic.com/claude/sonnet, 2025a.
Accessed: 2025-09-06.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, June 2025b. Accessed: 2025-09-06.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

Kanzhi Cheng, Yantao Li, Fangzhi Xu, Jianbing Zhang, Hao Zhou, and Yang Liu. Vision-language
models can self-improve reasoning via reflection, 2024. URL https://arxiv.org/abs/
2411.00855.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems, volume 26, 2013.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson
Han, Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-
scale embodied ai using procedural generation, 2022. URL https://arxiv.org/abs/
2206.06994.

Zi-Yi Dou, Cheng-Fu Yang, Xueqing Wu, Kai-Wei Chang, and Nanyun Peng. Re-rest: Reflection-
reinforced self-training for language agents. arXiv preprint arXiv:2406.01495, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended em-
bodied agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022a. URL https://openreview.
net/forum?id=rc8o_j8I8PX.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embod-
ied agents with internet-scale knowledge, 2022b. URL https://arxiv.org/abs/2206.
08853.

10

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2309.08587
https://www.anthropic.com/news/claude-3
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/index/claude-3-model-card
https://www.anthropic.com/index/claude-3-model-card
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2411.00855
https://arxiv.org/abs/2411.00855
https://arxiv.org/abs/2206.06994
https://arxiv.org/abs/2206.06994
https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX
https://arxiv.org/abs/2206.08853
https://arxiv.org/abs/2206.08853

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng, Shiyu
Huang, Junhui Ji, Zhao Xue, Lei Zhao, Zhuoyi Yang, Xiaotao Gu, Xiaohan Zhang, Guanyu Feng,
Da Yin, Zihan Wang, Ji Qi, Xixuan Song, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Yuxiao
Dong, and Jie Tang. Cogvlm2: Visual language models for image and video understanding, 2024.
URL https://arxiv.org/abs/2408.16500.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Shyam Sundar Kannan, Vishnunandan LN Venkatesh, and Byung-Cheol Min. Smart-llm: Smart
multi-agent robot task planning using large language models. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 12140–12147. IEEE, 2024.

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, Matthew Han, Jia
Deng, and Ali Farhadi. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models?, 2024. URL https://arxiv.org/abs/2405.02246.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Martinez, Hang Yin, Michael Lin-
gelbach, Minjune Hwang, Ayano Hiranaka, Sujay Garlanka, Arman Aydin, Sharon Lee, Jiankai
Sun, Mona Anvari, Manasi Sharma, Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan Lou,
Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Yunzhu Li,
Silvio Savarese, Hyowon Gweon, C. Karen Liu, Jiajun Wu, and Li Fei-Fei. Behavior-1k: A
human-centered, embodied ai benchmark with 1,000 everyday activities and realistic simulation,
2024a. URL https://arxiv.org/abs/2403.09227.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models, 2024b.
URL https://arxiv.org/abs/2407.07895.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Li Erran Li, Ruohan Zhang, Weiyu Liu, Percy Liang, Li Fei-Fei, Jiayuan Mao, and
Jiajun Wu. Embodied agent interface: Benchmarking llms for embodied decision making, 2025.
URL https://arxiv.org/abs/2410.07166.

Yunzhu Li, Fei Xia, Fanbo Xiang, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjeev Srivastava,
Andy Shih, Emily Wong, Roman Shapovalov, Shyamal Buch, et al. Omnigibson: A simulation
environment for embodied ai at scale. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pp. 650–651, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
https://arxiv.org/abs/2304.08485.

Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and Ji-
aya Jia. Rl-gpt: Integrating reinforcement learning and code-as-policy, 2024. URL https:
//arxiv.org/abs/2402.19299.

11

https://arxiv.org/abs/2408.16500
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2405.02246
https://arxiv.org/abs/2403.09227
https://arxiv.org/abs/2407.07895
https://arxiv.org/abs/2410.07166
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2402.19299
https://arxiv.org/abs/2402.19299

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Renjie Lu, Jingke Meng, and Wei-Shi Zheng. Pret: Planning with directed fidelity trajectory for
vision and language navigation. arXiv preprint arXiv:2407.11487, 2024.

Mojang Studios. Minecraft. https://www.minecraft.net/, 2011. Version: Java Edition.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. In Advances in Neural Information Processing Systems (NeurIPS), pp. 3303–3313,
2018.

Siddharth Nayak, Adelmo Morrison, Marina Ten Have, Vittal Thirumalai, Jackson Zhang, Dar-
ren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison, Anuj Ma-
hajan, Brian Ichter, and Hamsa Balakrishnan. Map-thor: Benchmarking long-horizon multi-
agent planning frameworks in partially observable environments. URL https://api.
semanticscholar.org/CorpusID:274523374.

Siddharth Nayak, Adelmo Morrison Orozco, Marina Ten Have, Vittal Thirumalai, Jackson Zhang,
Darren Chen, Aditya Kapoor, Eric Robinson, Karthik Gopalakrishnan, James Harrison, Brian
Ichter, Anuj Mahajan, and Hamsa Balakrishnan. Llamar: Long-horizon planning for multi-agent
robots in partially observable environments, 2025. URL https://arxiv.org/abs/2407.
10031.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2018.

Xavier Puig, Kiana Ehsani Ra, Marko Boben, Jiaman Shen, Shuran Yang, Manolis Savva, Angel X.
Chang, Jitendra Malik, and Antonio Torralba. Virtualhome: Simulating household activities via
programs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8494–8502, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2010.03768.

Yang Song, Jascha Sohl-Dickstein, Durk P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models, 2023. URL https://arxiv.org/abs/2305.
16653.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Li-Wu Tsao, Hao-Tang Tsui, Yu-Rou Tuan, Pei-Chi Chen, Kuan-Lin Wang, Jhih-Ciang Wu, Hong-
Han Shuai, and Wen-Huang Cheng. Trajprompt: Aligning color trajectory with vision-language
representations. In European Conference on Computer Vision, pp. 275–292. Springer, 2024.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Song XiXuan, et al. Cogvlm: Visual expert for pretrained language models. Advances
in Neural Information Processing Systems, 37:121475–121499, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

12

https://www.minecraft.net/
https://api.semanticscholar.org/CorpusID:274523374
https://api.semanticscholar.org/CorpusID:274523374
https://arxiv.org/abs/2407.10031
https://arxiv.org/abs/2407.10031
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2305.16653
https://arxiv.org/abs/2305.16653
https://arxiv.org/abs/2201.11903

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Beibei Yu, Tao Shen, Hongbin Na, Ling Chen, and Denqi Li. Mineagent: Towards remote-sensing
mineral exploration with multimodal large language models, 2024. URL https://arxiv.
org/abs/2412.17339.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks, 2023. URL
https://arxiv.org/abs/2303.16563.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

Weichen Zhang, Chen Gao, Shiquan Yu, Ruiying Peng, Baining Zhao, Qian Zhang, Jinqiang Cui,
Xinlei Chen, and Yong Li. Citynavagent: Aerial vision-and-language navigation with hierarchi-
cal semantic planning and global memory, 2025. URL https://arxiv.org/abs/2505.
05622.

Qi Zhao, Haotian Fu, Chen Sun, and George Konidaris. Epo: Hierarchical llm agents with environ-
ment preference optimization, 2024. URL https://arxiv.org/abs/2408.16090.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges
of agi. arXiv preprint arXiv:2409.18486, 2024.

Siyu Zhou, Tianyi Zhou, Yijun Yang, Guodong Long, Deheng Ye, Jing Jiang, and Chengqi Zhang.
Wall-e: World alignment by rule learning improves world model-based llm agents, 2024. URL
https://arxiv.org/abs/2410.07484.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models, 2023. URL https://
arxiv.org/abs/2304.10592.

Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical planning for
long-horizon manipulation with geometric and symbolic scene graphs, 2021. URL https:
//arxiv.org/abs/2012.07277.

13

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2412.17339
https://arxiv.org/abs/2412.17339
https://arxiv.org/abs/2303.16563
https://arxiv.org/abs/2505.05622
https://arxiv.org/abs/2505.05622
https://arxiv.org/abs/2408.16090
https://arxiv.org/abs/2410.07484
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2012.07277
https://arxiv.org/abs/2012.07277

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM DECLARATION

The LLM was employed solely to polish wording and improve readability. It was not used for idea
generation, methodological development, or result interpretation, and all scientific contributions
were made independently by the authors.

B DETAILED EXPERIMENTAL PROCEDURES

ReCAPA employs a two-stage training process. The first stage is offline pre-training on diverse ex-
pert and LLM-generated trajectories to establish hierarchical predictive and alignment capabilities.
In the second stage, we adopt benchmark-specific protocols: some benchmarks (e.g., MineDojo)
involve supervised adaptation using in-domain trajectories, while others (e.g., VisualAgentBench
and MAP-THOR) emphasize pure cross-domain transfer without task-specific fine-tuning.

B.1 STAGE 1: OFFLINE PRE-TRAINING

The offline pre-training phase leverages expert demonstration trajectories to establish a foundational
understanding of embodied interaction and planning for ReCAPA. This phase is critical for equip-
ping the model with the necessary knowledge to generalize across tasks before any domain-specific
fine-tuning is applied. We utilize two distinct datasets, BEHAVIOR-1K and ProcTHOR, to cover a
broad range of scenarios and ensure diverse task representation.

• BEHAVIOR-1K: This benchmark focuses on complex, everyday human activities in simu-
lated environments. For this dataset, we select 300 representative tasks and use 3 to 5 expert
demonstration trajectories per task. The fine-grained interaction data allows the model to
learn the dynamics of typical human behavior in an embodied context.

• ProcTHOR: In addition to BEHAVIOR-1K, we incorporate 300 diverse tasks from the
procedurally generated ProcTHOR environment. This dataset features various scene lay-
outs and object arrangements, and we collect approximately 10 expert trajectories for each
task. The diversity of this dataset ensures the model is not overly dependent on specific
environmental configurations, enhancing its generalization ability.

This foundational pre-training step is conducted in an offline manner, allowing the model to absorb
critical information about trajectories without the complexity of real-time interaction. Although the
total number of trajectories is smaller than in large-scale pretraining corpora, the diversity across
BEHAVIOR-1K and ProcTHOR ensures broad task coverage and equips ReCAPA with transferable
knowledge of embodied dynamics. This design emphasizes sample efficiency and cross-domain
generalization: in Stage 2, the model is evaluated both with limited in-domain adaptation (e.g.,
MineDojo) and under pure transfer settings (e.g., VisualAgentBench and MAP-THOR), highlighting
ReCAPA’s ability to generalize beyond its training distribution.

B.2 STAGE 2: DOMAIN-SPECIFIC ADAPTATION AND TRANSFER

Following the pre-training phase, we distinguish two types of evaluation protocols. For MineDojo
and AlfWorld, ReCAPA is adapted on LLM-generated trajectories from the target domain for sev-
eral iterations, each iteration consisting of supervised updates on new rollouts with the hierarchical
predictive and alignment objectives. Hard negatives are re-sampled at every round, and explicit
gradient mapping ensures that corrections at each level remain disentangled.

For VisualAgentBench, MAP-THOR and EmbodiedAgentInterface, we emphasize pure cross-
domain transfer: the model is pre-trained on ProcTHOR and BEHAVIOR-1K and directly evalu-
ated on the target benchmarks without task-specific fine-tuning. This setting highlights ReCAPA’s
generalization ability under strict transfer conditions. Baselines are evaluated under their original
protocols to ensure fair comparison.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: PAC vs. Task Length: Measures the attenuation rate of the impact of early errors on
subsequent steps (the higher the value, the faster the recovery and the weaker the error propagation)

Model 20 40 60 80 100 120 140
ReCAPA (Our work) 3.1 2.8 2.7 2.6 2.4 2.2 2.0
LLaMAR (Nayak et al., 2025) 3.2 2.9 2.4 1.9 1.7 1.4 1.0
GPT-4V (Achiam et al., 2023) 3.1 2.9 2.4 2.0 1.7 1.4 1.1
CogVLM (Wang et al., 2024) 2.4 2.0 1.7 1.4 1.0 0.8 0.5
IDEFICS-2 (Laurençon et al., 2024) 2.6 1.5 1.2 1.1 0.6 0.3 0.0

Table 6: Performance of ReCAPA Variants under Layer-wise Ablation across Benchmarks. This
table estimates the expected impact of removing individual layers or flattening the hierarchy (Flat-
Head) on ReCAPA’s performance across diverse environments, highlighting the necessity of each
abstraction level

Method EmbodiedAgentInterface AlfWorld VisualAgentBench MAP-THOR
Behavior VirtualHome OmniGibson Minecraft

w/o Subgoal-Level 62.8 61.5 87 44.8 61.4 0.62
w/o Trajectory-Level 65.4 64.5 86 47.4 60.5 0.67
FlatHead 49.3 55.4 78 35.6 44.1 0.52
ReCAPA 72.2 70.5 96 50.6 66.7 0.75

B.3 TRAINING CONFIGURATION

For all environments, we use the AdamW optimizer, with a learning rate of 1e-4, a weight decay
of 0.01, and a batch size of 32. The learning rate follows a cosine schedule with a linear warm-up
over the first 1,000 steps. Training is conducted for a total of 200,000 steps, with the model being
trained on 4 NVIDIA H20 GPUs to ensure efficient scaling across large datasets. The text encoder
(nomic-embed-text-v1.5) encodes prompt tokens, while the vision encoder (nomic-embed-vision-
v1.5) encodes environmental observations.

In summary, the two-stage training protocol—comprising offline pre-training and online fine-
tuning—equips ReCAPA with the capacity to handle complex, long-horizon tasks in varied envi-
ronments. The incorporation of expert trajectories during pre-training and the dynamic, memory-
augmented fine-tuning mechanism ensures that ReCAPA continuously improves its performance
and generalizes effectively to unseen scenarios. As shown in Table 5, it presents the PAC results on
MAP-THOR, showing how different models recover from early errors across varying task lengths.

To assess the independent contribution of each hierarchical level in ReCAPA’s two-level structure
(subgoal → trajectory), we conduct a layer-wise ablation study. While the full model integrates
across all levels, it remains unclear whether each level provides unique benefits. In this experiment,
we selectively remove one module at a time—trajectory-level or subgoal-level, keeping the rest of
the architecture intact. This design allows us to evaluate whether each layer offers distinct abstrac-
tion or semantic supervision, whether model performance depends on cross-scale reasoning, and
whether the joint use of all levels outperforms partial configurations. In addition, we introduce a
FlatHead variant, which collapses the entire hierarchy into a single decoder without explicit levels,
to test whether the hierarchical structure itself is essential for semantic reasoning.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Comparative Evaluation of ReCAPA and Hierarchical Variants: Effects of Coupling and
Alignment Strategy. ReCAPA integrates all levels via joint and multi-scale alignment, allowing
semantic corrections to propagate throughout the hierarchy

Method EmbodiedAgentInterface AlfWorld VisualAgentBench MAP-THOR
Behavior VirtualHome OmniGibson Minecraft

Separate–BottomUp 62.1 62.7 79 43.9 57.9 0.59
Separate–Parallel 63.4 60.8 76 45.4 60.5 0.54
Separate–TopDown 66.7 64.5 86 47.4 62.5 0.67
Frozen Traj-Level 68.9 68.0 90 48.3 63.9 0.71
ReCAPA 72.2 70.5 96 50.6 66.7 0.75

C COMPLEMENTARY RESULTS AND ANALYSIS

C.1 LAYER ABLATION

The ablation results in Table 6 highlight the necessity of maintaining a multi-level structure in
ReCAPA. Removing any individual layer leads to a consistent drop in performance across all
benchmarks, confirming that each level contributes uniquely to hierarchical reasoning. Notably,
the removal of the mid-level results in the most severe degradation, especially on Behavior (–9.4
points) and VirtualHome (–9.0), suggesting that the mid-level layer plays a critical role in bridg-
ing trajectory-level plans with low-level execution. The w/o Trajectory-Level variant also suffers
substantial loss in ALFWorld and MAP-THOR, demonstrating that long-horizon environments with
sparse rewards and delayed feedback heavily depend on long-range planning. The FlatHead base-
line, which removes the entire hierarchy, performs the worst across all benchmarks—underscoring
the indispensable value of structured abstraction and layered semantic supervision for complex task
generalization. These findings validate ReCAPA’s core design principle: performance in long-
horizon embodied tasks emerges from coordinated across abstraction levels.

C.2 COUPLING STRATEGY COMPARISON

To further examine the role of joint optimization across hierarchical layers, we introduce several
additional ablation variants targeting the training strategy of HCPR:

• Frozen Traj-Level: The Traj-level module remains active during forward execution but
its parameters are frozen throughout training. Only the mid- and low-level modules are
updated, isolating the contribution of Traj-level gradient signals.

• Separate–BottomUp: Each layer is trained sequentially in a bottom-up manner: the
action-level module is trained first, then frozen; the subgoal-level is trained next with
action-level frozen; finally, the trajectory-level module is trained on top. This mimics a
stage-wise curriculum from action primitives to subgoal planning.

• Separate–TopDown: The reverse of BottomUp. Training proceeds from the trajectory-
level module down to the action-level, with each previously trained module frozen at its
respective stage. This configuration reflects top-down reasoning pipelines, starting from
global goals to execution-level commands.

• Separate–Parallel: All three layers are trained independently without inter-layer gradient
flow. Each module is optimized on its respective sub-task using its local alignment and
trajectory data. This configuration serves as a strong baseline to test whether cross-layer
interactions are necessary.

Each of these configurations is trained under the same data regime and alignment loss structure
(Sinkhorn + Score Field), allowing for controlled comparisons with the jointly optimized ReCAPA
model. We report task-level metrics to evaluate performance degradation and convergence stability.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: This ablation study evaluates the impact of prediction and components in HPCC by isolating
the effect of removing prediction, , or both.

Variant EmbodiedAgentInterface AlfWorld VisualAgentBench MAP-THOR
Behavior VirtualHome OmniGibson Minecraft

w/o pred and refl 62.6 63.1 85 44.5 60.5 0.66
Only Prediction (no refl) 65.4 66.3 90 47.8 60.9 0.72
Only (no pred) 67.1 64.9 91 49.2 62.0 0.72
Full HPCC (pred + refl) 72.2 70.5 96 50.6 66.7 0.75

Table 7 presents a comparative study of different hierarchical training strategies across six embodied
benchmarks. ReCAPA achieves the highest performance on all tasks, demonstrating the benefit of
fully joint training across three corrective modules. In contrast, all decoupled baselines underper-
form to varying degrees, each revealing critical weaknesses in alternative optimization schemes.

The Separate–BottomUp configuration performs the worst overall, as it trains low-level modules in
isolation before exposing them to task objectives. This leads to suboptimal primitive behaviors that
constrain downstream learning and confirms that without task-aware supervision results in ineffi-
cient or misaligned action policies. The Separate–TopDown baseline performs moderately better
, but still lags behind ReCAPA. Despite training from task goals downward, the lack of feedback
from lower layers causes the top-level planner to overfit to idealized subgoal sequences that may
not align with actual execution capabilities—resulting in a “planning-execution mismatch.” The
Separate–Parallel setting confirms this issue from another angle: although each module becomes
competent in isolation, the lack of cross-layer adaptation leads to representational inconsistency and
semantic drift between layers. The resulting interface mismatch limits coordination across hierar-
chical stages. Frozen Traj-Level, which freezes the top-level module and only updates the mid- and
low-level components, yields decent performance, but falls short of ReCAPA. This highlights that
trajectory-level goal representations also require continual adaptation to downstream dynamics in
order to maintain semantic coherence.

Taken together, these results empirically validate our theoretical claim that hierarchical must be
jointly optimized to achieve sample-efficient and semantically aligned behavior. The observed per-
formance gaps support our convergence analysis under multi-objective optimization and further jus-
tify the design of ReCAPA’s multi-level update strategy.

C.3 ABLATION ON PREDICTION AND ALIGNMENT

To further disentangle the respective contributions of prediction and within HPCC, as shown in Ta-
ble 8 we designed four ablation variants. The first, w/o pred and refl, removes both components
entirely, leaving only the hierarchical execution head to generate actions and serving as a baseline
without any auxiliary consistency signals. The second, Only Prediction, retains the forward predic-
tion modules that forecast higher-level trajectory or subgoal embeddings to regularize lower-level
execution, but discards the modules that would otherwise check and realign actions during rollouts;
this setting isolates the benefit of anticipatory guidance without any corrective feedback. The third,
Only , removes prediction while preserving the consistency checks and corrective updates after each
execution step, thereby examining the effect of purely reactive recovery in the absence of foresight.
Finally, Full HPCC activates both prediction and to form a closed loop in which lower-level policies
both anticipate higher-level representations and immediately repair inconsistencies as they arise.
Comparing these four settings allows us to characterize the distinct roles of prediction (proactive
prevention) and (reactive correction), as well as their synergy when combined.

This ablation highlights the distinct yet complementary roles of prediction and within HPCC. Elim-
inating both modules severely degrades performance, confirming that hierarchical execution heads
alone are insufficient for mitigating long-horizon drift. When only prediction is retained, the agent
benefits from anticipatory alignment signals that reduce short-horizon inconsistencies (e.g., im-
proved results on VisualAgentBench), but the absence of reactive correction allows early errors to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: This ablation study evaluates the impact of gradient-based updates on execution learning
across benchmarks by isolating the effect of the update mechanism that transforms semantic align-
ment signals into trajectory-aware execution adjustments

Method EmbodiedAgentInterface AlfWorld VisualAgentBench MAP-THOR
Behavior VirtualHome OmniGibson Minecraft

w/o Advantage Weighting 68.5 66.3 91 46.7 62.6 0.70
w/o Execution Update 67.1 60.2 88 41.9 58.5 0.66
w/o Execution Network 65.8 64.7 56 49.1 64.5 0.60
ReCAPA 72.2 70.5 96 50.6 66.7 0.75

cascade unchecked, resulting in limited gains on AlfWorld and MAP-THOR. Conversely, keeping
only provides the ability to recover after errors occur, which is particularly beneficial for tasks with
extended horizons where error accumulation dominates; however, without forward prediction, the
system lacks proactive guidance and remains vulnerable to subtle misalignments in representation
space. Full HPCC consistently outperforms all ablated variants because it unifies both mechanisms:
prediction serves as an early warning system that lowers the likelihood of compounding failures,
while functions as a recovery channel that actively attenuates error propagation.

C.4 GRADIENT-BASED EXECUTION UPDATE ABLATION

To evaluate the impact of the execution update module, we introduce two ablation variants:

• w/o Advantage Weighting: Removes the advantage weighting term Adv(zl) in the execu-
tion gradient update. The execution is updated using a standard unweighted log-likelihood
objective:

∇θJ(θ) = E(s,a)∼πθ
[∇θ log πθ(a|s)]

This variant still leverages the full objective Ltotal for modules but removes its influence on
scaling.

• w/o Execution Update: Completely disables gradient-based Execution updates from Ltotal.
The execution network is trained solely via behavioral cloning from expert demonstrations,
without corrective gradients. Only the alignment and modules receive updates from Ltotal.

• w/o Execution Network: This baseline completely removes the execution network, using
only the three-tier prompt-guided mechanism with GPT-4o-mini. No training or updates
are performed on the execution network, and the system relies solely on the pre-defined
prompt and modules to guide task completion. The modules do not perform dynamic self-
correction or optimization, but instead rely on static task decomposition and goal align-
ment, with no execution adjustments or gradient updates.

Both variants isolate the contribution of execution update to long-horizon adaptation by examining
whether gradient-aligned updates improve task consistency and execution fidelity.

As shown in Table 9 , both ablated variants suffer consistent performance degradation compared
to the full ReCAPA model. The removal of advantage weighting (w/o Advantage Weighting) leads
to moderate drops (2–4 points) across all benchmarks, highlighting that trajectory-level semantic
gradients—while still present—are less effective without contextual scaling. The more severe drop
in w/o Execution Update underscores the critical role of execution update: completely removing
gradient-based updates from Ltotal results in sharp declines, especially on long-horizon tasks such
as MAP-THOR (–0.09) and Minecraft (–8.2), where corrective updates are essential for resolving
temporal credit assignment. The ”w/o Execution Network” variant experiences notable performance
drops compared to the full ReCAPA model across all benchmarks. For instance, in VisualAgent-
Bench, the drop is 10.6 points, and in MAP-THOR, it’s 0.15.

Interestingly, the gap between the three variants is most evident in environments that require reason-
ing over extended plans (e.g., AlfWorld and VisualAgentBench). This supports our design intuition:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Results on the Behavior task of the Embodied Agent Interface benchmark. ReCAPA
shows strong performance with leading scores in Goal F1 (84.8), Action Sequencing (77.0/84.0),
and Subgoal Decomposition (53.0/60.0), surpassing baselines such as o1-preview and Claude-4.
These results highlight its effectiveness in long-horizon reasoning and precise subgoal planning
through hierarchical architecture and alignment mechanisms

Models Perf. Goal F1 Action Seq. Subgoal Dec. F1
Task Exec. Task Exec.

o1-preview Zhong et al. (2024) 74.9 81.6 81.0 91.0 57.0 62.0 70.8
ReCAPA 72.2 84.8 77.0 84.0 53.0 60.0 69.8
Claude-4-Sonnet Anthropic (2024) 68.5 84.3 68.0 75.0 47.0 52.0 69.2
Claude-3.5-Sonnet Anthropic (2024a) 64.2 82.7 60.0 69.0 39.0 44.0 67.9
Claude-3-Opus Anthropic (2024b) 60.4 77.0 51.0 59.0 41.0 47.0 63.4
GPT-4o Hurst et al. (2024) 59.8 79.2 47.0 53.0 49.0 55.0 60.9
o1-mini Jaech et al. (2024) 57.5 76.4 56.0 65.0 31.0 39.0 56.4
Claude-3-Sonnet Anthropic (2024b) 55.1 69.4 44.0 57.0 39.0 43.0 56.2
Gemini-1.5-Flash Team et al. (2024) 52.1 74.8 40.0 52.0 34.0 42.0 53.4
Mistral-Large Jiang et al. (2023) 50.4 74.3 33.0 50.0 31.0 38.0 49.5

the execution update module not only injects semantically aligned feedback but also acts as a bridge
between the abstract modules and the concrete action policies. The absence of the execution net-
work in the ablation study further emphasizes the importance of the network in dynamically refining
policies. Without the execution network, the system lacks the ability to continuously adapt its ac-
tions based on the feedback from the modules, limiting its capacity for long-horizon adaptation.
These results confirm that gradient-aligned feedback is necessary for robust execution refinement,
particularly in environments requiring extended planning and continuous execution updates.

C.5 EVALUATION ON EMBODIED AGENT INTERFACE

As show in Table 10, it evaluates ReCAPA and competing models on the Embodied Agent Interface
benchmark, focusing on Behavior and VirtualHome tasks. The metrics include Performance (Perf.),
Goal F1, Action Sequence accuracy (both Task and Execution levels), and Subgoal Decomposition
(Task and Execution), with an overall F1 score. ReCAPA achieves robust performance (72.2 Perf.,
84.8 Goal F1), trailing only o1-preview in Perf. but excelling in Goal F1. The training methodology
for these tasks follows a two-stage protocol: offline pre-training on state-action-reward trajecto-
ries initialized via GPT-4o API, followed by benchmark-specific optimization. For Behavior tasks,
ReCAPA leverages ProcTHOR’s procedurally generated environments (30 tasks, 10 expert trajecto-
ries per task) to enhance scene generalization, avoiding overfitting. The model is trained end-to-end
with AdamW (lr=1e-4, weight decay=0.01, batch size=32) for 200K steps on 4 NVIDIA H20 GPUs,
using a cosine learning rate schedule with 1,000-step warm-up. We obtain base text and vision em-
beddings from pre-trained Nomic encoders (nomic-embed-text-v1.5 and nomic-embed-vision-v1.5),
which remain frozen; only the HPCC and alignment modules are optimized. This approach ensures
strong performance in both trajectory-level goal reasoning (84.8 F1) and action sequencing (77.0
Task, 84.0 Exec.), as reflected in the results.

As show in Table 11, it provides a comprehensive evaluation across six key metrics: Overall Perfor-
mance, F1, Action Sequencing (Task SR, Exec. SR), Subgoal Decomposition (F1), and Transition
Modeling (Plan SR). ReCAPA outperforms competitors in Overall Perf. (70.5) and Transition Mod-
eling (84.6 Plan SR), demonstrating its strength in long-horizon planning and trajectory stability.
The training pipeline mirrors the methodology for MAP-THOR and VisualAgentBench, empha-
sizing cross-domain transfer through few-shot pre-training on ProcTHOR (no BEHAVIOR-1K in
this phase) and task-specific fine-tuning. For AlfWorld tasks, ReCAPA employs RAFA-style multi-
round interactions with memory-augmented prompts to improve online adaptation. The technical
setup matches Table 6’s (AdamW, 200K steps), with alignment losses (Full Alignment) and hierar-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Results on the VirtualHome task of the Embodied Agent Interface benchmark. ReCAPA
shows consistently strong performance across six metrics, leading in Overall Perf. (70.5), Subgoal
Decomposition (Task SR: 94.5, Exec. SR: 91.7), and Transition Modeling (F1: 64.9, Plan SR:
84.6). Compared to o1-preview and Claude models, it demonstrates superior hierarchical reasoning
and robust embodied planning in complex VirtualHome environments

Model Family Overall Perf. F1 Action Sequencing Subgoal Decomposition Transition Modeling
Task SR Task SR Exec. SR F1 Plan SR

ReCAPA 70.5 44.2 72.8 94.5 91.7 64.9 84.6
Claude-4-Sonnet Anthropic (2024) 69.1 43.5 73.6 92.7 90.9 51.4 86.8
o1-preview Zhong et al. (2024) 65.8 42.7 71.1 93.2 89.4 48.0 72.4
Gemini-Pro Team et al. (2024) 65.3 37.9 73.1 91.1 87.0 34.1 91.9
Claude-3-Sonnet Anthropic (2024b) 64.9 33.0 72.8 92.0 89.1 48.9 80.5
GPT-4o Hurst et al. (2024) 60.8 36.5 61.6 91.1 87.6 46.7 68.2
Claude-3-Opus Anthropic (2024b) 59.9 31.4 66.2 89.9 86.7 48.8 61.8
o1-mini Jaech et al. (2024) 57.9 31.2 65.9 84.6 79.3 41.5 69.0

Table 12: Models performance on AlfWorld benchmark

Method Success rate (%) ↑
Avg. Pick Clean Heat Cool Examine Picktwo

Vision-language models
MiniGPT-4* 16 4 0 19 17 67 6
BLIP-2* 4 0 6 4 11 6 0
LLaMA-Adapter* 13 17 10 27 22 0 0
InstructBLIP* 22 50 26 23 6 17 0
EMMA* 82 71 94 85 83 88 67

Language models
BUTLER* 26 31 41 60 27 12 29
DEPS 76 93 50 80 100 100 0
AutoGen* 77 92 74 78 86 83 41
ReAct 74 79 54 96 85 83 51
AdaPlanner 91 100 100 89 100 97 47
Reflexion 86 92 94 70 81 90 88
RAFA 95 100 97 91 95 100 82
WALL-E 1.0 95 100 97 100 86 85 100
WALL-E 2.0 98 100 100 96 100 100 94
ReCAPA (ours) 96 100 97 94 95 96 94

chical (HPCC-Full) critical to its success in Subgoal Decomposition (64.9 F1) and Action Sequenc-
ing (94.5 Exec. SR). Claude-4-Sonnet and Gemini-Pro show competitive Plan SR (86.8, 91.9), but
ReCAPA balances all metrics, underscoring its versatility.

C.6 PERFORMANCE ANALYSIS AND DISCUSSION

From the results in Table 12, our model ReCAPA consistently demonstrates clear advantages over
both proprietary and open-source LMM baselines. In particular, ReCAPA shows strong performance
on long-horizon tasks such as PICKTWO, where success rates remain significantly higher than
all other baselines. This confirms that our hierarchical planning and mechanisms can effectively
manage compositional goals that require multiple coordinated steps.

Despite its overall superiority, ReCAPA is not without limitations. WALL-E 2.0—augmented with
reinforcement learning fine-tuning—achieves slightly higher scores on some subtasks. This gap re-
flects a trade-off: ReCAPA is primarily designed for sparse or reward-agnostic settings, which limits

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

its ability to exploit dense feedback signals as efficiently as reinforcement learning–enhanced base-
lines. Overall, the results demonstrate that ReCAPA offers a balanced and generalizable solution:
it consistently outperforms competitors in challenging long-horizon tasks, while only marginally
trailing in AlfWorld where dense rewards provide a strong supervision signal.

D FAILURE CASE ANALYSIS

To complement the quantitative results (EPR, PAC, and ablations), we provide qualitative analyses
of typical failure modes. As shown in Table 13, these examples illustrate how cascading errors arise
and how ReCAPA mitigates them compared to ablated variants.

We categorize common failure types observed during evaluation:

Failure Type Description / Example

Subgoal Ordering Error Executing subgoals in the wrong order (e.g., attempting to close the
fridge before retrieving the milk). This leads to invalid or incomplete
task outcomes.

Entity Grounding Error Misidentifying or manipulating the wrong object (e.g., taking juice in-
stead of the intended milk).

Premature Termination Ending the task early before completing all required subgoals (e.g., re-
trieving the milk but leaving the fridge door open).

Looping / Redundancy Performing unnecessary actions without contributing to the goal (e.g.,
taking an extra apple after already retrieving the milk).

Table 13: Taxonomy of common failure types in hierarchical agent execution, adapted to the
fridge–milk task with descriptions and examples.

• Prompt: “Take the milk from the fridge.”
• Full ReCAPA: Executes correctly by [Open fridge] → [Take milk] → [Close fridge].
• w/o HPCC: Retrieves the milk but then performs an unnecessary action [Take apple] and

forgets to [Close fridge], leading to redundancy and premature termination.

Figure 5: Representative failure case for the prompt “Take the milk from the fridge.” Full ReCAPA
executes correctly by opening the fridge, retrieving the milk, and closing the fridge. In contrast, the
ablated model (w/o HPCC) retrieves the milk but then takes an unrelated item and forgets to close
the fridge, leaving the environment in an invalid state and illustrating how local missteps cascade
into task failure.

As shown in Figure 5, execution begins correctly as the agent approaches the pot and moves toward
the sink. The action-level representation fails to predict the correct subgoal-level semantic target
(“place the pot into the sink”), causing action–subgoal alignment to drop. Subgoal-level forecast-
ing then drifts toward an incorrect direction, which subsequently causes global prompt–trajectory
alignment to decrease.

ReCAPA detects this cross-level inconsistency and resamples the action until the pot is correctly
placed in the sink. Once the corrected action is taken, the restored alignment propagates upward:
subgoal-level semantics realign with the intended target, and the trajectory-level embedding recov-
ers. Execution then resumes and completes normally.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt Task: “Take the pot from the left burner, wash it, and turn on the burner.”

[WALK](burner) → [MOVE](pot) → [TURN_ON](burner) → [WALK](sink) → [PUT](pot) → (Resample)[PUT](pot) → [TURN_ON](tap)

Predict

Grab the pot Grab the pot Turn on burner Wash the pot

Grab the pot Grab the pot Turn on burner Wash the pot Wash the pot Wash the pot

Wash the pot

Wash the pot

Wash the potPut the pot

Predict

Grab pot on the left Turn on burner

PredictPredict

Wash the pot from left burner

Action-Level

Subgoal-Level

Trajector-Level

Figure 6: Illustration of ReCAPA’s hierarchical correction during inference.

E ERROR PROPAGATION METRICS (EPR AND PAC)

E.1 ERROR PROPAGATION RATE (EPR)

E.1.1 DEFINITION

We define the Error Propagation Rate (EPR) at lag k as the marginal increase in error probability k
steps after the first error in an episode:

EPRk = Pr(et0+k = 1 | et0 = 1) − Pr(et0+k = 1 | et0 = 0),

where et ∈ {0, 1} is the step-level error indicator and t0 denotes the first-error time in the trajectory.
Intuitively, EPRk isolates the excess risk attributable to an initial failure, relative to a matched no-
error baseline.

E.1.2 INTERPRETATION AND PROPERTIES

Range and edge cases. EPRk ∈ [−1, 1]. EPRk ≈ 0 implies effective containment; large positive
values indicate cascading failures; negative values may indicate active recovery, i.e., the model
becomes less error-prone after an initial mistake.

Connection to hazard/recovery dynamics. If errors can be modeled by a Markovian error-state
abstraction, EPRk equals the difference in k-step transition probabilities into the error state under
two initial conditions (et0=1 vs. 0). It is therefore a direct proxy for cascade tendency. Compared
to the Propagation Attenuation Coefficient (PAC), which measures the decay rate of post-error risk,
EPR reflects the marginal elevation of risk due to an initial error.

Consistency. Suppose the rollout process is ergodic and the matching function ϕ(Ft0) success-
fully blocks confounding (i.e., controls for task stage and context). Then ÊPRk converges in prob-
ability to EPRk as the number of episodes grows. If censoring arises (e.g., episodes ending before
t0 + k), an inverse-probability-of-censoring weighted (IPCW) estimator ensures consistency.

Granularity. EPR can be computed at different levels:

• Action-level (e(act)
t): low-level execution slips.

• Subgoal-level (e(sub)
t): structural or DAG violations.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Comparing EPR
(act)
k vs. EPR(sub)

k helps identify whether cascades are driven by local control errors
or higher-level planning flaws.

E.1.3 ESTIMATION PROTOCOL

The empirical procedure is as follows:

1. Identify first-error times. For each trajectory i, locate t
(i)
0 (the earliest t such that et = 1). If no

error occurs, the trajectory is excluded from case construction.

2. Construct case and control sets. For each (i, t
(i)
0), treat the pair (i, t(i)0) as a “case.” Find a

“control” (j, t̃) from another trajectory j such that:

• e
(j)

t̃
= 0 with no prior errors,

• t̃+ k ≤ T (j),

• Contexts are matched: ϕ(F (j)

t̃
) ≈ ϕ(F (i)

t
(i)
0

), where ϕ encodes subgoal ID, horizon length,

scene category, and latent trajectory state.

3. Compute probabilities. Estimate p̂case(k) = Pr(et0+k = 1 | et0 = 1) and p̂ctrl(k) = Pr(et̃+k =
1 | et̃ = 0) from matched pairs.

4. Form EPR estimate.
ÊPRk = p̂case(k) − p̂ctrl(k).

5. Summarize across k. In addition to plotting ÊPRk as a function of k, we report:

• AUC-EPRW =
∑W
k=1 ÊPRk for horizons W ∈ {3, 5},

• the slope of ÊPRk over k as a compact one-number summary of cascade growth.

E.1.4 REPORTING RECOMMENDATIONS

Visualization. Always report ÊPRk vs. k with 95% confidence intervals (bootstrapped by
episode).

Summary statistics. Report AUC-EPRW at W = 3, 5 as a concise summary statistic. For long-
horizon tasks, include slope-of-k analysis to quantify cascade growth.

Comparisons. When comparing models, include both absolute differences and relative reductions
in EPR. Use identical et definitions and matching hyperparameters across models to ensure fairness.

—

E.2 PRACTICAL CONSIDERATIONS

Censoring. Restrict W to be below the 25th percentile of remaining horizon (T − t0) to avoid
heavy censoring bias.

Variance estimation. Use per-episode bootstrap resampling for CI bands.

Level separation. Always report both action-level and subgoal-level EPR curves to clarify the
source of propagation.

Robustness checks. Verify results are stable to the choice of ϕ (matching function) and distance
metric.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.3 PROPAGATION ATTENUATION COEFFICIENT (PAC)

Definition. We define the Propagation Attenuation Coefficient (PAC) at lag k as the relative decay
rate of post-error risk:

PACk =
Pr(et0+k = 1 | et0 = 1)

Pr(et0+1 = 1 | et0 = 1)
,

where et is the error indicator and t0 denotes the first-error time. Intuitively, PAC measures how
quickly the elevated error probability induced by the first error attenuates over time. A value close
to 1 indicates persistent risk, while a value below 1 indicates attenuation.

E.3.1 INTERPRETATION AND PROPERTIES

Range and meaning. PACk ∈ [0,∞).

• PACk ≈ 1 ⇒ error risk is persistent, cascades continue.

• PACk < 1 ⇒ error risk attenuates; the system recovers.

• PACk > 1 ⇒ error risk escalates faster than the initial shock (rare but possible in unstable
systems).

Connection to survival/hazard analysis. PAC can be viewed as an analogue of a hazard decay
factor: it compares the conditional error hazard at lag k to that immediately after the error. Whereas
EPR captures the absolute marginal risk increase, PAC quantifies the relative decay speed of this
risk.

Granularity. PAC can be applied at both:

• Action-level: robustness of local control after a slip.

• Subgoal-level: structural recovery after violating a planning dependency.

E.3.2 ESTIMATION PROTOCOL

The empirical procedure is as follows:

1. Identify first-error times. Same as EPR: find t
(i)
0 for each trajectory.

2. Compute conditional error probabilities. For each k, estimate

q̂(k) = Pr(et0+k = 1 | et0 = 1).

3. Form PAC estimate. Normalize by the immediate post-error risk:

P̂ACk =
q̂(k)

q̂(1)
.

4. Summarize across k. Plot P̂ACk vs. k; additionally, compute area-under-curve (AUC) metrics:

AUC-PACW =
1

W

W∑
k=1

P̂ACk,

as a compact indicator of recovery speed.

E.3.3 REPORTING RECOMMENDATIONS

Visualization. Always report P̂ACk vs. k with 95% confidence intervals.

Summary statistics. Report AUC-PACW at W = 3, 5 as a concise recovery-speed measure.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Comparisons. Compare models both in terms of absolute persistence (PAC close to 1) and relative
acceleration/attenuation trends.

E.3.4 PRACTICAL CONSIDERATIONS

Normalization stability. If q̂(1) is very small, PAC may be unstable. Exclude cases with vanishing
immediate risk or regularize with a small ϵ.

Censoring. Restrict horizon W to avoid censoring, as in EPR.

Variance estimation. Use bootstrap resampling over episodes.

Level separation. Report both action-level and subgoal-level PAC curves, since persistence pat-
terns often differ across levels.

Consistency (Remark). Since PAC is estimated from q̂(k) values that are themselves consistent
estimators of conditional error probabilities, λ̂ inherits consistency under standard assumptions for
exponential regression fits. We omit a formal proof for brevity.

F THEORETICAL ANALYSIS

F.1 EXECUTION IMPROVEMENT VIA ALIGNMENT LOSS MINIMIZATION

It has been shown that minimizing alignment losses such as InfoNCE, DPO, or Sinkhorn divergence
over the execution network πθ(a|s) can lead to improvements in expected task success. These losses
are typically defined to encourage the execution to assign higher probability to preferred or expert
actions while penalizing suboptimal ones. To analyze their impact on execution improvement, the
alignment loss is reformulated as a surrogate objective over the log-probability log πθ(a|s).
Formally, a general alignment loss can be expressed as:

Lalign(πθ) = E(s,a+,{a−i })
[
ℓ
(
log πθ(a

+|s), {log πθ(a−i |s)}
)]

, (7)

where a+ represents the preferred (e.g., expert or high-reward) action, and {a−i } are sampled neg-
atives. The contrastive function ℓ encourages the log-probability of a+ to be separated from that of
the negatives. Under this formulation, the gradient of the alignment loss can be written as:

∇θLalign(πθ) = −E(s,a)

[
Â(s, a)∇θ log πθ(a|s)

]
, (8)

where Â(s, a) is a weight derived from relative preferences, reward differences, or likelihood ratios.
This expression mirrors the form of a execution gradient update, where Â(s, a) acts as a surrogate
advantage estimator.

In the case of InfoNCE, the alignment loss takes the form of a softmax log-likelihood objective over
sampled actions:

LInfoNCE = − log
exp(log πθ(a

+|s))
exp(log πθ(a+|s)) +

∑
i exp(log πθ(a

−
i |s))

, (9)

which induces gradients that push up the probability of the positive action a+ while pulling down the
negatives. The resulting update direction has been shown to approximate the advantage-weighted
execution gradient when a+ is selected according to reward or preference feedback.

For Sinkhorn-based alignment losses, a probabilistic interpretation has been proposed by viewing
the alignment as a soft permutation induced via entropic optimal transport. Specifically, given a cost
matrix between token embeddings in the prompt and the trajectory, a doubly stochastic transport
plan is computed using the Sinkhorn-Knopp algorithm. The plan induces a distribution over token-
to-token matches, and the loss is minimized when the trajectory embedding distribution is optimally
aligned (in transport cost) with the prompt. When the cost is reward-informed or semantically
structured, this process implicitly enforces reward-relevant permutation between prompt instructions

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

and executed actions. The resulting transport-based gradient aligns the latent plan structure with the
execution behavior.

By the execution gradient theorem, these gradient directions align with execution improvement pro-
vided that the surrogate signal Â(s, a) is a consistent estimator of the true advantage Aπ(s, a). Un-
der standard assumptions (bounded variance, small step size), minimizing alignment losses therefore
promotes higher expected cumulative reward J(θ). Therefore, updates that reduce these alignment
losses can be expected to lead to execution improvement in practice. This theoretical insight is con-
sistent with contrastive execution gradient methods such as CoPG, and the expected success rate
gains have been empirically verified in the experiments above.

F.2 DISTRIBUTIONAL ALIGNMENT THEORY FOR CONTRASTIVE LOSS

The alignment of model-generated trajectories with prompt intent can be viewed as a distribution
matching problem. Let Dtraj denote the distribution over generated trajectory embeddings and Dtarget
the idealized distribution implied by ground-truth behaviors or reward-aligned samples. During con-
trastive training, modules produce positive and negative samples whose embedding distributions are
encouraged to match the target via minimization of contrastive losses such as InfoNCE or Sinkhorn
divergence.

This process can be interpreted through the lens of distributional discrepancy minimization. For
InfoNCE, the objective implicitly minimizes an upper bound on the Jensen–Shannon divergence
between Dtraj and Dtarget by maximizing the mutual information between aligned pairs. Under this
view, contrastive learning serves to pull the generated trajectory distribution toward the reward-
consistent region of the target space.

When Sinkhorn divergence is used, the discrepancy between Dtraj and Dtarget is explicitly reduced
through an entropy-regularized optimal transport plan. Given empirical samples from both distri-
butions, a transport map is computed that minimizes cost while maintaining marginal consistency.
The resulting divergence has been shown to upper bound the Wasserstein distance under entropic
smoothness, and can be used to quantify how closely the generated execution adheres to the prompt-
induced distribution.

Under mild assumptions (bounded support, Lipschitz continuity of cost), the contrastive alignment
loss Lalign(θ) is provably minimized when the distributional discrepancy vanishes, i.e.,

div(Dtraj∥Dtarget) ≤ O(Lalign(θ)) + ε, (10)

where div(·) may denote JS, Sinkhorn, or Wasserstein distance, and ε denotes residual stochastic-
ity. As a result, minimizing the contrastive loss leads the model toward a low-drift regime where
trajectory samples remain semantically consistent with target plans.

F.3 REPRESENTATION ALIGNMENT BOUND

We study when minimizing representation-level alignment losses between prompts and trajectories
controls a discrepancy and mitigates semantic drift. Let P = Dprompt be the prompt-conditional dis-
tribution and Qθ = Dtraj(θ) the trajectory distribution induced by execution πθ in a shared embed-
ding space Z ⊂ Rd. Write Lalign(θ) for an alignment objective such as InfoNCE or a Sinkhorn-based
transport loss. Assume embeddings are bounded; the ground cost c : Z × Z → R≥0 is bounded
and Lipschitz; and for OT we use ε–entropy-regularized transport with the debiased Sinkhorn diver-
gence Sε. Let P̂m, Q̂n be empirical distributions from m and n samples, and let Θ be a execution
class with capacity term Rn(Θ).

With probability at least 1− δ over the draws of (P̂m, Q̂n), there exists a constant C(ε, c) such that

sup
θ∈Θ

∣∣∣D(P,Qθ)− L̃align(P̂m, Q̂n; θ)
∣∣∣ ≤ C(ε, c)

(√
log(1/δ)

m +

√
log(1/δ)

n

)
+Rn(Θ)+ b(ε), (11)

where D is a population-level divergence matched to the alignment loss, L̃align is its empirical coun-
terpart (debiased for OT), and b(ε) is the regularization bias that vanishes as ε ↓ 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

For InfoNCE, the expected contrastive risk upper-bounds an f–divergence between the joint and
product of marginals; in particular,

JS
(
P,Qθ

)
≤ αE[LInfoNCE(θ)] + c0,

for constants (α, c0) determined by the negative-sampling scheme and temperature, and L̃align is the
minibatch InfoNCE. For Sinkhorn-based alignment, take D = W1 and use the debiased divergence:

W1

(
P,Qθ

)
≤ Sε

(
P,Qθ

)
+ b(ε), L̃align(P̂m, Q̂n; θ) = Sε(P̂m, Q̂n).

Plugging either instance into equation 11 gives a high-probability generalization guarantee from
empirical alignment to population discrepancy.

Assumption (OT setting). We assume the cost function c is bounded and Lipschitz, and that both
P and Q have bounded support. The entropic Sinkhorn divergence Sε uniformly approximates the
1-Wasserstein distance W1 up to a bias b(ε), with standard statistical rates O(m−1/2 + n−1/2).

Corollary (Sinkhorn specialization). Under the above assumptions, for any δ ∈ (0, 1),

sup
θ∈Θ

W1

(
P,Qθ

)
≤ sup

θ∈Θ
Sε
(
P̂m, Q̂n; θ

)
+ C(ε, c)

(√
log(1/δ)

m +

√
log(1/δ)

n

)
+ Rn(Θ) + b(ε).

(12)
Thus, uniformly controlling the empirical Sinkhorn loss suffices to bound the population trajec-
tory–prompt divergence up to estimation and regularization terms.

Since the inequality in equation 12 holds uniformly over all θ ∈ Θ, it applies to each training iterate
θt. Averaging over t = 1, . . . , T yields

1

T

T∑
t=1

D
(
P,Qθt

)
≤ 1

T

T∑
t=1

L̃align(P̂m, Q̂n; θt) + Estat(m,n, δ,Θ) + b(ε), (13)

where Estat collects the Õ(m−1/2 + n−1/2) and capacity terms. Thus, as optimization reduces
empirical alignment loss and ε is chosen small but stable, the divergence decreases correspondingly,
limiting semantic drift. Choosing D = W1 and L̃align = Sε gives the Sinkhorn training-iterate
bound

1

T

T∑
t=1

W1

(
P,Qθt

)
≤ 1

T

T∑
t=1

Sε
(
P̂m, Q̂n; θt

)
+ Estat(m,n, δ,Θ) + b(ε). (14)

The alignment functionals above are Lipschitz-stable with respect to empirical measures (bounded
smooth scores for InfoNCE; stability of OTε under bounded Lipschitz c for Sinkhorn). Concen-
tration (e.g., McDiarmid or transport inequalities) gives Õ(m−1/2 + n−1/2) control for fixed θ;
uniformity over Θ follows by symmetrization and a capacity term Rn(Θ). For OT, relate Sε to
W1 and isolate b(ε); for InfoNCE, use standard f–divergence or MI control to upper-bound JS.
Combining these ingredients gives equation 11 and, by averaging, equation 13.

F.4 HIERARCHICAL CONVERGENCE BOUND

The proposed hierarchical framework operates across multiple abstraction levels—actions, subgoals,
and task-level intents—each equipped with a dedicated alignment loss. To ensure stable joint opti-
mization, it is necessary to establish convergence guarantees or lower bounds on sample efficiency
when all levels are trained simultaneously.

The overall optimization can be viewed as a multi-objective gradient process, where each level
l ∈ {action, subgoal, trajectory} minimizes its own alignment loss L(l)

align(θ
(l)) while contributing to

the global performance. By treating the joint update as a composite execution gradient step over a
stacked parameter space θ = [θ(1), θ(2), θ(3)], the learning dynamics can be analyzed using mirror
descent under block-decomposed gradient feedback.

Under standard smoothness and bounded gradient assumptions, it can be shown that the average
alignment loss across levels satisfies the following rate:

min
1≤t≤T

1

3

3∑
l=1

L(l)
align(θ

(l)
t)− L(l)∗ ≤ O(1/

√
T), (15)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where L(l)∗ denotes the optimal alignment loss at level l, and T is the number of joint gradient
updates. This sublinear convergence is consistent with standard mirror descent bounds in stochastic
settings and ensures no individual layer dominates optimization dynamics.

Furthermore, when coordination across levels is regularized (e.g., by shared representations or align-
ment constraints), the convergence can be accelerated. In particular, when surrogate gradients are
aligned and cross-level variance is bounded, an improved rate of O(1/T) can be achieved, indicating
that hierarchical updates benefit from structural decomposition.

These results suggest that hierarchical not only enables semantic control across abstraction levels
but also preserves convergence efficiency. The modular structure improves gradient conditioning
and reduces update variance, leading to better sample efficiency compared to flat architectures. Em-
pirical convergence patterns across levels are reported, where the multi-level alignment loss steadily
decreases throughout training.

F.5 JOINT CONVERGENCE OF HIERARCHICAL

In the proposed architecture, is performed across multiple levels of abstraction, and each level con-
tributes a separate alignment loss that is jointly optimized. To ensure stable training, it is essential
to establish that the overall optimization remains convergent when these multi-level alignment ob-
jectives are updated concurrently.

The full stack can be modeled as a constrained optimization problem, where lower-level alignment
losses act as structured regularization terms within a meta-execution update. Let πθ denote the
overall execution composed of nested sub-policies across levels. The global objective can then be
written as:

min
θ

Ltask(πθ) subject to L(l)
align(πθ) ≤ ϵl, ∀l ∈ {1, 2, 3}, (16)

where Ltask denotes the primary reward-based objective and L(l)
align are alignment constraints at dif-

ferent levels.

This structure parallels that of constrained execution gradient optimization. When solved via primal-
dual or Lagrangian methods, convergence to a locally optimal solution can be guaranteed under
standard assumptions of smoothness and bounded constraint curvature. Moreover, recent meta-
RL results show that hierarchical or nested policies trained with level-specific constraints converge
under similar conditions. In this formulation, alignment losses are interpreted as soft constraints
enforcing semantic consistency within the multi-level planning hierarchy.

In addition, when modules are updated via trust-region or clipping mechanisms (e.g., using variants
of constrained execution optimization), their individual losses can be stabilized without disrupting
global reward improvement. As a result, the multi-level architecture jointly converges toward a
stable equilibrium where both alignment fidelity and task reward are satisfied.

These results provide theoretical support that the proposed hierarchical system maintains optimiza-
tion stability even under simultaneous multi-level loss supervision. Empirical convergence patterns
further support this, showing that execution improvement persists despite the layered optimization
structure.

G PROMPT TEMPLATES

G.1 HARD NEGATIVE GENERATION

You are an expert in analyzing robotic task trajectories. Your task is to take a successful
trajectory and create a hard negative version of it. A hard negative is a trajectory that looks
plausible but is flawed in a subtle, specific way. You must introduce ONLY ONE of the
following error types, as specified by the user.

• Action Error
Replace a single critical action with a plausible but incorrect one. Example: In a
“make coffee” task, instead of pickup cup, you might use pickup filter,
which is a related object but wrong for the step of pouring coffee.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Timing Error
Change the order of two critical, non-dependent actions where the order subtly mat-
ters for efficiency or naturalness. Example: In make breakfast, pour coffee
then toast bread is fine, but reversing them might result in cold coffee.

• Logic Error
Create a trajectory that violates physical or common-sense rules. Example: Trying to
pour water before the cup is picked up.

• Sequence Error
Reverse the order of two dependent actions, making the sequence impossible. Exam-
ple: place apple in microwave before open microwave.

You will be given a successful trajectory and an error type to introduce. Your response must
be only the flawed trajectory, formatted exactly like the input.

MULTI-AGENT SYSTEM PROMPTS

Agent 0: Executor
You are a robot agent focused on execution. Given the current state and a high-level goal,
your task is to select the most logical and immediate action to perform next. Focus only on
the next step.

Agent 1: Monitor/Critic
You are a monitoring agent. Your job is to observe the trajectory and evaluate progress.
Output continue, no op, alert, or replan based on trajectory status.

Agent 2: Planner
You are a high-level planning agent. Your job is to identify the next major sub-goal or
phase in the task. Output abstract-level goals like acquire all ingredients.

Agent 3: Alignment Agent
You ensure the plan stays consistent with the user’s instruction. Output continue,
realign, or correct course based on semantic alignment.

29

	Introduction
	Related works
	Methodology
	Framework Overview
	Hierarchical Predictive Contrastive
	Cross-Level Prediction
	Corrective Pathway

	Prompt-Trajectory Alignment
	Sinkhorn-based Alignment
	Score-field Alignment

	Training and Inference
	Error Propagation Metrics

	Experiments and Results
	Experimental Setup
	Results and Analysis
	Discussion

	Conclusion
	LLM Declaration
	Detailed Experimental Procedures
	Stage 1: Offline Pre-training
	Stage 2: Domain-Specific Adaptation and Transfer
	Training Configuration

	Complementary Results and Analysis
	Layer Ablation
	 Coupling Strategy Comparison
	Ablation on Prediction and Alignment
	Gradient-based Execution Update Ablation
	Evaluation on Embodied Agent Interface
	Performance analysis and discussion

	Failure Case Analysis
	Error Propagation Metrics (EPR and PAC)
	Error Propagation Rate (EPR)
	Definition
	Interpretation and Properties
	Estimation Protocol
	Reporting Recommendations

	Practical Considerations
	Propagation Attenuation Coefficient (PAC)
	Interpretation and Properties
	Estimation Protocol
	Reporting Recommendations
	Practical Considerations

	Theoretical Analysis
	Execution Improvement via Alignment Loss Minimization
	Distributional Alignment Theory for Contrastive Loss
	Representation Alignment Bound
	Hierarchical Convergence Bound
	Joint Convergence of Hierarchical

	Prompt Templates
	Hard Negative Generation

