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ABSTRACT

Due to their impressive performance across a wide range of graph-related tasks,
graph neural networks (GNNs) have emerged as the dominant approach to link
prediction, often assumed to outperform network embedding methods. How-
ever, their performance is hindered by the training–inference discrepancy and a
strong reliance on high-quality node features. In this paper, we revisit classical
network embedding methods within a unified training framework and highlight
their conceptual continuity with the paradigms used in GNN-based link prediction.
We further conduct an extensive empirical evaluation of three classical methods
(LINE, DeepWalk, and node2vec) on standard link prediction benchmarks. Our
findings suggest that the reported superiority of GNNs may be overstated, partly
due to inconsistent training protocols and suboptimal hyperparameter choices for
embedding-based methods. Notably, when incorporated into a modern link pre-
diction framework with minimal configuration changes, these classical methods
achieve state-of-the-art performance on both undirected and directed tasks. De-
spite being proposed nearly a decade ago, they outperform recent GNN models on
13 of 16 benchmark datasets. These results highlight the need for more rigorous
and equitable evaluation practices in graph learning research.

1 INTRODUCTION

Network embedding provides a foundational framework for learning graph representations by map-
ping high-dimensional graph structures to low-dimensional vector spaces, while preserving topo-
logical relationships and node semantics (Cui et al., 2018). Due to their ability to model complex
relational patterns, network embedding methods have been widely adopted in applications such as
social network analysis and recommendation systems (Daud et al., 2020; Wen et al., 2018). Link
prediction is a core task in graph mining that aims to infer missing or future connections and re-
lies on accurate recognition of structural patterns. Traditional embedding methods achieve this task
through inner product operations on learned representations, focusing exclusively on topology with-
out explicit modeling of node attributes (Tang et al., 2015; Taskar et al., 2003). In contrast, Graph
Neural Networks (GNNs) integrate both structural and attribute-based signals via message-passing
mechanisms, garnering significant attention in recent years (Kipf & Welling, 2016; Kollias et al.,
2022; Zhu et al., 2021; Yun et al., 2021; Wang et al., 2021; Tong et al., 2020b;a; Rossi et al., 2024).
This shift has positioned GNNs as the dominant approach in link prediction research, inadvertently
marginalizing classical embedding approaches.

Despite demonstrating superior performance, GNNs face inherent challenges in link prediction (Mao
et al., 2024; Li et al., 2023). These include task-alignment issues, such as training–inference dis-
crepancies, and the risk of data leakage (Zhu et al., 2024a; Wang et al., 2024; Zhang et al., 2021),
which often necessitate techniques like edge masking to ensure valid evaluation (Wang et al., 2024).
Moreover, GNN performance is highly sensitive to the quality of input node features (Zhu et al.,
2024b). However, real-world applications of GNN frequently encounter two major limitations: (1)
the absence of explicit node features in datasets such as anonymous social networks or biological
interaction graphs (Boukharouba et al., 2023), and (2) sparse or noisy features that reduce their effec-
tiveness. In such cases, traditional topology-driven embedding methods, such as DeepWalk (Perozzi
et al., 2014) and LINE (Tang et al., 2015), are theoretically well-suited for the link prediction task.
Nevertheless, results reported in prior work often show that these embedding methods underperform
compared to GNN models. Additionally, GNNs typically require architectural modifications (e.g.,
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direction-aware aggregation layers (Tong et al., 2020a; Kollias et al., 2022; Rossi et al., 2024)) to
process directed graphs. In contrast, random walk-based embedding methods naturally incorporate
edge direction through their sampling process, further highlighting their practicality.

These tensions motivate a critical re-examination of whether traditional network embedding methods
have been undervalued in link prediction research. To address this question, we revisit three estab-
lished methods (LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014), and node2vec (Grover
& Leskovec, 2016)) within a unified encoder-decoder framework, highlighting their alignment with
modern GNN-based training paradigms. We re-implement and evaluate these methods under stan-
dardized training protocols across 16 real-world datasets containing both undirected and directed
graphs. Through comprehensive benchmarking in comparison with state-of-the-art GNNs under
standardized evaluation protocols, our empirical analysis reveals these critical findings:

• Classical network embedding methods, proposed nearly a decade ago, show highly com-
petitive performance on both undirected and directed graphs, outperforming state-of-the-art
GNNs on 13 out of 16 datasets. These results not only reveal the underestimated potential of clas-
sical approaches in prior work but also establish their enduring viability as strong contenders for
link prediction when implemented within modern training frameworks. Furthermore, node fea-
tures do not necessarily improve link prediction, suggesting that the absence of node attributes
in embedding-based methods is generally not a major limitation.

• Ablation studies reveal three critical principles: (1) end-to-end training significantly enhances
the performance of embedding methods; (2) expressive decoders, particularly MLPs with
Hadamard product input, often lead to better link prediction results; and (3) pairwise ranking
losses generally result in better performance than pointwise losses on existing benchmarks.

2 PRELIMINARIES

Given a graph G = (V,E), where V is the set of nodes and E is the set of edges. Let n = |V |
denote the number of nodes. Each edge e = (vi, vj) ∈ E connects nodes vi and vj , where vi and
vj are neighbors. The neighborhood set of node vi is denoted by N(vi), and its degree is defined
as di = |N(vi)|. A directed edge e = (vi, vj) denotes an asymmetric relationship from node vi
to vj . In contrast, undirected edges imply mutual connectivity. The adjacency matrix A ∈ Rn×n

encodes connectivity, where Aij = 1 indicates the presence of an edge between nodes vi and vj ,
and Aij = 0 otherwise. For undirected graphs, the adjacency matrix is symmetric, i.e., Aij = Aji.

Network Embedding aims to map the structural information of a graph into a low-dimensional
vector space, assigning each node a compact representation that captures its structural role. These
representations effectively preserve key graph properties and are widely applicable to various graph-
based machine learning tasks, including node classification, node clustering, and link prediction (Cui
et al., 2018; Yin & Wei, 2019). Formally, the goal is to learn a vector representation ei ∈ Rd for
each node vi ∈ V , where d≪ n and d denotes the embedding size.

LINE (Tang et al., 2015) is a network embedding method that supports various graph structures,
including directed and undirected graphs. Its core objective is preserving first- and second-order
proximities, enabling the model to capture local and global structural patterns. First-order proximity
describes direct connections between nodes, while second-order proximity reflects structural simi-
larity based on shared neighborhoods, allowing the model to identify relationships between nodes
that are not directly connected. To model these relationships, LINE learns two embedding vectors
for each node vi ∈ V : a content embedding ei and a context embedding e′i. To address the compu-
tational cost of evaluating all node pairs, LINE uses negative sampling (Mikolov et al., 2013b) and
the Alias Method (Li et al., 2014) for efficient sampling. The model optimizes an objective function
based on observed and negatively sampled node pairs:

L =

|V |∑
i=1

|V |∑
j=1

Ai,j log σ
(
e⊤i e

′
j

)
+ b

|V |∑
i=1

diEj′∼PN

[
log σ

(
−e⊤i e′j′

)]
, (1)

where PN denotes the negative sampling distribution, b is the number of negative sampling, and di
is the degree of node vi. In the case of directed graphs, di corresponds to the out-degree.

DeepWalk (Perozzi et al., 2014) is a network embedding method inspired by the word2vec (Mikolov
et al., 2013a) model, which is widely used in natural language processing. DeepWalk draws an
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analogy between graph structures and language models by treating nodes as words and random walk
sequences as sentences. Specifically, for each node v ∈ V , DeepWalk performs multiple random
walks of length K to generate node sequences:

RW(v) = {v0 = v, v1, . . . , vK} , vi+1 ∼ U (N(vi)) , (2)

where v0 = v denotes the random walk starting from node v, and U denotes the uniform distribution
over the neighbors N(vi). These sequences form the training corpus for the Skip-Gram model (Levy
& Goldberg, 2014), which learns node embeddings by maximizing the probability of predicting
context nodes within a window of size K around each target node.

node2vec (Grover & Leskovec, 2016) introduces a biased random walk that enables a flexible trade-
off between breadth-first search (BFS) and depth-first search (DFS). Instead of sampling uniformly
from the neighbors of the current node, node2vec uses information from the previous node in the
walk to compute transition probabilities. Given a step (t, v), the transition probability to each neigh-
bor x of the current node v is adjusted by two parameters, p and q, which control the walk’s behavior.
Specifically, p governs the likelihood of returning to t, while q affects the tendency to explore fur-
ther nodes. These adjustments depend on the shortest path distance dtx between nodes t and x. The
transition probability πvx = αpq(t, x) is defined as:

αpq(t, x) =


1
p , if dtx = 0

1, if dtx = 1
1
q , if dtx = 2

. (3)

When p = q = 1, node2vec reduces to DeepWalk, resulting in uniform sampling from the neighbors.

Link Prediction aims to predict the likelihood of unobserved or future edges between node pairs
in a graph. For a node pair (vi, vj), the corresponding embeddings ei and ej are passed through a
decoding function g(·) (e.g., dot product or MLP) to compute a prediction score: ŷij = g(ei, ej),
where ŷij ∈ [0, 1] represents the estimated probability of an edge existing between vi an vj . The
training objective minimizes the total loss over the training edge: L =

∑
(u,v)∈Etrain

ℓ (ŷuv, yuv),
where yuv ∈ {0, 1} denotes the ground-truth label (1 for existing edges, 0 otherwise). The training
set Etrain includes observed positive edges and sampled negative edges from non-connected node
pairs. The loss function ℓ(ŷuv, yuv) measures the discrepancy between the predicted score ŷuv and
the ground-truth label yuv , and is typically implemented using binary cross-entropy (Tang et al.,
2015) or a ranking-based loss (Zhang et al., 2024; Rosenfeld et al., 2014).

Undirected and Directed Graphs. Link prediction can be performed on both undirected and di-
rected graphs. Classical embedding methods such as LINE (Tang et al., 2015), DeepWalk (Perozzi
et al., 2014) and node2vec (Grover & Leskovec, 2016) are compatible with both types. In particu-
lar, random walk–based methods (e.g., DeepWalk and node2vec) inherently support directionality
through the design of the walk process, while LINE directly supports edge-level interactions.

Unified View: An Encoder-Decoder Perspective. LINE, DeepWalk, and node2vec can be formally
interpreted within the modern representation learning paradigm as instances of an encoder–decoder
framework. Positive samples generated from graph structure or random walks serve as a form of data
augmentation. The process of learning node embeddings acts as the encoder, while a decoder, typi-
cally defined using inner products or similarity functions, estimates the likelihood of edge formation
between node pairs. The objective function then guides learning by measuring the discrepancy be-
tween predicted and true edge labels. This unified perspective provides a conceptual foundation for
analyzing training strategies across embedding models, which we will explore in the next section.

3 A UNIFIED ENCODER-DECODER FRAMEWORK FOR LINK PREDICTION

In this section, we describe a widely adopted framework for training link prediction models, con-
sisting of four essential components: data augmentation, encoder, decoder, and loss function. Each
component is detailed below. This encoder–decoder paradigm has become standard in recent link
prediction research (Zhang et al., 2024; Wang et al., 2021; He et al., 2025). Popular GNNs such as
GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018) and HL-GNN (Zhang et al., 2024) are
typically used as encoders, while the other components (data augmentation strategy, decoder func-
tion, and loss objective) are chosen independently as hyperparameters. Importantly, we argue that
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classical embedding methods such as LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016) can be naturally adapted to this framework. By mapping their
components, such as sampling strategies and embedding tables, to appropriate choices of data aug-
mentation and encoder design, these methods can be trained under the same protocol as GNN-based
models. This alignment enables fair comparisons and underscores the continuity between classical
and modern link prediction approaches.

Data Augmentation. Incorporating high-order structural information is essential for improving
link prediction performance. Although deeper GNN architectures can theoretically capture higher-
order neighborhoods, they often suffer from over-smoothing and increased computational complex-
ity (Keriven, 2022; Peng et al., 2024). As a more efficient alternative, random walk–based aug-
mentation introduces high-order context at the input level and has been adopted in several recent
studies (Wang et al., 2021; Zhang et al., 2024). Specifically, for a given node v, a random walk of
length K generates a sequence RW(v) = {v0 = v, v1, . . . , vK}. The original edge set E is then
augmented by adding additional positive pairs based on node co-occurrence in the walk sequences:

Eaug = E ∪ {(vi, vj) | vj ∈ RW(vi),∀vi ∈ V } . (4)
This augmentation strategy is conceptually consistent with the sampling procedures used in classi-
cal network embedding methods such as DeepWalk (Perozzi et al., 2014) and node2vec (Grover &
Leskovec, 2016), where random walks define context windows and positive training pairs. There-
fore, random walk–based data augmentation can be viewed as a direct extension or reinterpretation
of these traditional techniques, reinforcing the continuity between classical and modern approaches
in graph representation learning.

Encoder is responsible for generating low-dimensional representations for each node in the graph,
based on its structural context and, if available, node features. Formally, given a graph G = (V,E)
and an optional node feature matrix X ∈ Rn×h, where h is the number of features, the encoder
maps the inputs to a node embedding matrix E ∈ Rn×d: E = f(G,X).

• In GNN-based models (Kipf & Welling, 2016; Xu et al., 2020; Zhang et al., 2024), the encoder
function f(·) is typically implemented as a message-passing neural network that takes both the
adjacency matrix A and the node feature matrix X as input: E = GNN(A,X; θ), where θ denotes
the model parameters. GNNs integrate node features and graph structure in an end-to-end manner,
making them particularly effective when rich feature information is available.

• In classical network embedding methods such as LINE (Tang et al., 2015), the embedding matrix
E ∈ Rn×d itself constitutes the model parameters. These methods are typically feature-agnostic,
relying solely on the graph structure. When node features are available, the learned embeddings
can optionally be concatenated with X to form a hybrid representation: E = [E∥X]. This com-
bined representation can then be used for prediction tasks or as input to downstream models.

Decoder computes a similarity score between two node embeddings, reflecting the likelihood of an
edge. Formally, given embeddings ei and ej , the decoder outputs a score ŷij = g(ei, ej). A widely
used choice is the dot product decoder, defined as ŷij = e⊤i ej , which is computationally efficient
and commonly adopted in classical methods (Tang et al., 2015; Perozzi et al., 2014; Yin & Wei,
2019; Grover & Leskovec, 2016). To better capture the relational patterns between node pairs, more
expressive decoders can be employed. A typical alternative applies a multi-layer perceptron (MLP)
to a combined representation of the two embeddings. Formally, the predicted score is computed as
ŷij = MLP(ei ◦ ej), where ◦ denotes a composition operation such as element-wise (Hadamard)
product or concatenation. MLP-based decoders offer greater modeling flexibility and enable the use
of standard deep learning techniques such as dropout and non-linear activations, which can enhance
generalization and improve the quality of learned embeddings.

Loss Function. Commonly used loss functions in link prediction can be broadly categorized into
two classes: pointwise losses and pairwise ranking losses.

• Binary Cross-Entropy (BCE) is a standard pointwise loss function that models link prediction
as a binary classification problem. The BCE loss is defined over the training edge set as:

LBCE = −
∑

(vi,vj)∈Etrain

[yij log σ (ŷij) + (1− yij) log (1− σ (ŷij))] , (5)

where ŷij is the decoder’s output score for the node pair vi and vj , and σ(·) denotes the sigmoid
function, which maps the score to a probability.
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Table 1: Statistics of datasets used in the experiments.

Dataset #Nodes #Edges #Features Avg. Degree Direction Domain
Cora 2,708 5,278 1,433 3.90 ✘ citation network
CiteSeer 3,327 4,676 3,703 2.81 ✘ citation network
Pubmed 18,717 44,327 500 4.73 ✘ citation network
Photo 7,650 238,162 745 62.26 ✘ social network
Computers 13,752 491,722 767 71.51 ✘ co-purchase network
ogbl-collab 235,868 1,285,465 128 5.45 ✘ collaboration network
ogbl-ddi 4,267 1,334,889 - 312.84 ✘ drug-drug interaction
ogbl-ppa 576,289 30,326,273 58 52.62 ✘ protein-protein association
ogbl-citation2 2,927,963 30,561,187 128 10.44 ✘ citation network

Cora-ML 2,810 8,229 2,879 5.9 ✔ citation network
CiteSeer-D 2,110 3,705 3,703 3.5 ✔ citation network
Photo-D 7,487 143,590 745 38.4 ✔ co-purchasing network
Computers-D 13,381 287,076 767 42.9 ✔ co-purchasing network
WikiCS 11,311 290,447 300 51.3 ✔ weblink network
Slashdot 74,444 424,557 - 11.4 ✔ social network
Epinions 100,751 708,715 - 14.1 ✔ social network

• Bayesian Personalized Ranking (BPR) is a widely used pairwise ranking loss, originally pro-
posed for modeling implicit feedback in recommender systems (Rendle et al., 2012). Its core idea
is to optimize the ranking between positive and negative samples, ensuring that the predicted score
of a positive sample is higher than that of a negative one. Instead of working on individual pairs
in Etrain, BPR operates on triplets O, where each triplet (vi, vj , vk) consists of a target node vi, a
positive node vj and a negatively sampled node vk. The BPR loss is formulated as:

LBPR = −
∑

(vi,vj ,vk)∈O

log σ (ŷij − ŷik) , (6)

where ŷij and ŷik denote the scores for the positive and negative node pairs, respectively.

While BCE treats each edge independently as a binary classification task, BPR focuses on the rel-
ative ranking of positive and negative pairs, making it well-suited for top-k link prediction. Its
objective also aligns naturally with ranking-based metrics such as Hit Rate and MRR (He et al.,
2017; Rendle et al., 2012). We also adopt the AUC loss (Zhang et al., 2024; Rosenfeld et al., 2014),
a pairwise ranking loss that encourages higher scores for positive links than negative. This loss is
widely used (Zhang et al., 2024; Wang et al., 2021) and included in our experiments.

4 EXPERIMENTAL SETUP FOR LINK PREDICTION

Datasets. Our empirical evaluation covers 16 real-world graph datasets, including both undirected
and directed graphs, with key statistics summarized in Table 1.

• Undirected Graphs. We use nine widely adopted datasets for evaluating undirected link predic-
tion. Specifically, (1) Cora, (2) CiteSeer, and (3) Pubmed are sourced from the Planetoid dataset
collection (Sen et al., 2008); (4) Photo and (5) Computers are taken from the Amazon co-purchase
networks (Shchur et al., 2018); (6) ogbl-collab, (7) ogbl-ddi, (8) ogbl-ppa, and (9) ogbl-citation2
are provided by the Open Graph Benchmark (OGB) (Hu et al., 2020). For all these datasets, we
follow the data processing, edge splitting protocols, and evaluation metrics as defined in prior
work (Chamberlain et al., 2023; Zhang et al., 2024), to ensure fairness and comparability.

• Directed Graphs. We also conduct experiments on seven directed link prediction datasets pro-
vided by DirLinkBench (He et al., 2025). These include two citation networks: (1) Cora-ML and
(2) CiteSeer-D; two co-purchasing networks: (3) Photo-D and (4) Computers-D; one web link
network: (5) WikiCS; and two social networks: (6) Slashdot and (7) Epinions. For fairness and
consistency, we adopt the provided data splits, formats, and task definitions.

Baseline. We take three classical network embedding methods (LINE, DeepWalk, and node2vec) as
representative examples and compare their performance with GNN-based models on both undirected
and directed link prediction tasks:

• For undirected link prediction, our evaluation covers a comprehensive set of baselines. These
comprise traditional heuristic approaches such as CN (Barabási & Albert, 1999), RA (Zhou et al.,
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Table 2: Comparison of link prediction performance on undirected graphs. OOM indicates methods
that exceeded memory limits. Models marked with * denote our implementations. Results ranked
first, second, and third are highlighted.

Method Cora CiteSeer Pubmed Photo Computers collab ddi ppa citation2
Hits@100 Hits@100 Hits@100 AUC AUC Hits@50 Hits@20 Hits@100 MRR

CN 33.92±0.46 29.79±0.90 23.13±0.15 96.73±0.00 96.15±0.00 56.44±0.00 17.73±0.00 27.65±0.00 51.47±0.00
RA 41.07±0.48 33.56±0.17 27.03±0.35 97.20±0.00 96.82±0.00 64.00±0.00 27.60±0.00 49.33±0.00 51.98±0.00
KI 42.34±0.39 35.62±0.33 30.91±0.69 97.45±0.00 97.05±0.00 59.79±0.00 21.23±0.00 24.31±0.00 47.83±0.00
RWR 42.57±0.56 36.78±0.58 29.77±0.45 97.51±0.00 96.98±0.00 60.06±0.00 22.01±0.00 22.16±0.00 45.76±0.00

GCN 66.79±1.65 67.08±2.94 53.02±1.39 98.61±0.15 98.55±0.27 47.14±1.45 37.07±5.07 18.67±1.32 84.74±0.21
GAT 60.78±3.17 62.94±2.45 46.29±1.73 98.42±0.19 98.47±0.32 55.78±1.39 54.12±5.43 19.94±1.69 86.33±0.54
SEAL 81.71±1.30 83.89±2.15 75.54±1.32 98.85±0.04 98.70±0.18 64.74±0.43 30.56±3.86 48.80±3.16 87.67±0.32
NBFNet 71.65±2.27 74.07±1.75 58.73±1.99 98.29±0.35 98.03±0.54 OOM 4.00±0.58 OOM OOM
Neo-GNN 80.42±1.31 84.67±2.16 73.93±1.19 98.74±0.55 98.27±0.79 62.13±0.58 63.57±3.52 49.13±0.60 87.26±0.84
BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 99.05±0.21 98.69±0.34 65.94±0.58 78.51±1.36 49.85±0.20 87.56±0.11
HL-GNN 94.22±1.64 94.31±1.51 88.15±0.38 99.11±0.07 98.82±0.21 68.11±0.54 80.27±3.98 56.77±0.84 89.43±0.83

MF 64.67±1.43 65.19±1.47 46.94±1.27 97.92±0.37 97.56±0.66 38.86±0.29 13.68±4.75 32.29±0.94 51.86±4.43
DeepWalk 70.34±2.96 72.05±2.56 54.91±1.25 98.83±0.23 98.45±0.45 50.37±0.34 26.42±6.10 35.12±0.79 55.58±1.75
node2vec 68.43±2.65 69.34±3.04 51.88±1.55 98.37±0.33 98.21±0.39 48.88±0.54 23.26±2.09 22.26±0.88 61.41±0.11

LINE* 91.63±1.02 95.71±0.94 81.08±0.31 99.10±0.01 98.97±0.01 67.89±0.70 90.13±3.04 67.49±1.35 89.77±1.10
DeepWalk* 94.36±1.59 95.25±1.91 87.36±0.52 99.10±0.02 98.82±0.01 68.79±0.51 79.01±1.27 58.36±1.51 81.05±1.48
node2vec* 94.50±0.81 95.89±1.32 88.04±0.42 99.12±0.01 98.83±0.02 68.92±0.55 79.14±1.29 59.28±1.34 81.68±1.31

2009), KI (Katz, 1953), and RWR (Brin & Page, 1998); common GNN architectures includ-
ing GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2018); and state-of-the-art models
such as SEAL (Zhang & Chen, 2018), NBFNet (Zhu et al., 2021), Neo-GNN (Yun et al., 2021),
BUDDY (Chamberlain et al., 2023), and HL-GNN (Zhang et al., 2024). The baselines also in-
clude embedding-based methods, such as MF (Koren et al., 2009), node2vec (Grover & Leskovec,
2016), and DeepWalk (Lian et al., 2018), widely used in earlier work. However, their reported per-
formance is often much lower than that of GNN models, reinforcing the belief that they are no
longer competitive. All baseline results reported are sourced from HL-GNN.

• For directed link prediction, baselines include classical approaches such as MLP, GCN (Kipf
& Welling, 2016), GAT (Veličković et al., 2018), and APPNP (Gasteiger et al., 2019), as well as
state-of-the-art methods for directed graphs, including DGCN (Tong et al., 2020b), DiGCN (Tong
et al., 2020a), DiGCNIB (Tong et al., 2020a), DirGNN (Rossi et al., 2024), DHYPR (Zhou et al.,
2022), DiGAE (Kollias et al., 2022), and SDGAE (He et al., 2025). Embedding-based methods
such as STRAP (Yin & Wei, 2019), ODIN (Yoo et al., 2023), and ELTRA (Rehyani Hamedani
et al., 2023) also show strong performance on several DirLinkBench datasets, outperforming some
GNNs designed for directed graphs. All baseline results reported in this study are sourced from
DirLinkBench, which provides a unified implementation and evaluation protocol.

Implemental Setting. To limit experimental workload and ensure fairness in comparison, we
strictly follow the implementation settings, data processing procedures, and evaluation protocols
defined in HL-GNN (Zhang et al., 2024) (for undirected graphs) and DirLinkBench (He et al., 2025)
(for directed graphs). For each model, we report the mean performance and standard deviation over
10 runs with different random initializations. Models marked with * denote our re-implementations
of classical methods under the unified framework described in Section 3. Specifically, LINE (Tang
et al., 2015), DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016) serve as
encoders, while random walk sampling strategies from DeepWalk and node2vec are employed as
data augmentation. The decoder is selected from {DOT, MLP (concat), MLP (Hadamard product)},
and the loss function is chosen from {BCE, BPR, AUC}, depending on the training configuration.
Full implementation details and hyperparameter configurations can be found in Appendix D.

5 EXPERIMENTAL RESULTS AND FINDINGS

5.1 PERFORMANCE OF NETWORK EMBEDDING METHODS IN LINK PREDICTION

We present a detailed analysis of the performance comparison between network embedding methods
and state-of-the-art GNNs on link prediction. As shown in Table 2 and Table 3, results across
16 datasets indicate that embedding methods often outperform or closely match advanced GNNs.
Notably, they rank in the top two on all datasets and achieve the best performance on 13 datasets,
demonstrating strong competitiveness. Several key observations are outlined below.
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Table 3: Comparison of link prediction performance on directed graphs under the Hits@100 metric.
OOM and TO indicate methods that exceeded memory limits and did not complete within 24 hours,
respectively. Models marked with * denote our implementations. Results ranked first, second, and
third are highlighted.

Method Cora-ML CiteSeer-D Photo-D Computers-D WikiCS Slashdot Epinions
MLP 60.61±6.64 70.27±3.40 20.91±4.18 17.57±0.85 12.99±0.68 32.97±0.51 44.59±1.62
GCN 70.15±3.01 80.36±3.07 58.77±2.96 43.77±1.75 38.37±1.51 33.16±1.22 46.10±1.37
GAT 79.72±3.07 85.88±4.98 58.06±4.03 40.74±3.22 40.47±4.10 30.16±3.11 43.65±4.88
APPNP 86.02±2.88 83.57±4.90 47.51±2.51 32.24±1.40 20.23±1.72 33.76±1.05 41.99±1.23

DGCN 63.32±2.59 68.97±3.39 51.61±6.33 39.92±1.94 25.91±4.10 TO TO
DiGCN 63.21±5.72 70.95±4.67 40.17±2.38 27.51±1.67 25.31±1.84 TO TO
DiGCNIB 80.57±3.21 85.32±3.70 48.26±3.98 32.44±1.85 28.28±2.44 TO TO
DirGNN 76.13±2.85 76.83±4.24 49.15±3.62 35.65±1.30 50.48±0.85 41.74±1.15 50.10±2.06
MagNet 56.54±2.95 65.32±3.26 13.89±0.32 12.85±0.59 10.81±0.46 31.98±1.06 28.01±1.72
DUPLEX 69.00±2.52 73.39±3.42 17.94±0.66 17.90±0.71 8.52±0.60 18.42±2.59 16.50±4.34
DHYPR 86.81±1.60 92.32±3.72 20.93±2.41 TO TO OOM/TO OOM/TO
DiGAE 82.06±2.51 83.64±3.21 55.05±2.36 41.55±1.62 29.21±1.36 41.95±0.93 55.14±1.96
SDGAE 90.37±1.33 93.69±3.68 68.84±2.35 53.79±1.56 54.67±2.50 42.42±1.15 55.91±1.77

STRAP 79.09±1.57 69.32±1.29 69.16±1.44 51.87±2.07 76.27±0.92 31.43±1.21 58.99±0.82
ODIN 54.85±2.53 63.95±2.98 14.13±1.92 12.98±1.47 9.83±0.47 34.17±1.19 36.91±0.47
ELTRA 87.45±1.48 84.97±1.90 20.63±1.93 14.74±1.55 9.88±0.70 33.44±1.00 41.63±2.53

LINE* 88.15±0.80 86.13±1.32 67.28±2.59 51.03±3.76 72.33±3.39 42.24±0.64 59.89±1.59
DeepWalk* 92.42±1.31 92.54±1.35 66.98±1.55 51.01±1.29 75.41±1.25 38.65±0.97 59.56±1.48
node2vec* 92.58±1.14 93.20±1.01 72.78±2.56 54.01±1.15 76.98±0.82 40.01±1.95 60.17±1.38

Observation 1 (Undirected Graphs) As shown in Table 2, under the unified encoder–decoder
training framework, network embedding methods exhibit strong competitiveness on undirected
link prediction tasks, requiring only minor hyperparameter adjustments. In many cases, they
even surpass state-of-the-art GNN models.

Prior work suggests that network embedding methods perform significantly worse than GNN ap-
proaches on undirected link prediction tasks. However, our re-implementations of classical em-
bedding methods reach top-2 performance on all nine benchmark datasets, surpassing GNNs on
eight and achieving state-of-the-art results. Specifically, node2vec* outperforms HL-GNN (Zhang
et al., 2024) and achieves the best performance on Cora, CiteSeer and ogbl-collab, with accuracy
improvements of 26.07%, 26.55%, and 20.04%, respectively. Similarly, DeepWalk* also shows no-
table improvements, with accuracy gains ranging from 0.27% to 52.59%. Although LINE* was not
included in previous baselines, our results show that it is a surprisingly strong competitor, achieving
the best performance on Computers, ogbl-ddi, ogbl-ppa, and ogbl-citation2.

Observation 2 (Directed Graphs) As shown in Table 3, network embedding methods, partic-
ularly those based on random walks, are naturally suited to directed graphs because the walk
process inherently respects edge direction. In contrast to GNNs, which often require specialized
mechanisms for directional message passing, these methods can be applied directly without mod-
ification and often achieve better performance than GNNs designed for directed link prediction.

Across the seven directed graph datasets, our re-implementations of three classical embedding
methods achieve first-place performance on five. Specifically, on the Photo-D, WikiCS, and Epin-
ions datasets, node2vec* not only outperforms all GNN methods but also exceeds STRAP (Yin &
Wei, 2019), another embedding-based approach, by 3.62%, 0.71%, and 1.18% in accuracy, respec-
tively. While prior work (He et al., 2025) has shown that some embedding methods can perform
well on directed link prediction tasks, our results further reinforce this conclusion. Furthermore,
node2vec* achieves the highest performance among all baselines on five datasets: Cora-ML, Photo-
D, Computers-D, WikiCS, and Epinions, demonstrating consistent superiority across diverse graph
types. Both LINE* and DeepWalk* also demonstrate strong competitiveness. Notably, LINE*
achieves 42.24% and 59.89% accuracy on Slashdot and Epinions, respectively, substantially outper-
forming most GNN models and ranking second. Similarly, DeepWalk* ranks second on Cora-ML
with 92.42% accuracy, just behind node2vec* (92.58%), and significantly ahead of traditional and
directed GNN baselines.
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Figure 1: Link prediction performance comparison with and without incorporating node features.
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Figure 2: Performance comparison of three training strategies for network embedding methods:
Pretrained with frozen embeddings, pretrained with fine-tuning, and fully end-to-end training.

Observation 3 As shown in Figure 1, the contribution of node features to link prediction is lim-
ited and inconsistent. In many cases, incorporating node features yields no improvement or even
degrades performance, suggesting that structure alone is often sufficient for link prediction.

We study the impact of node features on link prediction performance by comparing models trained
with and without attribute information. For LINE*, DeepWalk* and node2vec*, we add node fea-
tures by concatenating each node’s feature vector with its learned embedding, then feeding the result
into the decoder for link scoring, as described in Section 3. As shown in Figure 1, the inclusion of
node features often leads to marginal or even negative changes in performance. In several cases,
such as ogbl-collab and WikiCS, adding node features bring no significant gain and can even reduce
accuracy. One possible explanation is that link prediction is typically framed as a binary classifica-
tion task focused on predicting the existence of links between node pairs. When the graph structure
already provides strong topological signals, extra features may add little value, especially if sparse,
noisy, or misaligned with the link structure. These findings align with prior observations that the
utility of node features in link prediction is often limited or task-specific (He et al., 2025; Zhu et al.,
2024b). Importantly, in scenarios where node features provide little benefit, classical embedding
methods remain surprising effective due to their strong ability to capture structure. These results
suggest that such methods deserve renewed attention as robust solutions for link prediction.

5.2 INFLUENCE OF TRAINING STRATEGY ON LINK PREDICTION PERFORMANCE

Observation 1: End-to-end training consistently improves the performance of network. In
prior work, network embedding methods such as DeepWalk and node2vec are often evaluated using
a pretrained-frozen setup, where node embeddings are first learned through unsupervised pretraining
and then used as fixed input features for a downstream classifier (e.g., MLP), with the embedding
table kept frozen during training. This evaluation protocol differs markedly from the training of
modern GNNs (Zhang et al., 2024; Kipf & Welling, 2016; Veličković et al., 2018), which are trained
end-to-end. It is also worth noting that the original objective of DeepWalk (Perozzi et al., 2014) and
node2vec (Grover & Leskovec, 2016) is to model node proximity, which directly aligns with link
prediction. Freezing the encoder during downstream training breaks this alignment by decoupling
the encoder from the task it was designed to support. We argue that network embedding methods
should be trained end-to-end, or at least fine-tuned during downstream optimization, to fully leverage
their capacity within a modern encoder–decoder framework, as described in Section 3. As shown in
Figure 2, the Pretrained (tuned) strategy, where pretrained embeddings are updated during training,
yields significantly better performance than the Pretrained (frozen) variant. Nevertheless, the highest
performance is consistently achieved with fully End-to-end training, where both the encoder and
decoder are jointly optimized for the task.
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Table 4: Comparison of decoding methods for link prediction. “cat” denotes vector concatenation
and ⊙ denotes the Hadamard product. Best result per model group is highlighted in bold.

Method Decoder CiteSeer Computers Photo-D Slashdot
Hits@100 AUC Hits@100 Hits@100

LINE*
DOT 84.40±0.75 98.18±0.02 66.27±2.44 41.69±0.92
MLP (cat) 67.58±3.40 98.74±0.02 10.51±2.83 33.20±1.02
MLP (⊙) 95.71±0.94 98.97±0.01 67.28±2.59 42.24±0.64

DeepWalk*
DOT 90.90±1.45 98.60±0.02 71.56±1.96 35.03±0.90
MLP (cat) 78.13±3.57 98.70±0.01 13.28±1.21 31.83±1.05
MLP (⊙) 95.25±1.91 98.82±0.01 71.14±1.61 38.65±0.97

node2vec*
DOT 90.70±1.34 98.57±0.02 72.78±2.56 35.16±0.79
MLP (cat) 78.20±3.22 98.73±0.01 13.07±1.48 32.72±1.32
MLP (⊙) 95.89±1.32 98.83±0.02 72.69±1.07 40.01±1.95

Observation 2: A more expressive decoder, such as an MLP, often leads to improved perfor-
mance. Traditional embedding methods typically rely on a simple dot product to compute link
prediction scores. However, as discussed in Section 3, the decoder is not the primary factor distin-
guishing different embedding methods. Within the modern encoder-decoder framework, embedding
methods should be understood as encoders, and may incorporate task-specific data augmentation
strategies. The decoder, by contrast, remains modular and can be selected based on dataset charac-
teristics and task requirements. In Table 4, we compare three decoder designs: DOT (dot product),
MLP (concat), and MLP (Hadamard product). The results show that MLP with Hadamard product
consistently achieves the best performance on most datasets, highlighting the importance of using a
more expressive decoder to fully leverage the learned embeddings. Although MLPs are powerful in
modeling non-linear relationships, the MLP (concat) decoder relies on the model to implicitly learn
interactions between node pairs from concatenated embeddings, which is often less effective than
explicitly modeling pairwise interactions via the Hadamard product.
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Figure 3: Comparison of loss functions
for link prediction on Computers-D.

Observation 3: Pairwise ranking losses typically lead
to improved performance on ranking-based metrics
such as Hit Rate. The choice of loss function plays
a crucial role in link prediction, as it directly affects
the quality of the learned embeddings. In Figure 3, we
evaluate the performance of LINE*, DeepWalk*, and
node2vec* on the Computers-D dataset, comparing two
types of loss functions: a pointwise loss (BCE) and pair-
wise ranking losses (BPR and AUC loss). The results
show that BPR and AUC, which explicitly model the
relative ranking between positive and negative samples,
generally achieve better results when evaluated using
ranking-oriented metrics such as Hits@100. In contrast,
BCE focuses on minimizing the discrepancy between
predicted probabilities and binary labels on a per-sample
basis, without directly optimizing for the ranking of positive instances. Due to space constraints, ad-
ditional experimental results and detailed comparisons are provided in the Appendix D.5.

6 CONCLUSION

In this work, we revisit classical network embedding methods such as LINE, DeepWalk, and
node2vec in link prediction tasks. Contrary to the widely held belief that GNN-based models sig-
nificantly outperform embedding-based approaches, our empirical results demonstrate that, under a
unified encoder-decoder training framework with appropriate loss functions and decoders, network
embedding methods can achieve competitive, and in many cases, state-of-the-art performance on
both undirected and directed graphs. We further analyze the impact of training strategies, decoder
architectures, and loss functions, revealing that end-to-end training, expressive decoders, and task-
aligned ranking losses play a critical role in optimizing performance. Our findings not only call for
more rigorous comparisons between classical and modern graph learning methods but also highlight
the enduring value of embedding-based approaches when they are properly trained.
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REPRODUCIBILITY STATEMENT

Detailed descriptions of the experimental setup, implementation procedures, and hyper-
parameter configurations are provided in Section 4 and Appendix D. To support repro-
ducibility, we release an anonymous code repository at https://www.dropbox.
com/scl/fo/ulxyvt9kovb2ll2y919f2/AEFIfea4VvpHAgZGrwkFcTE?rlkey=
xh5r14as78kbec5prv1rdjl8s&st=npb3sq4a&dl=0.

REFERENCES
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A USAGE OF LLMS

In this work, we use LLMs as grammar checkers for article writing and polishing. LLMs are not
used for idea discovery or direct content generation.

B NOTATION

We summarize the primary notations used throughout the paper in Table 5.

Table 5: Summary of notations used in this paper.

Symbol Description
G = (V,E) Input graph with node set V and edge set E
n = |V | Number of nodes
m = |E| Number of edges
A ∈ Rn×n Adjacency matrix of the graph
X ∈ Rn×h Input feature matrix with h-dimensional features for n nodes
E ∈ Rn×d Learned embedding matrix; d is the embedding size
f Encoder function (e.g., GNN or embedding lookup)
g Decoder function for computing link scores
ŷij Predicted link score between node i and node j
yij ∈ {0, 1} Ground-truth label for the link between node i and node j
⊙ Element-wise (Hadamard) product
[· ∥ ·] Concatenation operation
σ Sigmoid function

C COMPLEXITY ANALYSIS

We present a detailed analysis of the time and space complexity of our proposed method in compari-
son with representative baselines. Table 6 summarizes the theoretical complexities, where n denotes
the number of nodes, m the number of edges, d the embedding dimension, L the number of MLP or
GCN layers, F the polynomial order, r the number of walks per node, and K the walk length.

Table 6: Comparison of Time and Space Complexity.

Time Complexity Space Complexity

GCN O(Lmd+ Lnd2) O(nd+m)
HL-GNN O(Lmd+ Lnd2) O(nd+m)
SDGAE O(Fmd+ Lnd2) O(nd+m)
LINE* O(Lnd2) O(nd)
DeepWalk* O(nrK + Lnd2) O(nd)
node2vec* O(nrK + Lnd2) O(nd)

Our method revisits and unifies classical embedding approaches such as LINE, DeepWalk, and
node2vec within a unified framework, followed by a lightweight MLP for downstream tasks. In
contrast to GCN-based methods, these approaches circumvent message passing and graph convolu-
tion, thereby obviating the need to compute or store multi-hop neighborhoods. This design results
in a more streamlined and scalable architecture, particularly advantageous for large-scale graphs.

For GCN-based methods, the space complexity is O(nd + m), where O(nd) accounts for storing
node representations and O(m) corresponds to maintaining the sparse adjacency matrix required
for message passing. In contrast, the embedding-based approach eliminates graph convolution and
neighborhood aggregation, thereby removing the need of storing the adjacency matrix during train-
ing. Consequently, the space complexity reduces to O(nd), which is dominated by the node embed-
ding table.
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D EXPERIMENT DETAILS

D.1 CODE AVAILABILITY

To ensure fair comparison, we implement all models within standardized training and eval-
uation frameworks. Specifically, for the Planetoid and Amazon datasets, we base our im-
plementations of LINE*, DeepWalk*, and node2vec* on the official HL-GNN codebase 1.
For OGB datasets, we follow the code structure used in the OGB leaderboard 2. For di-
rected graphs, our implementations are based on the DirLinkBench framework 3. All code
and configurations used in our experiments are available at https://www.dropbox.
com/scl/fo/ulxyvt9kovb2ll2y919f2/AEFIfea4VvpHAgZGrwkFcTE?rlkey=
xh5r14as78kbec5prv1rdjl8s&st=npb3sq4a&dl=0.

D.2 BASELINE REUSE AND EXPERIMENTAL CONSISTENCY

It is both reasonable and widely accepted to reuse baseline results reported in prior studies, par-
ticularly when comparable settings are adopted, as in the case of HL-GNN. This practice enhances
reproducibility and facilitates more efficient and credible progress in the field (Wang & Zhang, 2022;
Wang et al., 2024). To further ensure fairness and consistency, we are rerunning all methods under
a unified experimental setting. Due to time constraints, only a subset of experiments has been com-
pleted so far. As shown in Table 7, the reproduced results are broadly consistent with those reported
in the original publications.

Table 7: Comparison of reproduced and reported results.

Dataset Cora Citeseer Photo Computer ogbl-collab
Metric Hits@100 Hits@100 AUC AUC Hits@50

BUDDY (reported) 88.00 ± 0.44 92.93 ± 0.27 99.05 ± 0.21 98.69 ± 0.34 65.94 ± 0.58
BUDDY 85.69 ± 0.43 91.60 ± 1.38 89.33 ± 1.60 98.41 ± 0.44 66.01 ± 0.46

HL-GNN (reported) 94.22 ± 1.64 94.31 ± 1.51 99.11 ± 0.07 98.82 ± 0.21 68.11 ± 0.54
HL-GNN 93.84 ± 1.36 93.80 ± 1.74 98.93 ± 0.09 98.78 ± 0.23 68.23 ± 0.61

D.3 IMPLEMENTATION DETAILS

To ensure fair comparison and reproducibility, we follow the experimental setups of HL-
GNN (Zhang et al., 2024) for undirected graphs and DirLinkBench (He et al., 2025) for directed
graphs. Our re-implementations of LINE*, DeepWalk*, and node2vec* are integrated into the uni-
fied encoder–decoder framework described in Section 3 and trained in an end-to-end manner, where
both the embedding matrix and decoder parameters are jointly optimized for the link prediction ob-
jective. Algorithm 1 details the full training procedure for node2vec* using an MLP decoder and
binary cross-entropy loss. LINE* and DeepWalk* follow analogous procedures. The process be-
gins with randomly initialized trainable embeddings (line 2), which are optionally concatenated
with node features, if available (lines 3–7). Additional training edges are then generated via biased
random walks (lines 9–11), following the original node2vec sampling strategy. These walks are
converted into training samples using a Skip-Gram-style procedure, resulting in an augmented edge
set Eaug. In the final stage (lines 13–19), supervised link prediction is performed by training a MLP
decoder on both the original and augmented edges.

To illustrate the differences between our end-to-end training approach and the commonly used eval-
uation protocol for network embedding methods, Algorithm 2 outlines the standard training proce-
dure traditionally applied to node2vec (Grover & Leskovec, 2016) in link prediction benchmarks.
In this setup, the embedding matrix E is first trained independently using the Skip-Gram objective
with negative sampling, which encourages similar embeddings for nodes that co-occur in random

1https://github.com/LARS-research/HL-GNN
2https://ogb.stanford.edu/docs/leader_linkprop
3https://github.com/ivam-he/DirLinkBench-SDGAE
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walk sequences. This initial embedding phase is shown in lines 2–9. Afterward, the resulting em-
bedding matrix is frozen, and a separate MLP decoder is trained for the link prediction task using
the fixed embeddings (lines 19-26). Crucially, this decoupled setup breaks the alignment between
the embedding objective and the downstream task. Since the Skip-Gram objective already captures
pairwise node interactions in a manner closely related to link prediction, freezing the embeddings
may underutilize their task-relevant potential and lead to suboptimal performance.

To further bridge the gap between classical network embedding methods and modern training
paradigms, we explore a fine-tuning variant of node2vec, as described in Algorithm 3. In this set-
ting, the embedding matrix is initialized with pretrained node2vec embeddings (line 3), but unlike
the frozen protocol, the embeddings are updated during downstream training. This approach re-
tains the structural inductive bias of node2vec while enabling task-specific adaptation. As shown in
Figure 2, fine-tuning consistently outperforms the frozen variant and narrows the performance gap
with fully end-to-end models.

Algorithm 1: node2vec* (end-to-end) for Link Prediction with MLP
Input: Graph G = (V,E), base node features X, optional pretrained embedding Epre, MLP

hidden size h, dropout δ, epochs T
Output: Trained embeddings Eθ and MLP parameters θ

1 // Model Initialization;
2 Initialize trainable embedding Eθ ∈ R|V |×d;
3 if original features X exist then
4 X′ ← [X ∥Eθ];
5 end
6 else
7 X′ ← Eθ;
8 end
9 // Data Augmentation using node2vec;

10 For each vi ∈ V , sample walk sequencesWvi with length K;
11 Generate Eaug by additional training pairs (u, v) fromWvi (skip-gram style);
12 Merge Eaug into training edge set;

13 // End-to-End Training;
14 Initialize MLP predictor gθ with L layers, input dim = dim(X′), hidden dim h, dropout δ;
15 for epoch← 1 to T do
16 Sample positive and negative edge batches (u, v) and (u′, v′);
17 Get embeddings: xu ← X′[u], xv ← X′[v];
18 Compute predictions: ŷuv ← gθ(xu · xv);
19 Compute loss: L = − log ŷuv − log(1− ŷu′v′);
20 Update all parameters (θ,Eθ) jointly via gradient descent;
21 end

15
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Algorithm 2: node2vec (fixed) for Link Prediction with MLP
Input: Graph G = (V,E), walk length K, embedding size d, walks per vertex γ, return

parameter p, in-out parameter q, window size w
MLP hidden size h, number of layers L, dropout δ, learning rate η, training epochs T
Output: Trained MLP parameters θ

1 // node2vec Embedding Learning;
2 Sample embedding matrix E ∼ Un×d;
3 for i← 1 to γ do
4 O ← Shuffle(V );
5 foreach vi ∈ O do
6 RWvi ← BiasedRandomWalk(G, vi,K, p, q);
7 SkipGram(E,RWvi , w);
8 end
9 end

10 Save E to embedding.pt;

11 // Link Prediction with MLP;
12 Load E from embedding.pt;
13 if original features X exist then
14 X′ ← [X ∥E];
15 end
16 else
17 X′ ← E;
18 end
19 Initialize MLP predictor gθ with L layers, input dim = dim(X′), hidden dim h, dropout δ;
20 for epoch← 1 to T do
21 Sample positive and negative edge batches (u, v) and (u′, v′);
22 Get embeddings: xu ← X′[u], xv ← X′[v];
23 Compute predictions: ŷuv ← gθ(xu · xv);
24 Compute loss: L = − log ŷuv − log(1− ŷu′v′);
25 Update MLP parameters θ via gradient descent;
26 end

Algorithm 3: node2vec (tuned) for Link Prediction with MLP
Input: Graph G = (V,E), hidden size h, layers L, dropout δ, learning rate η, training epochs

T , edge splits
Output: Trained MLP parameters θ, fine-tuned embedding Eθ

1 // Fine-tunable Embedding Initialization;
2 Load Epre from embedding.pt generated via node2vec (omitted here);
3 Eθ ← InitializeFrom(Epre,trainable=True);
4 if original features X exist then
5 X′ ← [X ∥Eθ];
6 end
7 else
8 X′ ← Eθ;
9 end

10 // Link Prediction with MLP;
11 Initialize MLP predictor gθ with L layers, input dim = dim(X′), hidden dim h, dropout δ;
12 for epoch← 1 to T do
13 Sample positive and negative edge batches (u, v) and (u′, v′);
14 Get embeddings: xu ← X′[u], xv ← X′[v];
15 Compute predictions: ŷuv ← gθ(xu · xv);
16 Compute loss: L = − log ŷuv − log(1− ŷu′v′);
17 Update all parameters (θ,Eθ) jointly via gradient descent;
18 end
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D.4 HYPERPARAMETERS

We report the hyperparameter configurations used for each model in Tables 8 and 9, corresponding to
the undirected and directed link prediction tasks, respectively. All values are selected based on vali-
dation performance following the settings of HL-GNN (Zhang et al., 2024) and DirLinkBench (He
et al., 2025). For most models, we adopt hyperparameters from prior benchmark implementations
to ensure consistency.

Table 8: Hyperparameter settings for all models on undirected link prediction datasets.

Dataset Method Walk length K p q Decoder Layer L Hidden dim Dropout rate LR Loss function

Cora
LINE - - - MLP (⊙) 5 4096 0.4 0.001 BCE
DeepWalk 3 1 1 MLP (⊙) 5 4096 0.4 0.001 BCE
node2vec 3 1 2 MLP (⊙) 5 4096 0.4 0.001 BCE

CiteSeer
LINE - - - MLP (⊙) 3 4096 0.5 0.005 BCE
DeepWalk 3 1 1 MLP (⊙) 3 4096 0.5 0.005 BCE
node2vec 3 1 2 MLP (⊙) 3 4096 0.5 0.005 BCE

Pubmed
LINE - - - MLP (⊙) 4 1024 0.1 0.008 BCE
DeepWalk 3 1 1 MLP (⊙) 4 1024 0.1 0.008 BCE
node2vec 3 1 2 MLP (⊙) 4 1024 0.1 0.008 BCE

Photo
LINE - - - MLP (⊙) 4 512 0.4 0.0008 BCE
DeepWalk 3 1 1 MLP (⊙) 5 512 0.3 0.001 BCE
node2vec 3 1 2 MLP (⊙) 5 512 0.3 0.001 BCE

Computers
LINE - - - MLP (⊙) 5 512 0.4 0.0008 BCE
DeepWalk 3 1 1 MLP (⊙) 5 512 0.4 0.0008 BCE
node2vec 3 1 2 MLP (⊙) 5 512 0.4 0.0008 BCE

ogbl-collab
LINE - - - DOT - - - 0.0001 AUC
DeepWalk 3 1 1 DOT - - - 0.0001 AUC
node2vec 3 1 2 DOT - - - 0.0001 AUC

ogbl-ddi
LINE - - - MLP (⊙) 4 512 0.2 0.001 AUC
DeepWalk 3 1 1 MLP (⊙) 4 512 0.2 0.001 AUC
node2vec 3 1 5 MLP (⊙) 4 512 0.2 0.001 AUC

ogbl-ppa
LINE - - - MLP (⊙) 3 512 0.5 0.001 AUC
DeepWalk 3 1 1 MLP (⊙) 3 512 0.5 0.001 AUC
node2vec 3 1 5 MLP (⊙) 3 512 0.5 0.001 AUC

ogbl-citation2
LINE - - - MLP (⊙) 3 256 0.5 0.001 AUC
DeepWalk 3 1 1 MLP (⊙) 3 256 0.5 0.001 AUC
node2vec 3 1 5 MLP (⊙) 3 256 0.5 0.001 AUC

Table 9: Hyperparameter settings for all models on directed link prediction datasets.

Dataset Method Walk length K p q Decoder Layer L Hidden dim Dropout rate LR Loss function

Cora-ML
LINE - - - DOT - - - 0.005 BPR
DeepWalk 3 1 1 DOT - - - 0.01 BPR
node2vec 3 1 5 DOT - - - 0.01 BPR

CiteSeer-D
LINE - - - DOT - - - 0.005 BPR
DeepWalk 3 1 1 DOT - - - 0.005 BPR
node2vec 3 1 5 DOT - - - 0.005 BPR

Photo-D
LINE - - - MLP (⊙) 2 64 0.5 0.005 AUC
DeepWalk 3 1 1 MLP (⊙) 2 64 0.5 0.005 BPR
node2vec 3 1 5 MLP (⊙) 2 64 0.5 0.005 BPR

Computers-D
LINE - - - DOT - - - 0.005 AUC
DeepWalk 3 1 1 MLP (⊙) 1 - - 0.005 BPR
node2vec 3 1 5 MLP (⊙) 1 - - 0.005 BPR

WikiCS
LINE - - - MLP (⊙) 2 64 0.5 0.005 AUC
DeepWalk 3 1 1 DOT 0.005 BPR
node2vec 3 1 5 DOT 0.005 BPR

Slashdot
LINE - - - MLP (⊙) 1 - - 0.005 BPR
DeepWalk 3 1 1 MLP (⊙) 1 - - 0.005 BPR
node2vec 3 1 5 MLP (⊙) 1 - - 0.005 BPR

Epinions
LINE - - - DOT - - - 0.005 BCE
DeepWalk 3 1 1 DOT - - - 0.005 BCE
node2vec 3 1 5 DOT - - - 0.005 BCE
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Figure 4: Comparison of loss functions for link prediction.

D.5 EXTENDED ANALYSIS: LOSS FUNCTION COMPARISON

To complement Observation 3 in Section 5.2, we conduct additional experiments to compare the
effects of three loss functions: BCE, BPR, and the AUC loss. We evaluate their impact on three
representative datasets: Computers-D, ogbl-collab, and ogbl-citation2, the results are shown in Fig-
ure 4.

When AUC is used as the evaluation metric, the choice of loss function has relatively limited impact,
with BCE performing competitively in most cases. In contrast, for ranking-based metrics such as
Hits@50 or MRR, pairwise losses like BPR and AUC tend to outperform BCE in most scenarios.
This supports the intuition that pairwise losses are better aligned with ranking objectives, as they
explicitly optimize the relative ordering between positive and negative samples. These findings
underscore the importance of aligning the loss function with the evaluation metric—particularly for
link prediction tasks where ranking performance is critical.
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