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Abstract

We study the evolution of tokens through the depth of encoder-only transformer
models at inference time by modeling them as a mean-field interacting particle
system, and analyzing the corresponding dynamics. More specifically, we consider
this problem in the moderate interaction regime, where the number N of tokens is
large and the inverse temperature parameter β of the model scales together with
N . In this regime, the dynamics of the system displays a multiscale behavior: a
fast phase, where the token empirical measure collapses on a low-dimensional
subspace, an intermediate phase, where the measure further collapses into clusters,
and a slow phase, where such clusters sequentially merge into a single one. We
characterize the limiting dynamics in each phase, exemplifying our results with
some simulations.

1 Introduction

The transformer architecture [49], through its extensive use in Large Language Models, has played a
crucial role in the recent, unprecedented developments in machine learning and artificial intelligence.
One of the key innovations at the heart of this architecture are self-attention modules [6], allowing
to capture long-range dependencies in the data, e.g., in prompts with a large number N of tokens.
To further improve their performance, practitioners have implemented these models in different
hyperparameter regimes, e.g., choosing the model’s inverse temperature parameter β (a parameter
that scales the query-key dot products in the self-attention layer) as a function of N [37, 43].
However, the groundbreaking empirical success of these machine learning models remains largely
unexplained from the theoretical perspective. In particular, a precise mathematical description of the
internal representations learned by transformers, and of how these representations behave in different
hyperparameter regimes, is still lacking.

A promising approach to fill this gap was presented in the work [46], where the authors interpret
tokens traveling through a deep stack of transformer layers as particles evolving in time and interacting
in a mean-field way. A subsequent line of work [24] has then observed that tokens in this model tend
to organize into clusters, offering - in a simplified setting - a compelling qualitative explanation of
how transformer models build representation of complex input data.

Despite its apparent simplicity, this interacting particle system exhibits a remarkably rich dynamical
behavior. Indeed, recent studies have identified distinct dynamical phases, characterized by quali-
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tatively different clustering patterns, which depend on specific choices of parameters, timescales,
and initial conditions. However, these results often rely on restrictive - and sometimes unrealistic
- assumptions, and they typically capture only limited aspects of the collapse dynamics, providing
partial views of the transformer’s complex dynamical landscape that are difficult to reconcile into a
consistent and global dynamical picture. Such a global characterization of the clustering phenomenon
in a realistic parameter regime is arguably fundamental to understanding how internal representations
form in deep models and how to operate such models in the optimal hyperparameter regimes.

Contributions In this work, we study the dynamics of the mean-field transformer model developed
in [46, 25], constrained on the d-dimensional sphere, in the limit of large context size, i.e., when the
number N of input tokens is large. Motivated by recent scaling strategies in state-of-the-art LLMs
such as SSMax [37] and YaRN [43] (used respectively in Llama 4 and Qwen 3), we consider the
setting where the inverse temperature parameter β grows with N . In this regime, our contributions
can be summarized as follows:

1. We identify three distinct dynamical phases (respectively denoted the alignment, heat and
pairing phases), corresponding to different scales of time as a function of the parameter
β. In each phase the model dynamics displays, asymptotically in β, qualitatively distinct
behavior, characterized by a different limiting equation.

2. In the alignment phase, occurring on a fast timescale of order O(1), we prove our main
technical result: under general assumptions on the parameter matrices, the finite particle
dynamics converges to a linear transport equation modeling the collapse of the token measure
onto a low-dimensional manifold dictated by the spectral properties of such matrices. To the
best of the authors’ knowledge, this phase was not yet identified in the literature.

3. In the heat and pairing phases, occurring respectively on timescales of order O(β) and
O(ecβ), we identify, under stronger conditions on the parameter values, the limiting dy-
namics as a forward or backward heat equation on the aligned manifold (leading, in the
backward case, to metastable clustering) and a finite-dimensional system of ODEs describing
sequential cluster merging along geodesics.

Together, these phases reconcile various previously identified dynamical regimes as different
timescales of a single unified dynamical picture. Furthermore, our multi-phase analysis allows
to relax some of the restrictive assumptions imposed by previous works, extending their applicability
to more realistic scenarios.

Related works The model studied in this paper was introduced in [46], where the authors also
identify the heat equation as describing the dynamics of the particle system in Rd in the large β regime.
This limit emerges as a correction term in their analysis upon subtracting an appropriate leading
order term from the prelimit equation. In this paper, by considering the dynamics on the sphere –
resulting from the inclusion of the layer normalization in our model – we provide a justification for
the spontaneous collapse of the system’s state to a subspace where this correction term becomes of
leading order, dominating the dynamics of the model on a certain timescale.

In [25, 24, 29, 13, 44], the authors identified the clustering behavior occurring in this and closely
related models as t→ ∞ for β,N fixed. Analogous convergence results, under different assumptions,
are provided in [18, 34], while quantitative contraction rates for such convergence are given in
[16]. These works, however, do not address the dynamically meta-stable phases characterized by
partial clustering numerically highlighted in [25]. This intermediate phase is explored in [9] in the
large N limit for tokens distributed uniformly at initialization and in [23], where the authors study
the formation of meta-stable clusters under the assumption that the system is initialized into well-
separated configurations. Furthermore, in [23] the authors identify different dynamical timescales
in the finite N case and characterize for the first time what we refer to in this paper as the pairing
phase in the large β limit. In all these cases, however, the results are limited to the setting where the
model’s key, query and value matrices, Q,K and V , were multiples of the identity. More recently, the
work [11] analyzes the stability of fixed points of the same model based on the eigendecomposition
of Q,K, V under the weaker assumption that parameters satisfy a modified Wasserstein gradient
flow condition (QTK = V = D), but does not study the dynamical landscape connecting such fixed
points. Finally, in [3, 4], the authors discuss clustering for hardmax transformers. Our work provides
a framework to combine the observations listed above in a unique dynamical picture.
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Our modeling approach shares conceptual roots with the neural ODEs literature [14, 21]. However, a
key distinction is that we consider N particles interacting through a mean-field PDE, as opposed to
one in the previous references. This connects our work to the broader literature on mean-field models
for neural networks [45, 36, 17, 2, 19], where timescale analysis has also been a subject of interest
(see [7]). In contrast to these works, which typically focus on training dynamics, our study centers on
the inference-time evolution of representations through network depth.

Finally, our research relates to the study of moderate scaling limits in interacting particle systems. For
instance, Oelschläger [39] proved the convergence of certain systems to the porous medium equation
with noise. These results were subsequently extended to cases without noise [41, 40], with different
exponents [22], or employing different techniques and equations [12, 10, 42]. Another relevant line
of work investigates the convergence of specific interacting particle systems to the heat equation,
explored both numerically and theoretically [20, 8, 33].

2 Framework and notation

We consider the framework introduced in [46, 25, 24], modeling the transformer architecture as a
discrete-time dynamical system governing the evolution of N tokens {xi(ℓ)}i=1,...,N through its
layers via:xi(ℓ+ 1) = N

(
xi(ℓ) +

1

Zβ,i(ℓ)

∑N
j=1 e

β⟨Qℓxi(ℓ),Kℓxj(ℓ)⟩Vℓxj(ℓ)

)
, ℓ = 0, . . . , L− 1,

xi(0) = xi,
(1)

where N : Rd → Sd−1 denotes the normalization operator on the d−dimensional unit sphere Sd−1,
L denotes the depth of the transformer architecture and Zβ,i(ℓ) =

∑N
j=1 e

β⟨Qℓxi(ℓ),Kℓxj(ℓ)⟩ is a
normalization constant. The dynamics depends on the parameters with matrix values Qℓ, Kℓ, and Vℓ
that represent the query, key, and value matrices at each layer, respectively.

In the spirit of neural ODEs [14], the authors then consider the infinite-depth limit of (1), leading to
the following continuous-time model, describing the evolution of xi(t) : [0,∞) → Sd−1:

ẋi(t) = Pxi(t)

 1

Zβ,i(t)

N∑
j=1

eβ⟨Qtxi(t),Ktxj(t)⟩Vtxj(t)

 . (SA)

Here and throughout, Pxy := y−⟨x, y⟩x denotes the orthogonal projection of y onto the tangent space
TxSd−1, ⟨·, ·⟩ is the Euclidean inner product in Rd, and Zβ,i(t) =

∑N
j=1 e

β⟨Qtxi(t),Ktxj(t)⟩ is the
time-dependent normalization factor. The parameter β > 0 is interpreted as the inverse temperature.
Remark 2.1. The MLP would act as a drift term in the dynamics, whose consequence should still
be investigated further. We expect different dynamical behavior depending on the relative scale of
the MLP coefficients and the attention part. Although the framework allows for the inclusion of
feedforward layers via a Lie-Trotter splitting scheme (see [26]), we choose to isolate exclusively the
self-attention mechanism, both because our interest lies specifically in its dynamics, and for the sake
of clarity. For the same reason, we assume, as in the works cited above, the parameter matrices to be
shared across layers: Qt ≡ Q, Kt ≡ K, and Vt ≡ V .

As the positional information of each token is encoded in its initial condition, the dynamics (SA) is
invariant under permutations of the particles’ indices. This symmetry allows us to fully characterize
the system’s state through the particles’ empirical measure µ(t) := 1

N

∑N
i=1 δxi(t), where δx denotes

the Dirac measure centered at x. The measure µ(t) evolves according to the continuity equation:{
∂tµ+ div(χβ [µ]µ) = 0 on R≥0 × Sd−1,

µ|t=0 = µ(0) on Sd−1,
(2)

where the vector field χβ [µ] : Sd−1 → TSd−1 is defined as

χβ [µ] = Px

(
1

Zβ,µ(x)

∫
Sd−1

eβ⟨Qx,Ky⟩V y dµ(y)

)
, (3)

with Zβ,µ(x) :=
∫
Sd−1 e

β⟨Qx,Ky⟩dµ(y). This formulation extends the token dynamics to a flow on
the space P(Sd−1) of probability measures over the sphere Sd−1, encompassing both empirical and
absolutely continuous distributions.
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3 Main results

As discussed in the introduction, in this paper we consider the limit as β → ∞ of the dynamics (3).
To present the dynamical scales arising in this limit, consider a formal Taylor expansion of the vector
field χβ [µ] generated by a sufficiently smooth measure µ:

χβ [µ](x) ≈
∫
eβ⟨x

′,y⟩PxV y µ(x
′)σ(dy)

µ(x′)
∫
eβ⟨x′,y⟩σ(dy)︸ ︷︷ ︸

(I)

+

∫
eβ⟨x

′,y⟩PxV y⟨y − x′,∇µ(x′)⟩ σ(dy)
µ(x′)

∫
eβ⟨x′,y⟩σ(dy)︸ ︷︷ ︸
(II)

, (4)

where σ denotes the Lebesgue measure on Sd−1 and x′ = K⊤Qx. For large β, Laplace approximation
suggests that (I) typically dominates (II) at initialization, giving rise to a first, fast dynamical phase:

• Alignment Phase: on a timescale of O(1), the limiting dynamics are governed by a linear
transport equation (Eq. (5) below) and the token distribution rapidly collapses onto a lower-
dimensional subspace determined by the spectral properties of the matrix V KTQ.

After the dynamics collapses to this low-dimensional subspace, we identify some classes of parameters
for which the leading-order contribution to the vector field, approximated by term (I), vanishes. In
such scenarios, the dynamics becomes governed by term (II), which involves the gradient of the
measure µ. This gives rise to a second, intermediate phase:

• Heat Phase: operating on a timescale of O(β) (achieved by rescaling time as t′ = t/β), the
dynamics within the previously identified subspace exhibits diffusive or anti-diffusive behav-
ior. Depending on the model parameters (specifically the sign related to V KTQ restricted
to the subspace), this phase can lead to further concentration into distinct clusters (backward
heat equation) or to smoothing/spreading of the distribution (forward heat equation).

In the attractive case, we identify the limiting dynamics up until the formation of clusters. We expect
the clusters to be invariant in this timescale, and to interact only on much longer ones.

• Pairing Phase: on an exponentially long timescale in β (e.g., O(ecβ) for some c > 0,
where c depends on the distance between clusters), the clusters formed in the previous phase
sequentially merge. Typically, the closest pair of clusters collapses first, governed by a
system of ODEs describing their interaction, eventually leading to a single clustered state.

We refer to Appendix E for a graphical representation of the three phases introduced above.
We outline the structure of the remainder of this Section. In in Section 3.1, we recall a quantitative
result connecting the large N behavior of the ODE system with the behavior of the corresponding
PDE in the relevant timescale. This will allow us to focus solely on the PDE analysis when we
describe the three main dynamical phases in Sections 3.2, 3.3, and 3.4.

3.1 Large N convergence

To connect the timescales analysis above to the N -particle system of ODEs (SA), we consider the
regime where N → ∞ and β = βN → ∞ slowly enough with respect to N . This is relevant for
context scaling techniques and LLMs (see introduction). To proceed, we use the following lemma:
Lemma 3.1. Assume that the initial tokens {xi(0)}i∈[N ] are sampled independently and identically
distributed from a reference measure µ0 ∈ P(Sd−1). Let µN,β

t be the empirical measure for particles
{xi(t)}i∈[N ] evolving via the ODEs (SA), and let µβ

t be the solution to the continuity equation (2)
with initial condition µ0. Fix a time interval [0, Tβ ] where Tβ is a β-dependent timescale. If β = βN
depends on N and diverges slowly enough as N → ∞, then:

W1(µ
N,β
t , µβ

t ) → 0 as N → ∞,

uniformly on [0, Tβ ].

Proof. This follows from the Dobrushin-type stability estimate: W1(µ
N,β
t , µβ

t ) ≤W1(µ
N
0 , µ0) e

Lβt,
where Lβ is a positive constant depending on the Lipschitz constant of the vector field χβ , as
discussed in [9]. The claimed convergence follows from W1(µ

N
0 , µ0) → 0 provided that LβN

TβN

grows sufficiently slowly with N such that the overall term tends to zero.
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Our goal is to understand the behavior of µN,β
t in the joint limit N, βN → ∞. We denote the limiting

distribution of µβ
t as β → ∞ by µ∞

t . Following an argument analogous to that in [22], though in a
different setting, we can decompose the convergence problem as:

W1(µ
N,β
t , µ∞

t ) ≤W1(µ
N,β
t , µβ

t ) +W1(µ
β
t , µ

∞
t ).

In our regime, Lemma 3.1 guarantees that the first term vanishes as N → ∞. Consequently, the
analysis of the N -particle system in this coupled limit reduces to studying the behavior of the solution
µβ
t to the continuity equation (2) as β → ∞. The PDE analysis in this limit will therefore be the

focus of the following sections.

3.2 The Alignment Phase

To characterize the limiting dynamics in the first phase we make the following assumptions:
Assumption 1. Q,K, V are invertible square matrices.
Assumption 2. The probability measure µ0 on Sd−1 is absolutely continuous with respect to the
Lebesgue measure on Sd−1. Its density is bounded from above and below (minx∈Sd−1 µ0(x) > 0)
and Lipschitz continuous.

These technical assumptions, significantly milder than the ones made in most related works, are
needed to guarantee that the terms appearing in the analysis of the limiting equation, e.g., the
denominator in (5), are sufficiently well behaved. Under these conditions, we show that the limiting
dynamics in this regime coincides with the formal Laplace approximation of term (I) in (4), i.e., the
integrals in the definition of the vector fields can be replaced by the value of the integrand at the
maximum point x′ = KTQx/|KTQx|, leading to the significantly simplified expression (5) below.
Theorem 3.2. Let Assumptions 1, 2 hold, then the solutions {µβ}β of the continuity equation (2)
converge in C([0, T ],P(Sd−1)) to the solution µ∞ of the partial differential equation:{

∂tµ(x) = − div
(
µ(x)Px

V KTQx
|KTQx|

)
,

µ(0, x) = µ0(x), x ∈ Sd−1.
(5)

Proof Sketch. To establish the result we must prove well-posedness of the family of equations
leading to the desired limit and obtain sufficient regularity uniformly in β to ensure that the formal
simplifications from (4)(I) to (5) are allowed. This is particularly important as the derivatives of
the kernel tend to infinity in the limit β → ∞. The core argument proceeds in three main steps.
First, we establish the relative compactness of the family of trajectories {µβ}β>0 in the space
C([0, T ],P(Sd−1)) using a variant of Ascoli-Arzelà theorem and the boundedness of the vector field
χβ [µ

β ]. The second, crucial step involves deriving uniform in β estimates on the regularity (i.e.,
Lipschitz bounds) of the vector field χβ [µ

β ] along the solution trajectories µβ . This is achieved
by analyzing the concentration behavior of the kernel eβ⟨Qx,Ky⟩ as β → ∞, leveraging properties
related to the cumulants of the Von Mises-Fisher distribution, and employing a continuation argument
to propagate regularity over time. Finally, using the compactness and uniform regularity, we pass
to the limit β → ∞ in the weak formulation of the continuity equation (2). The uniform estimates
allow us to conclude that µ∞ is a solution of (5), while uniqueness follows from [5]. The full proof is
deferred to Appendix A.1.

A consequence of Theorem 3.2 is that in the large-β limit, the tokens, to leading order, evolve
independently of each other, driven primarily by the structure of the Q, K, and V matrices. In this
regime, self-attention behaves like a composition of linear layers followed by layer normalization,
with minimal influence from inter-token interactions.

Combining the above result with Lemma 3.1 we obtain the following convergence result:

Corollary 3.3. Under Assumptions 1, 2, for every t > 0 we have W1(µ
N,β
t , µ∞

t ) → 0 as N → ∞,
provided that βN → ∞ slowly enough.

Having established that µ∞ is a solution of equation (5), we can investigate its long-time behavior. In
particular, we show below that the support of µ∞

t is asymptotically flattened onto a lower-dimensional
subspace determined by the spectral properties of the matrix V K⊤Q,
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Proposition 3.4. Let µ0 be a probability measure on Sd−1 absolutely continuous with respect to the
Lebesegue measure, and let µt be the corresponding solution of (5). Then for every ν ∈ ω(µ0) (the
ω-limit set of µ0) it holds:

supp(ν) ⊆ Emax ∩ Sd−1,

where Emax is the generalized eigenspace associated to the eigenvalue of V KTQ with largest real
part.

Proof. The proof is provided in Appendix A.2, where we reduce the analysis to a linear system of
ODEs in Rd with matrix V KTQ, identifying the corresponding asymptotics with the ones of (5).

Remark 3.5. At a first glance, this result might appear inconsistent with those of [11], since in some
cases measures supported on Emax do not maximize the energy. However, this apparent discrepancy
is a consequence of the order of the limits being taken, with β → ∞ preceding t→ ∞ in our case.

Proposition 3.4 demonstrates that the token representations rapidly collapse onto a lower-dimensional
subspace determined by the model’s matrices. This can be interpreted as the initial phase of the
inference process, where information is compressed into a smaller, more relevant subspace. This
phenomenon is consistent with the rank collapse observed, e.g., in [38, 27].
Remark 3.6. Apart from the collapse to Emax, one cannot in general conclude the existence of a
limiting (stationary) dynamics for (5). Indeed, it is not difficult to construct examples where the
particles continue to rotate on the sphere indefinitely, e.g., when V is a rotation and QTK = Id.
Remark 3.7. Recent works have studied transformer models with stochastic perturbations [48],
where the token dynamics is influenced by random noise. In this setting, the convergence to the
corresponding equation (5) (with an additional Laplacian term) is typically easier to establish due to
the regularizing effect of the noise (see [39]).

3.3 The Heat Phase

Having established the rapid collapse onto the subspace Emax ∩ Sd−1, we now investigate the slower
evolution within this subspace, assuming that the initial measure µ0 is supported in Emax ∩ Sd−1 as
a consequence of the previous analysis:
Assumption 3. The initial condition µ0 in the heat phase satisfies supp(µ0) ⊆ Emax ∩ Sd−1.

Since the intersection Emax ∩ Sd−1 can be identified with a lower-dimensional sphere, specifically
Sdim(Emax)−1, we will, with a slight abuse of notation, continue to denote it by Sd−1.

To demonstrate that the heat equation, described in a different setting in [46], emerges as an interme-
diate dynamical phase due to the spherical geometry induced by LayerNorm, we assume:
Assumption 4. QTK|Emax

= λ1I and V |Emax
= ±λ2I when restricted to Emax, with λ1, λ2 > 0.

Under this condition, Emax is an invariant subspace for Eq. (2) and, without loss of generality, we
can suppose λ1, λ2 = 1.
Remark 3.8. Assumption 4, for example, is satisfied under the global assumption Q⊤K = S and
V = ±S, with S symmetric definite positive matrix. This is a fairly standard assumption in recent
studies within this framework and it endows the model with an additional structure of gradient flow
on P(Sd−1) with respect to a modified metric (see [11, 25]).

In this regime, the vector field χβ [µ] vanishes on the support of µ as β → ∞, but its rescaled version
admits the formal limit (see Corollary B.2):

βχβ [µ](x) → γ
∇Sd−1µ

µ
(x), as β → ∞,

where γ := ±1, depending on the sign choice in the definition of V . This scaling of the vector field
by β corresponds to a time rescaling dt = βds, explaining the phase duration of order O(β).
Proposition 3.9. Let Assumption 4 hold and let µ∞

0 ∈ P(Sd−1) be the initial measure. Assume that
there exist T > 0, k positive integer, and µ∞

t ∈ C([0, T ], Ck+3(Sd−1)), with minx∈Sd−1 µ∞
t (x) > 0

for all t ∈ [0, T ], such that µ∞
t solves the heat equation on [0, T ]× Sd−1:{

∂tµ = −γ∆µ,
µ(0) = µ0,

(6)
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where ∆ denotes the Laplace-Beltrami operator on Sd−1. Then, for large β, µ∞
t solves the mean-field

PDE: {
∂tµ = −div(µ βχβ [µ]) +Rβ ,

µ(0) = µ0,

where the residual term satisfies Rβ → 0 in C([0, T ], Ck(Sd−1)) as β → ∞.

This proposition, whose proof is provided in Appendix B, characterizes the limiting dynamics within
the lower-dimensional manifold, connecting the transformer model with a heat flow on the sphere,
thereby justifying the name of this phase. Remarkably, this connection holds without the need for
correction terms, in contrast to [46]. We now need to distinguish between two different cases:

• Forward diffusion. When γ < 0 in equation (6), the dynamics corresponds to a forward
heat equation. In this setting, local existence and regularity for µ∞

t (and in particular the
assumptions of Prop. 3.9) are automatically satisfied due to the smoothing properties of
forward diffusion, provided that µ0 ∈ Ck+3(Sd−1). Notably, interacting particle systems of
the specific form given by equation (SA) (under the assumption Q⊤K = Id = −V ) have
been studied in the literature and are known as diffusion-velocity methods; see, for instance,
[33, 20, 8, 31, 32, 35].

• Backward diffusion. When γ > 0, the dynamics corresponds to a backward heat equation.
In this case, the regularity assumptions on µ∞

0 ensuring local existence and regularity are
significantly more restrictive (e.g. requiring that µ0 is in the Gevrey- 12 space). Nonetheless,
we construct explicit examples of solutions below. The backward heat equation is a prototyp-
ical ill-posed problem, which explains why the statement of Proposition 3.9 is necessarily
weaker than that of Theorem 3.2.

A family of initial conditions µ0 that satisfies the assumptions of Proposition 3.9 is given by

µ0 =

M∑
j=1

αjNSd−1(mj , σ
2
j ),

where αj ≥ 0,
∑M

j=1 αj = 1, and NSd−1(m,σ2) denotes the heat kernel (the forward-in-time
evolution under the heat semi-group exp(t∆) of a Dirac delta, analogous to a Gaussian NRd(m,σ2)
in Euclidean space) centered at m ∈ Sd−1 with concentration related to σ2. By linearity of ∆, the
explicit solution to ∂tµ = −γ∆µ is then given by:

µ∞
t =

M∑
j=1

αjN (mj , σ
2
j − γt). (7)

For forward diffusion (γ < 0), this solution is a smooth function for all t ≥ 0. while in the backward
case (γ > 0) this only holds for t ∈ [0, Tmin), where Tmin = minj σ

2
j is the time at which the first

Gaussian component collapses to a Dirac delta δmj . A more general class in which local existence and
well-posedness hold in both the forward and backward directions is the set of positive, Gevrey-1/2,
functions.

Motivated by the aggregation behavior observed in the finite-β particle system, we conjecture that
the collapsed δmj

remains invariant under the limiting dynamics, while other components continue
evolving independently according to the backward heat equation until their respective collapse times.
From the practical perspective, this observation suggests that the transformer’s behavior in this regime
can be interpreted as a form of regularized denoising (when β is finite) acting on the input. This
aligns with the clustering phenomena extensively studied in previous works on the model. The
dynamics in this phase, governed by a heat equation, drive the formation of distinct token clusters
(via backward diffusion) or the smoothing of the token distribution (via forward diffusion). This
behavior can be interpreted as a representation refinement stage, where tokens are organized into
more defined semantic groups.
Remark 3.10. In [25], a simplified model, referred to as the Unnormalized Self-Attention (USA)
model, is proposed, where the normalization factorZβ,µ(x) is replaced by a constantZβ , significantly
simplifying the mathematical analysis. By choosing Zβ = 1

β

∫
Sd−1 e

β⟨x,y⟩ dσ(y) (or equivalently by
rescaling time), the limiting behavior of the model no longer yields the heat equation, but rather the
porous medium equation: ∂tµ = ∆(µ2). Even in this case, the convergence of particles system to
this nonlinear PDE has been extensively studied (see for example [22, 33, 39, 41] or [47] for Sd−1).

7



3.4 Pairing Phase

The initial conditions we consider for the dynamics on longer timescales must be compatible with the
steady states of the preceding phase. Motivated by the discussion at the end of the previous section,
we therefore formulate the following assumption:

Assumption 5. The initial condition µ0 in the pairing phase can be written as µ0 =
∑m

j=1 αjδxj

for an m ∈ N, with xj ∈ Sd−1, αj > 0 ∀j ∈ {1, ...,m} and
∑m

j=1 αj = 1.

Under this assumption, further supposing for the sake of clarity that αj = 1/m for all j ∈ {1, . . . ,m},
we can interpret each cluster as a particle, and the dynamics of the system is given by the set of
ODEs (SA). In the regime of large β, clusters interact very weakly due to their separation and the
exponential tails (in β) of the interaction kernel, resulting in exponentially long timescales for the
nontrivial dynamics. Here, analogously to [3], interactions are dominated by the closest pair of
clusters (i, j), assumed unique, satisfying ⟨xi, xj⟩ = maxi ̸=j⟨xi, xj⟩ at initialization. We note that
this hardmax particle interaction, as well as the timescale where it arises in the large β limit, was
introduced in [23, Section 6] in the case d = 2. We present an analogous result here in arbitrary
dimension, without claiming originality, to provide a complete dynamical picture across phases.

Proposition 3.11. The solutions xi(t) of the ODE system (SA), under Assumptions 4 and positive V ,
with the rescaled time dt = eβ(1−⟨xi,xj⟩)ds, converge as β → ∞ to the solutions of the system:

ẏk(t) =


Pyi

(yj) if k = i,

Pyj (yi) if k = j,

0 otherwise,
yi(0) = xi(0)

on finite intervals [0, Tϵ], with Tϵ such that ⟨yi, yj⟩ ≤ 1− ϵ throughout the interval, for any ϵ > 0.

In other words, all clusters remain stationary except for the closest pair, which collapses along the
geodesic connecting them, in a time exponential in β. Note that this result only holds up to an
arbitrary moment before the first collapse. We refer to [23, Section 6] for a detailed explanation of the
challenges to bypass this limit and a proof of an analogous result until and beyond the collapse time
in a related but simplified model. The above proposition is proven for completeness in Appendix C.

This final, slow phase models the sequential merging of the closest token clusters. This can be
interpreted as the construction of higher-order abstractions, where previously formed groups are
hierarchically combined to create more complex representations.

4 Numerical experiments

This section presents numerical simulations of the transformer model in Eq. (1). All experiments
are conducted in dimension d = 3 or or d = 2 to facilitate visualization and are designed to
validate our theoretical findings. The attention mechanism is implemented using the official PyTorch
function torch.nn.functional.scaled_dot_product_attention() and the experiments are
performed on a single Nvidia H100. The code is available at [28].

First Phase Dynamics. Figure 1 illustrates the dynamics of the alignment phase, showing distinct
behaviors based on the parameters choices for Q,K, V . For both scenarios presented in Figure 1, the
initial state consists of N = 104 tokens sampled independently and identically uniformly from the
sphere S2. We set the inverse temperature parameter β = 30 and use a time step of dt = 10−2.

• Scenario 1a (collapse to 1D subspace). The matrix V KTQ is chosen such that it possesses
a unique eigenvalue with maximal real part. As predicted by our theory, this configuration
leads to the tokens collapsing onto a one-dimensional subspace (i.e. two antipodal points).

• Scenario 1b (non-gradient flow dynamics and rotation). This example employs a param-
eter choice for Q,K, V that falls outside the gradient flow regime. Nevertheless, the tokens
are observed to collapse toward a two-dimensional subspace (a great circle), accompanied
by a collective rotation of the particles along this circle.
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Both observed behaviors are consistent with the results in Theorem 3.2 and Proposition 3.4.

V = [
1 0 0
0 1 0
0 0 1]

QTK = [
0 1 0

−1 0 0
0 0 −2]

V = [
1 0 0
0 −1 0
0 0 2]

QTK = [
−1 0 0
0 −1 0
0 0 1]

Figure 1: Simulations of two different scenarios (one per row, four timesteps) for the first phase.

Second Phase Dynamics. We support the conclusions of section 3.3 through two examples,
comparing empirical dynamics with analytical solutions of backward and forward diffusion equations.

• Scenario 2a (collapse to 2D subspace and backward diffusion). For the experiment
in Figure 2 we set β = 10. The initial configuration comprises N = 104 i.i.d. tokens.
Their elevation angle ψ is sampled uniformly on [−π

2 ,
π
2 ], while their azimuthal angles,

θi ∈ [0, 2π), are distributed according to the mixture density g(θ):
g(θ) := 0.2 · N (θ;π/2, σ0) + 0.5 · N (θ; 0, σ0) + 0.3 · N (θ; 4π/3, σ0)

where N (·;µ, σ0) denotes the probability density function of a wrapped normal distribution
on S1 with mean µ and standard deviation σ0 = 0.2. The parameters Q, K, and V are
chosen so that, after the first phase, the tokens collapse onto the xy-plane, with distribution
g(θ). The analytical solution to the backward heat equation with initial condition g(θ)
(computed as in Eq. (7)) is plotted as a red curve in Figure 2. The positions of the clusters
agree with this solution, numerically confirming the predictions of Proposition 3.9.

• Scenario 2b (forward diffusion comparison). In Figure 3, we compare the empirical token
distribution with the analytical solution of the forward heat equation characterizing a possible
example of the second phase of the dynamics. Specifically, we simulate the evolution of
5 × 104 tokens, initially sampled from a superposition of three Gaussian densities on S1,
through the transformer model with parameters β = 50, d = 2, Q = K = Id, V = −Id,
and dt = 10−3. The analytical solution of the forward heat equation (in red) closely matches
the token distribution histogram (in blue) over time (i.e., depth). Note that, as expected, the
forward diffusion process is significantly more stable numerically than the backward one.

V = [
1 0 0
0 1 0
0 0 0.1]

QTK = [
1 0 0
0 1 0
0 0 0.1]

Analytical solution

Figure 2: Numerical simulation of the backward scenario for the second phase on S2.
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Figure 3: Evolution of the tokens distribution in the forward scenario for the second phase in S1.

5 Conclusions

This work provides a mathematical analysis of token dynamics in mean-field transformer models
within the moderate interaction regime, where interaction strength (β) scales with context size
(N ), motivated by scaling practices in modern LLMs. Our study reveals a fundamental multiscale
structure governing the evolution of token representations through network depth in this setting. More
specifically, we showed that, under this scaling, the system progresses through a sequence of three
different dynamical phases characterized by qualitatively distinct dynamical behavior, operating on
separated timescales. Through our analysis, we offer a unified dynamical picture describing how
deep transformers might achieve progressive representation refinement.

This unified dynamical picture is, however, not yet fully rigorous. Indeed, while we establish
convergence results for the alignment phase and provide partial justification for the intermediate
and late phases under specific assumptions, a complete mathematical treatment of the full dynamics
- particularly of the backward heat regime beyond the first collapse and of the slow clustering
interactions - remains an open challenge due to significant technical difficulties in the analysis of the
strongly unstable limiting equations. Additionally, characterizing phase transitions in self-attention
for different N, β scalings is an interesting separate question, with progress made in [15] under
assumptions on inter-token angles.

Furthermore, while the first dynamical phase has quite general assumptions on the parameter matrices,
the following phases still require relatively limited assumptions (although less limited than in most
previous works). Relaxing these assumptions further, in particular in the case of non-gradient
dynamics, would constitute an interesting, but also technically quite challenging, avenue of future
research.

There are several important directions in which our work could be extended. Most notably, incor-
porating the MLP, which could be interpreted as introducing a drift term in the dynamics, acting
independently on each token without accounting for mutual interactions. Another natural extension
involves studying the dynamics under more general parameter settings. For instance, during the heat
phase, we assume that QTK = S is symmetric positive definite, which holds, for example, when
Q = K. This “shared-QK” assumption is not novel and has been adopted in prior empirical work
(e.g., in [30]). While different choices of these parameters (both MLP and Attention matrices) can
have a dramatic effect on model behavior, with adversarial choices potentially leading to qualitatively
different dynamics from the one predicted in this paper, we believe our results to be a relevant first
step towards understanding the development of representations in transformers, capturing some
important qualitative features of these models as shown in [25].

A further direction of future research consists in providing sufficient conditions for the stability of the
space Emax emerging in the alignment phase under the prelimit model (i.e., for large but finite β),
thereby justifying Assumption 3 and, ultimately, connecting in a rigorous way the alignment and heat
phases identified in this paper.

While the path from this theoretical analysis to direct application is not immediate, we believe our
work opens several potential avenues for future investigation. The characterization of the alignment
phase, for instance, offers a potential mechanism for interpreting how token representations evolve
into learned subspaces. Finally, by focusing on the "moderate interaction regime", we hope our
analysis provides a theoretical foundation for a more principled understanding of parameter scaling,
particularly as models are adapted for longer contexts.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction summarize the claims made in the paper that are
proved or discussed in the following sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, see section conclusions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions are reported in the corresponding sections, while the proofs
are in the supplementary materials

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the experiments are reported in the corresponding section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An anonymous github repository is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The experiments don’t have training and test.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The kind of experiments does not need statistical significance, they are solution
of ODEs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See the section about numerical experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Anonymity and all the other rules have been respected.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: It is a theoretical paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: It is a theoretical paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: It is a theoretical paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See numerical experiments section and the github link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs of the alignment phase

This section is divided into two parts. The first part contains the proof of Theorem 3.2, while the
second one contains the proof of Proposition 3.4.

A.1 Moderate scaling limit

Consider the family {µβ}β≥0 of solutions to the usual continuity equation (2):{
∂tµ

β = −div(µβχβ [µ
β ]),

µβ(0, x) = µ0(x), x ∈ Sd−1,

where χβ is the vector field given by:

χβ [µ](x) =

∫
Sd−1 e

β⟨x,By⟩PxV yµ(dy)∫
Sd−1 eβ⟨x,By⟩µ(dy)

.

Remark A.1. For notational simplicity, we will refer to the matrix QtK in the main body as B.

Remark A.2. In the following C will be a constant depending only on V,B, d and µ0. Its value may
change line by line.

Under assumptions 1, 2, i.e.:

• A1: Q,B are invertible square matrices.

• A2: The probability measure µ0 on Sd−1 is absolutely continuous with respect to the
Lebesgue measure. Its density is bounded and Lipschitz continuous and its minimum
satisfies minx∈Sd−1 µ0(x) > 0.

one can prove Theorem 3.2: µβ converges weakly to µ∞ in C([0, T ];P(Sd−1)) where µ∞ is the
unique solution of the PDE: {

∂tµ = −div(µPxV BT x
|BT x| ),

µ(0, x) = µ0(x), x ∈ Sd−1.

and the metric in C([0, T ],P(Sd−1)) is given by:

d(µ, ν) := sup
t∈[0,T ]

ρ(µt, νt) = sup
t∈[0,T ]

sup
f∈BL(Sd−1)

∣∣∣∣∫
Sd−1

f(x)µt(dx)− f(x)νt(dx)

∣∣∣∣ ,
where BL(Sd−1) is the set of all the Lipschitz continuous functions on Sd−1 which are bounded
together with their Lipschitz constant by 1.

The idea of the proof follows five steps:

• Relative compactness in C([0, T ];P(Sd−1)),

• Bounds on cumulants of the Von Mises-Fisher distribution,

• Prove a relationship between the derivatives of µ and the regularity of the vector field,

• Apply a continuation argument to show the uniform regularity of χβ [µβ ],

• Use the regularity to pass to the limit in the PDE.

A.1.1 Relative compactness

Proposition A.3. The set {µβ}β≥0 is relatively compact in C([0, T ],P(Sd−1)).

Proof. By Prokhorov’s theorem, since Sd−1 is compact, we can conclude that P(Sd−1) is weakly
compact. Since ρ metricizes the weak topology, then also (P(Sd−1), ρ) is compact. To apply
Ascoli-Arzelà theorem, we just need the equicontinuity of the set {µβ}β>0.
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Given 0 ≤ s ≤ t ≤ T and β > 0:

ρ(µβ
s , µ

β
t ) = sup

f∈BL(Sd−1)

∣∣∣∣∫
Sd−1

f(x)(µβ
t (dx)− µβ

s (dx))

∣∣∣∣
≤ sup

f∈BL(Sd−1)

∫ t

s

∣∣∣∣∫
Sd−1

⟨∇f(x), χβ [µβ
u](x)⟩µβ

u(dx)du

∣∣∣∣
≤
∫ t

s

∫
Sd−1

|χβ [µβ
u](x)|µβ

u(dx)du ≤ |t− s|.

This is sufficient to conclude the proof.

A.1.2 Bounds on the vector field

The aim of the following paragraphs is to obtain some bounds on Diχβ [µ], i = 0, 1, 2.

To fix the notation we define the probability measure νµ,β,Bx on Sd−1 as:

νµ,β,Bx (dy) :=
eβ⟨x,By⟩µ(dy)∫

Sd−1 eβ⟨x,By⟩µ(dy)
.

Remark A.4. The measure νσ,β,Bx is the Von Mises-Fisher distribution with mean direction BT x
|BT x|

and concentration parameter β|BTx|. Some properties of this distribution are studied later.

Then the vector field χβ [µ] can be written as:

χβ [µ](x) = PxV
(
Eνµ,β,B

x
[Y ]
)
= PxV

(
Eνµ,1,Id

x
[Y ]
)
◦ (βBTx),

where ◦ denotes the composition with respect to the parameter x of the measure νµ,β,Bx .
Lemma A.5. The derivatives of the vector field χβ [µ] are bounded by:

|χβ [µ](x)| ≤ C,

|D1
xχβ [µ](x)| ≤ C

(
1 + β |Eνµ,β,B

x
[
(
Y − Eνµ,β,B

x
[Y ]
)⊗2

]|
)
,

|D2
xχβ [µ](x)| ≤ C

(
1 + β |Eνµ,β,B

x
[
(
Y − Eνµ,β,B

x
[Y ]
)⊗2

]|+ β2 |Eνµ,β,B
x

[
(
Y − Eνµ,β,B

x
[Y ]
)⊗3

]|
)

where C is a constant depending only on V,B, d.

Proof. Let’s compute the derivatives of χβ [µ]:

|χβ [µ](x)| ≤ |PxV ||Eνµ,β,B
x

[Y ]| ≤ CV ,

|D1
xχβ [µ](x)| ≤ |D1

xPxV ||
(
Eνµ,1,Id

x
[Y ] ◦ (βBTx)

)
|+ |PxV ||D1

x

(
Eνµ,β,B

x
[Y ]
)
|

≤ CV

(
1 + |D1

x

(
Eνµ,β,B

x
[Y ]
)
|
)
,

|D2
xχβ [µ](x)| ≤ |D2

xPxV ||Eνµ,β,B
x

[Y ]|+ 2|D1
xPxV ||D1

x

(
Eνµ,β,B

x
[Y ]
)
|+ |PxV ||D2

x

(
Eνµ,β,B

x
[Y ]
)
|

≤ CV (1 + 2|D1
x

(
Eνµ,β,B

x
[Y ]
)
|+ |D2

x

(
Eνµ,β,B

x
[Y ]
)
|

Hence we need to compute the derivatives with respect to x of Eνµ,β,B
x

[Y ] = Eνµ,1,Id
x

[Y ] ◦ (βBTx).
Thanks to the Faa di Bruno formula:

Dn
xEνµ,β,B

x
[Y ] =

∑
π∈Πn

(
(D|π|

x Eνµ,1,Id
x

[Y ])|βBT x ◦
⊗
P∈π

DP (βBTx)

)
,

with Πn the set of all the possible partitions of {1, ..., n} and ⊗ the tensor product. The previ-
ous expression can be bounded by CB

∑n
l=0 β

l∥(Dl
xEνµ,1,Id

x
[Y ])|βBT x∥, where CB is a constant

depending on the matrix B.
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Thus, the aim is to compute a bound for Dn
xEνµ,1,Id

x
[Y ]. This is related to the d− dimensional

cumulants (tensors) of the distribution νµ,1,Idx . Indeed, we can write:

Dn
x

(
Eνµ,1,Id

x
[Y ]
)
x
= Dn

v

(
Eνµ,1,Id

x+v
[Y ]
)
v=0

= Dn
v

(∫
e⟨x+v,y⟩y µ(dy)∫
e⟨x+v,y⟩ µ(dy)

)
v=0

= Dn
v

(∫
e⟨v,y⟩y e⟨x,y⟩µ(dy)∫

e⟨x,y⟩ µ(dy)

∫
e⟨x,y⟩ µ(dy)∫

e⟨v,y⟩e⟨x,y⟩ µ(dy)

)
v=0

= Dn
v

(∫
e⟨v,y⟩y νµ,1,Idx (dy)∫
e⟨v,y⟩ νµ,1,Idx (dy)

)
v=0

= Dn+1
v

(
logEνµ,1,Id

x
[e⟨v,Y ⟩]

)
v=0

.

(8)

It is well known that the first three cumulants correspond to the central moments:

D0
x

(
Eνµ,1,Id

x
[Y ]
)
x
= Eνµ,1,Id

x
[Y ],

D1
x

(
Eνµ,1,Id

x
[Y ]
)
x
= Eνµ,1,Id

x
[
(
Y − Eνµ,1,Id

x
[Y ]
)⊗2

],

D2
x

(
Eνµ,1,Id

x
[Y ]
)
x
= Eνµ,1,Id

x
[
(
Y − Eνµ,1,Id

x
[Y ]
)⊗3

].

(9)

The thesis then follows by replacing these equalities in the initial bounds (after renaming CV and
CB).

Lemma A.6. Let σ be the uniform measure on Sd−1. Then:

|Eνσ,β,Id
x

[Y ]| ≤ 1,

|Eνσ,β,Id
x

[
(
Y − Eνσ,β,Id

x
[Y ]
)⊗2

]| ≤ C
1

β
,

|Eνσ,β,Id
x

[
(
Y − Eνσ,β,Id

x
[Y ]
)⊗3

]| ≤ C
1

β2
.

Proof. By (8) and Schwarz’s theorem the three tensors are invariant by permutations of the indices
and by definition of νσ,β,Idx they are also invariant by rotations that fix x. Hence (see lemma D.2)
they must have the form:

Eνσ,β,Id
x

[Y ] = α1x,

Eνσ,β,Id
x

[
(
Y − Eνσ,β,Id

x
[Y ]
)⊗2

] = D1
x

(
Eνσ,1,Id

x
[Y ]
)
βx

= α2x⊗ x+ β2I,

Eνσ,β,Id
x

[
(
Y − Eνσ,β,Id

x
[Y ]
)⊗3

] = D2
x

(
Eνσ,1,Id

x
[Y ]
)
βx

= α3x⊗ x⊗ x+ β3Sym(x⊗ Id).

(10)

Where Sym(x⊗Id) = xiδjk+xjδik+xkδij . We need to compute the coefficients α1, α2, β2, α3, β3.
Define A(β) =

∫
Sd−1⟨x, y⟩ νσ,β,Idx (dy). Similarly to what has been done in (8), one can relate this to

the cumulants of ⟨x, Y ⟩ by noticing that:

∂nβ (A(β))β = ∂nt (A(β + t))t=0 = ∂nt

(∫
e(β+t)⟨x,y⟩⟨x, y⟩σ(dy)∫
e(β+t)⟨x,y⟩σ(dy)

)
t=0

= ∂nt

(∫
et⟨x,y⟩⟨x, y⟩eβ⟨x,y⟩σ(dy)∫
et⟨x,y⟩eβ⟨x,y⟩σ(dy)

)
t=0

= ∂nt

(∫
et⟨x,y⟩⟨x, y⟩νσ,β,Idx (dy)∫
et⟨x,y⟩νσ,β,Idx (dy)

)
t=0

= ∂n+1
t

(
logEνσ,β,Id

x
[et⟨x,Y ⟩]

)
t=0

.
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This give us immediately the following identities:

A(β) = Eνσ,β,Id
x

[⟨x, Y ⟩],

A′(β) = Eνσ,β,Id
x

[(⟨x, Y ⟩ −A(β))2],

A′′(β) = Eνσ,β,Id
x

[(⟨x, Y ⟩ −A(β))3].

(11)

Suppose without loss of generality that x = e1. Then α1 is given by:

α1 = Eνσ,β,Id
x

[⟨e1, Y ⟩] = A(β). (12)

The coefficients α2 and β2 can be obtained comparing the representations in (10) with the representa-
tions in (9), and exploiting the relations in (11):

α2 + β2 = D1
x

(
Eνσ,1,Id

x
[Y ]
)
βx

[e1, e1] = Eνσ,β,Id
x

[(⟨e1, Y ⟩ −A(β))2] = A′(β),

(d− 1)β2 =

d∑
i>1

D1
x

(
Eνσ,1,Id

x
[Y ]
)
βx

[ei, ei] =

d∑
i>1

Eνσ,β,Id
x

[(⟨ei, Y ⟩)2]

= 1− Eνσ,β,Id
x

[(⟨e1, Y ⟩)2] = 1− Eνσ,β,Id
x

[(⟨e1, Y ⟩ −A)2]−A2

= 1−A′ −A2.

(13)

And the same can be done for α3 and β3:

α3 + 3β3 = D2
x

(
Eνσ,1,Id

x
[Y ]
)
βx

[e1, e1, e1] = Eνσ,β,Id
x

[(⟨e1, Y ⟩ −A(β))3] = A′′(β),

(d− 1)β3 =

d∑
i>1

D2
x

(
Eνσ,1,Id

x
[Y ]
)
βx

[e1, ei, ei] =

d∑
i>1

Eνσ,β,Id
x

[(⟨ei, Y ⟩)2(⟨e1, Y ⟩ −A)]

= −Eνσ,β,Id
x

[(⟨e1, Y ⟩)2(⟨e1, Y ⟩ −A)]

= −Eνσ,β,Id
x

[(⟨e1, Y ⟩ −A)3]− 2AEνσ,β,Id
x

[(⟨e1, Y ⟩ −A)2]

= −A′′ − 2AA′.

To conclude it is sufficient to show that 1 − A2 = O( 1β ) and A′, A′′ = O( 1
β2 ). Now, using the

identity:

Zβ =

∫
Sd−1

eβ⟨x,y⟩dσ(y) = Cdβ
1−d/2Id/2−1(β),

we can explicitly compute A(β) as:

A(β) =
∂βZβ

Zβ
=

(1− d
2 )β

−d/2Id/2−1(β) + β1−d/2(Id/2(β) + (d2 − 1) 1β Id/2−1(β))

β1−d/2Id/2−1(β)

=
Id/2(β)

Id/2−1(β)
≈ 1− d− 1

2β
,

(14)

where we used the derivatives rules for the modified Bessel function:

I ′ν(z) = Iν−1(z)−
ν

z
Iν(z),

I ′ν(z) = Iν+1(z) +
ν

z
Iν(z),

and its asymptotic behavior (in both cases see [1]).
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In a similar way we can also compute:

A′(β) =
Id/2(β)

′

Id/2−1(β)
−

Id/2(β)(
Id/2−1(β)

)2 Id/2−1(β)
′

=
Id/2−1(β)− d/2

β Id/2(β)

Id/2−1(β)
−

Id/2(β)

Id/2−1(β)2

(
Id/2(β) +

d/2− 1

β
Id/2−1(β)

)
= 1− d/2

β
A(β)−A(β)2 − d/2− 1

β
A(β)

= 1−A2(β)− d− 1

β
A(β) ≈ (d− 1)2

4β2
,

(15)

and
A′′(β) = −2A(β)A′(β)− d− 1

β
A′(β) ≈ O(

1

β2
).

where we used the asymptotics in (14). This is sufficient to conclude the proof.

Lemma A.7. Given a strictly positive probability measure µ the following holds:

|νµ,β,Bx (y)− νσ,β,Bx (y)| ≤
(
∥∇µ∥∞
min |µ|

(|y − xB |+ Cβ−1/2)

)
νσ,β,Bx ,

where xB = BT x
|BT x|

Proof. Indeed:

νµ,β,Bx (y) =
eβ⟨x,By⟩µ(y)∫

Sd−1 eβ⟨x,By⟩µ(y)

=
eβ⟨x,By⟩µ(xB) + eβ⟨x,By⟩(µ(y)− µ(xB))

µ(xB)
∫
Sd−1 eβ⟨x,By⟩dσ(y) +

∫
Sd−1 eβ⟨x,By⟩(µ(y)− µ(xB))dσ(y)

= νσ,β,Bx (y)

 1 + µ(y)−µ(xB)
µ(xB)

1 + 1
µ(xB)

∫
(µ(y)− µ(xB))dν

σ,β,B
x


= νσ,β,Bx (y)

1 +

µ(y)−µ(xB)
µ(xB) − 1

µ(xB)

∫
(µ(y)− µ(xB))dν

σ,β,B
x (y)

1 + 1
µ(xB)

∫
(µ(y)− µ(xB))dν

σ,β,B
x (y)


= νσ,β,Bx (y) (1 + (R1 +R2)(1 +R2))

≤ νσ,β,Bx (y)

(
1 +

∥∇µ∥∞
min |µ|

(|y − xB |+ Cβ−1/2)

)
,

where we used:

|R1| ≤
|µ(y)− µ(xB)|

µ(xB)
≤ ∥∇µ∥∞

min |µ|
|y − x|,

|R2| ≤
1

µ(xB)

∫
(µ(y)− µ(xB))dν

σ,β,B
x ≤ ∥∇µ∥∞

min |µ|

∫
|y − xB |dνσ,β,Bx ≤ Cβ−1/2 ∥∇µ∥∞

min |µ|
,

and the last inequality is a consequence of νσ,β,Bx = ν
σ,β|BT x|,Id
xB and lemma D.1.

Proposition A.8. The derivatives of the vector field χβ [µ] satisfy:
χ[µ] ≤ C,

D1
xχ[µ] ≤ C

(
1 +

∥∇µ∥∞
min |µ|

β−1/2

)
,

D2
xχ[µ] ≤ C

(
1 +

∥∇µ∥∞
min |µ|

β−1/2 +
∥∇µ∥∞
min |µ|

)
.
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Proof. Thanks to Lemma A.5 we just need to bound the cumulants. The first one is already done.

Second cumulant:∣∣∣∣Eνµ,β,B
x

[
(
Y − Eνµ,β,B

x
[Y ]
)⊗2

]

∣∣∣∣ = ∣∣∣∣∫ ∫ (y − z1)⊗ (y − z2)ν
µ,β,B
x (dy)νµ,β,Bx (dz1)ν

µ,β,B
x (dz2)

∣∣∣∣
=

∣∣∣∣Eνσ,β,B
x

[
(
Y − Eνσ,β,B

x
[Y ]
)⊗2

]

∣∣∣∣+R.

We have already shown in lemma A.6 that the first term is ≤ C 1
β . Now we need to bound the second

term. R can be expanded by multi-linearity and using lemma A.7 the worst case is either of the form:

≤ C
∥∇µ∥∞
min |µ|

β−1/2

∣∣∣∣∫ ∫ (y − z1)⊗ (y − z2)ν
σ,β,B
x (dy)νσ,β,Bx (dz1)ν

σ,β,B
x (dz2)

∣∣∣∣
≤ C

∥∇µ∥∞
min |µ|

β−1/2

∫
νσ,β,Bx (dy)

2∏
i=1

∫
|y − zi|νσ,β,Bx (dzi)

= C
∥∇µ∥∞
min |µ|

β−1/2

∫
νσ,β,Bx (dy)

(∫
|y − z1|νσ,β,Bx (dz1)

)2

≤ C
∥∇µ∥∞
min |µ|

β−1/2

∫
νσ,β,Bx (dy)

∫
|y − z1|2νσ,β,Bx (dz1)

≤ 4C
∥∇µ∥∞
min |µ|

β−1/2

∫
|y − xB |2νσ,β,Bx (dy) ≤ 4C

∥∇µ∥∞
min |µ|

β−1/2β−1 ≤ C
∥∇µ∥∞
min |µ|

1

β3/2
,

where in the last line we used lemma D.1, or of the form:

≤ C
∥∇µ∥∞
min |µ|

∣∣∣∣∫ ∫ (y − z1)⊗ (y − z2)|y − zB |νσ,β,Bx (dy)νσ,β,Bx (dz1)ν
σ,β,B
x (dz2)

∣∣∣∣
≤ C

∥∇µ∥∞
min |µ|

∫ ∫
|y − z1||y − z2||y − zB |νσ,β,Bx (dy)νσ,β,Bx (dz1)ν

σ,β,B
x (dz2)

≤ C
∥∇µ∥∞
min |µ|

(∫
|y − zB |2νσ,β,Bx (dy)

)1/2(∫ ∫
|y − z|4νσ,β,Bx (dy)νσ,β,Bx (dz)

)1/2

≤ 4C
∥∇µ∥∞
min |µ|

(∫
|y − zB |2νσ,β,Bx (dy)

)1/2(∫
|y − zB |4νσ,β,Bx (dy) +

∫
|z − zB |4νσ,β,Bx (dz)

)1/2

≤ C
∥∇µ∥∞
min |µ|

β−1/2β−1 ≤ C
∥∇µ∥∞
min |µ|

1

β3/2
,

or of the form:

≤ C
∥∇µ∥∞
min |µ|

∣∣∣∣∫ ∫ (y − z1)⊗ (y − z2)|z1 − zB |νσ,β,Bx (dy)νσ,β,Bx (dz1)ν
σ,β,B
x (dz2)

∣∣∣∣
≤ C

∥∇µ∥∞
min |µ|

∫ ∫
|y − z1||y − z2||z1 − zB |νσ,β,Bx (dy)νσ,β,Bx (dz1)ν

σ,β,B
x (dz2)

≤ C
∥∇µ∥∞
min |µ|

(∫
|z1 − zB |2νσ,β,Bx (dz1)

)1/2(∫ ∫
|y − z1|2|y − z2|2νσ,β,Bx (dy)νσ,β,Bx (dz1)ν

σ,β,B
x (dz2)

)1/2

≤ 4C
∥∇µ∥∞
min |µ|

(∫
|y − zB |2νσ,β,Bx (dy)

)1/2(∫
|y − zB |4νσ,β,Bx (dy) +

∫
|z − zB |4νσ,β,Bx (dz)

)1/2

≤ C
∥∇µ∥∞
min |µ|

β−1/2β−1 ≤ C
∥∇µ∥∞
min |µ|

1

β3/2
.

These are the worst cases because every |y − z| produces an additional β−1/2 by lemma D.1. Hence
we proved, thanks to lemma A.5, that:

|D1
xχ[µ]| ≤ C

(
1 +

∥∇µβ∥∞
min |µ|

β−1/2

)
.
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The bound for the third cumulant is similar to what we have done above:

|Eνµ,β,B
x

[
(
Y − Eνµ,β,B

x
[Y ]
)⊗3

]|

=

∣∣∣∣∫ ∫ ∫ ∫ (y − z1)⊗ (y − z2)⊗ (y − z3)ν
µ,β,B
x (dy)νµ,β,Bx (dz1)ν

µ,β,B
x (dz2)ν

µ,β,B
x (dz3)

∣∣∣∣
=|Eνσ,β,B

x
[
(
Y − Eνσ,β,B

x
[Y ]
)⊗3

]|+R.

We have already shown that the first term is O( 1
β2 ). Now we need to bound the second term. R can

be expanded again as in lemma A.7 and the worst case is either of the form:

≤ C
∥∇µ∥∞
min |µ|

β−1/2

∣∣∣∣∫ ∫ ∫ ∫ (y − z1)⊗ (y − z2)⊗ (y − z3)ν
σ,β,B
x (dy)νσ,β,Bx (dz1)ν

σ,β,B
x (dz2)ν

σ,β,B
x (dz3)

∣∣∣∣
≤ C

∥∇µ∥∞
min |µ|

β−1/2

∫
νσx (dy)

3∏
i=1

∫
|y − zi|νσ,β,Bx (dzi)

= C
∥∇µ∥∞
min |µ|

β−1/2

∫
νσx (dy)

(∫
|y − z1|νσ,β,Bx (dz1)

)3

≤ C
∥∇µ∥∞
min |µ|

β−1/2

∫
νσx (dy)

∫
|y − z1|3νσ,β,Bx (dz1)

≤ 2C
∥∇µ∥∞
min |µ|

β−1/2

∫
|y − xB |3νσ,β,Bx (dy) ≤ Cβ−1/2β−3/2 ≤ C

∥∇µ∥∞
min |µ|

1

β2
,

or of the form:

≤C ∥∇µ∥∞
min |µ|

∣∣∣∣∫ ∫ ∫ ∫ (y − z1)⊗ (y − z2)⊗ (y − z3)|y − zB |νσ,β,Bx (dy)νσ,β,Bx (dz1)ν
σ,β,B
x (dz2)ν

σ,β,B
x (dz3)

∣∣∣∣
≤C ∥∇µ∥∞

min |µ|

∫ ∫ ∫ ∫
|y − z1||y − z2||y − z3||y − zB |νσ,β,Bx (dy)νσ,β,Bx (dz1)ν

σ,β,B
x (dz2)ν

σ,β,B
x (dz3)

≤C ∥∇µ∥∞
min |µ|

3∏
i=1

(∫ ∫
|y − zi|4νσ,β,Bx (dzi)ν

σ,β,B
x (dy)

)1/4(∫
|y − zB |4νσ,β,Bx (dy)

)1/4

=C
∥∇µ∥∞
min |µ|

(∫ ∫
|y − z|4νσ,β,Bx (dz)νσ,β,Bx (dy)

)3/4(∫
|y − zB |4νσ,β,Bx (y)

)1/4

≤C ∥∇µ∥∞
min |µ|

(β−2)3/4(β−2)1/4 = C
∥∇µ∥∞
min |µ|

β−2.

Thus, we can replace the bounds on the second and third cumulants that we obtained above in the
estimates of Lemma A.5 to conclude that:

|D2
xχ[µ]| ≤ C

(
1 + β |Eνµ,β,B

x
[
(
Y − Eνµ,β,B

x
[Y ]
)⊗2

]|+ β2 |Eνµ,β,B
x

[
(
Y − Eνµ,β,B

x
[Y ]
)⊗3

]|
)

≤ C

(
1 +

∥∇µβ∥∞
min |µ|

β−1/2 +
∥∇µβ∥∞
min |µ|

)
.

Lemma A.9. If µ solves the PDE: {
∂tµ = −div(µχ[µ]),
µ(0) = µ0.

then:

• ∂t∥µ∥∞ ≤ ∥µ∥∞|D1
xχ[µ]|,
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• ∂t
(
minµβ

)
≥ −

(
minµβ

)
|D1

xχ[µ]|,

• ∂t∥∇µ∥∞ ≤ ∥∇µ∥∞|D1
xχ[µ]|+ 1

2∥µ∥∞|D2
xχ[µ]|.

Proof. Let xt be a point of maximum for |µt|. Then ∇Sd−1µt(xt) = 0 and:

∂tµt(xt) = −div(µχ[µ])(xt) + ⟨∇µt(xt), x
′
t⟩ = −µt(xt)div(χ[µ])(xt).

And for minµ we can use the same argument.

Now, let xt be a point of maximum for |∇Sd−1µ|2, then HSd−1µ(xt)∇Sd−1µ(xt) = 0, hence:

∂t|∇µ(xt)|2 =− ⟨∇µ(xt),∇div(µχ[µ])(xt)⟩+ ⟨∇µ(xt), Hµ(xt)x′t⟩
=− ⟨∇µ(xt),∇(∇µ · χ[µ])(xt)⟩ − ⟨∇µ(xt),∇(µD1

xχ[µ]))(xt)⟩
=− ⟨∇µ(xt), Hµ(xt)χ[µ](xt)⟩ − ⟨∇µ(xt), D1

xχ[µ](xt)∇µ(xt)⟩
− ⟨∇µ(xt), D1

xχ[µ](xt)∇µ(xt)⟩ − ⟨∇µ(xt), D2
xχ[µ](xt)µ(xt)⟩

≤2|∇µ(xt)|2|D1
xχ[µ]|+ |∇µ(xt)||µ(xt)||D2

xχ[µ]|.

Using that ∂t|∇µ(xt)|2 = 2|∇µ(xt)|∂t|∇µ(xt)| and dividing by |∇µ(xt)| we get the thesis.

Lemma A.10. Consider again µt solution of the PDE:{
∂tµ = −div(µχβ [µ]),

µ(0) = µ0.

Define:

C1 = 2C∥µ0∥∞e2CT ,

C2 = 2C

(
1 +

∥µ0∥∞
minµ0

e4CT

)
,

Then, for β large enough (depending just on µ0 and C):

• ∥µt∥∞ ≤ 2(∥µ0∥∞)e2Ct,

• minµt ≥ 1
2 (minµ0)e

−2Ct,

• |∇µt|∞ ≤ 2
(

C1

C2
+ |∇µ0|∞

)
eC2t.

Proof. The thesis is true at time t = 0. Let us assume that it is true on [0, t]. Then ∃β big enough
(where "big" depends only on C1, C2, i.e. just µ0, B, V, d) such that ∥∇µ∥∞

min |µ| β
−1/2 ≤ 1 on [0, t].

Hence Dχ[µβ ] ≤ 2C on [0, t] thanks to proposition A.8. By Gronwall applied to the first two bounds
in lemma A.9 we can conclude:

∥µt∥∞ ≤ (∥µ0∥∞)e2Ct,

minµt ≥ (minµ0)e
−2Ct,

For ∥∇µ∥∞ we have, again by lemma A.9:

∂t∥∇µt∥∞ ≤ ∥∇µt∥∞|D1
xχ[µt]|+

1

2
∥µ∥∞|D2

xχ[µt]|

≤ 2C∥∇µt∥∞ +
(
∥µ0∥∞e2CT

)
C

(
1 + 1 +

∥∇µt∥∞
min |µ|

)
≤ 2C∥µ0∥∞e2CT + C

(
2 + 2

∥µ0∥∞
minµ0

e4CT

)
∥∇µt∥∞

= C1 + C2∥∇µt∥∞.
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where in the second row we used the assumption on [0, t] and proposition A.8. Hence by Gronwall:

∥∇µt∥∞ ≤
(
C1

C2
+ ∥∇µ0∥∞

)
eC2t.

This concludes the continuation argument and the proof.

Corollary A.11. For β large enough (depending on µ0, B, V, d) the vector fields {χβ [µ]}β,t are
jointly Lipschitz in β and t ∈ [0, T ].

Proof. This is a consequence of lemma A.10 and proposition A.8.

Corollary A.12. For every x ∈ Sd−1 and t ∈ [0, T ]:

χβ [µ
β
t ](x) →

PxV B
Tx

|BTx|
as β → ∞

Proof. With the usual notations one can write:

χβ [µ
β ](x) = PxV

(
Eνµ,β,B

x
[Y ]
)
= PxV

(
Eνσ,β,B

x
[Y ]
)
+R.

The reminder R is bounded using lemma A.7 by:

|R| ≤ C

(
β−1/2 +

∥∇µβ
t ∥∞

minµβ
t

∫
|y − xB |νσ,β,Bx

)

≤ C

(
β−1/2 +

∥∇µβ
t ∥∞

minµβ
t

β−1/2

)
= O(β−1/2),

where the last line follows from lemma D.1 and lemma A.10. Hence, the proof can be concluded by
noticing that:

PxV
(
Eνσ,β,B

x
[Y ]
)
= PxV

(
E
ν
σ,β|BT x|,Id
xB

[Y ]

)
= PxV (A(β)xB) = (1 +O(β−1))Px

V BTx

|BTx|
,

where we used the identities in equations 10, 12, 14.

We can finally pass to the limit in the PDE. Indeed consider a subsequence µβ of solutions to the
PDE converging in C([0, T ],P(Sd−1)) to a certain probability measure µ∞. If we define the vector
field χ∞(x) := PxV

BT x
|BT x| , then for every f ∈ C2

b (Sd−1):

⟨f, µ∞
t ⟩ − ⟨f, µ∞

0 ⟩ −
∫ t

0

⟨∇f, χ∞µ
∞
s ⟩ ds| ≤ ⟨f, µ∞

t − µβ
t ⟩|+

∫ t

0

|⟨∇f, χ∞µ
∞
s − χβ [µ

β
s ]µ

β
s ⟩| ds,

where we used that µ∞
0 = µ0 = µβ

0 and that the PDE in weak form for µβ is:

⟨f, µβ
t ⟩ − ⟨f, µβ

0 ⟩ −
∫ t

0

⟨∇f, χβ [µβ
s ]µ

β
s ⟩ ds = 0.

Moreover, as β → ∞:
|⟨f, µ∞

t − µβ
t ⟩| → 0

thanks to the fact that f is Lipschitz and by the definition of convergence in C([0, T ],P(Sd−1)). For
the second term:∫ t

0

|⟨∇f, χ∞µ
∞
s − χβ [µ

β
s ]µ

β
s ⟩| ds ≤

∫ t

0

|⟨∇f, (χ∞ − χβ [µ
β
s ])µ

∞
s ⟩| ds

+

∫ t

0

|⟨∇f, χβ [µ
β
s ](µ

∞
s − µβ

s )⟩| ds.

The first part goes to 0 by dominated convergence (∇f, χ∞, χ
β [µβ ] are bounded, and χβ [µβ ] → χ∞

point-wise by lemma A.12). The second part goes to 0 by definition of the convergence µ∞ → µβ

and by equi-lipschitzianity of χβ [µβ ] (see corollary A.11).

The uniqueness is standard, since µ is a probability measure and the vector field is smooth (see, for
example, [5]).
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A.2 Asymptotic behavior

This section studies the asymptotic behavior of the support of the solution to the partial differential
equation:

∂tµ = −div
(
µ
PxV B

Tx

|BTx|

)
(16)

and in particular, we prove Proposition 3.4.

Lemma A.13. The ODE:
d

dt
x(t) =

PxV B
Tx(t)

|BTx(t)|
(17)

is a time-reparameterization of:
d

dt
y(t) = PyV B

T y(t)

where y(t) = x(f−1(t)) and f(t) =
∫ t

0
1

|BT x(s)|ds.

Remark A.14. The reparameterization is well defined since B is invertible.

Proof. : We have:

d

dt
y(t) = x′(f−1(t)) · d

dt
f−1(t)

=
Px(V B

Tx)

|BTx|
(f−1(t)) · |BTx(f−1(t))| = Py(V B

T y)

This shows that the ODE is a time-reparameterization of the ODE for y(t).

Lemma A.15. If z(t) solves:
d

dt
z(t) = V BT z(t),

then y(t) = z(t)
|z(t)| .

Proof. We have:

d

dt
y(t) =

d

dt

(
z(t)

|z(t)|

)
=

z′

|z|
− 1

|z|2
1

2|z|
2⟨z, z′⟩z

=
V BT z

|z|
− ⟨z, V BT z⟩

|z|3
z = V BT y − ⟨y, V BT y⟩y

= PyV B
T y.

This concludes the proof.

Corollary A.16. For Lebesgue almost every x0, the ω-limit set ω(x0) ⊂ Emax.

Proof. This is a consequence of lemma A.13, lemma A.15 and of the classical theory for linear ODEs,
after reducing to the Jordan canonical form of the matrix V BT .

Remark A.17. This technical result parallels Lemma 3.1 in [29], which was used to analyze the
dynamics of the first token in causal attention.

And now we can finally prove Proposition 3.4:

30



Proof. Denote Φt the flow of the ODE (17) and let ϕ ∈ C2
b (Sd−1) be a test function with supp(ϕ) ⊂

EC
max ∩ Sd−1. Fix µ∞ ∈ ω(µ0). Then there exists a divergent sequence of times {tk}k such that

µtk → µ∞ weakly. As a consequence:∫
Sd−1

ϕ(x)µ∞(dx) = lim
k→∞

∫
Sd−1

ϕ(x)µtk(dx) = lim
k→∞

∫
Sd−1

ϕ(x)Φtk#µ0(dx)

= lim
k→∞

∫
Sd−1

ϕ(Φtk(x))µ0(dx) = 0,

where we used corollary A.16 and the dominated convergence theorem.

B Proofs of the heat phase

In this section, we prove Proposition 3.9, which characterizes the second phase using the heat equation
on the sphere.
Lemma B.1. Given a measure µ ∈ C2(Sd−1) ∩ P(Sd−1) strictly positive, then the following holds:

βχβ [µ](x) =
∇xµ(x)

µ(x)
+

∥∇µ∥∞
minµ

(
1 +

∥Hxµ∥∞
minµ

)
OL∞(Sd−1)(β

−1/2),

with the gradient ∇x and Hessian Hx defined with respect to the standard Riemannian metric on
Sd−1.

Proof.

βχβ [µ](x) = β

∫
eβ⟨x,y⟩Pxy µ(dy)∫
eβ⟨x,y⟩µ(dy)

= β

∫
eβ⟨x,y⟩Pxy µ(dy)

µ(x)
∫
eβ⟨x,y⟩σ(dy)

1

1 +R1

= β

(∫
eβ⟨x,y⟩Pxy (µ(x) + ⟨y − x,∇µ(x)⟩) σ(dy)

µ(x)
∫
eβ⟨x,y⟩σ(dy)

+R2

)
1

1 +R1
,

where, by lemma D.1:

|R1| : =

∣∣∣∣∣
∫
eβ⟨x,y⟩µ(dy)

µ(x)
∫
eβ⟨x,y⟩σ(dy)

− 1

∣∣∣∣∣ ≤ ||∇µ∥∞
minµ

∫
|y − x|νσ,β,Ix (dy) =

||∇µ∥∞
minµ

O(β−1/2),

|R2| : =

∣∣∣∣∣
∫
eβ⟨x,y⟩Pxyµ(dy)−

∫
eβ⟨x,y⟩Pxy (µ(x) + ⟨y − x,∇µ(x)⟩) σ(dy)
µ(x)

∫
eβ⟨x,y⟩σ(dy)

∣∣∣∣∣
≤ ∥Hµ∥∞

minµ

∫
|y − x|3νσ,β,Ix (dy) =

||Hµ∥∞
minµ

O(β−3/2).

(18)

Hence:

βχβ [µ](x) = β

(
Px

∫
yνσ,β,Ix (dy) + Px

∫
(y − x)⊗2νσ,β,Ix (dy)

∇xµ(x)

µ(x)
+R2

)
1

1 +R1
,

and noticing that Eνσ,β,I
x

[Y ] is parallel to x (see proof of lemma A.6):

βχβ [µ](x) = β

(
Px

∫
(y − Eνσ,β,I

x
[Y ])⊗2νσ,β,Ix (dy)

∇xµ(x)

µ(x)
+R2

)
1

1 +R1

= β

(
PxEνσ,β,I

x
[(Y − Eνσ,β,I

x
[Y ])⊗2]

∇xµ(x)

µ(x)
+R2

)
1

1 +R1

= β

(
Px(α2x⊗ x+ β2I)

∇xµ(x)

µ(x)
+R2

)
1

1 +R1

= β

(
1−A′(β)−A(β)2

d− 1

∇xµ(x)

µ(x)
+R2

)
1

1 +R1
,
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where α2, β2 are defined in the proof of Lemma A.6) and we used equation 13. To conclude, it
suffices to replace equations 18 and the asymptotic estimates 14 and 15:

= β

(
1

β

∇xµ(x)

µ(x)
+

∥∇µ∥∞
minµ

O(β−3/2)

)
1

1 + ∥Hxµ∥∞
minµ O(β−1/2)

=

(
∇xµ(x)

µ(x)
+

∥∇µ∥∞
minµ

O(β−1/2)

)(
1 +

∥Hxµ∥∞
minµ

O(β−1/2)

)
=

∇xµ(x)

µ(x)
+

∥∇µ∥∞
minµ

(
1 +

∥Hxµ∥∞
minµ

)
O(β−1/2).

Corollary B.2. Given a family {µβ}β of probability measures on Sd−1, suppose that there exist
c, C > 0 such that ∥µβ ||C2(Sd−1) ≤ C and µβ ≥ c for every β ≥ 0. Moreover, assume there exists
µ∞ such that µβ → µ∞ in C1(Sd−1). Then

βχβ [µ
β ](x) → ∇xµ

∞(x)

µ∞(x)
∀x ∈ Sd−1,

where ∇x is the gradient with respect to the standard Riemannian metric on Sd−1.

Proof of Proposition 3.9. Without loss of generality, set γ = −1, the other case is analogous. The
residual term is given by:

Rβ = β div(µχβ [µ])−∆µ = div

(
µ

[
βχβ [µ]−

∇µ
µ

])
.

It is sufficient to show that:∥∥∥∥βχβ [µ]−
∇µ
µ

∥∥∥∥
Ck+1(Sd−1)

→ 0 as β → ∞.

Corollary B.2 guarantees convergence in C0(Sd−1) thanks to the assumptions on µt. To improve this
to higher regularity, we can use an interpolation argument through uniform bounds in Ck+2.

Define the kernel Wβ(t) :=
eβt

Kβ
, where Kβ :=

∫
Sd−1 e

β⟨x,y⟩ dσ(y). Then,

χβ [µ](x) =
∇(Wβ ∗ µ)(x)
(Wβ ∗ µ)(x)

.

By the product rule, for every 0 ≤ j ≤ k + 2, there exists a polynomial pj such that:∥∥∥∥Dj
x

(
∇(Wβ ∗ µ)
Wβ ∗ µ

− ∇µ
µ

)∥∥∥∥ ≤ pj

(
∥Wβ ∗ µ∥Cj+1 , ∥µ∥Cj+1 , min

x∈Sd−1
µ

)
,

where we used that minx∈Sd−1 Wβ ∗ µ ≥ minx∈Sd−1 µ. The only thing left is to notice that
∥Wβ ∗ µ∥Cj ≤ Ck∥µ∥Cj ,

though proving this on Sd−1 requires some care.

Consider the case j = 1 (j > 1 follows by induction) and fix v ∈ Tx(Sd−1). Let A ∈ so(d) (a
skew-symmetric matrix) satisfying Ax = v, and define R(t) := etA. In such a way R(0)x = x and
R′(0)x = v. Then:

∇x(Wβ ∗ µ)[v] = d

dt
(Wβ ∗ µ)(R(t)x)

∣∣∣
t=0

=
d

dt

∫
Sd−1

Wβ(⟨R(t)x, y⟩)µ(y) dσ(y)
∣∣∣
t=0

=
d

dt

∫
Sd−1

Wβ(⟨x,R(t)T y⟩)µ(y)dσ(y)|t=0

=
d

dt

∫
Sd−1

Wβ(⟨x, z⟩)µ(R(t)z)dσ(y)|t=0

=

∫
Sd−1

Wβ(⟨x, z⟩)∇zµ[Az] dσ(z),
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where we used the change of variable z = R(t)T y, and the invariance of the measure on the sphere.
Since ∥Wβ∥L1 = 1, it follows that

∥∇x(Wβ ∗ µ)∥C1(Sd−1) ≤ C∥µ∥C1(Sd−1).

Higher derivatives follow similarly, completing the proof.

C Proofs of the pairing phase

In this section we provide the proof of Proposition 3.11. Consider the interacting particle system on
Sd−1 described by the following ODEs corresponding to the case (QTK = V = Id):

ẋi(t) =
1

Zβ(xi)

N∑
j=1

eβ⟨xi,xj⟩Pxi(xj).

where Zβ(xi) =
∑N

j=1 e
β⟨xi,xj⟩ and Pxi

(xj) = xj − ⟨xi, xj⟩xi is the projection on the hyper-
plane orthogonal to xi. Suppose that there exists a unique pair (i, j) such that at initialization
⟨xi, xj⟩ = maxi ̸=j⟨xi, xj⟩ and denote ⟨xi(t), xj(t)⟩ := dt. Define also mt := max{⟨xi, xj⟩|i ̸=
j and {i, j} ≠ {i, j}}.

Let α := arccos(m0) − arccos(d0) > 0 and consider the time rescaling given by the inverse of
dτ = eβ(1−dt)dt, that we will still denote by t. Then:

ẋi(t) =
eβ(1−dt)

Zβ(xi)

N∑
j=1

eβ⟨xi,xj⟩Pxi
(xj).

As usual the constant C can change from line to line, but it does not depend on α or β.

Lemma C.1. If β is such that Ce−β(1−cos(α/4))T ≤ 1
2α, then:

dt −mt ≥ 1− cos
(α
4

)
on [0, T ].

Proof. We proceed by a standard continuation argument. At t = 0 we have d0−m0 ≥ 1− cos(α) ≥
1− cos(α/4). Suppose the thesis holds on [0, t]. Then we have:

• if i ̸= i and j ̸= j:

∂t arccos(⟨xi, xj⟩) =− 1√
1− ⟨xi(t), xj(t)⟩2

∂t⟨xi(t), xj(t)⟩

=− 1√
1− ⟨xi, xj⟩2

eβ(1−dt)

Zβ(xi)

N∑
k=1

eβ⟨xi,xk⟩⟨Pxi(xk), xj⟩

− 1√
1− ⟨xi, xj⟩2

eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk), xi⟩

=− eβ(1−dt)

Zβ(xi)

N∑
k=1

eβ⟨xi,xk⟩⟨Pxi
(xk),

Pxi
xj

|Pxi
xj |

⟩

− eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk),

Pxj
xi

|Pxj
xi|

⟩

≥ − Ceβ(mt−dt) ≥ −Ce−β(1−cos(α/4)).

• if i = i and j ̸= j:
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∂t arccos(⟨xi, xj⟩) =− 1√
1− ⟨xi, xj⟩2

∂t⟨xi(t), xj(t)⟩

=− 1√
1− ⟨xi, xj⟩2

eβ(1−dt)

Zβ(xi)

N∑
k=1

eβ⟨xi,xk⟩⟨Pxi
(xk), xj⟩

− 1√
1− ⟨xi, xj⟩2

eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk), xi⟩

=− eβ(1−dt)

Zβ(xi)

N∑
k=1

eβ⟨xi,xk⟩⟨Pxi(xk),
Pxi

xj

|Pxixj |
⟩

− eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk),

Pxj
xi

|Pxjxi|
⟩

≥ − eβ

Zβ(xi)
|Pxi

xj |

− eβ(1−dt)

Zβ(xi)

N∑
k ̸=j

eβ⟨xi,xk⟩⟨Pxi
(xk),

Pxixj

|Pxi
xj |

⟩

− eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk),

Pxj
xi

|Pxj
xi|

⟩,

by Cauchy-Schwarz inequality, ⟨Pxixj ,
Pxi

xj

|Pxi
xj | ⟩ ≤ |Pxixj |, hence:

≥− eβ

Zβ(xi)
|Pxixj | −

eβ

Zβ(xj)
|Pxjxi|

− eβ(1−dt)

Zβ(xi)

N∑
k ̸=j

eβ⟨xi,xk⟩⟨Pxi(xk),
Pxi

xj

|Pxi
xj |

⟩

− eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk),

Pxjxi

|Pxj
xi|

⟩

≥∂t arccos(⟨xi, xj⟩)− Ceβ(mt−dt).

And in the last line we used that:

∂t arccos(⟨xi, xj⟩) = −

(
eβ

Zβ(xi)
|Pxi

xj |+
eβ

Zβ(xj)
|Pxj

xi|

)
+O(eβ(mt−dt)).

In both cases the following holds:

∂t arccos(⟨xi, xj⟩) ≥ ∂t arccos(⟨xi, xj⟩)− Ce−β(1−cos(α/4)),

hence:

arccos(mt)− arccos(m0) ≥ arccos(dt)− arccos(d0)− Ce−β(1−cos(α/4))T,

that implies

arccos(mt)− arccos(dt) ≥ arccos(m0)− arccos(d0)− Ce−β(1−cos(α/4))T ≥ α

2
.

We can conclude:
dt −mt ≥ 1− cos(α/2) > 1− cos(α/4).

This is sufficient to close the continuation argument.
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Remark C.2. We used the fact that, if arccos(x)− arccos(y) ≥ α, then y − x ≥ 1− cos(α).

Now, recall Proposition 3.11:

Proposition C.3. The solutions xi(t) of the ODE system (SA), under Assumptions 4 and positive V ,
with the rescaled time dt = eβ(1−⟨xi,xj⟩)ds, converge as β → ∞ to the solutions of the system:

ẏk(t) =


Pyi(yj) if k = i,

Pyj
(yi) if k = j,

0 otherwise,
yi(0) = xi(0)

on finite intervals [0, Tϵ], with Tϵ such that ⟨yi, yj⟩ ≤ 1− ϵ throughout the interval, for any ϵ > 0.

First we need the following lemma:

Lemma C.4. If β is large enough then δt := ⟨yi, yj⟩ ≤ 1−c on [0, T ] implies dt = ⟨xi, xj⟩ ≤ 1−c/2
on [0, T ].

Proof. We proceed again using a continuation argument. The derivatives of the differences are
bounded by:

∂t(δ(t)− d(t)) =∂t⟨yi, yj⟩ − ∂t⟨xi, xj⟩

= 2|Pyiyj |2 −
(eβ(1−dt)

Zβ(xi)

N∑
k=1

eβ⟨xi,xk⟩⟨Pxi(xk), xj⟩

+
eβ(1−dt)

Zβ(xj)

N∑
k=1

eβ⟨xj ,xk⟩⟨Pxj
(xk), xi⟩

)
≤ 2|Pyi

yj |2 − 2
eβ

eβ + eβdt
|Pxi

(xj)|2 + Ce−β(1−cos(α/4))

≤ 2|Pyiyj |2 − 2
eβ

eβ + eβdt
|Pxi(xj)|2 + Ce−β(1−cos(α/4))

= 2|δt(t)− dt(t)|2 + 2| eβ

eβ + eβdt
− 1|+ Ce−β(1−cos(α/4))

≤ 2C|δt(t)− dt(t)|+ 2e−βc/2 + Ce−β(1−cos(α/4)).

where we used |Px(y)|2 = 1−⟨x, y⟩2 and the previous lemma. The conclusion is again an application
of Gronwall’s lemma.

Proof of Proposition 3.11. Thanks to the previous lemma for β large enough, on [0, Tϵ] we have
dt < 1− cϵ. Now we can proceed with the proof:

Consider the case k = i.

|xi(t)− yi(t)| =
∫ t

0

|ẋi(s)− ẏi(s)|ds =
∫ t

0

(
eβ(1−ds)

Zβ(xi)

N∑
k=1

eβ⟨xi,xk⟩Pxi(xk)− Pyi
(yj)

)
ds

≤
∫ t

0

| eβ

Zβ(xi)
Pxi

(xj)− Pyi
(yj)|ds+ Ce−β(1−cos(α/4))

≤ L

∫ t

0

|xi − yi|+ |xj − yj |ds+ Ce−β(1−cos(α/4))T.
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where we used the previous lemma and the fact that eβ

Zβ(xi)
≈ 1 − e−β(1−ds) ≈ 1 thanks to the

propertyon Tϵ. The case k ̸= i, j is similar. Hence:

N∑
k=1

|xk(t)− yk(t)| ≤ L

∫ T

0

N∑
k=1

|xk(t)− yk(t)|+ Ce−β(1−cos(α/4))T.

The conclusion is then just an application of Gronwall’s lemma.

D Useful lemmas

Lemma D.1. Let k > 0, β → ∞. Then:∫
Sd−1

(1− ⟨x, y⟩) k
2 eβ⟨x,y⟩dy ∼ Cd,kβ

− d−1+k
2 eβ .

Proof. In the following Cd,k is a constant that depends just on the dimension and on k and could
change at each line:∫

Sd−1

(1− ⟨x, y⟩) k
2 eβ⟨x,y⟩dy = Cd,k

∫ 1

−1

(1− t)
k
2 eβt(1− t2)

d−3
2 dt

= Cd,k

∫ 1

0

(2− 2u)
k
2 eβ(2u−1)(4u(1− u))

d−3
2 du

= Cd,ke
−β

∫ 1

0

(1− u)
k+d−3

2 u
d−3
2 e2βudu

= Cd,ke
−cM

(
d− 1

2
,
k

2
+ d− 1, 2β

)
,

where M is the Kummer’s confluent hypergeometric function and its asymptotic behavior for β → ∞
(see [1]) is given by:

I ∼ Cd,kβ
− d−1+k

2 eβ .

Lemma D.2. Suppose that T is a tensor such that:

• T is invariant under permutations of the indices.

• T is invariant under rotations that fix a unit vector x.

Then if T is a 2-tensor, then it must be of the form:

T = α(x⊗ x) + βId.

If T is a 3-tensor, then it must be of the form:

T = α(x⊗ x⊗ x) + βSym(x⊗ I)

Proof. For simplicity, suppose d ≥ 5. Without loss of generality we can assume x = e1. Let’s start
with the case of the 2-tensor. For every i ̸= j, we can consider another index l /∈ {1, i, j} and the
rotation R such that Rei = −ei (wlog i ̸= 1, otherwise use j), Rel = −el and elsewhere is the
identity. Then:

T [ei, ej ] = T [Rei, Rej ] = −T [ei, ej ],
that implies T [ei, ej ] = 0. If i = j > 1, then there exists a rotationR such thatRei = e2,Re2 = −ei
and the identity elsewhere:

T [ei, ei] = T [Rei, Rei] = T [e2, e2]

This conclude the proof for the 2-tensor.
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For the 3-tensor: consider i, j, k such that i > 1 and (i /∈ {j, k} or i = j = k) . Consider another
index l /∈ {1, i, j, k} and the rotation R such that Rei = −ei, Rel = −el and identity elsewhere.
Then:

T [ei, ej , ek] = T [Rei, Rej , Rek] = −T [ei, ej , ek],
that implies T [ei, ej , ek] = 0. The only cases left are given by i = j and k = 1 and their permutations.
If i = j > 1 and k = 1, then construct the rotation R such that Rei = e2 and Re2 = −ei to conclude,
as above, that the tensor must be of the form α(xiδjk + xjδik + xkδij) + βxixjxk.

E Supplementary figures

This experiment uses the same settings as in Figure 2 in the backward regime, but with an initial
distribution given by a mixture of four wrapped Gaussians on the xy-plane. The red curve shows the
interaction energy of the system over time on a logarithmic timescale. We highlight the three distinct
timescales and the corresponding behaviors discussed in the paper.

Alignment Phase Heat Phase Pairing Phase

Figure 4: Evolution of the dynamics with QtK = V = S definite positive.
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