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Abstract

Multimodal Named Entity Recognition
(MNER) uses visual information to improve
the performance of text-only Named Entity
Recognition (NER). However, existing
methods for acquiring local visual information
suffer from certain limitations: (1) using
an attention-based method to extract visual
regions related to the text from visual regions
obtained through convolutional architectures
(e.g., ResNet), attention is distracted by the
entire image, rather than being fully focused
on the visual regions most relevant to the
text; (2) using an object detection-based (e.g.,
Mask R-CNN) method to detect visual object
regions related to the text, object detection
has a limited range of recognition categories.
Moreover, the visual regions obtained by object
detection may not correspond to the entities in
the text. In summary, the goal of these methods
is not to extract the most relevant visual regions
for the entities in the text. The visual regions
obtained by these methods may be redundant
or insufficient for the entities in the text. In this
paper, we propose an Entity Spans Position
Visual Regions (ESPVR) module to obtain the
most relevant visual regions corresponding to
the entities in the text. Experiments show that
our proposed approach can achieve the SOTA
on Twitter-2017 and competitive results on
Twitter-2015.

1 Introduction

Named entity recognition (NER) is a fundamental
task in the field of information extraction, which
can automatically recognize named entities in text
and classify them into predefined categories. NER
has been widely used for many downstream tasks,
such as entity linking and relationship extraction.
With the rapid development of social media, mul-
timodal deep learning is widely used to perform
structured extraction from massive multimedia
news and web product information. Among them,
Multimodal Named Entity Recognition (MNER)

aims to identify and classify named entities from
text using images as auxiliary information. MNER
can disambiguate multi-sense words by augment-
ing linguistic representations with visual informa-
tion, resulting in superior performance compared
to traditional Named Entity Recognition (NER).

While previous efforts have yielded promising
results, they still fall short in effectively selecting
visual information. For existing methods of uti-
lizing visual information, we classify it into two
types: global visual information and local visual
information.

Some previous works (Lu et al., 2018; Zhang
et al., 2018; Yu et al., 2020; Chen et al., 2021; Sun
et al., 2021, 2020; Liu et al., 2022a,b; Wang et al.,
2022) consider that if the whole image information
is input to the multimodal interaction module, then
such image information is global visual informa-
tion. However, the multimodal interaction module
relies on attention to select the visual regions as-
sociated with the text for interaction. Therefore,
the visual information that eventually interacts with
the text is mainly the local visual information re-
lated to the text. In other words, even if the input
to the multimodal interaction module is the whole
image information, finally the local visual informa-
tion is selected using an attention-based method
and then interacts with the text, so we consider it
as a process of using attention to select the local
visual information. When using attention to extract
visual regions, attention is distracted by the entire
image, rather than being fully focused on the vi-
sual regions most relevant to the text. Therefore,
using an attention-based method to select the local
visual information not only obtains valuable visual
information but also introduces irrelevant visual
information.

Besides, most of the previous approaches (Wu
et al., 2020; Wang et al., 2020; Zheng et al., 2020;
Zhang et al., 2021; Wang et al., 2021) use object
detection (e.g., Mask R-CNN) to detect visual ob-



ject regions, and treat visual objects as local visual
information to interact with the text. However, ob-
ject detection has a limited range of recognition
categories, so it may not detect all objects within
the categories defined by the dataset. Moreover,
the visual regions obtained by object detection may
not correspond to the entities in the text.

In summary, the goal of these methods is not
to extract the most relevant visual regions for the
entities in the text. The visual regions obtained by
the above two methods may be redundant or insuf-
ficient for entities contained in the text, leading to
identifying a non-entity as an entity or incorrectly
predicting an entity category. Therefore, to obtain
the most relevant visual regions for the entities in
the text, we propose an Entity Spans Position Vi-
sual Regions (ESPVR) module. Specifically, the
ESPVR module consists of two modules: Entity
Spans Identifying (ESI) module, Visual Regions
Positioning (VRP) module. First, the ESI module
identifies all entity spans in the text. Then the VRP
module uses these entity spans to extract entity
features and uses the entity features to locate the
visual regions that are most relevant to the entities
in the text.

To summarize, the major contributions of our
paper are as follows:
• We propose a novel ESPVR module for

MNER, which can select the most relevant visual
regions for the entities in the text. The ESPVR mod-
ule consists of two modules: Entity Spans Identify-
ing (ESI) module, and Visual Regions Positioning
(VRP) module.

• We conduct extensive experiments on two
benchmark datasets, Twitter-2015 and Twitter-
2017, to evaluate the performance of our ESPVR
module. Experimental results show that the ES-
PVR module outperforms the current state-of-the-
art models on Twitter-2017 and yields competitive
results on Twitter-2015.

2 Related work

In general, studies about MNER are similar in
terms of text feature extraction. However, there
are differences in research methods when using
image information and fusing modal information.
The existing work can be classified into the fol-
lowing two categories based on the use of visual
information:

(1) The entire image is equally segmented into
multiple visual regions by the convolutional archi-

tecture (e.g., ResNet), and then using the multi-
modal interaction module with attention to select
the visual regions associated with the text.

In fact, not all visual regions within an image are
beneficial to improve the accuracy of the model pre-
diction. To address this problem, some researchers
proposed a method of first dividing the whole im-
age into multiple visual regions equally, and then
extracting the most relevant visual regions to the
text in order to filter out irrelevant visual informa-
tion. The visual information that ends up interact-
ing with the text is actually the local visual infor-
mation after filtering, even if the input is global
visual information. Lu et al. (2018) used the pre-
training ResNet model to extract visual regions and
then added them to the text embedding by a vi-
sual attention model. To make full use of text and
visual information, Zhang et al. (2018) used adap-
tive co-attentive networks to fuse text embedding
and visual regions representation. Yu et al. (2020)
proposed a multimodal interaction module to ob-
tain both image-aware word representations and
word-aware visual representations, and used text-
only entity spans detection as an auxiliary module
to mitigate visual bias. Chen et al. (2021) used
an external knowledge database to obtain the fi-
nal multimodal representation by attention-guided
visual layer.

Irrelevant text-image pairs account for a large
proportion of the dataset. Therefore, Sun et al.
(2021) and Sun et al. (2020) used a modified BERT
encoder to obtain information for inter-modal fu-
sion and then introduced text-image relationship
classification as a subtask to determine whether
image features were useful. In addition, Liu et al.
(2022a) proposed a novel uncertainty-aware frame-
work for social media MNER.

In addition, for the problem of fine-grained se-
mantic correspondence between objects in images
and words in the text. Liu et al. (2022b) performed
an enhanced representation of each word in the text
by semantic enhancement and performed cross-
modal semantic interaction between text and vision
at different visual granularities. Wang et al. (2022)
proposed a Scene graph driven Multimodal Multi-
granularity Multitask learning framework.

(2) Obtaining visual objects from the whole im-
age by object detection (e.g., Mask R-CNN), and
treating visual objects as local visual information
to interact with the text.

Visual objects are considered fine-grained image



Figure 1: Overall Architecture of Our ESPVR.

representations, and for the text with multiple en-
tity types, the visual object regions of the related
images can be used to capture different entity in-
formation. Wu et al. (2020) used Mask RCNN
for object detection, they embedded top-k objects
into vectors to interact with text features through
the dense co-attentive module. In addition to this,
Wang et al. (2020) proposed a multimodal align-
ment framework that used a contrastive objective,
to guide alignment between visual and textual rep-
resentations. Zheng et al. (2020) used an adver-
sarial learning technique that aimed to fuse textual
and visual features into a common feature space.
For the same problem, Zhang et al. (2021) first ex-
tracted noun phrases in the text and visual object
regions in images and then used GNN to model the
relations between them.

Although many multimodal neural techniques
have been proposed to incorporate images into the
MNER task, the ability of models to exploit mul-
timodal interactions remains unclear. Therefore,
Chen et al. (2020) provided an in-depth analysis
of existing multimodal fusion techniques from dif-
ferent perspectives and described a situation where
the use of image information did not always im-

prove performance. Based on this work, Wang
et al. (2021) aligned image features into the text
space by using image-text alignment to better uti-
lize the attention mechanism in transformer-based
pre-trained textual embeddings.

3 Method

In this section, we first introduce the task definition,
and then describe the proposed model in detail.

Task Formulation: Given a text and image pair
(X;V ) as input, where X = {x1, ..., xn} and n
denotes the length of the text, the goal of MNER is
to extract a set of entities from X and classify each
entity into one of the pre-defined categories with
the assistance of image information, e.g., Person
(PER), Location (LOC), Organization (ORG), and
Miscellaneous (MISC). As with most existing work
in MNER, we regard the task as a sequence labeling
problem. Specifically, let Y = {y1, y2, ..., yn} rep-
resent a label sequence corresponding to X , where
yi ∈ ζ and ζ is the pre-defined label set with stan-
dard BIO2 tagging schema.



3.1 Overall Architecture

Fig. 1 illustrates the overall architecture of the ES-
PVR, which consists of four major modules: (1)
Feature Extraction module; (2) Entity Spans Po-
sition Visual Regions (ESPVR) module; (3) Mul-
timodal Interaction module; (4) CRF Decoding
module.

We first obtain word representations and visual
representations, respectively. Then, to obtain local
visual information, we deploy Entity Spans Posi-
tion Visual Regions (ESPVR) module to position
the visual regions that are most relevant to the en-
tities in the text. Next, a Multimodal Interaction
module is devised to fully capture cross-modality
semantic interaction between textual hidden repre-
sentation and visual regions hidden representation.
Finally, the CRF Decoding module assigns an en-
tity label to each word in the input sequence, lever-
aging the hidden representations obtained from the
Multimodal Interaction module.

3.2 Feature Extraction Module

Word Representations: To better model the
semantic information of text X and get different
representations for the same word in different
contexts, we leverage pre-trained language model
BERT (Devlin et al., 2018) as our text encoder.
Moreover, image captions from an image caption-
ing model can fully describe the whole image and
provide more semantic information. Therefore, to
let the text learn contextual information from an
image caption, we first use [SEP ] to concatenate
the text and image caption as a cross-modal input
view rather than the text-only input view. Then,
we denote the input as X′ = {[CLS], x1, x2,
..., xn, [SEP ], x′1, x′2, ..., x′n′ , [SEP ]}, where
xi is the word of the text, xi′ is the word of the
image caption, [CLS] and [SEP ] are special
tokens of BERT. Lastly, the text X′ is fed into the
BERT to get the word contextualized representa-
tions C = {c0, c1, c2, ..., cn+1} is the generated
contextualized representation for xi, ci ∈ Rd, d
stands for the dimension of the word embedding.

Visual Representations: To obtain better vi-
sual representations, we use the pre-trained model
Swin Transformer (Liu et al., 2021). Specifi-
cally, given an image V , the visual representations
B = {b0, b1, ..., b144} are obtained by extracting
the output of the last layer of Swin Transformer,
where b0 represents the feature of the whole image,
usually used for image classification, {b1, ..., b144}

are the 12 × 12 = 144 visual region features di-
vided by Swin Transformer, and each region is
represented by a 1536-dimensional vector.

3.3 Entity Spans Position Visual Regions
(ESPVR) Module

As shown on the left side of the ESPVR module
in Fig. 1, we first use a transformer layer with
self-attention (Vaswani et al., 2017) to capture the
intra-modality relation for the text modality and
obtain each word’s textual hidden representation
T = {t0, t1, ..., tn+1}, where ti ∈ Rd denotes the
generated hidden representation for xi.

Entity Spans Identifying (ESI) module: The
purpose of the EBI is to identify the position of the
head and tail of the entities in the text, which can
be used for positioning the visual regions that are
most relevant to the entities in the text.

We remove the type information and define the
set of span labels Z ′ = {B, I,O}, and use Z =
{z1, ...zn} to denote the sequence of labels, where
zi ∈ Z ′. Subsequently, T is fed into the Span_CRF
decoding layer to predict a sequence Z of labels of
X .

Visual Regions Positioning (VRP) Module: Af-
ter obtaining the sequence Z of labels of X , we first
need to select entity features E = {e1, e2, ..., em}
corresponding to entities from T based on the la-
bels in Z, where ei stands for the feature of the
i− th entity, m stands for the number of entities in-
cluded in the text. Then, to maintain the same scale
as most of the original images, we extract a visual
region feature v of size α× α that is most relevant
to the entities in the text. The specific process is as
follows:

First, we select a visual region feature bc from
{b1, ..., b144} that is most relevant to the entities in
the text. Specifically, we take each entity feature
in E = {e1, e2, ..., em} as Q, each visual region
feature in {b1, ..., b144} as K, and calculate the cor-
relation score F(ei,bj) between each visual region
feature and each entity feature, and sum up the cor-
relation scores of each visual region feature and
all entity features to obtain 144 correlation scores.
We select a visual region feature bc correspond-
ing to the maximum value from the sum of 144
correlation scores:

F(ei,bj) = softmax(QKT
√
dK

) (1)

bc = argmax
1≤j≤144

(
∑m

i=1 F(ei,bj)) (2)



where dk is the dimension of key vector K.
Then, we select neighboring visual region fea-

tures based on the index c of bc. Specifically, the
positions of all visual region features are expressed
in row and column coordinates, and visual region
features with row and column distances less than α
are identified as neighboring visual region features
of visual region feature bc, where the range of α
is 1 ≤ α ≤ 11. Because the number of all visual
regions is 12× 12, the upper limit of α is 11.

Next, we select a neighboring visual region fea-
ture bl that is most relevant to bc from all neigh-
boring visual region features. Specifically, we take
the visual region feature bc as Q and each neigh-
boring visual region feature as K, use attention
to calculate the correlation score between bc and
each neighboring visual region feature, and select a
neighboring visual region feature bl with the largest
correlation score.

Finally, to maintain the same scale as most of
the original images, we extract a visual region fea-
ture v of size α × α. Specifically, we compare
the coordinate of the visual region feature bc and
the coordinate of the neighboring visual region fea-
ture bl, and select a minimum number of rows and
columns as the coordinates of the top-left visual re-
gion feature bt for the visual region feature v. And
using α as the edge length of v, we add α to the
rows and columns of coordinate t to get the coor-
dinate d of the down-right visual region feature bd
for visual region feature v. We use all the visual
region features that lie within the range of t and d
to form an overall visual region feature v.

3.4 Multimodal Interaction Module
Following (Yu et al., 2020), we stack the cross-
modality Transformer layers to learn the cross-
modal interaction between the words and visual
regions. The components of the cross-modality
Transformer (CMT) layer are the same as the Trans-
former.

To obtain image-aware word representations, we
stack two CMT layers to perform superior-level se-
mantic interaction. These two CMTs are internally
calculated in the same way, except that the Q, K,
and V are from different sources. In the first stage,
we first perform multi-head Cross-Model Attention
by treating v as Q, and T as K and V :

CAi(v, T ) = softmax(
[Wqiv]

T [WkiT ]√
d/m

)[WviT ]
T

(3)
MA(v, T ) = W ′[CA1(v, T ), ..., CAm(v, T )]T (4)

where CAi is the i− th head of Cross-Modal At-
tention, {Wqi,Wki,Wvi} ∈ Rd/m×d refers to the
weight matrices for the Q, K, and V respectively,
and W ′ ∈ Rd×d multi-head attention. Then, we ob-
tain the output P = {p0, p1, ..., pn+1} of the first
CMT layer:

P ′ = LN(v +MA(v, T )) (5)

P = LN(P ′ + FFN(P ′)) (6)

where LN and FFN stand layer normalization
and feed-forward network respectively. In the sec-
ond stage, we treat T as Q, P as K and V . Then
the second CMT layer generates the image-aware
word representations A = {a0, a1, ..., an+1}.

To obtain word-aware visual representations, we
use a CMT layer to perform basic-level semantic
interaction. We treat T as Q, and v as K and
V . Then the word-aware visual representations
Q = (q0, q1, ..., qn+1) can be computed through
Equation. 3-Equation. 6.

To trade off the cross-modality contributions, we
use a gate function to obtain the final semantic
interaction representation H = {h0, h1, ..., hn+1}:

g = σ(W T
a A+W T

q Q) (7)

H = concat(A, g ·Q) (8)

where A are image-aware word representa-
tions, Q are word-aware visual representations,
{Wa,Wq} ∈ Rd×d refer weight matrices, and σ
stands the element-wise sigmoid function.

3.5 CRF Decoding Module
Conditional Random Fields (CRF) take into ac-
count the correlations between labels in neighbor-
ing positions and assign a score to the entire se-
quence of labels. This approach can lead to im-
proved accuracy in sequence labeling tasks. Conse-
quently, given a sequence X , all the possible label
sequences y can be produced as follows:

P (y|X) =
∏n

i=1 Si(yi−1,yi,X)∑
y′∈Y

∏n
i=1 Si(y′i−1,y′i,X)

(9)
where Si(yi−1, yi, X) and Si(y′i−1, y′i, X) are po-
tential functions.

3.6 Model Training
There are two tasks in our proposed ESPVR model:
MNER, and ESI. In the training phase, we jointly
train the whole model. The final training objective



function L is the combination of MNER loss and
ESI loss. By minimizing negative log-likelihood
estimation, L can be denoted as:

L = LMNER + LESI = −(log(P (y|X)) + λ log(P (z|X))

(10)
where λ is a hyperparameter to control the contri-
bution of the auxiliary ESI module. Here we set λ
to 0.08

4 Experiments

In the following section, we conduct experiments
on two MNER datasets, comparing our Entity Vi-
sual Regions Positioning (ESPVR) approach with
several unimodal and multimodal approaches.

4.1 Experiment Settings
Datasets: We use two publicly MNER datasets
(Twitter-2015 (Zhang et al., 2018) and Twitter-2017
(Lu et al., 2018) ) to evaluate the effectiveness of
our framework. Twitter-2015 and Twitter-2017 in-
clude multimodal tweets from 2014 to 2015 and
from 2016 to 2017 respectively. Both datasets are
composed of four types of entities: Person (PER),
Location (LOC), Organization (ORG), and Mis-
cellaneous (MISC) (In Twitter-2017, the last tag
is Other. Here, we collectively refer to them as
MISC). Each sample in the two datasets is com-
posed of a pair sentence, image.

Implementation Details: For both datasets, we
use the same hyperparameters. To compare each
unimodal and multimodal method in the experi-
ment, the maximum length of the text is set to 128
which can cover all words. For our ESPVR ap-
proach, most of the hyperparameters are set in the
following aspects: The word representations C are
initialized with the pre-trained BERT (bert-base-
uncase) model of dimension 768 by Devlin et al.
(2018), and fine-tuned during training. The visual
embeddings B are initialized by Swin Transformer
with the dimension of 1536. Swin Transformer is
fixed during training. The Self-Attention layer has
a head size of 8 and a number of 4. Additionally,
the Cross-Modal Attention has feature dimensions
of 512. The learning rate, the dropout rate, and
the tradeoff parameter are respectively set to 1e-4,
0.4, and 0.08, which can achieve the best perfor-
mance on the development set of both datasets via
a small grid search over the combinations of [1e-5,
1e-4], [0.1, 0.5], and [0.05, 0.9]. We implement
the proposed model with PyTorch (Paszke et al.,
2019). The model is trained and tested on one

Nvidia GeForce-RTX 2080 GPU with batch size
32.

4.2 Baseline methods

We compare our ESPVR with several base-
line models for a comprehensive comparison
to demonstrate the superiority of our ESPVR.
For unimodal, we choose BiLSTM-CRF (Huang
et al., 2015), BLSTM-CNNs-CRF (Ma and Hovy,
2016), HBiLSTM-CRF (Lample et al., 2016),
BERT+softmax (Devlin et al., 2018), BERT+CRF
(Devlin et al., 2018), BERT-BiLSTM-CRF (Dai
et al., 2019), For multimodal, we choose GVATT-
HBiLSTM-CRF (Lu et al., 2018), AdaCAN-CNN-
BiLSTM-CRF (Zhang et al., 2018), GVATT-BERT-
CRF (Lu et al., 2018), UMT-BERT-CRF (Yu et al.,
2020), MAF (Wang et al., 2020), UMGF (Zhang
et al., 2021), ITA (Wang et al., 2021), UAMNer
(Liu et al., 2022a), MGCMT (Liu et al., 2022b).

4.3 Main Results

Following the other baselines, we employ standard
precision (P), recall (R), and F1 score (F1) to evalu-
ate the overall performance and report F1 for every
single type of metric. Since the two Twitter datasets
differ significantly in type distribution and data
characteristics, we also conduct extensive experi-
ments in the self-domain and cross-domain cases
to demonstrate the validity and generality of our
approach.

Self-domain Scenario. Table 1 shows the over-
all results of unimodal and multimodal approaches
on the two benchmark Twitter MNER datasets.
From the table, we have the following findings:

(1) Pre-trained model BERT is more powerful
than conventional neural networks. This indicates
that the pre-trained model can indeed provide abun-
dant syntactic and semantic features. CRF con-
siders the correlations between labels in neigh-
borhoods and scores the whole sequence of la-
bels. Therefore, the recent approaches are typically
based on BERT-CRF.

(2) Multimodal approaches can usually perform
better than their corresponding unimodal baselines.
By comparing all multimodal and unimodal ap-
proaches, we can find that both global images and
visual information of local objects are valuable to
MNER. This confirms that visual information can
bring a wealth of external knowledge to the text.
However, this approach does not bring very signifi-
cant improvement, which demonstrates that MNER



Twitter-2017 Twitter-2015

Modality Methods
Single Type(F1) Overall Single Type(F1) Overall

PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

Text

BI-LSTM-CRF 85.12 72.68 72.50 52.56 79.42 73.43 76.31 76.77 72.56 41.33 26.80 68.14 61.09 64.42
BLSTM-CNNs-CRF 87.99 77.44 74.02 60.82 80.00 78.76 79.37 80.86 75.39 47.77 32.61 66.24 68.09 67.15
HBiLSTM-CRF 87.91 78.57 76.67 59.32 82.69 78.16 80.37 82.34 76.83 51.59 32.52 70.32 68.05 69.17

BERT+softmax 90.88 84.00 79.25 61.63 82.19 83.72 82.95 84.72 79.91 58.26 38.81 68.30 74.61 71.32
BERT+CRF 90.06 81.99 81.83 63.41 82.98 84.46 83.71 84.74 80.51 60.27 37.29 69.22 74.59 71.81
BERT-BiLSTM-CRF 90.29 84.55 80.97 64.85 83.20 84.68 83.93 84.32 79.31 61.66 37.53 71.03 73.57 72.27

Text and
Image

GVATT-HBiLSTM-CRF 89.34 78.53 79.12 62.21 83.41 80.38 81.87 82.66 77.21 55.06 35.25 73.96 67.90 70.80
AdaCAN-CNN-BiLSTM-CRF 89.63 77.46 79.24 62.77 84.16 80.24 82.15 81.98 78.95 53.07 34.02 72.75 68.74 70.69

GVATT-BERT-CRF 90.94 83.52 81.91 62.75 83.64 84.38 84.01 84.43 80.87 59.02 38.14 69.15 74.46 71.70
AdaCAN-BERT-CRF 90.20 82.97 82.67 64.83 85.13 83.20 84.10 85.02 81.04 59.02 38.98 69.34 75.22 72.16
UMT-BERT-CRF 91.56 84.73 82.24 70.10 85.28 85.34 85.31 85.24 81.58 63.03 39.45 71.67 75.23 73.41
UMGF 91.92 85.22 83.13 69.83 86.54 84.50 85.51 84.26 83.17 62.45 42.42 74.49 75.21 74.85
ITA 91.40 84.80 84.00 68.60 —— —— 85.72 85.60 82.60 64.40 44.80 —— —— 75.60
UAMNer 91.86 85.71 84.25 68.73 86.17 86.23 86.20 85.14 81.66 62.46 40.95 73.02 74.75 73.87
MAF 91.51 85.80 85.10 68.79 86.13 86.38 86.25 84.67 81.18 63.35 41.82 71.86 75.10 73.42
MGCMT 90.82 86.21 86.26 66.88 86.03 86.16 86.09 85.84 82.03 63.08 40.81 73.57 75.59 74.57
M3S 92.73 84.81 82.49 69.53 86.93 85.21 86.06 86.05 81.32 62.97 41.36 74.92 75.14 75.03

Ours ESPVR 92.73 84.75 83.82 70.55 85.70 87.35 86.52 85.60 80.48 59.45 38.08 71.94 74.17 73.04

Table 1: Results on Twitter-2017 and Twitter-2015.

still has considerable space for progress in propos-
ing a more effective multimodal approach.

(3) Our ESPVR approach achieves state-of-the-
art performance on Twitter-2017 dataset and com-
petitive results on Twitter-2015. To position the
visual regions that are most relevant to the entities
in the text, we design an ESPVR module. In com-
parison with the existing multimodal methods, our
approach outperforms the state-of-the-art MAF by
0.27 on Twitter-2017 but performs slightly worse
on Twitter-2015. This is because there are many
unmatched text-image pairs, and it is one direction
of our future work.

Cross-domain Scenario. Table 2 shows a per-
formance comparison of our ESPVR approach
with UMT and UMGF in a cross-domain sce-
nario. Twitter-2017 → Twitter-2015 denotes that
the trained model on Twitter-2017 is further used
to test on Twitter-2015. Similarly, Twitter-2015
→ Twitter-2017 denotes that the trained model on
Twitter-2015 is further used to test on Twitter-2017.
From this table, we can observe that our ESPVR
approach significantly outperforms UMGF by 0.38
and 0.84 on the overall F1, respectively. These re-
sults further confirm the effectiveness of our model.

Approaches

Twitter-2017 → Twitter-2015 Twitter-2015 → Twitter-2017

Single Type(F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

UMT 80.34 71.30 47.97 20.13 64.67 63.59 64.13 81.24 67.89 39.52 31.87 67.80 55.23 60.87
UMGF 79.62 71.94 49.48 20.24 67.00 62.81 64.84 81.83 72.25 41.20 32.00 69.88 56.92 62.74
ESPVR 79.17 70.63 48.53 18.20 67.58 63.03 65.22 82.47 70.68 42.92 32.63 65.77 61.54 63.58

Table 2: Performance comparison in the cross-task sce-
nario.

4.4 Ablation Study
To show the effectiveness of each component in
ESPVR, we conduct an ablation study by removing
the particular component from it. Table 3 shows
comparison results between the full model and its
ablation methods.

Methods

Twitter-2017 Twitter-2015

Single Type(F1) Overall Single Type(F1) Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

Ours 92.73 84.75 83.82 70.55 85.70 87.35 86.52 85.60 80.48 59.45 38.08 71.94 74.17 73.04
w/o IC 91.81 84.59 82.86 68.59 84.86 86.24 85.55 84.97 80.30 60.03 37.38 71.67 73.77 72.70

w/o ESPVR 91.76 86.12 83.50 66.88 85.27 86.09 85.68 84.76 80.22 60.81 37.58 72.70 73.23 72.97
w/o IC + ESPVR 92.22 83.47 83.88 67.75 85.19 86.39 85.79 84.55 80.59 60.95 37.77 72.32 73.46 72.89

Table 3: Ablation Study of ESPVR.

w/o IC. This approach completely ignores the
global information brought by image captions. We
remove the image captions, resulting in reduced
performance, which shows image captions can add
external support for each input word.

w/o ESPVR. This approach completely ignores
the problem of fine-grained semantic correspon-
dence between the semantic units in the text-image
pair. When we remove the ESPVR module and
solely train the main MNER task, there is a notice-
able decline in overall recall and F1 scores, along-
side a slight improvement in overall precision. The
result is consistent with our hypothesis that visual
regions can provide clues for fine-grained semantic
interaction.

w/o IC + ESPVR. This approach completely
ignores global visual information and local visual
information. We remove image captions and the
ESPVR module, resulting in significant degrada-
tion of the performance of the model, indicating
that both image captions and the ESPVR module



A. Now that we are in
2017, I’m looking forward
to warmer weather and
@[elli_utterback PER]1’s
soccer matches!

B. Don’t miss out on this
year’s AMAZING Pops
concert @ CDS! Buy your
tickets tomorrow before
they sell out!

C. Thanks @ [newbalance
ORG]1 for these colorful
shirts for our recreational
soccer program. we love
them!

UMT: 1-PER ✓ CDS ORG × 1-PER ×
UMGF: 1-PER ✓ CDS PER × 1-PER ×

MGCMT: 1-PER ✓
AMAZING Pops MISC ×

1-ORG ✓
CDS PER ×

our: 1-PER ✓ ✓ 1-ORG ✓

Table 4: The second row shows a few representative samples from the test set and their manually labeled entities.
The bottom four rows show the prediction results of different methods for these test samples.

are essential in our framework. Removing image
captions has a slightly greater impact than remov-
ing the ESPVR module. This is probably because
some images are not relevant to the text. Over-
all, the different components of our model work
effectively with each other to produce a better per-
formance of the model in the MNER task.

4.5 Further Analysis

To validate the effectiveness and robustness of our
method, we conduct further analysis with three
specific examples in Table 4.

For informal or incomplete text, if the corre-
sponding visual information is provided, the visual
context will provide useful clues to the text. For
example, in Table 4.A, the image’s most obvious
local visual information is the person, and all meth-
ods can obtain this local visual information with
significant features. Therefore, all the multimodal
approaches can correctly classify their types after
incorporating the image.

It is essential to obtain local visual information
from the image that is relevant to the entities in
the text. If the obtained local visual information is
redundant or insufficient, it may result in misidenti-
fying a non-entity as an entity or incorrectly predict-
ing the entity category. For example, in Table 4.B,

this text does not contain an entity, and it should
not provide local visual information for this text
under normal situations. However, the existing
methods for obtaining local visual information all
obtain a large amount of visual information from
this image. So, those methods identify a non-entity
as an entity. Another example is Table 4.C, UMT
and UMGF use the error guidance of local visual
information about the Person from the image and
omit the relationship between Person and Person,
resulting in the identification of “newbalance” as
“PER”. On the contrary, MGCMT and our method
can accurately determine the entity. Here A can get
the correct result because it uses the local visual
information obtained in both ways, thus refining
the local visual information.

5 Conclusion

In this paper, we present an Entity Spans Position
Visual Regions (ESPVR), which obtains the most
relevant visual regions for the entities in the text
as fine-grained local visual information. The ex-
perimental results reveal the superiority of fine-
grained local visual information acquired through
this method. This information proves more advanta-
geous in enhancing the performance of Multimodal
Named Entity Recognition (MNER) compared to



using attention-based and object detection-based
methods.

Limitations

Although our experiments demonstrate the effec-
tiveness of our method, there are still some limi-
tations that can be improved in future work, First,
data augmentation is a necessity to enhance data
efficiency in deep learning. Our model lacks multi-
modal data enhancement. Second, there are many
irrelevant text image pairs in the data of MNER,
and our method aims to solve the problem of acquir-
ing local visual information. By filtering out text-
irrelevant images prior to obtaining local visual
information and focusing solely on text-relevant
images for acquiring local visual regions, the effi-
cacy of our proposed method is likely to be further
amplified. We hope that the insights from this work
will stimulate further research on MNER perfor-
mance.
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