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Abstract

We propose Neural-Embedded Optimization for the Location-Routing Problem1

(NEO-LRP), which jointly minimizes facility opening and vehicle routing costs.2

Deep set and graph neural networks are used to predict vehicle routing costs for3

arbitrary customer subsets and then used as surrogates within a mixed-integer4

program. This reformulation significantly reduces model complexity and en-5

ables an efficient solution. The modular design supports generalization to var-6

ious vehicle routing variants and constraints. Computational results on bench-7

mark instances show that the proposed method consistently achieves near-optimal8

location-allocation solutions with significantly lower runtimes compared to state-9

of-the-art heuristics, making it a practical approach for large-scale location-10

routing problems.11

1 Introduction12

The Capacitated Location-Routing Problem (CLRP) integrates two fundamental logistics problems,13

namely facility location and vehicle routing, into a unified framework. It aims to determine which14

depots to open and how to route vehicles from these depots to serve customer demands while mini-15

mizing both vehicle routing and facility opening costs under capacity constraints. The CLRP natu-16

rally arises in applications such as micro-delivery or micro-fulfillment hubs and urban consolidation17

centers (UCCs) for last-mile distribution, where facility opening and vehicle routes must be jointly18

planned (New York City Department of Transportation, 2025). Because it is NP-hard and generalizes19

both the Facility Location Problem (FLP) and the Capacitated Vehicle Routing Problem (CVRP),20

solving the CLRP has remained a computational challenge in both theory and practice.21

Combining FLP and CVRP, the CLRP considers capacity constraints on depots (i.e., facilities) and22

fixed costs for depot openings and vehicle usage. Figure 1 illustrates a feasible CLRP solution,23

depicting depots (squares) and customers (circles). Depot location decisions directly influence the24

routing decisions, highlighting the integrated nature of the problem. Specifically, the CLRP involves25

both strategic decisions, such as determining optimal depot locations and the number of vehicles to26

operate, as well as tactical decisions, such as vehicle routing plans for each opened depot. The27

primary objective is to minimize the sum of depot opening costs, fixed vehicle costs, and routing28

costs across the network.29

Prior work on the CLRP falls into three main categories. Exact methods such as branch(-price)-and-30

cut offer optimality guarantees, but can scale poorly due to the combinatorial challenge of jointly31

modeling location and routing decisions (Baldacci et al., 2011; Contardo et al., 2014, 2013). Heuris-32

tic methods, including tabu search (Prins et al., 2007), genetic algorithms (Duhamel et al., 2010), and33

randomized variable neighborhood search (Löffler et al., 2023), scale to large instances but require34

heavy parameter tuning and problem-specific design (Schneider and Löffler, 2019). More recently,35

machine learning approaches use surrogate models to approximate routing costs or other decisions,36

NeurIPS 2025 Differentiable Learning of Combinatorial Algorithms Workshop (NeurIPS DiffCoALG 2025).
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Figure 1: An Example of a CLRP Solution

which are then incorporated into metaheuristics such as genetic algorithms (Varol et al., 2024; Sob-37

hanan et al., 2025). While these methods demonstrate promising scalability, they suffer from a lack38

of modularity, limited support for side constraints, and heavy reliance on parameter tuning.39

The main contributions of our work are threefold. First, we propose Neural Embedded Optimiza-40

tion for Location-Routing Problems (NEO-LRP), a novel solution framework that approximates the41

vehicle routing cost at each candidate depot using either a permutation-invariant or graph neural net-42

work, which is then embedded within an easy-to-solve MIP model to determine location-allocation43

decisions. Second, we demonstrate that the same neural-embedded MIP formulation can flexibly44

generalize across multiple problem variants, such as the multi-depot VRP (MDVRP) and Two-45

Echelon CVRP, and accommodate structural differences in constraint specifications—e.g., the pres-46

ence or absence of depot or vehicle capacity limits—via minimal model modifications. Third, we47

show through extensive experiments that, when compared to state-of-the-art heuristics, NEO-LRP48

achieves comparable or superior solution quality while significantly reducing computation time,49

offering a promising alternative for scalable and joint location and routing optimization.50

2 Neural Embedded Optimization for Location-Routing Problems51

We have provided an exact mathematical optimization formulation of the CLRP in Appendix A. The52

exact CLRP formulation faces severe scalability issues due to the arc-flow variables, whose number53

grows quadratically with the number of customers. As a result, even moderate-sized instances with54

fewer than one hundred customers and multiple depots can become intractable for standard mixed-55

integer programming solvers. This stems from the tightly coupled, combinatorial nature of the depot56

location and routing decisions.57

To address this, we propose a neural-embedded reformulation that decomposes the CLRP into two58

hierarchical components: a high-level facility location problem (FLP) for depot openings and cus-59

tomer assignments, and a low-level capacitated vehicle routing problem (CVRP) for constructing60

feasible routes. This separation preserves the core CLRP structure while isolating routing cost eval-61

uation.62

We introduce the notation necessary for the introduction of the neural-embedded reformulation of63

the CLRP. Consider a directed graph G = (V,A), where the node set V = VD ∪ VC consists of64

potential depot nodes VD and customer nodes VC . The arc setA ⊆ {(i, j) ∈ V ×V | i ̸= j, (i, j) /∈65

VD × VD} represents feasible travel paths between nodes. Let F denote the fixed cost per vehicle,66

and let opening a depot d ∈ VD incur a fixed cost Od. Each arc (i, j) ∈ A is associated with a travel67

cost cij . For each node i ∈ V , the set of leaving arcs is denoted by δ+(i) = {(i, j) | (i, j) ∈ A}.68

The binary variables xijd ∈ {0, 1} represent the routing decisions, indicating whether a vehicle69

originating from depot d ∈ VD traverses arc (i, j) ∈ A. The binary variables yd ∈ {0, 1} indicate70

depot opening decisions.71

The original CLRP objective includes depot opening, routing, and vehicle usage costs. The latter72

two components involve the arc-level routing variables xijd:73

min
∑
d∈VD

Odyd +
∑
d∈VD

∑
(i,j)∈A

cijxijd + F
∑
d∈VD

∑
(d,j)∈δ+(d)

xdjd.
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Figure 2: The NEO-LRP framework for solving the CLRP

Since the number of arc-flow variables grows quadratically with the number of customers, we ap-74

proximate the latter two cost components (routing and vehicle costs) using a depot-level cost func-75

tion, defined as76

cd(x) ≈
∑

(i,j)∈A

cijxijd + F
∑

(d,j)∈δ+(d)

xdjd,

which yields a simplified objective77

min
∑
d∈VD

Odyd +
∑
d∈VD

cd(x),

where x = (xijd : (i, j) ∈ A, d ∈ VD). Note that cd(x) can be further simplified, with a slight78

abuse of the notation, as cd(Sd) where Sd ⊆ VC is the set of customers assigned to depot d, since the79

routing variables x are unnecessary for the location decisions and they can be determined implicitly80

via solving a CVRP for each depot d.81

We will approximate cd(·) by a neural surrogate ĉd(·), which enables the cost prediction without82

solving CVRPs. Our surrogate-based reformulation will replace the arc-flow variables with a few83

scalar cost terms, reducing the model size. However, the challenge now is that the route evaluation84

burden is offloaded to a decision-dependent neural predictor. We show how to alleviate this decision85

dependence without sacrificing computational scalability in the subsequent sections.86

2.1 Overall Framework87

Figure 2 illustrates our Neural-Embedded Optimization framework for the CLRP, which we call88

NEO-LRP. The framework integrates neural cost predictions into an MIP model, enabling efficient89

and scalable end-to-end optimization.90

The neural cost predictor fθ(G), with G representing the depot-customer input graph and θ be-91

ing the model parameters, is a permutation-invariant set function, allowing node embeddings to be92

aggregated based on location–allocation decisions. This property enables its embedding as MIP93

constraints. It is important to highlight that the neural encoder that generates node embeddings is94

trained offline, allowing for deep embedding networks without affecting the final MIP performance.95

While precomputing embeddings and aggregating them during optimization may omit structural96

information—such as the exact customer subset each depot will serve—it significantly improves97

computational efficiency by avoiding repeated neural evaluations during optimization.98

The modular design enables adaptation to different problem variants without major changes to the99

overall framework. Moreover, by decomposing the CLRP into a facility location phase and a rout-100

ing phase, our framework first solves a neural-embedded FLP to generate high-quality location-101

allocation decisions, and then completes routing via a CVRP solver. When the embeddings preserve102

relative cost quality, this two-stage approach yields fast and accurate solutions.103

2.2 Neural Surrogate Modeling and Cost Predictor104

We begin by presenting an exact representation result, which establishes that each routing cost func-105

tion cd(S), for any subset S ⊆ VC , can be represented using a common deep sets architecture106
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(Zaheer et al., 2017) that is independent of the depot node d ∈ VD. The proof of the following107

theorem is omitted for the sake of brevity.108

Theorem 1 (Depot-independent sum-decomposition of routing costs). Let P > 0 be any fixed109

constant. Define the normalized feature vector σdi := (P−1(pxi − pxd), P
−1(pyi − pyd), C

−1di) ∈ R3110

for all depots d ∈ VD and customers i ∈ VC , where (pxj , p
y
j ) denotes the coordinates of node j.111

Then, there exist L ∈ N and functions ϕ : R3 → RL and ρ : RL → R such that112

cd(S) = ρ

(∑
i∈S

ϕ(σdi)

)
(1)

for all S ⊆ VC and d ∈ VD.113

Theorem 1 suggests that common ϕ and ρ can be used to decompose functions cd for all d ∈ VD,114

and can approximate the optimal cost of any CVRP instance with appropriately normalized features,115

specifically, depot-centered coordinates and capacity-normalized demands. However, although the116

theorem ensures the existence of such functions, it does not provide an explicit construction method.117

In practice, these functions can be approximated using various machine learning approaches includ-118

ing feedforward neural networks (Zaheer et al., 2017), kernel methods (Schölkopf and Smola, 2002),119

or more expressive architectures like graph neural networks (Khalil et al., 2017; Joshi et al., 2019)120

and graph transformers (Kool et al., 2019; Kwon et al., 2020). While the latter employs attention121

mechanisms beyond the node-independent processing suggested by the theorem, they coincide with122

the former whenever the underlying graphs are complete and preserve permutation invariance even123

when they may not be complete.124

We approximate ϕ and ρ with neural networks ϕ̂ and ρ̂, respectively. We implement ϕ̂ using two125

architectures: fully-connected feedforward neural networks (FFNN) and Graph Transformers (GT).126

In contrast, ρ̂ is implemented as an FFNN for regression and embedding within the final MIP model.127

In case of GT, we augment the three-dimensional features from Theorem 1 with a “node type”128

indicator, yielding σ̂di = (P−1(pxi − pxd), P
−1(pyi − pyd), C

−1di, 0) ∈ R4 for each customer node129

i and (0, 0, 0, 1) ∈ R4 for depots. This representation enables ϕ̂ to extract features into an L-130

dimensional latent space, which ρ̂ then maps to cost predictions. Implementation details are provided131

in Appendix B.132

2.3 Neural Embedded MIP Formulation for the CLRP133

The neural-embedded formulation for the location-allocation component of the CLRP integrates134

latent node embeddings, generated using either FFNN or GT, into the optimization model. Most135

decision variables are identical to those defined in Section 2, with the following additions: binary136

variables adi ∈ {0, 1} indicate customer assignments to depots, continuous variables zdℓ ∈ R137

represent latent embedding aggregations for each depot d ∈ VD and latent dimension ℓ ∈ L, and138

continuous variables c̃d ∈ R+ represent the predicted route and fixed vehicle costs associated with139

depot d ∈ VD. The weights Wℓ and biases b are obtained from the trained neural network.140

The neural embedded MIP formulation is as follows:141

min
∑
d∈VD

Od yd +
∑
d∈VD

c̃d (2)

s.t.
∑
d∈VD

adi = 1 ∀i ∈ VC (3)

adi ≤ yd ∀d ∈ VD, i ∈ VC (4)∑
i∈VC

di adi ≤ Qd yd ∀d ∈ VD (5)

zdℓ = ϕd0ℓ +
∑
i∈VC

ϕdiℓ adi ∀d ∈ VD, ℓ ∈ L (6)

c̃d ≤M yd ∀d ∈ VD (7)

c̃d ≥
∑
ℓ∈L

Wℓzdℓ + b−M(1− yd) ∀d ∈ VD (8)
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c̃d ≤
∑
ℓ∈L

Wℓzdℓ + b+M(1− yd) ∀d ∈ VD (9)

adi ∈ {0, 1} ∀d ∈ VD, i ∈ VC (10)
yd ∈ {0, 1} ∀d ∈ VD (11)
zdℓ ∈ R ∀d ∈ VD, ℓ ∈ L (12)
c̃d ≥ 0 ∀d ∈ VD (13)

The objective function (2) minimizes the sum of depot opening costs and the predicted costs (c̃d).142

Constraints (3)–(4) ensure that each customer is assigned to exactly one open depot. Constraints (5)143

impose capacity restrictions for depots. Constraints (6) aggregate the latent node embeddings ϕ•144

into depot-specific embedding vectors by summing the depot embedding and customer embeddings145

according to the depot-customer assignments defined by adi. Constraints (7)–(9) enforce logical146

conditions via big-M constraints, consistent with prior approaches for embedding neural predic-147

tions into MIPs (Fischetti and Jo, 2018). Constraints (10)–(13) specify the domain of the decision148

variables.149

2.3.1 Extension to Variant and Constrained LRP Settings150

Extension to CLRP Variants The modular structure of our neural-embedded framework extends151

naturally to hierarchical CVRP variants such as the Multi-Depot VRP (MDVRP) and Two-Echelon152

CVRP (2E-CVRP). While these problems inherently involve routing at the lower level, our approach153

can approximate the corresponding costs via neural surrogates. For instance, in the 2E-CVRP, the154

second-echelon delivery cost is captured by a depot-specific surrogate variable c̃s, integrated into a155

neural-augmented FLP-MIP:156

min
∑
k∈K

∑
(i,j)∈A

cij xijk +
∑
s∈VS

c̃s.

with latent embedding constraints:157

zsℓ = ϕs0ℓ +
∑
i∈VC

ϕsiℓ asi, c̃s =
∑
ℓ∈L

Wℓzsℓ + b.

This maintains MIP compatibility while enabling adaptation to diverse two-tier delivery settings.158

Full details are in Appendix D.159

Unified Handling of Heterogeneous Constraints Existing CLRP benchmarks vary widely in160

constraint specifications; for example, some include both vehicle and depot capacities (Prins et al.,161

2004; Barreto, 2004), while others omit depot limits (Tuzun and Burke, 1999). Heuristics often re-162

quire structural redesign to adapt to such variations. In contrast, our proposed neural-embedded MIP163

formulation accommodates these differences via simple constraint toggles (e.g., enabling or remov-164

ing depot capacity constraints like
∑

i∈VC
di adi ≤ Qd yd). This flexibility allows for portability of165

our pretrained networks and framework across diverse benchmark sets.166

2.3.2 Reduction in Variable Complexity167

We compare the number of decision variables in the exact CLRP formulation and the neural-168

embedded MIP to assess model complexity. The exact CLRP includes arc-level routing and flow169

variables, which scale quadratically with the number of customers. In contrast, the neural-embedded170

formulation eliminates these arc-dependent variables and introduces a small set of latent variables171

zdℓ, whose size depends only on the number of depots and the embedding dimension L. By ad-172

justing L, we can directly control the number of continuous variables, offering a tunable trade-off173

between model expressiveness and computational cost.174

As shown in Appendix E (Tables 3–4), binary variables are reduced by factors of 28× to 200×, and175

continuous variables by over 600× in large instances. This reduction makes the CLRP tractable for176

problem sizes that are otherwise infeasible under the exact formulation.177

2.4 Final Solution Construction178

The neural embedded MIP formulation (Section 2.3) focuses on the facility location and customer179

allocation aspects of the CLRP, using a neural network to approximate routing costs. As it does180
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Table 1: Comparison with SOTA Heuristics by Instance Size (averaged)
Size HCC-500K TSBAspeed GRASP/VNS NEO-FFNN (ours) NEO-GT (ours)

Egap
BKS (%) Ttotal (s) Egap

BKS (%) Ttotal (s) Egap
BKS (%) Ttotal (s) Egap

BKS (%) Ttotal (s) Egap
BKS (%) Ttotal (s)

20 0.00 49.50 0.00 0.65 0.02 0.71 6.05 0.06 5.70 0.06
50 0.09 113.50 0.06 2.88 0.14 8.31 3.44 0.10 3.20 0.09
100 1.20 449.25 0.27 15.08 1.40 72.34 2.14 0.38 1.97 0.36
200 1.47 1172.67 0.36 125.96 1.24 715.53 1.36 1.36 0.97 1.25

not generate explicit vehicle routes, we solve the CVRP in a post-processing step. Specifically,181

given the facility openings yd and customer assignments adi from the optimization model, we use182

an existing solver, namely VROOM (Coupey et al., 2024), to compute detailed CVRP solutions and183

exact routing costs along with the selected location-allocation decisions.184

3 Experimental Results185

We evaluate the proposed methodology against baseline heuristics. Experiments were run on a186

Linux machine equipped with an AMD Ryzen 9 5900X, 64 GB RAM, RTX 4070 GPU, running187

CUDA 12.6, Ubuntu 22.04. We used Gurobi 10.0.2 with the gurobi-machinelearning 1.3.2188

package (Gurobi Optimization, LLC, 2021; Gurobi Optimization, 2024) and implemented all neural189

network components in PyTorch 2.0.1 (Paszke et al., 2019). Ground-truth routes were generated190

using VROOM (Coupey et al., 2024).191

In Table 1, we provide a detailed performance comparison of the proposed NEO-LRP framework192

against three prominent heuristic algorithms for the CLRP: HCC-500K (Hemmelmayr et al., 2012),193

TSBAspeed (Schneider and Löffler, 2019), and GRASP/VNS (Löffler et al., 2023). Experiments were194

conducted on the standard Prodhon benchmark set (Prins et al., 2004). See Appendix B.3 for details.195

For the baseline heuristics (HCC-500K, TSBAspeed, and GRASP/VNS), we report the performance196

values as published in the original studies (Hemmelmayr et al., 2012; Schneider and Löffler, 2019;197

Löffler et al., 2023).198

We report results for two variants of our neural-embedded optimization framework, NEO-FFNN199

and NEO-GT, where the cost prediction model is implemented using a fully-connected feedforward200

neural network and a graph transformer, respectively. Results are averaged over five runs per in-201

stance and include both solution quality, expressed as the percentage gap to the best-known solution202

(Egap
BKS), and total computation time (Ttotal) in seconds. Both NEO variants demonstrate strong per-203

formance, with NEO-FFNN achieving reasonable solution quality within sub-second runtimes. The204

NEO-GT model, however, consistently outperforms HCC-500K and GRASP/VNS in both accuracy205

and especially speed for large-scale instances. Although it does not always match the optimality gap206

of TSBAspeed, NEO-GT delivers near-optimal solutions with significantly reduced computation time.207

This efficiency stems from the hybrid design that embeds graph transformer-based cost predictions208

into a location-allocation MIP formulation, followed by fast post-hoc routing via VROOM. These209

results demonstrate the scalability and practicality of NEO-LRP for large-scale CLRP settings. Full210

per-instance results and ablation studies are presented in Appendices C and F, respectively.211

4 Conclusion212

This work introduced NEO-LRP, a neural-embedded optimization framework that integrates ma-213

chine learning with mixed-integer programming to address the Capacitated Location-Routing Prob-214

lem. By replacing arc-level routing variables with depot-level surrogate costs predicted by neural215

networks, the framework yields a compact MIP formulation that substantially reduces model size216

and makes large-scale instances tractable. Our experiments on benchmark instances demonstrate217

that NEO-LRP consistently achieves high-quality solutions with runtimes far shorter than state-of-218

the-art heuristics. These results highlight the potential of neural-embedded optimization as a scalable219

and practical solution method for location-routing problems. Looking ahead, the methodology can220

be extended to other CLRP variants, such as the MDVRP and 2E-CVRP, and adapted to incorporate221

additional side constraints through modular constraint handling.222
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Appendices298

A Mathematical Formulation for CLRP299

Formally, the CLRP can be defined on a directed graph G = (V,A), where the node set V = VD∪VC300

consists of potential depot nodes VD and customer nodes VC . The arcs A ⊆ {(i, j) ∈ V × V | i ̸=301

j, (i, j) /∈ VD × VD} represents possible direct travel paths between nodes. Let C denote the302

(homogeneous) vehicle capacity, Qd the capacity of depot d ∈ VD, and F the per-vehicle fixed cost.303

Each customer c ∈ VC has an associated demand dc, and opening depot d ∈ VD incurs a fixed304

opening cost Od. Additionally, cij represents the travel cost along arc (i, j) ∈ A. For each node305

i ∈ V , the sets of arcs leaving and entering node i are denoted by δ+(i) = {(i, j) | (i, j) ∈ A} and306

δ−(i) = {(j, i) | (j, i) ∈ A}, respectively.307

The binary variables xijd ∈ {0, 1} represent the routing decisions, indicating whether a vehicle308

originating from depot d ∈ VD traverses arc (i, j) ∈ A. The continuous variables vijd ≥ 0 represent309

the vehicle load on arc (i, j) ∈ A for vehicles originating from depot d ∈ VD. The binary variables310

yd ∈ {0, 1} indicate depot opening decisions.311

The three-index mathematical formulation of the CLRP is presented as follows:312

min
∑
d∈VD

Od yd +
∑
d∈VD

∑
(i,j)∈A

cij xijd + F
∑
d∈VD

∑
(d,j)∈δ+(d)

xdjd (14)

s.t. xijd ≤ yd ∀d ∈ VD, (i, j) ∈ A (15)∑
d∈VD

∑
(c,j)∈δ+(c)

xcjd = 1 ∀c ∈ VC (16)

∑
(i,c)∈δ−(c)

xicd =
∑

(c,j)∈δ+(c)

xcjd ∀c ∈ VC , d ∈ VD (17)

∑
d′∈VD\{d}

( ∑
(d,j)∈δ+(d)

xdjd′ +
∑

(i,d)∈δ−(d)

xidd′

)
= 0 ∀d ∈ VD (18)

∑
d∈VD

∑
(c,j)∈δ+(c)

vcjd =
∑
d∈VD

∑
(i,c)∈δ−(c)

vicd + dc ∀c ∈ VC (19)

∑
(i,d)∈δ−(d)

vidd ≤ Qd yd ∀d ∈ VD (20)

vijd ≤ C xijd ∀d ∈ VD, (i, j) ∈ A (21)
vijd ≥ 0 ∀d ∈ VD, (i, j) ∈ A (22)
xijd ∈ {0, 1} ∀d ∈ VD, (i, j) ∈ A (23)
yd ∈ {0, 1} ∀d ∈ VD (24)

The objective function (14) minimizes the sum of depot opening costs, travel costs, and fixed ve-313

hicle costs. Constraints (15) ensure that no routes are assigned to depots unless they are open.314

Constraint (16) ensures that each customer is assigned to exactly one depot route. Constraints (17)315

enforce flow conservation at each customer node separately for each depot, ensuring continuity of316

vehicle routes originating from the same depot. Constraints (18) eliminate direct vehicle movements317

between distinct depots. Constraints (19) enforce vehicle load conservation at customer nodes. Con-318

straints (20) and (21) impose capacity restrictions for depots and vehicles, respectively. Finally,319

constraints (22)–(24) specify the domain of the decision variables.320

B Neural Network Architecture and Implementation Details321

B.1 Feature Extraction ϕ̂322

We explore two neural network architectures to approximate the feature extraction function ϕ̂: fully-323

connected feedforward networks and Graph Transformers.324
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Figure 3: Neural Network Architecture

Fully-Connected Feedforward Network The first approach for ϕ̂ is based on a fully-connected325

feedforward architecture. In the training phase, we embed each individual customer-level feature326

vector, σdi, into an L-dimensional latent space. This is done by passing each feature vector indepen-327

dently through the feature extractor network ϕ̂, and then aggregating the resulting |S| latent space328

features to produce a single aggregated latent vector zd. This final embedding is then passed through329

a ReLU feedforward network ρ̂ to predict the normalized output.330

In our implementation, ϕ̂ consists of ReLU-activated layers except for the linear output layer, while331

ρ̂ is entirely composed of ReLU-activated layers, including the final output layer. Specifically, the332

fully-connected architecture can be expressed as:333

ϕ̂FC(σdi) = WL · ReLU(WL−1 · ReLU(· · ·ReLU(W1σdi + b1) · · · ) + bL−1) + bL.

The detailed hyperparameter search space for the FFNN architecture is provided in Table 6 in Ap-334

pendix G.335

Graph Transformer Network The second approach for ϕ̂ leverages a Graph Transformer archi-336

tecture to capture richer spatial relationships and inter-node dependencies. Figure 3 illustrates the337

neural network architecture employed for cost prediction, utilizing a Graph Transformer (GT) to338

effectively capture spatial relationships and inter-node dependencies inherent in CVRP instances.339

Given a CVRP instance C, the neural network constructs its corresponding complete graph repre-340

sentation G and predicts the cost through the following encoder-decoder framework:341

Gd
graph←−−−−−−

construction
(d, S) ĉd(S) = fθ(Gd) := Decoder(Encoder(Gd))

A given depot-customer pair (d, S), where d ∈ VD and S ⊆ VC , is transformed into a complete342

graph Gd = (V, E). The node set V comprises the depot node d and |S| assigned customer nodes,343

and E is the set of edges connecting all node pairs. Each node v ∈ V is characterized by a feature344

vector Xv that includes spatial coordinates (x, y), a depot indicator, and demand. Edges euv ∈ E345

have corresponding features Xeuv
, defined as the normalized Euclidean distance between nodes u346

and v. These node and edge feature vectors precisely capture positional and relational information347

necessary for effective message passing in subsequent layers.348

The Encoder transforms initial node features into latent embeddings through a sequential stack of349

four identical layers, each consisting of a Graph Transformer (GT) layer, Layer Normalization (Lay-350

erNorm) (Ba et al., 2016), and an Exponential Linear Unit (ELU) (Clevert et al., 2016) activation.351

Each GT layer, inspired by Shi et al. (2021), leverages multi-head self-attention to aggregate node352

and edge information, updating node embeddings h′
v as follows:353

h′
v = Wrhv +

∑
u∈V\{v}

auv (W
vhu +WeXeuv

) ,

where Wr, Wv , and We are learnable weight matrices corresponding to residual connections, node354

features, and edge features, respectively. Attention coefficients auv quantify node interactions:355

auv = softmax
(
(Wqhv)

T(Wkhu +WeXeuv )√
d

)
,
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with query and key matrices Wq,Wk and embedding dimensionality d. LayerNorm stabilizes356

training by normalizing features across nodes, preserving structural information through adaptive357

scaling and shifting. The final updated node embedding per layer is:358

h′
v = ELU(LayerNorm(GT(hv))).

A key advantage of both architectures is that they can process customer sets S of arbitrary size359

beyond those that may have been seen during training. Moreover, the feature extractor network ϕ̂360

can be quite complex and does not even have to be ReLU-activated, as only the regressor network ρ̂361

is embedded in the MIP model. This modularity allows for flexibility in the feature extraction stage362

while maintaining the tractability of the MIP embedding. The detailed hyperparameter search spaces363

for both the FFNN and GT architectures are provided in Appendix G (Tables 6 and 7, respectively).364

B.2 Regressor ρ̂365

The final prediction in our model is obtained by aggregating node-level representations through366

a global additive pooling operation, followed by a linear transformation. This architecture aligns367

closely with the Deep Sets framework (Zaheer et al., 2017), which provides a principled way to368

model functions over sets that are invariant to permutation. In the context of our surrogate cost369

model, the function mapping a customer set S ⊆ VC assigned to depot d ∈ VD can be expressed as:370

ĉd(S) = ρ̂

(∑
c∈S

ϕ̂(σdi)

)
,

where σdi ∈ R4 denotes the normalized feature vector. The transformation ϕ̂ projects each customer371

feature into a latent space, and the summation operator aggregates this information over the entire372

set. The output is then passed through the regression function ρ̂, which produces the final cost373

estimate.374

In our network implementation, the encoder serves as the learnable embedding function ϕ, while375

the global additive pooling layer (Graph Readout in Figure 3) performs the permutation-invariant376

aggregation. The linear decoder layer approximates ρ, translating the aggregated embedding into377

a scalar prediction. This structure naturally captures the set-based nature of depot-customer as-378

signments, enabling the network to generalize across varying customer configurations and preserve379

consistency with the routing cost structure. Moreover, it ensures that the learned surrogate can be380

seamlessly embedded into the upper-level CLRP formulation without compromising tractability or381

representational fidelity.382

The Decoder predicts travel costs and fixed vehicle costs by aggregating relevant node embeddings.383

Initially, a Mask Gate selectively retains embeddings from active nodes (depot and assigned cus-384

tomers), denoted by the mask vector maskv:385

hmasked
v = h′

v ⊙maskv.
Then, the masked node embeddings are aggregated through a global additive pooling operation,386

yielding a single graph-level representation:387

hGd
=
∑
v∈Vd

hmasked
v .

This global additive pooling effectively summarizes node features into a unified embedding, re-388

flecting overall graph structure and node relationships. Finally, a linear transformation maps this389

aggregated representation to the scalar predicted cost:390

ĉd(S) = WhGd
+ b,

where W and b are learnable parameters. This architecture ensures that the predicted travel and391

fixed vehicle costs accurately reflect both local and global structural properties of the depot-customer392

graph Gd, which is essential for cost estimation across varying customer configurations.393

B.3 Benchmark Instances394

We use the CLRP benchmark set from (Prins et al., 2004), known as the Prodhon instances. It395

includes 30 instances with 20–200 customers and 5–10 depots, featuring vehicle capacities of 70396

or 150 and constrained depot capacities. The set contains both clustered and randomly distributed397

customers.398
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B.4 Data Generation399

To train our neural embedded models, we generated 128,000 synthetic CVRP instances via random400

sampling, following the structure of the Prodhon benchmark (Prins et al., 2004). Depots and cus-401

tomers were randomly placed in a 2D space, with demands uniformly sampled from [11, 20] and402

vehicle capacities set to 70 or 150. Feasible subsets were generated by ensuring depot and vehicle403

capacity constraints.404

Each instance was solved using VROOM (Coupey et al., 2024) to obtain cost labels, incorporating405

both routing distances and fixed vehicle costs. Coordinates were normalized by shifting the depot to406

the origin and scaling by the spatial range. The final input features included normalized coordinates,407

depot indicators, and scaled demands. A smooth L1 loss was used during training to ensure stable408

convergence.409

C Detailed Comparison with State-of-the-Art Algorithms410

Table 2: Comparison with State-of-the-Art Heuristics on CLRP Benchmark Sets
HCC-500K TSBAspeed GRASP/VNS NEO-FFNN (ours) NEO-GT (ours)

Instance BKS Egap
BKS (%) Ttotal (s) Egap

BKS (%) Ttotal (s) Egap
BKS (%) Ttotal (s) Egap

BKS (%) Ttotal (s) Egap
BKS (%) Ttotal (s)

20-5-1a 54,793 0.00 39 0.00 0.80 0.08 0.78 8.54 0.09 3.24 0.10
20-5-1b 39,104 0.00 54 0.00 0.53 0.00 0.67 6.58 0.04 6.30 0.05
20-5-2a 48,908 0.00 38 0.00 0.74 0.00 0.76 5.04 0.05 5.04 0.04
20-5-2b 37,542 0.00 67 0.00 0.51 0.00 0.65 4.04 0.05 8.25 0.05

Average 0.00 49.50 0.00 0.65 0.02 0.71 6.05 0.06 5.70 0.06

50-5-1a 90,111 0.00 101 0.00 2.48 0.00 7.95 4.12 0.10 5.37 0.10
50-5-1b 63,242 0.00 65 0.00 2.35 0.00 8.59 2.91 0.10 1.18 0.10
50-5-2a 88,293 0.32 99 0.06 3.32 0.35 8.52 2.81 0.12 3.03 0.08
50-5-2b 67,308 0.21 200 0.14 3.07 0.54 9.18 7.10 0.09 6.65 0.08
50-5-2bBIS 51,822 0.03 98 0.08 2.70 0.02 8.98 5.80 0.08 5.29 0.06
50-5-2BIS 84,055 0.08 107 0.00 3.40 0.00 7.90 1.62 0.10 1.68 0.10
50-5-3a 86,203 0.07 101 0.19 3.34 0.19 7.78 1.86 0.11 0.73 0.11
50-5-3b 61,830 0.00 137 0.01 2.35 0.00 7.59 1.26 0.10 1.68 0.10

Average 0.09 113.50 0.06 2.88 0.14 8.31 3.44 0.10 3.20 0.09

100-5-1a 274,814 0.56 520 0.37 15.14 0.44 70.15 2.16 0.37 1.28 0.32
100-5-1b 213,568 0.69 1190 0.50 11.68 0.38 70.81 2.26 0.31 1.25 0.32
100-5-2a 193,671 0.12 463 0.07 11.86 0.23 82.00 2.83 0.43 0.39 0.47
100-5-2b 157,095 0.04 859 0.05 8.11 0.07 61.93 0.79 0.44 0.59 0.46
100-5-3a 200,079 0.21 454 0.21 14.05 0.24 64.37 1.49 0.37 1.34 0.46
100-5-3b 152,441 0.30 684 0.03 8.39 1.03 57.29 1.57 0.36 2.27 0.34
100-10-1a 287,661 4.28 210 0.24 25.54 0.61 78.81 2.24 0.34 2.80 0.34
100-10-1b 230,989 4.03 188 0.47 16.57 1.19 87.95 4.29 0.31 3.61 0.25
100-10-2a 243,590 0.80 136 0.05 21.16 2.06 75.65 0.91 0.43 1.09 0.33
100-10-2b 203,988 0.25 261 0.00 10.93 1.23 67.50 1.82 0.39 3.58 0.30
100-10-3a 250,882 1.59 202 0.93 22.60 3.83 71.87 1.92 0.43 2.10 0.37
100-10-3b 203,114 1.51 224 0.29 14.88 5.53 79.76 3.37 0.44 3.35 0.36

Average 1.20 449.25 0.27 15.08 1.40 72.34 2.14 0.38 1.97 0.36

200-10-1a 474,850 1.76 752 0.62 179.62 3.16 752.03 0.97 1.47 0.87 1.29
200-10-1b 375,177 1.43 1346 0.42 115.72 2.74 735.75 1.25 1.36 1.23 1.25
200-10-2a 448,077 0.82 1201 0.35 147.04 0.38 642.16 0.40 1.23 0.47 1.13
200-10-2b 373,696 0.65 1349 0.14 69.52 0.23 683.19 0.44 1.33 0.54 1.20
200-10-3a 469,433 2.12 1251 0.49 176.25 0.48 661.82 1.36 1.45 1.20 1.32
200-10-3b 362,320 2.01 1137 0.14 67.58 0.45 818.25 3.73 1.34 1.52 1.32

Average 1.47 1172.67 0.36 125.96 1.24 715.53 1.36 1.36 0.97 1.25

Processor Opteron 275 Xeon E5-2670 Xeon E5-2430v2 Ryzen 9 5900X Ryzen 9 5900X
GHz 2.2 2.6 2.5 3.7 3.7
Passmark score 1159 1652 1439 3470 3470

D Neural Embedded FLP-MIP Formulation for 2E-CVRP411

This presents the complete mixed-integer programming (MIP) formulation of the Two-Echelon Ca-412

pacitated Vehicle Routing Problem (2E-CVRP) augmented with a neural-embedded surrogate model413

for second-echelon routing cost prediction. The formulation integrates neural predictions into a first-414

stage facility location model with satellite opening and customer assignment decisions.415
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Problem Description416

The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) is an NP-hard variant of the417

Capacitated Vehicle Routing Problem (CVRP), characterized by a hierarchical distribution struc-418

ture involving a single depot, multiple satellites, and customers. Vehicles operate over two distinct419

echelons: the first echelon connects the depot to satellites, and the second echelon links satellites420

to customers. Vehicles in the first echelon, commonly referred to as trucks or primary vehicles,421

typically have larger capacities compared to second-echelon vehicles, known as city freighters or422

secondary vehicles. Each vehicle type has its own fixed capacity and fleet size.423

Depot

Open Satellite

Closed Satellite (shaded)

Customer

First-echelon route

Second-echelon route

Figure 4: An Example of a 2E-CVRP Solution

Figure 4 illustrates a feasible 2E-CVRP solution, depicting the depot (triangle), satellites (squares),424

and customers (circles). In the first echelon, split deliveries to satellites are permitted, resembling425

the structure of the Split Delivery Vehicle Routing Problem (SDVRP). Conversely, split deliveries426

are disallowed in the second echelon, reflecting a Capacitated Location-Routing Problem (CLRP)427

structure. Moreover, freight transfers are restricted to echelon-specific movements, prohibiting di-428

rect delivery from the depot to customers.429

Due to the hierarchical nature of 2E-CVRP, second-echelon decisions directly influence the first430

echelon. Thus, solving the 2E-CVRP involves strategic decisions, such as selecting operational431

satellites, and tactical decisions, such as vehicle routing in each echelon. The primary objective is432

to minimize the total transportation cost across both echelons.433

Model Parameters434

• V0: Set of depot nodes (typically a singleton set {0}).435

• VS : Set of satellite nodes.436

• VC : Set of customer nodes.437

• K: Set of first-echelon vehicle indices, with |K| = K.438

• A: Set of arcs between depot and satellites (first echelon).439

• C: Capacity of first-echelon vehicles.440

• C ′: Capacity of second-echelon vehicles (city freighters).441

• K ′: Maximum number of second-echelon vehicles available.442

• di: Demand of customer i ∈ VC .443

• cij : Travel cost on arc (i, j) ∈ A.444

• M : A sufficiently large constant used in big-M constraints.445

• L: Set of latent dimensions for neural embeddings.446

• ϕsiℓ: Neural network weight associated with customer i and satellite s in dimension ℓ.447

• ϕs0ℓ: Neural bias term associated with satellite s in dimension ℓ.448

• Wℓ: Neural readout weight for latent dimension ℓ.449

• b: Neural readout bias term.450
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Decision Variables451

• xijk ∈ {0, 1}: Binary variable indicating whether vehicle k ∈ K traverses arc (i, j) ∈ A452

in the first echelon.453

• wsk ∈ R+: Freight quantity delivered to satellite s ∈ VS by vehicle k ∈ K.454

• uik ∈ R+: Sequence position of node i ∈ VS visited by vehicle k ∈ K (for subtour455

elimination).456

• asi ∈ {0, 1}: Binary variable indicating if customer i ∈ VC is assigned to satellite s ∈ VS .457

• ys ∈ {0, 1}: Binary variable indicating whether satellite s ∈ VS is opened.458

• ks ∈ Z+: Number of city freighters assigned to satellite s.459

• zsℓ ∈ R: Aggregated latent embedding of satellite s in dimension ℓ ∈ L.460

• c̃s ∈ R+: Surrogate cost prediction for second-echelon routing and vehicle cost from461

satellite s.462

• ts ∈ R+: Total demand served by satellite s.463

Model Formulation464

min
∑
k∈K

∑
(i,j)∈A

cij xijk +
∑
s∈VS

c̃s (25)

s.t.
∑

(i,j)∈δ+(s)

xijk =
∑

(i,j)∈δ−(s)

xijk ∀s ∈ VS , k ∈ K (26)

∑
(i,j)∈δ+(s)

xijk ≤ 1 ∀s ∈ V0 ∪ VS , k ∈ K (27)

uik + 1 ≤ ujk +M
(
1− xijk

)
∀(i, j) ∈ A(VS), k ∈ K (28)

wsk ≤ C
∑

(i,j)∈δ+(s)

xijk ∀s ∈ VS , k ∈ K (29)

∑
s∈VS

wsk ≤ C ∀k ∈ K (30)

∑
k∈K

wsk = ts ∀s ∈ VS (31)∑
s∈VS

asi = 1 ∀i ∈ VC (32)

asi ≤ ys ∀s ∈ VS , i ∈ VC (33)∑
i∈VC

asi ≥ ys ∀s ∈ VS (34)

ts =
∑
i∈VC

di asi ∀s ∈ VS (35)

ks C
′ ≥ ts ∀s ∈ VS (36)

ts ≥ C ′(ks − 1
)
+ 1 ∀s ∈ VS (37)

ks ≤ K ′ ys ∀s ∈ VS (38)∑
s∈VS

ks ≤ K ′ (39)

zsℓ = ϕs0ℓ +
∑
i∈VC

ϕsiℓ asi ∀s ∈ VS , ℓ ∈ L (40)

c̃s ≤M ys ∀s ∈ VS (41)

c̃s ≥
∑
ℓ∈L

Wℓzsℓ + b−M
(
1− ys

)
∀s ∈ VS (42)
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c̃s ≤
∑
ℓ∈L

Wℓzsℓ + b+M
(
1− ys

)
∀s ∈ VS (43)

xijk, asi, ys ∈ {0, 1} ∀(i, j) ∈ A, s ∈ VS , k ∈ K (44)
ks ∈ Z+ ∀s ∈ VS (45)
wsk, uik, ts, zsℓ, c̃s ≥ 0 ∀s ∈ VS , i ∈ VS , k ∈ K, ℓ ∈ L (46)

This formulation maintains tractability while integrating neural cost surrogates directly into the MIP465

model. The second-echelon cost term c̃s replaces the need for arc-based routing variables, enabling466

efficient evaluation of location-routing trade-offs.467

E Variable Count Tables468

Table 3: Exact CLRP vs. Neural-Embedded FLP – Binary Variables

Variable Description (20, 5) (50, 5) (100, 5) (100, 10) (200, 10)

Exact Neural Exact Neural Exact Neural Exact Neural Exact Neural

yd Depot open 5 5 5 5 5 5 10 10 10 10
xijd Arc-level Routing 3,000 – 14,850 – 54,600 – 119,900 – 438,900 –
xdi Customer assignment – 100 – 250 – 500 – 1,000 – 2,000

Total binary vars. 3,005 105 14,855 255 54,605 505 119,910 1,010 438,910 2,010
Reduction (×) 28.6 58.3 108.1 118.7 218.4

Table 4: Exact CLRP vs. Neural-Embedded FLP – Continuous Variables

Variable Description (20, 5) (50, 5) (100, 5) (100, 10) (200, 10)

Exact Neural Exact Neural Exact Neural Exact Neural Exact Neural

fijd Arc load 3,000 – 14,850 – 54,600 – 119,900 – 438,900 –
zdℓ Latent aggregation – 320 – 320 – 320 – 640 – 640
c̃d NN-predicted cost – 5 – 5 – 5 – 10 – 10

Total continuous vars. 3,000 325 14,850 325 54,600 325 119,900 650 438,900 650
Reduction (×) 9.2 45.7 168.0 184.5 675.2

Counting rules. C: #customers, D: #depots, N = C +D. Exact: binary D +DN(N−1), continuous
DN(N−1); Neural: binary D +DC, continuous D(L+1) with L = 64.

F Ablation Studies469

We perform detailed experimental analyses to understand the impact of various components of our470

framework, including the choice of sampling method, sample requirements for training, choice of471

vehicle routing solvers for generating labeled training data, as well as the use of single pre-trained472

versus instance-specific neural surrogates. All results are averaged over five runs.473

F.1 Effect of Problem Size474

To analyze the impact of instance complexity, we assess how the number of customers affects the475

performance of our model. Specifically, we evaluate NEO-LRP on CLRP instances with 20, 50,476

100, and 200 customers, using the same training and evaluation setup. For each problem size,477

performance metrics are averaged over five independent runs.478

Table 1(b) shows that the average optimality gap Egap
BKS tends to decrease as the problem size in-479

creases. This trend can be attributed to two main factors. First, the relative impact of individ-480

ual assignment errors becomes less significant in larger instances, as routing costs are distributed481

over a greater number of customers. Second, the model’s capacity to generalize improves with482

scale, especially when structural patterns—such as regional cost heterogeneity or spatial dependen-483

cies—become more pronounced in larger graphs.484

These results indicate that NEO-LRP scales well with instance size and is capable of exploiting485

structural regularities in large-scale location-routing problems. Overall, the observed improvement486

15



in performance highlights a desirable property of neural-embedded optimization frameworks: when487

trained on a sufficiently diverse dataset, a single model can generalize effectively to larger and more488

complex instances, without needing instance-specific retraining.489

F.2 Effect of Routing Solver490

To generate high-quality ground-truth labels within reasonable computation times, we evaluated491

three representative CVRP solvers: VRPSolverEasy (Errami et al., 2024), OR-Tools (Furnon and492

Perron, 2024), and VROOM. Table 5 presents the computational results obtained across instances493

with varying customer sizes (n) and vehicle capacities (c). VRPSolverEasy, which relies on ex-494

act optimization, consistently returned optimal solutions (BKS) but required excessive computa-495

tion time for larger instances (e.g., n = 200), making it unsuitable for large-scale data genera-496

tion. OR-Tools was configured with the AUTOMATIC setting for initial solution construction and497

the GUIDED LOCAL SEARCH (GLS) metaheuristic for local search. GLS was chosen as it is widely498

regarded as the most efficient general-purpose improvement method for vehicle routing problems.499

A fixed time limit of 5 seconds was imposed on each run. While OR-Tools produced solutions500

with acceptable runtimes, the resulting cost gaps were relatively higher compared to other methods.501

VROOM, in contrast, achieved a better balance between solution quality and speed. It consistently502

produced near-optimal solutions, typically with gaps under 2%, and completed all instances within503

practical time limits. Given this trade-off, VROOM was selected as the default solver for generating504

routing labels during neural model training.505

Table 5: Comparison of CVRP Routing Solvers

Instance VRPSolverEasy OR-Tools VROOM

BKS Time (s) Gap (%) Time (s) Gap (%) Time (s)

n20-c70 34 961 0.07 0.00 5.00 0.00 0.02
n20-c150 25 285 0.14 0.00 5.00 0.00 0.02
n50-c70 71 195 4.54 1.06 5.00 0.72 0.13

n50-c150 42 831 4.15 1.93 5.00 0.00 0.14
n100-c70 135 190 290.31 5.21 5.00 0.93 0.68
n100-c150 76 201 131.10 7.53 5.00 0.00 0.63
n200-c70 247 511 37 173.32 4.34 5.00 1.81 3.86
n200-c150 132 874 25 017.05 8.19 5.00 1.43 3.92

G Hyperparameters506

Table 6: FFNN Hyperparameters and Their Search Ranges
Hyperparameter Range

Batch size {8, 16, 32}
Initial learning rate {0.1, 0.01, 0.001, 0.0001}
Optimizer AdamW
Loss function {MSE, Huber, Smooth L1}
Hidden dimension in ϕ̂ {6, 8, 32, 64, 128, 256, 512, 1024}
Latent dimension {6, 8, 16, 32}
Number of hidden layers in ϕ̂ {2, 3, 4, 5, 6}
Number of hidden layers in ρ̂ {1, 2, 3, 4}
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Table 7: GT Hyperparameters and Their Search Ranges
Hyperparameter Range

Initial learning rate {0.1, 0.01, 0.001, 0.0001}
Batch size {8, 16, 32, 64, 128}
Optimizer AdamW
Loss function {MSE, Huber, Smooth L1}
Encoding dimension {8, 16, 32, 64, 128}
Number of attention heads {4, 8}
Number of GT layers {2, 3, 4, 5}
Dropout rate {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Normalization {Graph Norm, Batch Norm, Layer Norm}
Activation function {ELU, ReLU, Leaky ReLU}
Beta {True, False}
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