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Abstract

This paper establishes the theoretical limits of graph clustering under the Popularity-
Adjusted Block Model (PABM), addressing limitations of existing models. In con-
trast to the Stochastic Block Model (SBM), which assumes uniform vertex degrees,
and to the Degree-Corrected Block Model (DCBM), which applies uniform degree
corrections across clusters, PABM introduces separate popularity parameters for
intra- and inter-cluster connections. Our main contribution is the characterization
of the optimal error rate for clustering under PABM, which provides novel insights
on clustering hardness: we demonstrate that unlike SBM and DCBM, cluster recov-
ery remains possible in PABM even when traditional edge-density signals vanish,
provided intra- and inter-cluster popularity coefficients differ. This highlights a
dimension of degree heterogeneity captured by PABM but overlooked by DCBM:
local differences in connectivity patterns can enhance cluster separability indepen-
dently of global edge densities. Finally, because PABM exhibits a richer structure,
its expected adjacency matrix has rank between k and k2, where k is the number
of clusters. As a result, spectral embeddings based on the top k eigenvectors
may fail to capture important structural information. Our numerical experiments
on both synthetic and real datasets confirm that spectral clustering algorithms
incorporating k2 eigenvectors outperform traditional spectral approaches.

1 Introduction

Graph clustering is the task of partitioning the vertex set of a graph into non-overlapping groups
such that vertices within the same group exhibit similar patterns or properties. As a fundamental task
in the statistical analysis of networks, graph clustering plays a key role in revealing the underlying
structure and functional organization of complex networks (Avrachenkov and Dreveton, 2022).

Most graph clustering algorithms are based on the assumption that vertices within the same cluster
are more densely connected than vertices in different communities. In other words, intra-cluster
edge-density is higher than inter-cluster edge-density. Under this premise, metrics such as modularity,
graph cuts, or their variants are commonly used to motivate and design graph clustering algorithms.
However, these methods fundamentally rely on the edge density as their primary input signal. This
leads to a natural question: Is edge density essential for recovering clusters, or can other structural
signals be exploited instead? In this work, we demonstrate that the connection patterns of individual
vertices can be exploited to recover clusters, even when intra-cluster and inter-cluster edge densities
are equal.
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Random graphs with cluster structure: block models with and without degree heterogeneity.
Random graphs with cluster structure are often modeled using block models. Let z ∈ [k]n be
a vector representing the cluster assignments of each vertex. For all the random graphs that we
consider, the adjacency matrix A ∈ {0, 1}n×n is assumed to be symmetric with zero diagonal and
Aij = Aji ∼ Ber(Pij) for all i > j, where Pij ∈ [0, 1] is the probability of an edge between
vertices i and j. The simplest block model supposes that

Pij =

{
p if zi = zj ,

q otherwise.
(1.1)

This model is often called the planted partition model, or the stochastic block model (SBM) with
homogeneous interactions.1 A known drawback of this model is that all vertices share the same
expected degree. To mitigate this issue, Karrer and Newman (2011) proposed the degree-corrected
block model (DCBM), where

Pij =

{
θiθjp if zi = zj ,

θiθjq otherwise.
(1.2)

The quantities θ1, · · · , θn are the degree-correction parameters. To ensure identifiability, these pa-
rameters are normalized such that

∑
i : zi=a θi = na(z) for all a ∈ [k], where na(z) = |{i : zi = a}|

denotes the size of cluster a.

However, the degree-correction parameter θi uniformly inflates or deflates the connection probabilities
of vertex i across all clusters. As a result, vertices with a large degree-correction parameter have
more edges both within their own cluster and with other clusters. This makes it impossible to model
vertices that exhibit higher connectivity exclusively within their own cluster. To mitigate this issue,
Sengupta and Chen (2018) introduced the popularity adjusted block model (PABM), where

Pij =

{
λin
i λin

j p if zi = zj ,

λout
i λout

j q otherwise.

In this model, the quantity λin
i (resp., λout

i ) is the popularity of vertex i with other vertices within
its own cluster (resp., with vertices in other clusters). These coefficients are normalized such that∑

i : zi=a λ
in
i = na(z) and

∑
i : zi=a λ

out
i = na(z) for all a ∈ [k]. This model allows for a vertex i

to be highly popular among its cluster (high λin
i ), but to be not necessarily popular (λout

i = 1) or
even to be very unpopular (small λout

i ) with vertices in other clusters.

Optimal clustering error rate: from edge-density to popularity patterns An important question
to assess the difficulty of the clustering task in a block model is the derivation of the optimal error rate.
By optimal error rate, we refer to the minimum possible error that the best algorithm achieves when
attempting to recover the true cluster assignment of all vertices. This error rate is typically measured in
terms of the misclassification rate—that is, the proportion of vertices incorrectly assigned to their true
clusters, up to a permutation of the labels. The optimal error rate reflects the information-theoretic
limits of the clustering task, because it characterizes how well one could possibly do even with
unlimited computational power, given the amount of signal and noise in the data. It also provides a
benchmark to evaluate existing algorithms and guides the development of new methods that approach
(either theoretically or empirically) these theoretical limits.

Studying the effect of the different model parameters (such as sparsity or degree heterogeneity) on the
error rate offers deep insight into the fundamental difficulty of the graph clustering problem across
different network settings. Consider a SBM with k clusters of same size n/k and homogeneous
interactions as in (1.1). When 1/n≪ p, q ≪ 1, the optimal error rate is asymptotically (Zhang and
Zhou, 2016)

exp
(
−n

k
(
√
p−√q)2

)
.

1A block model is said to have homogeneous interactions if the entries Pij depends only on whether zi = zj
or zi ̸= zj ; otherwise, the model is said to have heterogeneous interactions. Our work focuses on models with
heterogeneous interactions, with homogeneous interactions treated as a special case. However, for simplicity, in
the Introduction we present results only for the homogeneous setting.
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As p and q represent the intra-cluster and inter-cluster edge densities, respectively, the key quantity
(
√
p − √q)2 in the expression above captures the influence of edge density: the larger the gap

between p and q, the easier it is to recover the clusters.

Next, consider a DCBM with k clusters of same size n/k and homogeneous interactions as in (1.2).
Under some technical conditions on the degree-correction parameters, Gao et al. (2018) establishes
that, when p, q = o(1) with p/q = O(1) and p = ω(1/n), the optimal error rate is asymptotically

1

n

∑
i

exp
(
−θi

n

k
(
√
p−√q)2

)
.

Compared to the standard SBM, the difficulty of clustering now varies across vertices and is quantified
by the term exp

(
−θin(

√
p−√q)2/k

)
, which depends on each vertex i ∈ [n] and is monotonically

decreasing in θi. The optimal error rate corresponds to the average of these quantities over all vertices.
This highlights the effect of degree heterogeneity: vertices with larger expected degree are easier to
cluster, as their neighborhoods contain more information.

However, the same key quantity (
√
p−√q)2 representing the edge-density signal shows up in the

DCBM error rate. Indeed, as mentioned earlier, the degree-correction parameters uniformly inflate or
deflate the connection probabilities. As a result, the value of θi impacts the clustering difficulty of
vertex i in a predictable and monotonic way. This no longer holds in the PABM, which introduces a
richer and more nuanced structure. The first major contribution of this work is to characterize the
optimal error rate for clustering under the PABM. As the general expression is somewhat involved,
we begin with the simplest case of k = 2 clusters of equal size. In this setting, we establish that the
optimal error rate is given by

1

n

∑
i∈[n]

exp

−1

2

∑
j∈[n]

(√
λin
i λin

j p−
√
λout
i λout

j q
)2 .

As in the DCBM, the error rate in PABM is expressed as an average over the difficulty of clustering
each individual vertex. However, in PABM, these per-vertex difficulties have a more intricate form,
and we provide further insight in Sections 2.2 and 2.4. A particularly important observation is the
following: suppose p = q, so that the expected numbers of intra-cluster and of inter-cluster edges
are equal. In this case, the SBM and DCBM reduce to the Erdős-Rényi and Chung–Lu models,
respectively, and cluster recovery is fundamentally impossible. Remarkably, this is not true for
PABM: cluster recovery may still be possible provided the popularity coefficients λin

i and λout
i are

different. This reveals a novel aspect of degree heterogeneity captured by PABM but missed by
DCBM: local differences in intra- and inter-cluster popularity enhance the separability of clusters,
even when traditional global edge-density signals vanish. Another phenomenon, more subtle, occurs
in PABM: the optimal error rate is not monotonically increasing when the number of inter-cluster
edges increases. We rigorously establish these phenomena in Examples 1 and 2, and illustrate them
in our numerical simulations.

Higher-order eigenvectors for clustering with popularity patterns Finally, we perform numerical
experiments to evaluate the effectiveness of spectral clustering methods. When the adjacency matrix A
is sampled from a block model, it can be decomposed as A = P + X , where P is a low-rank
matrix encoding the underlying structure, and X is a random noise matrix with zero-mean sub-
Gaussian entries. This decomposition forms the basis of spectral methods for graph clustering, where
the general approach is to apply a clustering algorithm (such as k-means) to a low-dimensional
embedding derived from a low-rank approximation of A.

In classical models like SBM and DCBM, when p ̸= q, the rank of P is equal to the number of
clusters k. However, in PABM, the situation is more complex: the rank of P can be greater than k,
but cannot be greater than k2. This implies that embeddings based solely on the top-k eigenvectors
may miss important structural information. To address this, recent works propose spectral algorithms
that incorporate k2 eigenvectors to better capture the richer structure of PABM (Noroozi et al., 2021;
Koo et al., 2023). Our numerical experiments demonstrate that these methods outperform traditional
spectral approaches that rely only on k eigenvectors, both on synthetic and real datasets.

In the numerical section, we illustrate two surprising results discussed in the theoretical section: the
non-monotonic behavior of the error with respect to edge density, and the ability to recover clusters
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even when p = q. While it would have been possible to use a greedy algorithm to approximate the
MLE, we opted for spectral methods because of their widespread use and of their well-established
effectiveness for clustering in block models. The experiments demonstrate that the phenomena
highlighted in the theoretical section also arise when using spectral algorithms. They show that these
behaviors are not merely mathematical artifacts stemming from the increased complexity of PABM
relative to DCBM, but that they do occur in practice and are observable in real-world settings.

The paper is structured as follows. We derive the optimal error rate in PABM and provide some
examples in Section 2. We present our numerical experiments in Section 3. We discuss some related
works in Section 4. Finally, we conclude in Section 5.

Notations Ber(p), Exp(λ) and Uni(a, b) denote the Bernoulli distribution with parameter p, the
exponential distribution with parameter λ, and the uniform distribution over the interval [a, b]. We use
the Landau notations o and O, and write f = ω(g) when g = o(f) and f = Ω(g) when g = O(f).

2 Optimal Error Rate in Popularity-Adjusted Block Models

2.1 Model Definition and Parameter Space

We consider n vertices partitioned into k ≥ 2 disjoint blocks. The partition is encoded by a vertex-
labeling vector z∗ = (z∗1 , · · · , z∗n) ∈ [k]n so that z∗i indicates the cluster of vertex i. These n vertices
interact pairwise, giving rise to undirected edges, and these pairwise interactions are grouped by
a symmetric matrix A ∈ {0, 1}n×n called the adjacency matrix. The Popularity Adjusted Block
Model supposes that, conditionally on the block structure, the upper-diagonal elements (Aij)i>j are
independent Bernoulli random variables such that, conditionally on z∗i and z∗j ,

Aij | z∗i , z∗j ∼ Ber
(
ρnλiz∗

j
λjz∗

i
Bz∗

i z
∗
j

)
, (2.1)

where (λia)i∈[n],a∈[k] are the popularity parameters and B ∈ Rk×k
+ is the connectivity matrix across

clusters. The parameter ρn controls the graph sparsity, as the average degree is of order nρn when
the following assumption is made.

Assumption 1. The quantities Bab and λia are constant (so they do not scale with n) for all i ∈ [n]
and a, b ∈ [k].

Given a realization of a PABM, we aim to infer the latent block structure z∗. Let ẑ = ẑ(A) be an
estimate of z∗, and define the clustering error as

loss(z∗, ẑ) =
1

n
min

τ∈Sym(k)
Ham(z∗, τ ◦ ẑ), (2.2)

where Sym(k) is the set of permutations of [k] and Ham(·, ·) is the Hamming distance. We are
interested in the expected loss of an estimator, namely E [loss(z∗, ẑ(A))], where the expectation is
taken with respect to the random variable A sampled from (2.1).

2.2 A Key Information-Theoretic Divergence

For any z ∈ [k]n, denote Pij(z) = ρnλizjλjziBzizj . To understand the difficulty of correctly
clustering a given vertex i, we introduce an alternative cluster labeling z̃ia ∈ [k]n such that z̃iaj = z∗j
for all j ̸= i, while z̃iai = a ∈ [k] \ {z∗i }. In other words, the cluster labeling z̃ia agrees with z∗

for all vertices except for i, which is placed in cluster a instead of being in cluster z∗i . To shorten
the notations, let P ∗ = P (z∗) and P̃ ia = P (z̃ia). The difficulty of correctly recovering the cluster
of vertex i depends on how hard it is to statistically distinguish whether the observed graph was
generated from the true model P ∗ or from the alternative model P̃ ia. This is a classical hypothesis
testing problem: the more similar the distributions induced by P ∗ and P̃ ia, the less distinguishable
two graphs drawn from these two models are, and thus the harder it is to infer the correct cluster
assignment for vertex i. The statistical difficulty of this test is quantified by the Chernoff divergence
∆(i, a), which measures the exponential rate at which the error probability decays when testing
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between these two competing models. More precisely,

∆(i, a) = max
t∈(0,1)

(1− t)Rent

⊗
j ̸=i

Ber
(
P̃ ia
ij

)
,
⊗
j ̸=i

Ber
(
P ∗
ij

) , (2.3)

where Rent is the Rényi divergence of order t. Moreover, by using the linearity of Rényi divergence
with respect to multiplication and the sparsity of the model (that is, Pij = o(1) for all i, j), we have

∆(i, a) = (1 + o(1)) max
t∈(0,1)

∑
j ̸=i

(
tP̃ ia

ij + (1− t)P ∗
ij − (P̃ ia

ij )
t(P ∗

ij)
1−t
)
.

Among all alternative models P̃ ia, the most challenging to distinguish from the true model P ∗ is the
one with the smallest Chernoff divergence ∆(i, a). We thus define

Chernoff(i, z∗) = min
a̸=z∗

i

∆(i, a),

which captures the hardest hypothesis testing problem associated with recovering the cluster of
vertex i. Intuitively speaking, the larger the value of Chernoff(i, z∗), the easier it is to correctly
recover z∗i , as all alternative models defined above are sufficiently different from P ∗. The following
assumption asserts that for every i ∈ [n], the quantity Chernoff(i, z∗) is unbounded. This assumption
is necessary to ensure that the recovery of z∗i is asymptotically possible.
Assumption 2. Suppose that mini∈[n] Chernoff(i, z

∗) = ω(1).

2.3 Main Result: Optimal Error Rate in PABM

For any z ∈ [k]n, denote by na(z) =
∑

i∈[n] 1{zi = a} the size of the cluster a ∈ [k]. Let π ∈ [0, 1]k

such that
∑

a πa = 1 and define

Zn(π, ϵ) =

{
z ∈ [k]n :

na(z)

n
∈ [(1− ϵ)πa, (1 + ϵ)πa] ∀a ∈ [k]

}
.

Let Λ = (λia)i∈[n],a∈[k] be a matrix with non-negative coefficients such that ∥Λ·a∥1 = nπa and
B ∈ Rk×k

+ be a matrix of full rank.
Theorem 1 (Lower-bound on the clustering error). Let z∗ ∈ Zn(π, ϵ) and A being sampled from (2.1).
Suppose Assumption 2 holds. Then, there exists some η = o(1) such that

inf
ẑ
E [loss(z∗, ẑ)] ≥ (1− ϵ)mina πa

4

 1

n

∑
i∈[n]

e−Chernoff(i,z∗)

1+η

,

where the inf is taken over all estimators ẑ = ẑ(A).
Theorem 2 (Achievability). Let z∗ ∈ Zn(π, ϵ) and A being sampled from (2.1). Suppose Assump-
tions 1 and 2 hold. Then, there exists an estimator ẑ such that

E [loss(z∗, ẑ)] ≤

 1

n

∑
i∈[n]

e−Chernoff(i,z∗)

1+η

for some η = o(1)

The gap between the lower bound (Theorem 1) and the achievability (Theorem 2) stems only
from second-order terms. Indeed, the sequences η appearing in Theorems 1 and 2 are not identical.
Moreover, the multiplicative factor (1−ϵ)mina πa

4 of constant order can be absorbed into the sequence η,
as the term 1

n

∑
i∈[n] e

−Chernoff(i,z∗) vanishes as n→∞. We chose to display this factor explicitly
in our bounds so that the sequence η does not depend on the parameter ϵ.

We show in Section 2.4 how Theorems 1 and 2 recover known results in SBM and DCBM, and in
Section 2.5, how they reveal novel properties that did not exist in previous models, when they are
specialized to PABM. Table 1 summarizes all three classes of block models considered in this paper.
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SBM DCBM PABM

Homogeneous Pij =

{
p0ρn ...

q0ρn ...
Pij =

{
θiθjp0ρn ...

θiθjq0ρn ...
Pij =

{
λin
i λin

j p0ρn ... if zi = zj ,

λout
i λout

j q0ρn ... otherwise.

Heterogeneous Pij = Bzizjρn Pij = θiθjBzizjρn Pij = λizjλjziBzizjρn

Table 1: Different expressions of the elements of the matrix P for the block model variants considered
in this paper. The quantity ρn is related to the graph sparsity (as the expected degree is of order nρn).
All other quantities are strictly positive and independent of n.

2.4 Recovering Known Optimal Error Rates in SBM and DCBM

Inhomogeneous SBM Let λia = 1 for all i ∈ [n] and a ∈ [k], so that we recover the SBM with
inhomogeneous interactions in which Pij = ρnBz∗

i z
∗
j

. By linearity of the Rényi divergence, we have

∆(i, a) = max
t∈(0,1)

(1− t)

k∑
b=1

nπb Rent
(
Ber (ρnBab) ,Ber

(
ρnBz∗

i b

))
= (1 + o(1))nρn max

t∈(0,1)
(1− t)

k∑
b=1

πb

(
tBab + (1− t)Bz∗

i b
−Bt

abB
1−t
z∗
i b

)
︸ ︷︷ ︸

CHAS(a,z∗
i )

.

The quantity CHAS(a, b) is called the Chernoff-Hellinger divergence (Abbe and Sandon, 2015).
When nρn = ω(1), we observe that

1

n

∑
i∈[n]

e
−nρn mina∈[k]\{z∗

i
} CHAS(a,z∗

i ) = e−(1+o(1))nρn mina ̸=b∈[k] CHAS(a,b),

and we recover the instance-optimal error rate in SBM with inhomogeneous interactions (Yun and
Proutière, 2016). Finally, the Chernoff-Hellinger divergence has a simple expression in the case of
homogeneous interactions. Indeed, when Bab = p01(a = b) + q01(a ̸= b) and the clusters are of
equal-size (πa = 1/k), the divergence simplifies to min

a ̸=b∈[k]
CHAS(a, b) =

nρn

k (
√
p0 −

√
q0)

2.

Degree-Corrected Block Model Suppose that λiz∗
j
= θi, so that the PABM boils down to a DCBM

with homogeneous interactions in which Pij = θiθjBz∗
i z

∗
j
ρn. For the simplicity of the discussion,

we consider cluster of equal-size (i.e., πa = 1/k for all a ∈ [k]), and homogeneous interactions
(i.e., Bab = p01{a = b} + q01{a ̸= b}). Consider a vertex i in a cluster z∗i and let a ∈ [k]\{z∗i }.
We have ∆(i, a) = θi

nρn

k

(√
p0 −

√
q0
)2

, where we used
∑

i : z∗
i =a θi = 1. Thus, we recover the

asymptotic optimal error-rate 1
n

∑
i e

−θi
nρn
k (

√
p0−

√
q0)

2

established in Gao et al. (2018).

2.5 Optimal Error Rate in Homogeneous PABM

We now show how Theorems 1 and 2, when applied to PABM, reveal novel phenomena. Suppose
Bab = p01{a = b}+ q01{a ̸= b} and λia = λin

i 1{z∗i = a}+ λout
i 1{z∗i ̸= a}. We have

Chernoff(i, z∗) =
nρn
2k

(
δz∗

i
+ min

a̸=z∗
i

δa

)
where δb =

1

n/k

∑
j : z∗

j =b

(√
λin
i λin

j p0 −
√

λout
i λout

j q0

)2
.

Proposition 3. Consider a PABM with homogeneous interactions with p0q0 > 0, and k equal-size
communities. Suppose that λout

1 = · · · = λout
n = 1 and that the coefficients λin

1 , · · · , λin
n are sampled

iid from Uni(1− c, 1 + c) with c ∈ (0, 1). Denote γc =
1
3c

(
(1 + c)3/2 − (1− c)3/2

)
. We have

1

n

∑
i∈[n]

e−Chernoff(i,z∗) = (1 + o(1))e−
nρn
k q0(1−γ2

c )Jn,
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where

Jn =
k

2cp0nρn

(
e−

nρn
k p0u

2
+ − e−

nρn
k p0u

2
−

)
+

γc
2c

√
kπ

nρnq0

(
erf
(nρn

k
p0u+

)
− erf

(nρn
k

p0u−

))
,

with u± =
√
1± c− γc

√
q0/p0 and erf(t) = 2/

√
π
∫ t

0
e−t2dt is the Gauss error function.

Although the expression of Jn is quite involved, we can give two interesting particular cases. Firstly,
to highlight the effect of degree heterogeneity, suppose that p0 = q0. In this extreme case where we
expect the same number of interactions within and across clusters, the only information comes from
the degree heterogeneity. Therefore, many existing graph clustering algorithms are expected to fail (as
indeed shown in Section 3). However, the quantity Chernoff(i, z∗) does not vanish. Therefore, even
in this extreme setting, consistent recovery is possible, as highlighted in the following example. This
stands out in stark contrast to the standard and degree-corrected block models, where setting p0 = q0
causes the model to collapse into an Erdős-Rényi graph and a Chung-Lu graph, respectively—both of
which contain no information about the underlying cluster structure.
Example 1. Consider the setting of Proposition 3 where p0 = q0. For c = 0 the model reduces to an
Erdős-Rényi graph with edge-probability p, and thus no recovery is possible. However, for c > 0,

1

n

∑
i∈[n]

e−Chernoff(i,z∗) = (1 + o(1))e−
nρn
k p0(1−γ2

c ).

Observe that 1− γ2
c is strictly positive and increasing in c ∈ (0, 1]. Thus, if c > 0, the optimal error

rate satisfies 1
n

∑
i∈[n] e

−Chernoff(i,z∗) = o(1), yielding that cluster recovery is possible. Moreover,
this rate is monotonically decreasing in c.

In the following example, we fix c ∈ (0, 1) and p0 > 0, and we let q0 vary between 0 and p0.
Example 2. Consider the setting of Proposition 3 with ξ = q0/p0 ∈ (0, 1]. The quantity
exp(−nρn

k p0ξ(1− γ2
c ))× Jn is not monotonically increasing in ξ, but instead first increases with ξ,

reaches some maximum value, and then decreases. We illustrate this in Figure 3 in Appendix D.3.

The intuition behind Example 2 is as follows. As ξ = 0 the graph is disconnected and the k largest
components are aligned with the k clusters. Hence, the difficulty of clustering is at its lowest and can
only increases with ξ, as additional edges are inter-cluster edges and act as noise. However, when ξ
becomes large enough, the difference between the intra- and inter-connectivity patterns, governed
by the λin and λout, becomes more pronounced. As a result, this provides additional information
that can be exploited for clustering (as in Example 1). This leads to a trade-off between the benefit
brought by the absence of any inter-cluster edges (for learning from well-separated clusters) and the
benefit brought by their presence in large numbers (for learning from popularity patterns). This non-
monotonic behavior is specific to PABM and does not occur in DCBM. Finally, this non-monotonicity
is not an artifact of setting λout

i = 1 and sampling the λin
i from a uniform distribution. This choice

was made because of the difficulty to derive a closed-form expression for the optimal error rate. In
Appendix D.3, we show numerically that these phenomena persist under alternative distributions for
the coefficients λin and λout.

3 Numerical Experiments

In this section, we numerically evaluate the performance of several existing variants of spectral
clustering on both synthetic and real-world datasets.2 Specifically, we compare the following variants:

• sbm: Lloyd’s algorithm applied to the embedding formed by the k largest (in magnitude)
eigenvectors of the adjacency matrix (see Algorithm 2);

• dcbm: Lloyd’s algorithm applied to an estimate P̂ of the connectivity matrix P , constructed
using the k largest (in magnitude) eigenvectors of the adjacency matrix (see Algorithm 3);

• pabm: subspace clustering applied to the embedding formed by the k2 largest (in magnitude)
eigenvectors of the adjacency matrix (see Algorithm 5);

2Our code is available at https://github.com/mdreveton/neurips-pabm.
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• osc: the spectral clustering variant described in Algorithm 4;

• sklearn: Lloyd’s algorithm applied to the embedding formed by the k smallest eigenvectors
of the graph’s normalized Laplacian, corresponding to the implementation available in the
scikit-learn library (see Algorithm 1).

The sbm and dcbm variants are tailored for graphs generated from SBM and DCBM, respectively,
and are known to recover clusters accurately under these models (Zhang, 2024; Gao et al., 2018). In
contrast, PABM exhibits a more complex structure, as the rank of the matrix P can exceed k, but
cannot be greater than k2. We refer to (Koo et al., 2023; Noroozi et al., 2021) and to Section E.4 of
the Appendix for examples. To accommodate this higher-rank structure, the pabm and osc variants
rely on an embedding based on k2 eigenvectors rather than the traditional k, allowing them to capture
the higher-rank structure of PABM more effectively.

In the finalization phase of the manuscript, we became aware of two more algorithms designed for
community recovery in PABM, namely Thresholded Cosine Spectral Clustering (tcsc) and a Greedy
Subspace Projection Clustering (gspc), introduced in Yuan et al. (2025) and in Bhadra et al. (2025),
respectively. To avoid overburdening this section, we refer the interested reader to the Appendix E.3
for a description of these algorithms. We also provide in the Appendix E the pseudo-code of all the
algorithms.

In all experiments, we report the accuracy, defined as one minus the loss in (2.2). It is equal to the
proportion of correctly clustered vertices.

3.1 Synthetic Data Sets

We first consider homogeneous PABM whose interaction probabilities are given by

Pij =

{
λin
i λin

j ρ if z∗i = z∗j ,

λout
i λout

j ξρ otherwise.
(3.1)

The parameter ρ ∈ (0, 1) controls the overall sparsity of the network, while the parameter ξ ∈ [0, 1]
controls the fraction of edges across clusters (in particular, ξ = 0 implies no inter-cluster edges while
ξ = 1 implies the same expected number of edges between any pair of clusters). As in Examples 1
and 2, we let λout

i = 1 and sample the coefficients λin from the uniform distribution in (1− c, 1 + c).

In Figure 1a, we let ξ = 1 and vary c. This is precisely the setting of Example 1. We observe that
pabm and osc variants, which are specifically designed for PABM, recover the clusters when c is
large enough, whereas the variants tailored for SBM and DCBM fail to do so. This illustrates that
pabm and osc successfully learn the clusters without edge-density signal by using the difference
in the individual vertex degree connectivity patterns. In Figure 1b, we set c = 0.8 and let ξ vary.
We observe that the acuracy of pabm and osc is not monotonically decreasing with ξ. In fact, it
goes to a minimum value before increasing again. This illustrates the phenomenon described in
Example 2. In contrast, the accuracy obtained by sbm and dcbm variants monotonically decreases,
because increasing ξ from 0 to 1 monotonically decreases the edge-density signal.3

To further highlight the impact of the embedding dimension on the clustering accuracy, we plot
in Figure 2 the accuracy of the different spectral clustering variant as a function of embedding
dimension d. We observe that the performance of pabm and osc improves significantly as the
dimension increases from d = 3 to d = 6, after which it reaches a plateau. In contrast, the
performance of the sbm and dcbm variants remains unchanged with increasing d.

3.2 Real Data Sets

In this section, we show on real datasets that spectral algorithms that use more eigenvectors such as
pabm and osc outperform the traditional variants that use only k eigenvectors. Table 3 in Appendix F.3
summarizes some statistics of the dataset used. Table 2 shows the accuracy obtained by the different
variants of spectral clustering on the real data sets.

3In both cases, the accuracy achieved by sklearn matches that of dcbm and is omitted from the figures.
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Figure 1: Performance of graph clustering on homogeneous PABM, where the matrix P is given in
Equation (3.1). We sampled graphs with n = 900 vertices in k = 3 clusters of same size, average
edge density ρ = 0.05. In both figures, the λin

i are iid sampled from Uni(1− c, 1 + c) and λout
i = 1

for all i. Accuracy is averaged over 15 realizations, and error bars show the standard errors.
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Figure 2: Effect of the embedding dimension on the performance of graph clustering on homogeneous
PABM, where the matrix P is given in Equation (3.1). We sampled graphs with n = 900 vertices in
k = 3 clusters of same size, average edge density ρ = 0.05. In both figures, the λin

i are iid sampled
from Uni(0, 2). Accuracy is averaged over 15 realizations, and error bars show the standard errors.

sbm dcbm pabm osc tcsc gspc sklearn

politicalBlogs 0.63 0.95 0.91 0.95 0.65 0.95 0.52
liveJournal-top2 0.56 0.61 0.99 0.59 0.98 0.60 0.99
citeseer 0.27 0.38 0.45 0.56 0.33 0.51 0.58
cora 0.34 0.37 0.47 0.47 0.30 0.42 0.27
mnist 0.44 0.54 0.88 0.74 0.11 0.79 0.78
fashionmnist 0.22 0.41 0.63 0.61 0.60 0.50 0.60
cifar10 0.17 0.43 0.74 0.58 0.49 0.62 0.71
Table 2: Accuracy of several spectral clustering variants on real data sets.

4 Related Work

Optimal clustering error rate. A rich line of research focused on characterizing the optimal error
rates for clustering in stochastic block models and their variants. Early results established the minimax
error rate in the SBM (Zhang and Zhou, 2016), while later work extended these insights to more
general models such as the degree-corrected block model (Gao et al., 2018). Further developments
have addressed more complex network structures, such as categorical edge types (Yun and Proutière,
2016), weighted interactions (Xu et al., 2020), and more general interaction patterns (Avrachenkov
et al., 2022). These studies leverage information-theoretic tools to derive minimax bounds and to
uncover the fundamental limits of clustering error. Parallel developments have taken place in the
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mixture model literature, where optimal error rates have been studied extensively, particularly in
Gaussian mixture models (Lu and Zhou, 2016; Cai et al., 2019; Chen and Zhang, 2024) and in more
general mixture models (Dreveton et al., 2024). In both settings, a central objective is to understand
how the separation between components governs the intrinsic difficulty of the clustering task.

Clustering with higher-order eigenvectors. Several studies have identified the benefits of incorpo-
rating higher-order eigenvectors beyond the first k in spectral graph clustering. In networks whose
connections depend on both cluster membership and spatial position, Avrachenkov et al. (2021)
demonstrated that the second eigenvector of the graph Laplacian typically aligns with the geometric
structure rather than with the cluster structure. As a result, traditional spectral methods that rely
solely on the leading eigenvectors often produce geometric partitioning that fails to accurately capture
the underlying cluster structure. Their analysis reveals that incorporating additional eigenvectors
beyond the conventional first k can provide crucial information for distinguishing between geometric
proximity and actual cluster membership.

In sparse networks with strong degree heterogeneity—where some vertices have significantly higher
degree than others—spectral clustering based on the top k eigenvectors of the adjacency matrix often
fails. In such cases, the leading eigenvectors tend to localize around high-degree vertices, rather
than capturing the underlying cluster structure. Trimming-based approaches have been proposed
to mitigate this issue by down-weighting or removing influential high-degree vertices (Le et al.,
2017). Alternatively, using the normalized Laplacian shifts the problem: its leading eigenvectors may
become concentrated on peripheral substructures, such as dangling trees, while the cluster signal may
still lie in higher-order eigenvectors. To address this, regularization techniques have been introduced
to stabilize the spectral embedding and improve clustering performance (Qin and Rohe, 2013).

Although the previous paragraphs illustrate two different settings where higher-order eigenvectors
are crucial for uncovering cluster structure, they also share a key limitation: the leading eigenvectors
are largely uninformative, and only the higher-order ones carry meaningful clustering information.
PABM is fundamentally different, as potentially all k2 eigenvectors can be informative for clustering.
This richer spectral structure opens new avenues for designing more effective spectral algorithms.

5 Conclusion

We established the optimal error rate for clustering under the PABM, providing a precise information-
theoretic characterization of the fundamental limits of clustering in this rich and flexible model. Our
results highlight how heterogeneity in vertex popularity fundamentally alters the clustering landscape,
and how this is reflected in the spectral structure of the network. While our analysis provides a solid
theoretical foundation, several important questions remain open. A deeper theoretical understanding
of practical algorithms such as OSC and subspace clustering remains a key challenge. Another
important direction for future work is model selection: developing principled methods to distinguish
between models such as DCBM and PABM, and to infer key parameters like the number k of clusters
or the rank of the connection probability matrix P . Addressing these challenges is essential to
translate theoretical insights into robust, data-driven tools for network analysis.
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A Additional Discussion of Theoretical Results

A.1 Instance-Optimal versus Minimax Setting

In our study of optimal clustering rates in PABM, we did not made any assumption on the matrix B
(beyond being symmetric). As a result, our analysis derives the optimal error rate for a specific
instance of PABM (similar to the instance-wise analysis in Yun and Proutière (2016) for the edge-
labeled SBM) rather than a minimax error rate (as in Zhang and Zhou (2016) for SBM and Gao
et al. (2018) for DCBM). Both approaches are valuable: the minimax framework requires defining a
parameter space to which B belongs (typically the space of matrices having diagonal values larger
than or equal to p and off-diagonal values smaller than or equal to q, but offers no guarantees when
the matrix B lies outside this space, while the instance optimal-rate restricts to a specific but arbitrary
matrix B.

Moreover, we wish to emphasize an important point: a rate-optimal algorithm in the minimax setting
may not be rate-optimal for specific instances, even when those instances fall within the defined
parameter space. For example, Lloyd’s algorithm is minimax-optimal over the class of sub-Gaussian
mixture models Lu and Zhou (2016), but it fails to be instance-optimal for Gaussian mixture models
with anisotropic covariance structures Chen and Zhang (2024).

For the parameter space described two paragraphs above (matrix B with diagonal values larger than
or equal to p and off-diagonal values smaller than or equal to q), the worst-case rate for SBM and
DCBM arises when Baa = p for all a ∈ [k] and Bab = q for all a ̸= b, leading to a minimax rate
involving the term (

√
p−√q)2. In contrast, for PABM, the situation is more complex because of the

additional dependence on the individual parameters λia. As a result, we do not believe that a simple
closed-form expression for the minimax rate in PABM is attainable. Indeed, as shown in Example 2,
reducing the gap between p and q does not necessarily increases the optimal error-rate.

A.2 Overview of the Proofs

The overall structure of the proofs for Theorems 1 and 2, which establish the optimal error rate,
is similar to that used for SBM and DCBM (in Zhang and Zhou (2016) and Gao et al. (2018),
respectively). However, the PABM setting introduces additional technical complexity that requires a
more refined analysis.

(i) For the lower-bound, a first challenge is to address the minimum over all permutations in the
definition of the error loss. Hence, rather than directly examining inf ẑ∈[k]n E[n−1loss(z∗, ẑ)], we
follow previous works such as Zhang and Zhou (2016); Gao et al. (2018) and focus on a sub-
problem inf ẑ∈Z E[loss(z∗, ẑ)], where Z ⊂ [k]n is chosen such that loss(z∗, ẑ) = Ham(z∗, ẑ)/n
for all z∗, ẑ ∈ Z . This sub-problem is simple enough to analyze, while still capturing the hardness
of the original clustering problem. Next, we use a result from Dreveton et al. (2024) to show
that the Bayes risk inf ẑi P(ẑi ̸= z∗i ) for the misclustering of a single vertex i is asymptotically
e−(1+o(1))Chernoff(i,z∗).

More precisely, (Dreveton et al., 2024, Lemma 2) establishes the worst-case error rate for a binary
hypothesis testing problem where the observed random variable is drawn from either distribution
f1 or f2 (corresponding to hypothesis H1 and H2, respectively). Both f1 and f2 are arbitrary and
known probability density functions. By the Neyman–Pearson lemma, the likelihood ratio test
(equivalent to the MLE in this context) minimizes the probability of error, thereby ruling out all other
estimators for this problem. The error of the MLE is then upper-bounded using Chernoff’s method
and lower-bounded using a large deviation argument. In our setting, the hypothesis is formulated in
Equation (B.1), where f1 and f2 are product distributions of Bernoulli random variables.

(ii) The proof of the achievability is however more involved, and required a new approach. It
begins, similarly to prior work on block models, by upper-bounding E[loss(z∗, ẑ)] (where ẑ is the
MLE) by

∑
m P(Ham(z∗, ẑ) = m). Thus, the core difficulty relies in upper-bound the quantities

P(L(z) > L(z∗)) for any z such that Ham(z∗, z) = m (where L(z) denotes the likelihood of z given
an observation of A). This is more challenging in PABM than in SBM and DCBM. Indeed, unlike in
SBM (and to some extent DCBM), the likelihood ratio L(z)/L(z∗) cannot be easily simplified. As
for SBM and DCBM, we rely on Chernoff bounds to obtain P(L(z) > L(z∗)) ≤ E[et log(L(z)/L(z∗)]
for any t > 0. But, in SBM and DCBM, one can use t = 1/2 and obtain clean exponential bounds
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whose terms are exp(−θuθv(
√
p−√q)2). For PABM, the optimal t to use depends intricately on

the misclassified set {u : zu ̸= z∗u}, and thus on z itself. To address this, we adopt a more refined
approach: we decompose the upper bound into three components T1(t), T2(t), and T3(t), and select
a tailored value of t for each labeling z. This additional complexity distinguishes our analysis from
earlier work and reflects the greater structural richness of PABM compared to SBM and DCBM.

A.3 Extension when Assumption 2 Fails

The situation when Assumption 2 fails is slightly delicate. Suppose firstly that Assumption 2 fails
such that maxi Chernoff(i, z

∗) = O(1). In that case, the optimal clustering error cannot vanish.
Indeed, using arguments similar to those in Zhang and Zhou (2016), we can establish that the
optimal error rate is lower-bounded by a non-zero constant c > 0. More generally, we introduce
the set S = {i ∈ [n] : Chernoff(i, z∗) = O(1)} of vertices having a non-vanishing error of being
misclustered. Assumption 2 fails whenever S ̸= ∅. By refining the proof of Theorem 1, we can
obtain a lower-bound for the clustering error of any algorithm of the form:

inf
ẑ
E [loss(z∗, ẑ)] ≥ (1− ϵ)mina πa

4

(
1

|Sc|
∑
i∈Sc

e−Chernoff(i,z∗) + c
|S|
n

)1+η

.

This decomposition reflects that a constant fraction of nodes (those in S) are intrinsically hard to
classify, while the rest exhibit standard exponential error decay. When Assumption 2 holds, S = ∅ and
the lower bound matches the result in Theorem 1. (And observe that the case maxi Chernoff(i, z

∗) =
O(1) discussed earlier is equivalent to |S| = n, and we recover inf ẑ E [loss(z∗, ẑ)] ≥ c for some
non-vanishing constant c > 0.)

Showing that the MLE attains this bound when S ̸= ∅ appears plausible but requires additional
technical work.

B Proof of Theorem 1

B.1 Clustering one Vertex at a Time: the Genie-aided Problem

Let i ∈ [n] and suppose a genie gives you z∗−i, i.e., the community labels of all nodes but i. Denote
H

(i)
a : z∗i = a the hypothesis that node i belongs to the cluster a ∈ [k]. Letting X = Ai· being the

i-th row of the adjacency matrix, the hypothesis testing resumes to

H(i)
a : X ∼

⊗
j ̸=i

Ber
(
ρnλiz∗

j
λjaBz∗

j a

)
. (B.1)

The worst-case error of a testing procedure ϕ : {0, 1}n−1 → {1, · · · , k} is

r(ϕ) = max
a̸=b

P (ϕ(X) = a |Hb) .

By the Neyman-Pearson lemma, we have ϕMLE = argminϕ r(ϕ) where

ϕMLE(Ai·) = argmax
a∈[k]

∏
j ̸=i

(
1− ρnλiz∗

j
λjaBz∗

j a

)1−Aij
(
ρnλiz∗

j
λjaBz∗

j a

)Aij

.

Recall that the quantity ∆ia(z
∗,Λ) is defined in (2.3) by

∆(i, a) = sup
t∈(0,1)

(1− t)Rent

⊗
j ̸=i

Ber
(
ρnλiz∗

j
λja

)
,
⊗
j ̸=i

Ber
(
ρnλiz∗

j
λjz∗

i

) .

(Dreveton et al., 2024, Lemma 2) shows that for all a ̸= z∗i we have

P
(
ϕMLE(Ai·) = a | z∗i

)
= e−(1+o(1))∆(i,a),
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provided that ∆(i, a) = ω(1). Furthermore, if ∆(i, a) = ω(log k), union bounds imply that

P
(
ϕMLE (Ai·) ̸= z∗i

)
= e−(1+o(1))Chernoff(i,a) (B.2)

where

Chernoff(i, z∗) = min
a ̸=z∗

i

∆(i, a)

is the Chernoff information associated with this hypothesis testing problem.

B.2 Lower-bounding the Optimal Error

Proof of Theorem 1. For simplicity, we shorten Zn(π, ϵ) by Z . Let z∗ ∈ Z be the true cluster
membership vector. We denote the set of vertices in cluster a by Γa(z

∗) = {i ∈ [n] : z∗i = a}.
Following the same proof strategy as previous works on clustering block models (Gao et al., 2018;
Dreveton et al., 2024), we define a clustering problem over a subset of [k]n to avoid the issues
of label permutations in the definition of the loss function (2.2). For every cluster a ∈ [k], we
define the set Ta of the |Γa(z

∗)| − n(1−ϵ)πmin

4k vertices belonging to cluster a and having the largest
Chernoff(i, z∗). We motivate this as follows. A vertex i with a large Chernoff(i, z∗) implies that if
a genie provides z∗−i (the community labels of all vertices but i), the inference of z∗i is easy. Hence,
the set Ta contains the vertices belonging to the cluster a that are the easiest to cluster, and therefore
a good estimator ẑ should correctly infer the vertices belonging to Ta. In contrast, vertices with small
Chernoff(i, z∗) may be impossible to cluster, even with the best estimator, and these are the vertices
that matter in deriving the lower-bound. Let T = ∪a∈[k]Ta and define a new parameter space Z̃ ⊆ Z

Z̃ = {z : zi = z∗i for all i ∈ T and
|Γa(z)|

n
∈ [(1− ϵ)πa, (1 + ϵ)πa]}.

This new space Z̃ is composed of all vectors z ∈ Z that only differ from z∗ on the indices i’s that do
not belong to T . By definition of T , these vertices are the hardest to cluster. By construction of Z̃ ,
we have for any z, z′ ∈ Z̃

Ham(z, z′) =

n∑
i=1

1{zi ̸= z′i} ≤ |T c| = k
n(1− ϵ)πmin

4k
.

Because z ∈ Z̃ ⊂ Z , we have by definition of Z that mina∈[k] |Γa(z)| ≥ (1− ϵ)nπmin. Therefore,
the previous inequality ensures that Ham(z, z′) < 2−1 mina∈[k] |Γa(z)| for all z, z′ ∈ Z . We can
thus apply Lemma 4 to establish that

∀z, z′ ∈ Z̃ : loss(z, z′) =
1

n
Ham(z, z′) =

1

n

∑
i∈T c

1{zi ̸= z′i}. (B.3)

For any estimator ẑ, we can build an estimator ẑ′ ∈ Z̃ such that

ẑ′i =

{
z∗i if i ∈ T,

ẑi otherwise,

and this estimator satisfies loss(z∗, ẑ′) ≤ loss(z∗, ẑ). Therefore,

inf
ẑ∈Z

E loss(z∗, ẑ) ≥ inf
ẑ′∈Z̃

E loss(z∗, ẑ′) =
1

n
inf
ẑ′∈Z̃

EHam(z∗, ẑ),

where the last equality follows from (B.3). Hence, we obtain

inf
ẑ∈Z

E loss(z∗, ẑ) ≥ 1

n
inf
ẑ

∑
i∈T c

P (ẑi ̸= z∗i ) ≥
1

n

∑
i∈T c

inf
ẑi

P (ẑi ̸= z∗i ) .

From Equation (B.2), we have

inf
ẑi

P (ẑi ̸= z∗i ) ≥ e−(1+ηi)Chernoff(i,z∗),
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for some ηi = o(1). Let η = maxi ηi. We obtain

inf
ẑ∈Z

E loss(z∗, ẑ) ≥ |T
c|
n

1

|T c|
∑
i∈T c

e−(1+η)Chernoff(i,z∗)

≥ |T
c|
n

1

n

∑
i∈[n]

e−(1+η)Chernoff(i,z∗)

=
(1− ϵ)πmin

4

1

n

∑
i∈[n]

e−(1+η)Chernoff(i,z∗),

where the second inequality uses the fact that T c collects the indices of the vertices with the smallest
Chernoff(i, z∗), and the last line uses |T c|

n = α(1−ϵ)πmin

4 (by definition of T ).

Finally, note that we can always chose η to be nonnegative and thus the function x 7→ x1+η is convex.
Hence, by Jensen’s inequality, we have

1

n

∑
i∈[n]

(
e−Chernoff(i,z∗)

)1+η

≥

 1

n

∑
i∈[n]

e−Chernoff(i,z∗)

1+η

.

B.3 Additional Lemma

Lemma 4 (Lemma C.5 in Avrachenkov et al. (2022)). Let z1, z2 ∈ [k]n such that Ham(z1, τ
∗◦z2) <

1
2 mina∈[k] |Γa(z1)| for some τ∗ ∈ Sym(k). Then τ∗ is the unique minimizer of τ ∈ Sym(k) 7→
Ham(z1, τ ◦ z2).

C Proof of Theorem 2

Warm-up: notations and MLE Let z ∈ [k]n be any vertex labeling. We denote L(z) = P (A | z)
the likelihood of z given the observation A. We study the performance of the maximum likelihood
estimator ẑ = ẑ(A) defined by

ẑ = argmax
z∈[k]n

L(z),

where ties are broken arbitrarily. Hence, by definition, the MLE is any estimator ẑ such that

L(ẑ) ≥ L(z) for all z ∈ [k]n.

Moreover, we have

nE [loss(z∗, ẑ)] = E

[
min

σ∈Sym([k])
Ham(z∗, σ ◦ z)

]
≤ E [Ham(z∗, z)] .

We also recall (see (Dreveton et al., 2023, Lemma 7)) that, for any z, z′ ∈ [k]n we have

loss(z, z′) ≤ n(1− 1/k).

Therefore,

nE [loss(z∗, z)] ≤
n(1−1/k)∑

m=1

mP (Ham(z∗, ẑ) = m) .
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For technical reasons that will become clear in the end of the proof, we first need to split the sum into
two parts. Let m0 ≥ 1, whose value will be determined later. We have

E [Ham(z∗, z)] =

m0∑
m=1

mP (Ham(z∗, ẑ) = m) +

n(1−1/k)∑
m=m0+1

mP (Ham(z∗, ẑ) = m)

≤ m0 +

n(1−1/k)∑
m=m0+1

mP (Ham(z∗, ẑ) = m) .

Let us denote Zm the set of vertex labeling z ∈ [k]n such that Ham(z∗, z) = m. By definition of the
maximum likelihood and by union bounds, we have

P (ẑ ∈ Zm) ≤ P (∃z ∈ Zm : L(z) ≥ L(z∗)) ≤
∑

z∈Zm

P (L(z) ≥ L(z∗)) .

Hence, by combining the previous inequalities, we obtain

E [loss(z∗, ẑ)] ≤ 1

n

m0 +

n(1−1/k)∑
m=m0+1

m
∑

z∈Zm

P (L(z) ≥ L(z∗))

 . (C.1)

A large part of the rest of the proof is devoted to upper-bound
∑

z∈Zm
P (L(z) ≥ L(z∗)) for an

arbitrary m. We first observe that

L(z) =
∏
i<j

P (Aij | zi, zj)

=
∏
i<j

(
ρnλizjλjziBzizj

)Aij
(
1− ρnλizjλjziBzizj

)1−Aij
.

In all the following, to avoid overburdening the notations, we denote P z
ij = ρnλizjλjziBzizj . We

also introduce

Γ(z, z∗) =
{
(i, j) : 1 ≤ i ̸= j ≤ n and (zi, zj) ̸= (z∗i , z

∗
j )
}

We have

L(z)

L(z∗)
=

∏
i<j

(i,j)∈Γ(z,z∗)

(
P z
ij

P ∗
ij

)Aij
(
1− P z

ij

1− P ∗
ij

)1−Aij

.

Therefore, by Chernoff bounds, we have for any t > 0,

P (L(z) > L(z∗)) = P
(
et log

L(z)
L(z∗) > 1

)
≤

∏
i<j

(i,j)∈Γ(z,z∗)

E

[
e
t

(
Aij log

Pz
ij

P∗
ij

+(1−Aij) log
1−Pz

ij
1−P∗

ij

)]

=
∏
i<j

(i,j)∈Γ(z,z∗)

e−(1−t)Rent(P z
ij ,P

∗
ij). (C.2)

For ease of the exposition, we start by deriving an upper bound on
∑

z∈Zm
P (L(z) ≥ L(z∗)) in the

simplest case m = 1. We do the general case m ≥ 1 later.

(i) Case m = 1. Observe that

Z1 = {z ∈ [k]n : Ham(z, z∗) = 1} = {z̃ua, u ∈ [n], a ∈ [k] \ {z∗u}},
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where z̃uav = z∗v for all u ̸= v and z̃uau = a. Hence,

P (Ham(z∗, ẑ) = 1) = P (∃u ∈ [n], ∃a ∈ [k] \ {z∗u} : L(z̃ua) > L(z∗))

≤
n∑

u=1

∑
a∈[k]\{z∗

u}

P (L(z̃ua) > L(z∗)) . (C.3)

Moreover, for any u ∈ [n] and a ∈ [k] \ {z∗u}, we have

P (L(z̃ua) > L(z∗)) ≤ e−(1−t)
∑

j ̸=u Rent(P z̃ua

uj ,P∗
uj).

This last inequality is valid for any t > 0. Applying it with t∗ = argmaxt∈(0,1)(1 −
t)
∑

j ̸=u Rent
(
P z̃u

uj , P
∗
uj

)
, we obtain

P (L(z̃ua) > L(z∗)) ≤ e−∆ua ≤ e−Chernoff(u,z∗),

because Chernoff(u, z∗) = mina̸=z∗
u
∆ua. Hence, using (C.3) we have

P (Ham(z∗, ẑ) = 1) ≤ k

n∑
u=1

e−Chernoff(u,z∗).

(ii) Case m ≥ 2 Consider now z such that Ham(z, z∗) = m. Introduce u1, · · · , um the m ≥ 2
vertices satisfying zup ̸= z∗up

for all p ∈ [m]. By definition, for any v ̸∈ {u1, · · · , up}, we have
zv = z∗v .

Observe that

Γ(z, z∗) = {(i, j) : i ̸= j and (zi, zj) ̸= (z∗i , z
∗
j )} = S1 ∪ S2,

where

S1 = {(i, j) : zi ̸= z∗i and j ̸= i}
S2 = {(i, j) : zi = z∗i and zj ̸= z∗j }.

Thus, we have∑
i<j

(i,j)∈Γ(z,z∗)

(1− t)Rent
(
P z
ij , P

∗
ij

)
=

1

2

∑
(i,j)∈Γ(z,z∗)

(1− t)Rent
(
P z
ij , P

∗
ij

)

=
1

2


∑

(i,j)∈S1

(1− t)Rent
(
P z
ij , P

∗
ij

)
︸ ︷︷ ︸

T1(t)

+
∑

(i,j)∈S2

(1− t)Rent
(
P z
ij , P

∗
ij

)
︸ ︷︷ ︸

T2(t)

 .

Notice further that

T1(t) =
∑

i∈{u1,··· ,um}

∑
j ̸=i

(1− t)Rent
(
P z
ij , P

∗
ij

)
(C.4)

and

T2(t) =
∑

i/∈{u1,··· ,um}

∑
j∈{u1,··· ,um}

(1− t)Rent
(
P z
ij , P

∗
ij

)
=

∑
i∈{u1,··· ,um}

∑
j /∈{u1,··· ,um}

(1− t)Rent
(
P z
ij , P

∗
ij

)
= T1(t)−

∑
i∈{u1,··· ,um}

∑
j∈{u1,··· ,um}

j ̸=i

(1− t)Rent
(
P z
ij , P

∗
ij

)
.
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Combined to the Chernoff bounds (C.2), this leads

P (L(z) ≥ L(z∗)) ≤ e−T1(t)+T3(t), (C.5)

where T3(t) is given by

T3(t) =
1

2

∑
i∈{u1,··· ,um}

∑
j∈{u1,··· ,um}

j ̸=i

(1− t)Rent
(
P z
ij , P

∗
ij

)
. (C.6)

Let us lower-bound T1. For p ∈ [m], denote tp = argmaxt∈(0,1)(1− t)
∑

j ̸=u Rent

(
P z
upj

, P ∗
upj

)
.

Note that tp is bounded away from one, as when t = 1, the objective function inside the argmax
equals 0. We also recall that, for any α, β ∈ (0, 1) with α ≤ β, and any probability distributions f
and g, we have (Van Erven and Harremoës, 2014, Theorem 16)

α

β

1− β

1− α
Renβ(f, g) ≤ Renα(f, g) ≤ Renβ(f, g).

Denote t∗ = min{t1, · · · , tm}. Without loss of generality, suppose that t∗ = t1. Using the previous
inequality with α = tp and β = t1, we have,∑

j∈[n]\{up}

Rent1

(
P z
upj , P

∗
upj

)
≥

∑
j∈[n]\{up}

Rentp

(
P z
upj , P

∗
upj

)
,

for any p ∈ [m]. Thus,

(1− t1)
∑

j∈[n]\{up}

Rent1

(
P z
upj , P

∗
upj

)
≥ 1− t1

1− tp
(1− tp)

∑
j∈[n]\{up}

Rentp

(
P z
upj , P

∗
upj

)
=

1− t1
1− tp

Chernoff(up),

by definition of tp. Because all the tp are bounded away from 1 and t1 = min{t1, · · · , tm}, we have
1−t1
1−tp

≥ C for some constant C ≥ 1. Recalling the definition of T1 in (C.4), we obtain

T1(t1) ≥
m∑

p=1

1− t1
1− tp

Chernoff(up)

= Chernoff(u1) +

m∑
p=2

1− t1
1− tp

Chernoff(up)

≥ Chernoff(u1) + C

m∑
p=2

Chernoff(up). (C.7)

We now upper-bound T3(t1), defined in (C.6). By Assumption 1, all the Rényi divergences are of the
same order. Thus, there exists a quantity C ′

m such that C ′
n = 1 and

T3(t1) ≤
1

2

∑
i∈{u1,··· ,um}

C ′
m

m− 1

n

∑
j ̸=i

(1− t1)Rent1
(
P z
ij , P

∗
ij

)
≤ C ′

m

m

2n

∑
p∈{1,··· ,m}

Chernoff(up, z
∗). (C.8)

In the rest of the proof, we denote δm = C ′
m

m
2n .

By combining (C.7) and (C.8) with the Chernoff bound (C.5), we have

P (L(z) ≥ L(z∗)) ≤ e−Chernoff(u1)e−(C−δm/2)
∑m

p=2 Chernoff(up).
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We recall that z ∈ Zm if and only if there exists a set {u1, · · · , um} of m distinct vertices such that

zu = z∗u ⇐⇒ u /∈ {u1, · · · , um}.

Moreover, for any such set {u1, · · · , um}, there exists (k− 1)m ways to construct a z ∈ Zm. Hence,∑
z∈Zm

P (L(z) ≥ L(z∗)) ≤ (k − 1)m
∑

{u1,··· ,um}

e−Chernoff(u1)e−(C−δm)
∑m

p=2 Chernoff(up)

= (k − 1)m
n∑

u1=1

e−Chernoff(u1)
∑

{u2,··· ,um}

e−(C−δm)
∑m

p=2 Chernoff(up).

In the previous inequality, the second summation is over all set {u2, · · · , um} of m − 1 elements
belonging to [n]\{u1}. There are(

n− 1

m− 1

)
≤
(
e(n− 1)

m− 1

)m−1

ways of choosing such set. We finally obtain∑
z∈Zm

P (L(z) ≥ L(z∗)) ≤
n∑

u1=1

e−Chernoff(u1)

(
e(k − 1)(n− 1)

m− 1
e−(C−δm)mini∈[n] Chernoff(i)

)m−1

≤
n∑

u1=1

e−Chernoff(u1)

(
ekn

m− 1
e−(C−δm)mini∈[n] Chernoff(i)

)m−1

.

Ending the proof. Going back to (C.1), we have

E [loss(z∗, ẑ)] ≤ 1

n

m0 +

n∑
u1=1

e−Chernoff(u1)

n(1−1/k)∑
m=m0+1

mQm−1
m

 , (C.9)

where Qm = ekn
m−1e

−(C−δm)mini∈[n] Chernoff(i). Denote also R =
∑n

u1=1 e
−Chernoff(u1) and B =

2enke−C mini Chernoff(i,z∗), and recall C ≥ 1. We also introduce

m1 = ⌊2enke−(C−δn(1−1/k))mini Chernoff(i,z∗)⌋.

By assumption, we have δn(1−1/k) < 1− ϵ and thus m1 = o(n). Observe that

Qm ≤
1

2
∀m ∈ {m1 + 1, · · · , n(1− 1/k)}

and thus
n(1−1/k)∑
m=m1+1

mQm−1
m ≤

∞∑
m=m1+1

m

(
1

2

)m−1

≤ 4
m1 + 1

2m1
≤ 4 (C.10)

by using properties on geometric sums (see Lemma 5).

We still need to upper-bound
∑m1

m=m0+1 mQm−1
m . Let m̃0 = 2ekReCδm1

mini Chernoff(i,z∗). Observe
that, for any m̃0 ≤ m ≤ m1, we have Qm ≤ 1/2. Then, we are left with two cases.

(a) If m̃0 ≤ 1, then chose m0 = 0. Then, we simply have
m1∑

m=m0

mQm−1
m =

n∑
m=1

mQm−1
m ≤

∞∑
m=1

m

(
1

2

)m−1

≤ 4,

by using Lemma 5 as above. By combining (C.9) and (C.10), we have

E [loss(z∗, ẑ)] ≤ 8
R

n
.
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(b) Otherwise, chose m0 = ⌈m̃0⌉. Then, we upper-bound
∑m1

m=m0
mQm−1

m by 4 as above, and we
obtain from (C.9) that

E [loss(z∗, ẑ)] ≤ 1

n
(m0 + 8R)

Moreover, m0 = ⌈m̃0⌉ ≤ 2m̃0. This gives

E [loss(z∗, ẑ)] ≤ 1

n
(2m̃0 + 8R) ≤ R

n

(
2ekeCδm1

mini Chernoff(i,z∗) + 8
)
.

Observe that this last upper-bound is also an upper-bound for E [loss(z∗, ẑ)] in the case (a). To finish
the proof, we recall that m1 = o(n) and thus δm1 = o(1) by definition of δm.

Additional Lemma This lemma and its proof are taken from (Avrachenkov et al., 2022,
Lemma A.8), and reproduced here for the sake of completeness.
Lemma 5. For any integer M ≥ 1 and any number 0 ≤ s < 1,

MsM ≤
∞∑

m=M

msm ≤ (1− s)−2MsM .

Proof. Denote S =
∑∞

m=M msm. By differentiating
∑∞

m=M sm = (1− s)−1sM with respect to s,
we find that

s−1S =

∞∑
m=M

msm−1 = (1− s)−2sM + (1− s)−1MsM−1,

from which we see that

S = s(1− s)−2
(
sM + (1− s)MsM−1

)
=

MsM

(1− s)2

(
1− s(1− 1/M)

)
The upper bound now follows from 1 − s(1 − 1/M) ≤ 1. The lower bound is immediate, corre-
sponding to the first term of the nonnegative series.

D Proof of Proposition 3 and Examples 1 and 2

D.1 Chernoff divergence for Homogeneous PABM

We start with the following lemma.
Lemma 6. Consider a PABM with homogeneous interactions, and k equal-size communities. Suppose
the coefficients λin

1 , · · · , λin
n (resp., λout

1 , · · · , λout
n ) are sampled iid from a distribution Din (resp.,

Dout), where Din and Dout are two distributions supported on R+ and with mean 1. Let i ∈ [n]. We
have

Chernoff(i, z∗) = (1 + o(1))
nρn
k

E

[(√
p0λin

i Y −
√

q0λout
i Y ′

)2
]
,

where Y and Y ′ are two independent random variables sampled from Din and Dout, respectively.

Proof. We apply the law of large number to the quantity δ defined in the equation above Proposition 3.

Lemma 7. Consider the same setting and notations as in Lemma 6. We also suppose that the
distributions Din and Dout have pdf fDin

and fDout
with respect to the Lebesgue measure. Denote

γin = E[
√
Y ] and γout = E[

√
Y ′], where Y ∼ Din and Y ′ ∼ Dout. Finally, suppose that p0 > 0

and let ξ = q0/p0. We have

1

n

n∑
i=1

exp

(
−nρn

k
p0

(
1 + λin

i − 2γ
√
λin
i

))
= (1 + o(1))Jn,
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where

Jn =

∫ ∫
exp

(
−nρn

k
p0

(
x+ ξy − 2γinγout

√
ξ
√
xy
))

fDin(x)fDout(y)dxdy.

Proof. From Lemma 6, we have

Chernoff(i, z∗) = (1 + o(1))
nρn
k

p0E

[(√
λin
i Y −

√
ξλout

i Y ′
)2
]

= (1 + o(1))
nρn
k

p0

(
λin
i + ξλout

i − 2γinγout
√
ξ
√
λin
i λout

i

)
.

As λin
i ∼ Din and λout

i ∼ Dout, computing 1
n

∑
i e

−Chernoff(i,z∗) resumes to compute

lim
i→∞

1

n

n∑
i=1

exp
(
−nρn

k
p0

(
x+ ξy − 2γinγout

√
ξ
√
xy
))

.

In particular, exp
(
−nρn

k p0
(
x+ ξy − 2γinγout

√
ξ
√
xy
))

is bounded by [0, 1], hence its variance is
also upper bounded by 1. Let Jn be the expectation of this quantity over Din,Dout. Centering the
variable, we bound the total variance

n∑
i=1

n−2 Var
(
exp

(
−nρn

k
p0

(
x+ ξy − 2γinγout

√
ξ
√
xy
))
− Jn

)
<
∑
i

n−2 < ∞.

Kolmogorov’s variance criterion for averages (Kallenberg, 2021, Lemma 5.22) implies

1

n

n∑
i=1

(
exp

(
−nρn

k
p0

(
x+ ξy − 2γinγout

√
ξ
√
xy
))
− Jn

)
a.s.−−→ 0.

Therefore the limit converges to its expectation almost surely,

lim
i→∞

1

n

n∑
i=1

exp
(
−nρn

k
p0

(
x+ ξy − 2γinγout

√
ξ
√
xy
))

= Jn,

where

Jn =

∫ ∫
exp

(
−nρn

k
p0

(
x+ ξy − 2γinγout

√
ξ
√
xy
))

fDin
(x)fDout

(y)dxdy.

D.2 Proof of Proposition 3

To prove Proposition 3, we apply Lemma 7 in the particular case whereDin is the uniform distribution
Uni(1− c, 1 + c) and Dout is the Dirac distribution at 1. Hence, the integral Jn given in Lemma 7
becomes

Jn =

∫
exp

(
−nρn

k
p0

(
x+ ξ − 2γin

√
ξ
√
x
))

fDin
(x)dx,

where fDin
(x) = 1

2c1(x ∈ (1− c, 1 + c)), and the lower and upper limits of the integral are 1− c

and 1 + c, respectively. For simplicity we write y =
√
Mx where M = nρnp0/k. We perform the

following change of variable:
√
x = y√

M
, dy = 1

2

√
Mx−1/2dx and dx = 2

√
x√

M
dy = 2y

M dy. The

lower and upper integration limits become y− =
√
M
√
1− c and y+ =

√
M
√
1 + c. Changing
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variables and completing the square gets us

Jn =
1

2c

∫ y+

y−

exp
(
−y2 −Mξ + 2γ

√
My

√
ξ
) 2y

M
dy

=
1

2c

∫ y+

y−

exp
(
−(y − γ

√
ξ
√
M)2 +Mξ(γ2

in − 1)
) 2y

M
dy

=
exp(Mξ(γ2

in − 1))

cM

∫ y+

y−

exp
(
−(y − γin

√
ξ
√
M)2

)
ydy.

Again, substitute u = y − γin
√
ξ
√
M to get

Jn =
exp(Mξ(γ2

in − 1))

cM

∫ u+

u−

exp
(
−u2

) (
u+ γin

√
ξ
√
M
)
du

=
exp(Mξ(γ2

in − 1))

cM

(∫ u+

u−

exp
(
−u2

)
udu+ γin

√
ξ
√
M

∫ u+

u−

exp
(
−u2

)
du

)
,

where u− =
√
M(
√
1− c − γin

√
ξ) and u+ =

√
M(
√
1 + c − γin

√
ξ). The first integral can by

solved by-parts, and the later we recognize as the Gauss error function. Hence,

Jn =
exp(Mξ(γ2

in − 1))

cM

(
1

2
(exp(−u2

+)− exp(−u2
−)) +

1

2
γin
√
ξM
√
π(erf(u+)− erf(u−))

)
,

where erf(t) = 2/
√
π
∫ t

0
e−t2dt. Moreover, the quantity γin = EY∼Din

[
√
Y ] can be computed

explicitly. We obtain γin = 1
2c

∫ 1+c

1−c

√
xdx = 1

3c

(
(1 + c)

3
2 − (1− c)

3
2

)
. We denote this last

quantity by γc, to emphasize that it depends only on c.

D.3 Discussion Relative to Examples 1 and 2

This involved expression of Jn computed in Proposition 3 is well-behaved and practically interesting
for particular values of ξ and c. As such, a few remarks are in order.

First (resuming Example 1), when ξ = 1, we have u− =
√
1− c−γ < 0 and u+ =

√
1 + c−γ > 0

for all c ∈ (0, 1]. Moreover, M → ∞ as n → ∞, and u∓ → ∓∞. So J simplifies to the much
simpler expression

Jn =
γc
c

√
kπ

nρnp0
exp

(
−nρn

k
p0(1− γ2

c )
)
,

which only depends on c (recall γc = 1
3c

(
(1 + c)

3
2 − (1− c)

3
2

)
) and is monotonically decreasing

over c ∈ (0, 1]. This agrees with the following intuitive fact: as c increases, the higher variance in the
popularity heterogeneity aids recovery.

Another interesting case is when we fix c as in Example 2. As ξ increases from 0 to 1, J first
monotonically increase, then monotonically decrease and approaches 0 as ξ → 1. In particular, ξ = 0
corresponds to disconnected communities, hence clustering is trivial. As ξ increases, the additional
inter-cluster edges act as noise to our classification task. On the other hand, a very large ξ allows
us to better learn from the popularity patterns as q0 gets closer and closer to p0, and leverage from
the variance introduced by c. Especially, u∓ → ∓∞ when ξ > ξ0 for some constant c0 ∈ (0, 1).

Hence in this regime, classification is easy, as Jn =
γc

√
ξπ exp(−Mξ(1−γ2

c ))

c
√
M

→ 0 as M → ∞ and
γ2
c − 1 < 0. This phenomena illustrates an interesting duality of the role of inter-cluster edges—they

act as noise below a threshold ξ0, yet serves to emphasize the popularity variance introduced by c
above the same threshold.

To better illustrate this two phenomenon, we plot in Figure 3 the error rates obtained for homogeneous
PABM where λout

i = 1 and the λin are sampled from Uni(1−c, 1+c). This illustrate the phenomenon
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highlighted by the Examples 1 and 2: (i) the error rate do not vanish when the edge-density signal
disappear and (ii) the error rate is not monotonously decreasing with the edge-density signal.
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Figure 3: Optimal error rate on PABM with homogeneous interactions. The matrix P is given in
Equation (3.1), and we let n = 900 vertices, k = 3 clusters of same size, average edge density
ρ = 0.05, and interaction probabilities p = ρ and q = ξp. In both figures, the quantities λin

i are iid
sampled from Din = Uni(1− c, 1 + c) and the λout

i are all equal to one. In Figure 3a, we let ξ = 1
an vary c, while in Figure 3b we let c = 0.8 and we vary ξ. The optimal error rates are computed
using the formula obtained in Proposition 3.

To show that these phenomena are not artifact of setting the λout all equal to 1 and sampling the λin

from a particular distribution, we also provide in Figure 4 plot of the optimal error rate (as given by
the formula derived in Proposition 3) when the coefficients λin and λout are sampled from different
distributions.
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Figure 4: Numerical values obtained for the optimal error rate 1
n

∑
i exp(−Chernoff(i, z∗)) on

PABM with homogeneous interactions. The matrix P is given in Equation (3.1), and we let n = 900
vertices, k = 3 clusters of same size, average edge density ρ = 0.05, and interaction probabilities
p = ρ and q = ξp. In both figures, the quantities λin

i and λout are iid sampled from a distribution D.
Figure 4a: D is the exponential distribution with mean 1. Figure 4b: D is the log-normal distribution
with parameters (µ, σ) = (−1/2, 1) (chosen so that the mean of the distribution is 1).

E Description of the Algorithms

E.1 Variants of Spectral Clustering with k Eigenvectors

Algorithms 1, 2, and 3 provide the sklearn, sbm, and dcbm variants of spectral clustering, respectively.

E.2 Variants of Spectral Clustering with k2 Eigenvectors

In this section, we describe two algorithms proposed in the litterature for clustering PABM.
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Algorithm 1: Spectral Clustering: scikit-learn

Input: Adjacency matrix A ∈ Rn×n
+ , number of clusters k

Output: Predicted community memberships ẑ ∈ [k]n

1 Let D = diag(D1n) be the degree matrix
2 Compute the normalized Laplacian L = In −D−1/2AD−1/2

3 Compute the k eigenvectors of L associated to its k smallest eigenvalues. Construct V ∈ Rn×k

using these eigenvectors as its columns.
4 Let ẑ ∈ [k]n be the output of Lloyd’s algorithm (to solve the k-means problem) on the cloud of

k-dimensional points Vi·)i∈[n].

Algorithm 2: Spectral Clustering: standard block model variant

Input: Adjacency matrix A ∈ Rn×n
+ , number of clusters k

Output: Predicted community memberships ẑ ∈ [k]n

1 Compute the k eigenvectors v1, · · · , vk of A associated to its k largest eigenvalues (in absolute
value) |σ1| ≥ · · · ≥ |σk|. Let V = (v1, · · · , vk) ∈ Rn×k and Σ = diag(σ1, · · · , σk) ∈ Rk×k.

2 Let ẑ ∈ [k]n be the output of Lloyd’s algorithm (to solve the k-means problem) on the cloud of
k-dimensional points ((V Σ)i·)i∈[n].

Algorithm 3: Spectral Clustering: degree-corrected block model variant

Input: Adjacency matrix A ∈ Rn×n
+ , number of clusters k

Output: Predicted community memberships ẑ ∈ [k]n

1 Compute the k eigenvectors v1, · · · , vk of A associated to its k largest eigenvalues (in absolute
value) |σ1| ≥ · · · ≥ |σk|. Let V = (v1, · · · , vk) ∈ Rn×k and Σ = diag(σ1, · · · , σk) ∈ Rk×k.

2 Let P̂ = V ΣV T

3 Let S0 = {i ∈ [n] : ∥Pi·∥1 = 0}. Define P̃i· = Pi·/∥Pi·∥1 for i ∈ Sc
0 and P̃i· = Pi· for i ∈ S0.

4 Let ẑ ∈ [k]n be the output of Lloyd’s algorithm (to solve the k-means problem) on the cloud of
n-dimensional points (P̂i·)i∈Sc

0
(note that we assign the vertices of S0 arbitrarily).

Orthogonal Spectral Clustering Koo et al. (2023) observed that PABM is a special case of the
Generalized Random Dot Product Graph (GRDPG) for which the latent position vectors lie in distinct
orthogonal subspaces, each subspace corresponding to a community. This leads to Algorithm 4.

Algorithm 4: Orthogonal Spectral Clustering

Input: Adjacency matrix A ∈ Rn×n
+ , number of clusters k

Output: Predicted clusters ẑ ∈ [k]n

1 Compute the eigenvectors of A associated to its k(k + 1)/2 most positive eigenvalues and
k(k − 1)/2 most negative eigenvalues. Construct V ∈ Rn×k2

using these eigenvectors as its
columns.

2 Compute B = |nV V T | ∈ Rn×n, applying | · | entry-wise.
3 Let ẑ ∈ [k]n be the output of spectral clustering (see Algorithm 1) applied on the graph whose

adjacency matrix is B.

Subspace Spectral Clustering Noroozi et al. (2021) proposes another approach to cluster PABM.
In particular, they notice that the expected adjacency matrix of a PABM has a rank between k
and k2 and is composed of subspaces. In particular, two vertices in the same community belong
to the same subspace. This motivates the usage of subspace clustering, as opposed to k-means, for
clustering the cloud of point obtained via the spectral embedding. For subspace clustering, we use the
implementation provided in You et al. (2016) and available at https://github.com/ChongYou/
subspace-clustering, and we refer to Elhamifar and Vidal (2013) for an introduction on (sparse)
subspace clustering. We summarized this in Algorithm 5.

25

https://github.com/ChongYou/subspace-clustering
https://github.com/ChongYou/subspace-clustering


Algorithm 5: Subspace Clustering on Spectral Embedding

Input: Adjacency matrix A ∈ Rn×n
+ , number of clusters k, embedding dimension d (default:

d = k2)
Output: Predicted clusters ẑ ∈ [k]n

1 Compute the d eigenvectors v1, · · · , vd of A associated to its d largest eigenvalues (in absolute
value) |σ1| ≥ · · · ≥ |σd|. Construct V = (v1, · · · , vd) ∈ Rn×k and Σ = diag(σ1, · · · , σd).

2 Let ẑ ∈ [k]n be the output of subspace clustering on the cloud of d-dimensional points
((V Σ)i·)i∈[n].

E.3 Additional Clustering Algorithms

The algorithm from Bhadra et al. (2025) is an iterative community detection method designed
for the Popularity-Adjusted Block Model (PABM). It begins by computing an adjacency spectral
embedding of the network into a low-dimensional space of dimension d (where typically d = k2).
For each tentative community, a subspace is estimated via singular value decomposition of the
node embeddings in that cluster. The algorithm then greedily reassigns nodes to the community
whose subspace yields the smallest projection error, thereby minimizing the objective function. This
process iterates until node assignments stabilize, yielding a community structure tailored to the
PABM. Although the original paper does not assign a name to the algorithm, we refer to it as Greedy
Subspace Projection Clustering (gspc). Algorithm 6 provides the pseudo-code.

Algorithm 6: Greedy Subspace Projection Clustering (gspc)
Input: Adjacency matrix A ∈ Rn×n, number of communities K, embedding dimension d

(default: d = k2), initial cluster labels z(0) ∈ [k]n

Output: Final cluster labels ẑ ∈ [k]n

1 Compute adjacency spectral embedding X ∈ Rn×d from A;
2 Initialize cluster labels ẑ ← z(0);
3 repeat
4 for k ← 1 to K do
5 Extract Xk ← {xi : ℓi = k};
6 Compute leading d left singular vectors Uk of Xk;
7 for i← 1 to n do
8 for k ← 1 to K do
9 Compute projection loss Lik ← ∥xi − UkU

⊤
k xi∥2;

10 Update ẑi ← argmink Lik;

11 until no label changes or maximum iterations reached;
12 return ẑ;

Thresholded Cosine Spectral Clustering (tcsc), proposed in Yuan et al. (2025), begins by computing
the top k2 eigenvectors of the adjacency matrix to capture structural information. Cosine similarities
between eigenvector rows are then calculated and thresholded to suppress noise. Finally, Lloyd’s
algorithm is applied to the thresholded similarity representation to output the predicted cluster labels.
Finally, Yuan et al. (2025) also proposes to refine the cluster labels obtained by tcsc. This leads
to Refined Thresholded Cosine Spectral Clustering (r-tcsc), which improve upon the initial labels
from tcsc by re-estimating block connection probabilities and then reassigning vertices to clusters
according to a profile likelihood criterion. This refinement step reduces misclassifications and yields
more accurate community recovery. Pseudo-code for tcsc is provided in Algorithm 7, and the reader
is refered to (Yuan et al., 2025, Theorem 2) for the refinement step.

E.4 Rank Analysis in PABM

For simplicity, let us consider a PABM with k = 3 blocks, and suppose that vertices are ordered such
that the first n1 vertices are in the first cluster, the next n2 vertices are in the second cluster, and the
last n3 = n− n1 − n2 vertices are in the third cluster. For any vertex i ∈ [n], we denote by ri its
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Algorithm 7: Thresholded Cosine Spectral Clustering (tcsc)
Input: Adjacency matrix A ∈ Rn×n, number of communities k
Output: Predicted clusters ẑ ∈ [k]n

1 Compute the top-K2 eigenvectors of A and form U ∈ Rn×K2

.
2 For each pair of rows Ui, Uj , compute the cosine similarity Sij =

⟨Ui,Uj⟩
∥Ui∥ ∥Uj∥ .

3 Apply thresholding: set Sij = 0 if Sij < τ , where τ is a data-driven threshold.
4 Apply Lloyd’s algorithm (k-means) to the rows of S to obtain the cluster labels ẑ.

rank-indexing of its cluster (that is, ri = i if i is in cluster 1, ri = i − n1 if i is in cluster 2, and
ri = i− n1 − n2 if i is in cluster 3). Denote Λ(a,b) the matrix of size na-by-1 such that Λ(a,b)

ri = λib.
We also assume that Bab = p1{a = b}+ q1{a ̸= b} with p ̸= q. Then, the matrix P is given by

P =

pΛ(1,1)(Λ(1,1))T qΛ(1,2)(Λ(2,1))T qΛ(1,3)(Λ(3,1))T

qΛ(2,1)(Λ(1,2))T pΛ(2,2)(Λ(2,2))T qΛ(2,3)(Λ(3,2))T

qΛ(3,1)(Λ(1,3))T qΛ(3,2)(Λ(2,3))T pΛ(3,3)(Λ(3,3))T

 .

Thus, the matrix P is composed of k2 = 9 blocks of rank one. Excluding trivial cases, the rank of P
can take any value between k = 3 and k2 = 9. For example, if all the vectors Λ(a,b) are all-1 vectors,
then P has rank 1. But, if Λ(1,1) contains entries that are not all equal to 1, the rank of P increases
to 4. Similarly, if both Λ(1,1) and Λ(1,2) contain non-constant entries, the rank of P becomes 5, and
so on.

F Additional Numerical Experiments

F.1 Performance of tcsc and gspc

In this section, we compare the accuracy obtained by tcsc and gspc with the accuracy of pabm and
osc (and of sklearn as a baseline). We sample PABM with homogeneous interactions, and take the
same parameters as in Section 3.1.
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Figure 5: Performance of graph clustering on homogeneous PABM, where the matrix P is given in
Equation (3.1). We sampled graphs with n = 900 vertices in k = 3 clusters of same size, average
edge density ρ = 0.05. In both figures, the λin

i are iid sampled from Uni(1− c, 1 + c) and λout
i = 1

for all i. Accuracy is averaged over 15 realizations, and error bars show the standard errors.
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Figure 6: Effect of the embedding dimension on the performance of graph clustering on homogeneous
PABM, where the matrix P is given in Equation (3.1). We sampled graphs with n = 900 vertices in
k = 3 clusters of same size, average edge density ρ = 0.05. In both figures, the λin

i are iid sampled
from Uni(0, 2). Accuracy is averaged over 15 realizations, and error bars show the standard errors.

F.2 Numerical Experiments on Heterogeneous PABM

We generate the coefficients (λia)i∈[n],a∈[k] independently from each other and from a distribution
with mean 1 and bounded support so that supi,a λia < 1/

√
ρ, and let

Pij =

{
λiz∗

j
λjz∗

i
ρ if z∗i = z∗j ,

λiz∗
j
λiz∗

i
ξρ otherwise.

(F.1)

To generate the λia, we consider the following three distributions: Pareto with exponent 1.5, log-
normal with location 0 and shape 1 and exponential with parameter 1. The support of these distribu-
tions is unbounded. To avoid having values too low and too large for the coefficients λia, we sample
a random variable via following one of these three distributions, and let

λia =


via if via ∈ [τmin, τmax],

τmin if via < τmin,

τmax if via > τmax.

In all experiments, we set τmin = 0.05 and τmax = 5. Finally, we normalize the λia to ensure that∑
i λia = 1 for all a ∈ [k]. Figure 7 show that pabm and osc almost always outperform the sbm and

dcbm variants.
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Figure 7: Performance of clustering algorithms on heterogeneous PABM, where the matrix P is
given in (F.1) with ρ = 0.05, and the λia coefficients are sampled as described in the text. The curve
show the average accuracy on 10 realization of PABM with n = 2000 vertices in k = 5 clusters of
same size. Error bars show the standard errors (over 15 realizations).
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F.3 Real Data Sets Description

Table 3 provides some statistics about the graph used. For all graphs, we only considered the largest
connected components. Moreover, for LiveJournal data set, we extract the two largest clusters.
Finally, for MNIST, FashionMNIST and Cifar10, we first embed the images into a low-dimensional
space and we consider the k-nearest neighbor graph (with k = 10) obtained from n = 10, 000 images.
We use the embedding provided in the graphlearning package.4

data set n |E| k d̄

√
d2 − (d̄)2 Reference

political blog 1,222 16,714 2 27.3 38.4 Adamic and Glance (2005)
LiveJournal-top2 2,766 24,138 2 17.5 31.8 Backstrom et al. (2006)

citeseer 2,110 3,668 6 3.5 4.0 Getoor (2005)
cora 2,485 5,069 7 4.1 5.4 Getoor (2005)

MNIST 10,000 85,938 10 17.2 5.0 LeCun et al. (1998)
FashionMNIST 10,000 83,486 10 16.7 4.0 Xiao et al. (2017)

CIFAR-10 10,000 97,044 10 19.4 8.8 Krizhevsky et al. (2009)
Table 3: Summary of some statistics of the real data sets considered. The quantities n, |E|, and k

refer to the number of vertices n, of edges, and of clusters. The quantities d̄ and
√
d2 − (d̄)2 refer to

the average and standard deviation of the degrees, respectively.

4https://pypi.org/project/graphlearning/.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction clearly state all the results of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss some limitations in the related work section as well as in the
conclusion. We also mention in the numerical section than pabm and osc tend to be more
computationally intensive than the other spectral clustering variants.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theorems are carefully stated and the assumptions are also explained and
discussed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information to reproduce the experimental results is available in the paper
(some details are in the Appendix).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code to reproduce the experiments is available. Furthermore, all datasets
considered are fairly standard (and they are directly available in the code we provide).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all details regarding the experiments are specified in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All numerical results are presented with error bars indicating the standard error
of the mean.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We only used a laptop (CPU, no GPU) to perform the experiments. Some
information on the time of execution are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work fully conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not directly discuss these impacts in the paper, as our main contribution
is mostly a theoretic one. However, the impacts are the same as any (theoretic or applied)
work on unsupervised learning. Indeed, graph clustering enhances the understanding of
complex network structures in areas such as social sciences, biology, and information
systems, potentially aiding in areas like public health interventions or knowledge discovery.
However, we also acknowledge potential negative impacts, including privacy concerns
and the risk of misuse in surveillance or profiling, especially when applied to social or
communication networks without appropriate safeguards. These considerations highlight
the importance of ethical deployment and transparency when applying such techniques.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All datasets used are already available in the literature.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code and dataset that we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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