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Abstract

We propose Neural-Embedded Optimization for the Location-Routing Problem
(NEO-LRP), which jointly minimizes facility opening and vehicle routing costs.
Deep set and graph neural networks are used to predict vehicle routing costs for
arbitrary customer subsets and then used as surrogates within a mixed-integer
program. This reformulation significantly reduces model complexity and en-
ables an efficient solution. The modular design supports generalization to var-
ious vehicle routing variants and constraints. Computational results on bench-
mark instances show that the proposed method consistently achieves near-optimal
location-allocation solutions with significantly lower runtimes compared to state-
of-the-art heuristics, making it a practical approach for large-scale location-
routing problems.

1 Introduction

The Capacitated Location-Routing Problem (CLRP) integrates two fundamental logistics problems,
namely facility location and vehicle routing, into a unified framework. It aims to determine which
depots to open and how to route vehicles from these depots to serve customer demands while mini-
mizing both vehicle routing and facility opening costs under capacity constraints. The CLRP natu-
rally arises in applications such as micro-delivery or micro-fulfillment hubs and urban consolidation
centers (UCCs) for last-mile distribution, where facility opening and vehicle routes must be jointly
planned (New York City Department of Transportation, 2025). Because it is NP-hard and generalizes
both the Facility Location Problem (FLP) and the Capacitated Vehicle Routing Problem (CVRP),
solving the CLRP has remained a computational challenge in both theory and practice.

Combining FLP and CVRP, the CLRP considers capacity constraints on depots (i.e., facilities) and
fixed costs for depot openings and vehicle usage. Figure 1 illustrates a feasible CLRP solution,
depicting depots (squares) and customers (circles). Depot location decisions directly influence the
routing decisions, highlighting the integrated nature of the problem. Specifically, the CLRP involves
both strategic decisions, such as determining optimal depot locations and the number of vehicles to
operate, as well as tactical decisions, such as vehicle routing plans for each opened depot. The
primary objective is to minimize the sum of depot opening costs, fixed vehicle costs, and routing
costs across the network.

Prior work on the CLRP falls into three main categories. Exact methods such as branch(-price)-and-
cut offer optimality guarantees, but can scale poorly due to the combinatorial challenge of jointly
modeling location and routing decisions (Baldacci et al., 2011; Contardo et al., 2014, 2013). Heuris-
tic methods, including tabu search (Prins et al., 2007), genetic algorithms (Duhamel et al., 2010), and
randomized variable neighborhood search (Loffler et al., 2023), scale to large instances but require
heavy parameter tuning and problem-specific design (Schneider and Loffler, 2019). More recently,
machine learning approaches use surrogate models to approximate routing costs or other decisions,
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Figure 1: An Example of a CLRP Solution

which are then incorporated into metaheuristics such as genetic algorithms (Varol et al., 2024; Sob-
hanan et al., 2025). While these methods demonstrate promising scalability, they suffer from a lack
of modularity, limited support for side constraints, and heavy reliance on parameter tuning.

The main contributions of our work are threefold. First, we propose Neural Embedded Optimiza-
tion for Location-Routing Problems (NEO-LRP), a novel solution framework that approximates the
vehicle routing cost at each candidate depot using either a permutation-invariant or graph neural net-
work, which is then embedded within an easy-to-solve MIP model to determine location-allocation
decisions. Second, we demonstrate that the same neural-embedded MIP formulation can flexibly
generalize across multiple problem variants, such as the multi-depot VRP (MDVRP) and Two-
Echelon CVRP, and accommodate structural differences in constraint specifications—e.g., the pres-
ence or absence of depot or vehicle capacity limits—via minimal model modifications. Third, we
show through extensive experiments that, when compared to state-of-the-art heuristics, NEO-LRP
achieves comparable or superior solution quality while significantly reducing computation time,
offering a promising alternative for scalable and joint location and routing optimization.

2 Neural Embedded Optimization for Location-Routing Problems

We have provided an exact mathematical optimization formulation of the CLRP in Appendix A. The
exact CLRP formulation faces severe scalability issues due to the arc-flow variables, whose number
grows quadratically with the number of customers. As a result, even moderate-sized instances with
fewer than one hundred customers and multiple depots can become intractable for standard mixed-
integer programming solvers. This stems from the tightly coupled, combinatorial nature of the depot
location and routing decisions.

To address this, we propose a neural-embedded reformulation that decomposes the CLRP into two
hierarchical components: a high-level facility location problem (FLP) for depot openings and cus-
tomer assignments, and a low-level capacitated vehicle routing problem (CVRP) for constructing
feasible routes. This separation preserves the core CLRP structure while isolating routing cost eval-
uation.

We introduce the notation necessary for the introduction of the neural-embedded reformulation of
the CLRP. Consider a directed graph G = (), .A), where the node set V = Vp U V¢ consists of
potential depot nodes Vp and customer nodes V¢. The arc set A C {(4,7) € VXV | i # J, (i,7) ¢
Vp x Vp} represents feasible travel paths between nodes. Let F' denote the fixed cost per vehicle,
and let opening a depot d € Vp, incur a fixed cost Oy4. Each arc (4, j) € A is associated with a travel
cost ¢;j. For each node i € V, the set of leaving arcs is denoted by 67 (i) = {(i,7) | (¢,7) € A}
The binary variables z;;4 € {0, 1} represent the routing decisions, indicating whether a vehicle
originating from depot d € Vp traverses arc (i,j) € A. The binary variables y; € {0, 1} indicate
depot opening decisions.

The original CLRP objective includes depot opening, routing, and vehicle usage costs. The latter
two components involve the arc-level routing variables z;4:

min Z Oayq + Z Z CijTija + F Z Z Tdjd-

deVp deVp (i,j)€A de€Vp (d,j)€6 (d)
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Figure 2: The NEO-LRP framework for solving the CLRP

Since the number of arc-flow variables grows quadratically with the number of customers, we ap-
proximate the latter two cost components (routing and vehicle costs) using a depot-level cost func-

tion, defined as
ca(z) =~ Z CijTijqa + F Z Tdjd,
(i,5)€A (d,j)€s+(d)
which yields a simplified objective

min " Oaya+ Y ca(®),

deVp deVp

where © = (2;54 : (¢,7) € A,d € Vp). Note that c4(z) can be further simplified, with a slight
abuse of the notation, as ¢4(Sq) where Sy C V¢ is the set of customers assigned to depot d, since the
routing variables x are unnecessary for the location decisions and they can be determined implicitly
via solving a CVRP for each depot d.

We will approximate cq(-) by a neural surrogate ¢é4(-), which enables the cost prediction without
solving CVRPs. Our surrogate-based reformulation will replace the arc-flow variables with a few
scalar cost terms, reducing the model size. However, the challenge now is that the route evaluation
burden is offloaded to a decision-dependent neural predictor. We show how to alleviate this decision
dependence without sacrificing computational scalability in the subsequent sections.

2.1 Overall Framework

Figure 2 illustrates our Neural-Embedded Optimization framework for the CLRP, which we call
NEO-LRP. The framework integrates neural cost predictions into an MIP model, enabling efficient
and scalable end-to-end optimization.

The neural cost predictor fy(G), with G representing the depot-customer input graph and 6 be-
ing the model parameters, is a permutation-invariant set function, allowing node embeddings to be
aggregated based on location—allocation decisions. This property enables its embedding as MIP
constraints. It is important to highlight that the neural encoder that generates node embeddings is
trained offline, allowing for deep embedding networks without affecting the final MIP performance.
While precomputing embeddings and aggregating them during optimization may omit structural
information—such as the exact customer subset each depot will serve—it significantly improves
computational efficiency by avoiding repeated neural evaluations during optimization.

The modular design enables adaptation to different problem variants without major changes to the
overall framework. Moreover, by decomposing the CLRP into a facility location phase and a rout-
ing phase, our framework first solves a neural-embedded FLP to generate high-quality location-
allocation decisions, and then completes routing via a CVRP solver. When the embeddings preserve
relative cost quality, this two-stage approach yields fast and accurate solutions.

2.2 Neural Surrogate Modeling and Cost Predictor

We begin by presenting an exact representation result, which establishes that each routing cost func-
tion ¢4(S), for any subset S C V¢, can be represented using a common deep sets architecture
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(Zaheer et al., 2017) that is independent of the depot node d € Vp. The proof of the following
theorem is omitted for the sake of brevity.

Theorem 1 (Depot-independent sum-decomposition of routing costs). Let P > 0 be any fixed
constant. Define the normalized feature vector oq; == (P~ (pX —p%), P~ (p} —p%),C~'d;) € R?
for all depots d € Vp and customers i € V¢, where (p}‘, pz') denotes the coordinates of node j.

Then, there exist L € N and functions ¢ : R> — R” and p : RY — R such that

ca(S) =p (Z ¢(0di)) (1)

ieS
forall S C Ve and d € Vp.

Theorem 1 suggests that common ¢ and p can be used to decompose functions ¢4 for all d € Vp,
and can approximate the optimal cost of any CVRP instance with appropriately normalized features,
specifically, depot-centered coordinates and capacity-normalized demands. However, although the
theorem ensures the existence of such functions, it does not provide an explicit construction method.
In practice, these functions can be approximated using various machine learning approaches includ-
ing feedforward neural networks (Zaheer et al., 2017), kernel methods (Scholkopf and Smola, 2002),
or more expressive architectures like graph neural networks (Khalil et al., 2017; Joshi et al., 2019)
and graph transformers (Kool et al., 2019; Kwon et al., 2020). While the latter employs attention
mechanisms beyond the node-independent processing suggested by the theorem, they coincide with
the former whenever the underlying graphs are complete and preserve permutation invariance even
when they may not be complete.

We approximate ¢ and p with neural networks é and p, respectively. We implement qAb using two
architectures: fully-connected feedforward neural networks (FFNN) and Graph Transformers (GT).
In contrast, p is implemented as an FFNN for regression and embedding within the final MIP model.
In case of GT, we augment the three-dimensional features from Theorem 1 with a “node type”
indicator, yielding 64; = (P~ (p¥ — p%), P~ (p} — p})),C~1d;,0) € R* for each customer node
i and (0,0,0,1) € R* for depots. This representation enables qB to extract features into an L-
dimensional latent space, which p then maps to cost predictions. Implementation details are provided
in Appendix B.

2.3 Neural Embedded MIP Formulation for the CLRP

The neural-embedded formulation for the location-allocation component of the CLRP integrates
latent node embeddings, generated using either FFNN or GT, into the optimization model. Most
decision variables are identical to those defined in Section 2, with the following additions: binary
variables a4; € {0,1} indicate customer assignments to depots, continuous variables z4y € R
represent latent embedding aggregations for each depot d € Vp and latent dimension ¢ € £, and
continuous variables ¢4 € R represent the predicted route and fixed vehicle costs associated with
depot d € Vp. The weights W, and biases b are obtained from the trained neural network.

The neural embedded MIP formulation is as follows:

min Y Oqya+ ) & @

deVp deVp

st Y ag =1 Vi € Ve (3)
deVp
adi < Y Vd € Vp, i € Vo “4)
> diaa < Qaya vd € Vi 5)
i€Vo
Zae = Paoe + Y Paie Qi VdeVp, teL (6)

i€V
¢a < Myq Vd € Vp (7
Ga > Wozar +b— M(1 - yq) vd € Vp (8)
el
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g <Y Wozae + b+ M(1—yy) Vd € Vp 9)

el
ag; € {0, 1} Vd € Vp, i € Vo (10)
ya € {0,1} Vd € Vp (11)
zar € R VdEVD, leLl (12)
€qa >0 vd € Vp (13)

The objective function (2) minimizes the sum of depot opening costs and the predicted costs (¢g).
Constraints (3)—(4) ensure that each customer is assigned to exactly one open depot. Constraints (5)
impose capacity restrictions for depots. Constraints (6) aggregate the latent node embeddings ¢,
into depot-specific embedding vectors by summing the depot embedding and customer embeddings
according to the depot-customer assignments defined by a4;. Constraints (7)—-(9) enforce logical
conditions via big-M constraints, consistent with prior approaches for embedding neural predic-
tions into MIPs (Fischetti and Jo, 2018). Constraints (10)—(13) specify the domain of the decision
variables.

2.3.1 Extension to Variant and Constrained LRP Settings

Extension to CLRP Variants The modular structure of our neural-embedded framework extends
naturally to hierarchical CVRP variants such as the Multi-Depot VRP (MDVRP) and Two-Echelon
CVRP (2E-CVRP). While these problems inherently involve routing at the lower level, our approach
can approximate the corresponding costs via neural surrogates. For instance, in the 2E-CVRP, the
second-echelon delivery cost is captured by a depot-specific surrogate variable ¢, integrated into a

neural-augmented FLP-MIP:
min Z Z Cij Tijk + Z Cs-
keK (i,j)eA s€Vs
with latent embedding constraints:

Zsl = d)sO@ + Z ¢si€ Gsi, Cs= Z Wezse + b.
i€V LeL
This maintains MIP compatibility while enabling adaptation to diverse two-tier delivery settings.
Full details are in Appendix D.

Unified Handling of Heterogeneous Constraints Existing CLRP benchmarks vary widely in
constraint specifications; for example, some include both vehicle and depot capacities (Prins et al.,
2004; Barreto, 2004), while others omit depot limits (Tuzun and Burke, 1999). Heuristics often re-
quire structural redesign to adapt to such variations. In contrast, our proposed neural-embedded MIP
formulation accommodates these differences via simple constraint toggles (e.g., enabling or remov-
ing depot capacity constraints like ), cve diadi < Qqya)- This flexibility allows for portability of
our pretrained networks and framework across diverse benchmark sets.

2.3.2 Reduction in Variable Complexity

We compare the number of decision variables in the exact CLRP formulation and the neural-
embedded MIP to assess model complexity. The exact CLRP includes arc-level routing and flow
variables, which scale quadratically with the number of customers. In contrast, the neural-embedded
formulation eliminates these arc-dependent variables and introduces a small set of latent variables
zqe, whose size depends only on the number of depots and the embedding dimension L. By ad-
justing L, we can directly control the number of continuous variables, offering a tunable trade-off
between model expressiveness and computational cost.

As shown in Appendix E (Tables 3—4), binary variables are reduced by factors of 28 x to 200x, and
continuous variables by over 600 in large instances. This reduction makes the CLRP tractable for
problem sizes that are otherwise infeasible under the exact formulation.

2.4 Final Solution Construction

The neural embedded MIP formulation (Section 2.3) focuses on the facility location and customer
allocation aspects of the CLRP, using a neural network to approximate routing costs. As it does
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Table 1: Comparison with SOTA Heuristics by Instance Size (averaged)

Size HCC-500K TSBApeed GRASP/VNS NEO-FFNN (ours) NEO-GT (ours)
Egz;fs (%) ﬂolal (S) Eg‘gs (%) T;ola] (%) Eé]‘fs (%) T‘lolul (S) Eé‘;?s (%) Tmml (S) Eé‘]‘(ps (%) ﬂolal (S)
20 0.00 49.50 0.00 0.65 0.02 0.71 6.05 0.06 5.70 0.06
50 0.09 113.50 0.06 2.88 0.14 8.31 3.44 0.10 3.20 0.09
100 1.20  449.25 0.27 15.08 1.40 72.34 2.14 0.38 1.97 0.36
200 1.47  1172.67 0.36 125.96 1.24  715.53 1.36 1.36 0.97 1.25

not generate explicit vehicle routes, we solve the CVRP in a post-processing step. Specifically,
given the facility openings y4 and customer assignments a.; from the optimization model, we use
an existing solver, namely VROOM (Coupey et al., 2024), to compute detailed CVRP solutions and
exact routing costs along with the selected location-allocation decisions.

3 Experimental Results

We evaluate the proposed methodology against baseline heuristics. Experiments were run on a
Linux machine equipped with an AMD Ryzen 9 5900X, 64 GB RAM, RTX 4070 GPU, running
CUDA 12.6, Ubuntu 22.04. We used Gurobi 10.0.2 with the gurobi-machinelearning 1.3.2
package (Gurobi Optimization, LLC, 2021; Gurobi Optimization, 2024) and implemented all neural
network components in PyTorch 2.0.1 (Paszke et al., 2019). Ground-truth routes were generated
using VROOM (Coupey et al., 2024).

In Table 1, we provide a detailed performance comparison of the proposed NEO-LRP framework
against three prominent heuristic algorithms for the CLRP: HCC-500K (Hemmelmayr et al., 2012),
TSBAgpeea (Schneider and Loffler, 2019), and GRASP/VNS (Loffler et al., 2023). Experiments were
conducted on the standard Prodhon benchmark set (Prins et al., 2004). See Appendix B.3 for details.
For the baseline heuristics (HCC-500K, TSBAgpecq, and GRASP/VNS), we report the performance
values as published in the original studies (Hemmelmayr et al., 2012; Schneider and Loffler, 2019;
Loffler et al., 2023).

We report results for two variants of our neural-embedded optimization framework, NEO-FFNN
and NEO-GT, where the cost prediction model is implemented using a fully-connected feedforward
neural network and a graph transformer, respectively. Results are averaged over five runs per in-
stance and include both solution quality, expressed as the percentage gap to the best-known solution
(E%‘;ES), and total computation time (7}o,) in seconds. Both NEO variants demonstrate strong per-
formance, with NEO-FFNN achieving reasonable solution quality within sub-second runtimes. The
NEO-GT model, however, consistently outperforms HCC-500K and GRASP/VNS in both accuracy
and especially speed for large-scale instances. Although it does not always match the optimality gap
of TSBApeed, NEO-GT delivers near-optimal solutions with significantly reduced computation time.
This efficiency stems from the hybrid design that embeds graph transformer-based cost predictions
into a location-allocation MIP formulation, followed by fast post-hoc routing via VROOM. These
results demonstrate the scalability and practicality of NEO-LRP for large-scale CLRP settings. Full
per-instance results and ablation studies are presented in Appendices C and F, respectively.

4 Conclusion

This work introduced NEO-LRP, a neural-embedded optimization framework that integrates ma-
chine learning with mixed-integer programming to address the Capacitated Location-Routing Prob-
lem. By replacing arc-level routing variables with depot-level surrogate costs predicted by neural
networks, the framework yields a compact MIP formulation that substantially reduces model size
and makes large-scale instances tractable. Our experiments on benchmark instances demonstrate
that NEO-LRP consistently achieves high-quality solutions with runtimes far shorter than state-of-
the-art heuristics. These results highlight the potential of neural-embedded optimization as a scalable
and practical solution method for location-routing problems. Looking ahead, the methodology can
be extended to other CLRP variants, such as the MDVRP and 2E-CVRP, and adapted to incorporate
additional side constraints through modular constraint handling.
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Appendices

A Mathematical Formulation for CLRP

Formally, the CLRP can be defined on a directed graph G = (V, A), where the node set V = VpUVe
consists of potential depot nodes Vp and customer nodes V. The arcs A C {(4,5) € V x V| i #
J, (,7) ¢ Vp x Vp} represents possible direct travel paths between nodes. Let C denote the
(homogeneous) vehicle capacity, Q4 the capacity of depot d € Vp, and F' the per-vehicle fixed cost.
Each customer ¢ € V¢ has an associated demand d., and opening depot d € Vp incurs a fixed
opening cost O4. Additionally, ¢;; represents the travel cost along arc (i,5) € A. For each node
i € V, the sets of arcs leaving and entering node i are denoted by 6% (i) = {(3,5) | (4,5) € A} and

(1) ={(4,7) | (4,7) € A}, respectively.

The binary variables x;;4 € {0, 1} represent the routing decisions, indicating whether a vehicle
originating from depot d € Vp traverses arc (4, j) € A. The continuous variables v;;4 > 0 represent
the vehicle load on arc (4, j) € A for vehicles originating from depot d € Vp. The binary variables
ya € {0,1} indicate depot opening decisions.

The three-index mathematical formulation of the CLRP is presented as follows:

min Z Oqya + Z Z Cij Tija + F Z Z Tdjd (14)

d€Vp deVp (i,j)€A d€Vp (d,j)edt(d)
st Zija < Yd Vd € Vp, (i,j) € A (15)

Y aga=1 Ve € Ve (16)

d€Vp (c,j)€5% (c)

Y Tia= Y. e YeeVe,deVp  (17)
(i,c)€6—(c) (¢,j)€6F(c)

Z ( Z Tdjd + Z xidd/) =0 Vd € Vp (18)
d'eVp\{d} (d,j)eét(d) (¢,d)ed—(d)
Z Z Vejd = Z Z Vied + de Ve € Ve (19)
d€Vp (¢,j)€dT(c) deVp (i,c)ed—(c)

> iaa < Qaya vd € Vp (20)
(i,d)ed—(d)
Vija < Cmijq vd € Vp, (i,j) € A (21)
vijd = 0 Vd € Vp, (i,j) € A (22)
xijdE{O,l} VdEVD, ( 1,79 )GA (23)
Yd € {0, 1} Vd € Vp 24)

The objective function (14) minimizes the sum of depot opening costs, travel costs, and fixed ve-
hicle costs. Constraints (15) ensure that no routes are assigned to depots unless they are open.
Constraint (16) ensures that each customer is assigned to exactly one depot route. Constraints (17)
enforce flow conservation at each customer node separately for each depot, ensuring continuity of
vehicle routes originating from the same depot. Constraints (18) eliminate direct vehicle movements
between distinct depots. Constraints (19) enforce vehicle load conservation at customer nodes. Con-
straints (20) and (21) impose capacity restrictions for depots and vehicles, respectively. Finally,
constraints (22)—(24) specify the domain of the decision variables.

B Neural Network Architecture and Implementation Details

B.1 Feature Extraction q@

We explore two neural network architectures to approximate the feature extraction function qAS: fully-
connected feedforward networks and Graph Transformers.
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Figure 3: Neural Network Architecture

Fully-Connected Feedforward Network The first approach for (Z) is based on a fully-connected
feedforward architecture. In the training phase, we embed each individual customer-level feature
vector, 04;, into an L-dimensional latent space. This is done by passing each feature vector indepen-
dently through the feature extractor network g?), and then aggregating the resulting |S| latent space
features to produce a single aggregated latent vector z4. This final embedding is then passed through
a ReLU feedforward network p to predict the normalized output.

In our implementation, d; consists of ReLLU-activated layers except for the linear output layer, while
p is entirely composed of ReLLU-activated layers, including the final output layer. Specifically, the
fully-connected architecture can be expressed as:

éFC(Udi) =W, - RCLU(WL,1 . RGLU(' . 'RGLU(Wlo'di + bl) .- ) + bLfl) +by.

The detailed hyperparameter search space for the FFNN architecture is provided in Table 6 in Ap-
pendix G.

Graph Transformer Network The second approach for gZAJ leverages a Graph Transformer archi-
tecture to capture richer spatial relationships and inter-node dependencies. Figure 3 illustrates the
neural network architecture employed for cost prediction, utilizing a Graph Transformer (GT) to
effectively capture spatial relationships and inter-node dependencies inherent in CVRP instances.
Given a CVRP instance C, the neural network constructs its corresponding complete graph repre-
sentation G and predicts the cost through the following encoder-decoder framework:

graph (d, S) éd(S) — fe(gd) = Decoder(EnCOder(gd))

construction

A given depot-customer pair (d, S), where d € Vp and S C Vg, is transformed into a complete
graph G; = (V, ). The node set V comprises the depot node d and |S| assigned customer nodes,
and & is the set of edges connecting all node pairs. Each node v € V is characterized by a feature
vector X, that includes spatial coordinates (x,y), a depot indicator, and demand. Edges e, € &
have corresponding features X, , defined as the normalized Euclidean distance between nodes u
and v. These node and edge feature vectors precisely capture positional and relational information
necessary for effective message passing in subsequent layers.

The Encoder transforms initial node features into latent embeddings through a sequential stack of
four identical layers, each consisting of a Graph Transformer (GT) layer, Layer Normalization (Lay-
erNorm) (Ba et al., 2016), and an Exponential Linear Unit (ELU) (Clevert et al., 2016) activation.
Each GT layer, inspired by Shi et al. (2021), leverages multi-head self-attention to aggregate node
and edge information, updating node embeddings h/, as follows:

h; = W'h, + Z ayy (W'hy + WX, ),
weV\{v}

where W, WY, and W€ are learnable weight matrices corresponding to residual connections, node
features, and edge features, respectively. Attention coefficients a,, quantify node interactions:

(Weh,)T(W*h, + WX))
\/g Y

Ay = softmax (

10
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with query and key matrices W9, W* and embedding dimensionality d. LayerNorm stabilizes
training by normalizing features across nodes, preserving structural information through adaptive
scaling and shifting. The final updated node embedding per layer is:

h! = ELU(LayerNorm(GT(h,))).

A key advantage of both architectures is that they can process customer sets .S of arbitrary size
beyond those that may have been seen during training. Moreover, the feature extractor network g%
can be quite complex and does not even have to be ReL.U-activated, as only the regressor network p
is embedded in the MIP model. This modularity allows for flexibility in the feature extraction stage
while maintaining the tractability of the MIP embedding. The detailed hyperparameter search spaces
for both the FFNN and GT architectures are provided in Appendix G (Tables 6 and 7, respectively).

B.2 Regressor p

The final prediction in our model is obtained by aggregating node-level representations through
a global additive pooling operation, followed by a linear transformation. This architecture aligns
closely with the Deep Sets framework (Zaheer et al., 2017), which provides a principled way to
model functions over sets that are invariant to permutation. In the context of our surrogate cost
model, the function mapping a customer set .S C V¢ assigned to depot d € Vp can be expressed as:

ca(S) = p (Z ¢(adi)> :
ces
where o4; € R* denotes the normalized feature vector. The transformation (Z) projects each customer
feature into a latent space, and the summation operator aggregates this information over the entire
set. The output is then passed through the regression function p, which produces the final cost
estimate.

In our network implementation, the encoder serves as the learnable embedding function ¢, while
the global additive pooling layer (Graph Readout in Figure 3) performs the permutation-invariant
aggregation. The linear decoder layer approximates p, translating the aggregated embedding into
a scalar prediction. This structure naturally captures the set-based nature of depot-customer as-
signments, enabling the network to generalize across varying customer configurations and preserve
consistency with the routing cost structure. Moreover, it ensures that the learned surrogate can be
seamlessly embedded into the upper-level CLRP formulation without compromising tractability or
representational fidelity.

The Decoder predicts travel costs and fixed vehicle costs by aggregating relevant node embeddings.
Initially, a Mask Gate selectively retains embeddings from active nodes (depot and assigned cus-
tomers), denoted by the mask vector mask,,:

masked __ 1./
hy = h,, ® mask,.

Then, the masked node embeddings are aggregated through a global additive pooling operation,
yielding a single graph-level representation:

hgd _ Z hglasked'
IS %]

This global additive pooling effectively summarizes node features into a unified embedding, re-
flecting overall graph structure and node relationships. Finally, a linear transformation maps this
aggregated representation to the scalar predicted cost:

¢qa(S) = Whg, + 0,
where W and b are learnable parameters. This architecture ensures that the predicted travel and
fixed vehicle costs accurately reflect both local and global structural properties of the depot-customer
graph G4, which is essential for cost estimation across varying customer configurations.

B.3 Benchmark Instances

We use the CLRP benchmark set from (Prins et al., 2004), known as the Prodhon instances. It
includes 30 instances with 20-200 customers and 5-10 depots, featuring vehicle capacities of 70
or 150 and constrained depot capacities. The set contains both clustered and randomly distributed
customers.

11



399 B.4 Data Generation

400 To train our neural embedded models, we generated 128,000 synthetic CVRP instances via random
401 sampling, following the structure of the Prodhon benchmark (Prins et al., 2004). Depots and cus-
402 tomers were randomly placed in a 2D space, with demands uniformly sampled from [11, 20] and
403 vehicle capacities set to 70 or 150. Feasible subsets were generated by ensuring depot and vehicle
404 capacity constraints.

405 Each instance was solved using VROOM (Coupey et al., 2024) to obtain cost labels, incorporating
406 both routing distances and fixed vehicle costs. Coordinates were normalized by shifting the depot to
407 the origin and scaling by the spatial range. The final input features included normalized coordinates,
408 depot indicators, and scaled demands. A smooth L1 loss was used during training to ensure stable
409 convergence.

a0 C  Detailed Comparison with State-of-the-Art Algorithms

Table 2: Comparison with State-of-the-Art Heuristics on CLRP Benchmark Sets

HCC-500K TSBApeed GRASP/VNS NEO-FFNN (ours) NEO-GT (ours)
Instance BKS  Eigs (%) Tt () Epgs (%) T () Eigs (%) Tootal () Efes (%) Total () Efes (%) Tiotal (5)
20-5-1a 54,793 0.00 39 0.00 0.80 0.08 0.78 8.54 0.09 3.24 0.10
20-5-1b 39,104 0.00 54 0.00 0.53 0.00 0.67 6.58 0.04 6.30 0.05
20-5-2a 48,908 0.00 38 0.00 0.74 0.00 0.76 5.04 0.05 5.04 0.04
20-5-2b 37,542 0.00 67 0.00 0.51 0.00 0.65 4.04 0.05 8.25 0.05
Average 0.00 49.50 0.00 0.65 0.02 0.71 6.05 0.06 5.70 0.06
50-5-1a 90,111 0.00 101 0.00 2.48 0.00 7.95 4.12 0.10 5.37 0.10
50-5-1b 63,242 0.00 65 0.00 2.35 0.00 8.59 291 0.10 1.18 0.10
50-5-2a 88,293 0.32 99 0.06 3.32 0.35 8.52 2.81 0.12 3.03 0.08
50-5-2b 67,308 0.21 200 0.14 3.07 0.54 9.18 7.10 0.09 6.65 0.08
50-5-2bBIS 51,822 0.03 98 0.08 2.70 0.02 8.98 5.80 0.08 5.29 0.06
50-5-2BIS 84,055 0.08 107 0.00 3.40 0.00 7.90 1.62 0.10 1.68 0.10
50-5-3a 86,203 0.07 101 0.19 3.34 0.19 7.78 1.86 0.11 0.73 0.11
50-5-3b 61,830 0.00 137 0.01 2.35 0.00 7.59 1.26 0.10 1.68 0.10
Average 0.09  113.50 0.06 2.88 0.14 8.31 3.44 0.10 3.20 0.09
100-5-1a 274,814 0.56 520 0.37 15.14 0.44 70.15 2.16 0.37 1.28 0.32
100-5-1b 213,568 0.69 1190 0.50 11.68 0.38 70.81 2.26 0.31 1.25 0.32
100-5-2a 193,671 0.12 463 0.07 11.86 0.23 82.00 2.83 043 0.39 0.47
100-5-2b 157,095 0.04 859 0.05 8.11 0.07 61.93 0.79 0.44 0.59 0.46
100-5-3a 200,079 0.21 454 0.21 14.05 0.24 64.37 1.49 0.37 1.34 0.46
100-5-3b 152,441 0.30 684 0.03 8.39 1.03 57.29 1.57 0.36 2.27 0.34
100-10-1a 287,661 4.28 210 0.24 25.54 0.61 78.81 2.24 0.34 2.80 0.34
100-10-1b 230,989 4.03 188 0.47 16.57 1.19 87.95 429 0.31 3.61 0.25
100-10-2a 243,590 0.80 136 0.05 21.16 2.06 75.65 0.91 0.43 1.09 0.33
100-10-2b 203,988 0.25 261 0.00 10.93 1.23 67.50 1.82 0.39 3.58 0.30
100-10-3a 250,882 1.59 202 0.93 22.60 3.83 71.87 1.92 043 2.10 0.37
100-10-3b 203,114 1.51 224 0.29 14.88 5.53 79.76 3.37 0.44 3.35 0.36
Average 1.20  449.25 0.27 15.08 1.40 72.34 2.14 0.38 1.97 0.36
200-10-1a 474,850 1.76 752 0.62  179.62 3.16  752.03 0.97 1.47 0.87 1.29
200-10-1b 375,177 1.43 1346 042 11572 2.74 73575 1.25 1.36 1.23 1.25
200-10-2a 448,077 0.82 1201 035  147.04 0.38  642.16 0.40 1.23 0.47 1.13
200-10-2b 373,696 0.65 1349 0.14 69.52 0.23  683.19 0.44 1.33 0.54 1.20
200-10-3a 469,433 2.12 1251 049  176.25 048  661.82 1.36 1.45 1.20 1.32
200-10-3b 362,320 2.01 1137 0.14 67.58 045 81825 3.73 1.34 1.52 1.32
Average 147  1172.67 036  125.96 1.24 71553 1.36 1.36 0.97 1.25
Processor Opteron 275 Xeon E5-2670 Xeon E5-2430v2 Ryzen 9 5900X Ryzen 9 5900X
GHz 22 2.6 2.5 3.7 3.7
Passmark score 1159 1652 1439 3470 3470

211 D Neural Embedded FLP-MIP Formulation for 2E-CVRP

412 This presents the complete mixed-integer programming (MIP) formulation of the Two-Echelon Ca-
413 pacitated Vehicle Routing Problem (2E-CVRP) augmented with a neural-embedded surrogate model
414 for second-echelon routing cost prediction. The formulation integrates neural predictions into a first-
415 stage facility location model with satellite opening and customer assignment decisions.

12
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Problem Description

The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) is an NP-hard variant of the
Capacitated Vehicle Routing Problem (CVRP), characterized by a hierarchical distribution struc-
ture involving a single depot, multiple satellites, and customers. Vehicles operate over two distinct
echelons: the first echelon connects the depot to satellites, and the second echelon links satellites
to customers. Vehicles in the first echelon, commonly referred to as trucks or primary vehicles,
typically have larger capacities compared to second-echelon vehicles, known as city freighters or
secondary vehicles. Each vehicle type has its own fixed capacity and fleet size.

S A A 4 Depot
(@) @' Wl
,," ““‘\‘ ‘,. o [  Open Satellite
©] / neood
" o i o B  Closed Satellite (shaded)
@) woro
N o ! O  Customer
oy |
o AR ---  First-echelon route
@) W
i OO —  Second-echelon route
© o)

Figure 4: An Example of a 2E-CVRP Solution

Figure 4 illustrates a feasible 2E-CVRP solution, depicting the depot (triangle), satellites (squares),
and customers (circles). In the first echelon, split deliveries to satellites are permitted, resembling
the structure of the Split Delivery Vehicle Routing Problem (SDVRP). Conversely, split deliveries
are disallowed in the second echelon, reflecting a Capacitated Location-Routing Problem (CLRP)

structure. Moreover, freight transfers are restricted to echelon-specific movements, prohibiting di-
rect delivery from the depot to customers.

Due to the hierarchical nature of 2E-CVRP, second-echelon decisions directly influence the first
echelon. Thus, solving the 2E-CVRP involves strategic decisions, such as selecting operational

satellites, and tactical decisions, such as vehicle routing in each echelon. The primary objective is
to minimize the total transportation cost across both echelons.

Model Parameters

* Vo: Set of depot nodes (typically a singleton set {0}).

¢ Vg: Set of satellite nodes.

* Ve Set of customer nodes.

* K: Set of first-echelon vehicle indices, with || = K.

» A: Set of arcs between depot and satellites (first echelon).
o (' Capacity of first-echelon vehicles.

 (': Capacity of second-echelon vehicles (city freighters).

e K'’: Maximum number of second-echelon vehicles available.
¢ d;: Demand of customer 7 € V.

* ¢;;: Travel cost on arc (4, j) € A.

* M: A sufficiently large constant used in big-M constraints.
e L: Set of latent dimensions for neural embeddings.

¢sie: Neural network weight associated with customer ¢ and satellite s in dimension ¢.
¢so¢: Neural bias term associated with satellite s in dimension /.

e W,: Neural readout weight for latent dimension ¢.

¢ b: Neural readout bias term.

13
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Decision Variables

zi;, € {0,1}: Binary variable indicating whether vehicle k£ € K traverses arc (7,5) € A
in the first echelon.

wsr € Ry : Freight quantity delivered to satellite s € Vg by vehicle k € K.

u;;, € Ry: Sequence position of node i € Vg visited by vehicle £ € K (for subtour
elimination).

as; € {0,1}: Binary variable indicating if customer i € V¢ is assigned to satellite s € Vg.

ys € {0, 1}: Binary variable indicating whether satellite s € Vg is opened.

ks € Z,: Number of city freighters assigned to satellite s.

zs0 € R: Aggregated latent embedding of satellite s in dimension ¢ € L.

¢s € Ry: Surrogate cost prediction for second-echelon routing and vehicle cost from
satellite s.

ts € Ry: Total demand served by satellite s.

Model Formulation

min E E Cij Tijk + E és

keK (i,5)eA s€Vs

S.t.

Y - Y

(4,7)€8% (s)

Z Tijr <1

(i,5)€5%(s)

wip + 1 < wjp + M(1—z)

we <C Y wik

(4,5)€8% (s)

Zwskgc

SEVs

Zwsk =t

ke

E Ag; — 1
s€Vs
[P S Ys

Z s > Ys

i€V

ts = Z d; as;
i€V

ks C' >t

ts > C' (ks — 1) +1

ke < K'ys

> k<K'

sEVs

Zsl = ¢SOZ + § ¢si€ [£FD)
i€V

¢s < Mys

G > Y Wize+b—M(1—ys,)

Lel

(4,7)€6~(s)

Vs € Vg, ke K

Vs € VoUVg, ke K

V(i,j) € A(Vs), k€ Kk
Vs e Vg, ke K

Vk e K
Vs € Vg

Vi e Ve

Vs € Vg, 1 € Vo
Vs € Vg

Vs € Vg

Vs € Vg
Vs € Vg
Vs € Vg

VseVg, e L

Vs € Vg
Vs € Vg
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lel
Tijk, Asiy Ys € {0, 1} V(Z,j) S .A, CES Vs, ke 44)
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Wsky Uik, tsa Zsls 6&20 VSEVS, iEVS7 kE/C, EEE (46)

This formulation maintains tractability while integrating neural cost surrogates directly into the MIP
model. The second-echelon cost term ¢, replaces the need for arc-based routing variables, enabling
efficient evaluation of location-routing trade-offs.

E Variable Count Tables

Table 3: Exact CLRP vs. Neural-Embedded FLP — Binary Variables

Variable Description (20.5) (50,5) (100,5) (100, 10) (200, 10)
Exact Neural Exact Neural Exact Neural Exact Neural Exact Neural
Yd Depot open 5 5 5 5 5 5 10 10 10 10
Tijd Arc-level Routing 3,000 — 14,850 — 54,600 — 119,900 — 438,900 -
T i Customer assignment - 100 - 250 — 500 - 1,000 - 2,000
Total binary vars. 3,005 105 14,855 255 54,605 505 119910 1,010 438910 2,010
Reduction (X) 28.6 58.3 108.1 118.7 218.4

Table 4: Exact CLRP vs. Neural-Embedded FLP — Continuous Variables

Variable Description (20,5) (50,5) (100, 5) (100, 10) (200, 10)
Exact Neural Exact Neural Exact Neural Exact Neural Exact Neural
fiza Arc load 3,000 - 14,850 — 54,600 - 119,900 — 438,900 -
Zde Latent aggregation - 320 - 320 - 320 - 640 - 640
Cq NN-predicted cost - 5 - 5 - 5 - 10 - 10
Total continuous vars. 3,000 325 14,850 325 54,600 325 119,900 650 438,900 650
Reduction (X) 9.2 45.7 168.0 184.5 675.2

Counting rules. C': #customers, D: #depots, N = C' + D. Exact: binary D + D N(N—1), continuous
D N(N-1); Neural: binary D + D C, continuous D(L+1) with L = 64.

F Ablation Studies

We perform detailed experimental analyses to understand the impact of various components of our
framework, including the choice of sampling method, sample requirements for training, choice of
vehicle routing solvers for generating labeled training data, as well as the use of single pre-trained
versus instance-specific neural surrogates. All results are averaged over five runs.

F.1 Effect of Problem Size

To analyze the impact of instance complexity, we assess how the number of customers affects the
performance of our model. Specifically, we evaluate NEO-LRP on CLRP instances with 20, 50,
100, and 200 customers, using the same training and evaluation setup. For each problem size,
performance metrics are averaged over five independent runs.

Table 1(b) shows that the average optimality gap Eg;?s tends to decrease as the problem size in-
creases. This trend can be attributed to two main factors. First, the relative impact of individ-
ual assignment errors becomes less significant in larger instances, as routing costs are distributed
over a greater number of customers. Second, the model’s capacity to generalize improves with
scale, especially when structural patterns—such as regional cost heterogeneity or spatial dependen-
cies—become more pronounced in larger graphs.

These results indicate that NEO-LRP scales well with instance size and is capable of exploiting
structural regularities in large-scale location-routing problems. Overall, the observed improvement
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in performance highlights a desirable property of neural-embedded optimization frameworks: when
trained on a sufficiently diverse dataset, a single model can generalize effectively to larger and more
complex instances, without needing instance-specific retraining.

F.2 Effect of Routing Solver

To generate high-quality ground-truth labels within reasonable computation times, we evaluated
three representative CVRP solvers: VRPSolverEasy (Errami et al., 2024), OR-Tools (Furnon and
Perron, 2024), and VROOM. Table 5 presents the computational results obtained across instances
with varying customer sizes (n) and vehicle capacities (c¢). VRPSolverEasy, which relies on ex-
act optimization, consistently returned optimal solutions (BKS) but required excessive computa-
tion time for larger instances (e.g., n = 200), making it unsuitable for large-scale data genera-
tion. OR-Tools was configured with the AUTOMATIC setting for initial solution construction and
the GUIDED_LOCAL_SEARCH (GLS) metaheuristic for local search. GLS was chosen as it is widely
regarded as the most efficient general-purpose improvement method for vehicle routing problems.
A fixed time limit of 5 seconds was imposed on each run. While OR-Tools produced solutions
with acceptable runtimes, the resulting cost gaps were relatively higher compared to other methods.
VROOM, in contrast, achieved a better balance between solution quality and speed. It consistently
produced near-optimal solutions, typically with gaps under 2%, and completed all instances within
practical time limits. Given this trade-off, VROOM was selected as the default solver for generating
routing labels during neural model training.

Table 5: Comparison of CVRP Routing Solvers

Instance VRPSolverEasy OR-Tools VROOM
BKS Time (s) Gap (%) Time (s) Gap (%) Time (s)
n20-c70 34961 0.07 0.00 5.00 0.00 0.02
n20-c150 25285 0.14 0.00 5.00 0.00 0.02
n50-c70 71195 4.54 1.06 5.00 0.72 0.13
n50-c150 42831 4.15 1.93 5.00 0.00 0.14
nl00-¢c70 135190 290.31 5.21 5.00 0.93 0.68
nl00-c150 76201 131.10 7.53 5.00 0.00 0.63
n200-c70 247511 37173.32 4.34 5.00 1.81 3.86
n200-c150 132874 25017.05 8.19 5.00 1.43 3.92

G Hyperparameters

Table 6: FFNN Hyperparameters and Their Search Ranges

Hyperparameter Range

Batch size {8, 16, 32}

Initial learning rate {0.1, 0.01, 0.001, 0.0001}
Optimizer AdamW

Loss function {MSE, Huber, Smooth L1}
Hidden dimension in qAS {6, 8,32, 64, 128, 256, 512, 1024}
Latent dimension {6, 8, 16, 32}

Number of hidden layersin ¢ {2, 3,4, 5,6}
Number of hidden layersin g {1, 2, 3,4}
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Table 7: GT Hyperparameters and Their Search Ranges

Hyperparameter

Range

Initial learning rate
Batch size

Optimizer

Loss function
Encoding dimension
Number of attention heads
Number of GT layers
Dropout rate
Normalization
Activation function
Beta

{0.1,0.01, 0.001, 0.0001}
(8, 16, 32, 64, 128}
AdamW

{MSE, Huber, Smooth L1}
{8, 16, 32, 64, 128}

{4, 8}

{2,3,4,5}

{0.0,0.1,0.2, 0.3, 0.4, 0.5}
{Graph Norm, Batch Norm, Layer Norm}
{ELU, ReLU, Leaky ReLU}
{True, False}
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