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Abstract
We propose an unsupervised method to extract
keywords and keyphrases from texts based on
a pre-trained language model (LM) and Shan-
non’s information maximization. Specifically,
our method extracts phrases having the highest
conditional entropy under the LM. The resulting
set of keyphrases turns out to solve a relevant
information-theoretic problem: if provided as side
information, it leads to the expected minimal bi-
nary code length in compressing the text using the
LM and an entropy encoder. Alternately, the re-
sulting set is an approximation via a causal LM to
the set of phrases that minimize the entropy of the
text when conditioned upon it. Empirically, the
method provides results comparable to the most
commonly used methods in various keyphrase
extraction benchmark challenges.

1. Introduction
1.1. Motivation

Keyphrase extraction can be described as an information
distillation process of a document into a series of words.
These words are later used as a proxy for document repre-
sentation, to be utilized in various downstream tasks such
as extractive summarization, information retrieval, cluster-
ing, document categorization, and query expansion (Hasan
& Ng, 2014; Medelyan & Witten, 2008). Although the
problem involves a task that is native to information the-
ory, i.e., extracting information subject to a constraint, to
the best of our knowledge, non of the existing methods
directly optimize Shannon’s information or strive to solve
an information transmission problem. The purpose of the
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current work is to suggest a method that stems from such
information-theoretic principles and to demonstrate that it
performs comparable to the state-of-the-art methods.

1.2. Contribution

We present a novel method of unsupervised keyphrase ex-
traction denoted EntropyRank that strives to minimize Shan-
non’s entropy of text given the keyphrases. The conditional
entropy is evaluated with respect to a pre-trained LM, typi-
cally a large LM based on transformer deep neural networks
(Vaswani et al., 2017). The resulting set of keyphrases has
a relevant operational interpretation: the set that provides
the maximal reduction in the expected binary code length
(bits) when compressing the text using the LM and an en-
tropy encoder, while the keyphrases and their locations are
provided as side information. Works utilizing this form
of compression but without side information are known to
achieve state-of-the-art results on lossless text compression
(Izacard et al., 2019; Mahoney, 2023). The extraction prin-
ciple of EntropyRank is reminiscent of lossless compression
methods that provide the most difficult parts to predict as
side information (Caire et al., 2003).

While our method is derived directly from information the-
oretic principles, it appears to perform well empirically,
attaining results comparable to the most commonly used
method over a series of benchmark tasks; see the report in
Section 4.

1.3. Background

Keyphrase extraction can be supervised or unsupervised,
with the former requiring labeled training data and the latter
being more domain-independent (Sahrawat et al., 2020). In
many situations, manual labeling is impractical or unavail-
able due to domain adaptation challenges hence unsuper-
vised keyphrase extraction is the only viable option.

Unsupervised keyphrase extraction methods can be cate-
gorized into four groups based on the features they use
to rank candidates: statistical, embedding-based, graph-
based, and generative. Statistical methods such as RAKE
and YAKE use a pre-trained model of combining features
such as TF-IDF, relative position, and co-occurrence (Cam-
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pos et al., 2018). Embedding-based methods such as Key-
Bert and PatternRank use word or sentence embeddings
to measure the relevance of text chunks to the document
(Bennani-Smires et al., 2018; Grootendorst, 2020; Schopf
et al., 2022). Graph-based methods such as TextRank con-
struct a co-occurrence graph of words or phrases and apply
centrality measures to score them (Mihalcea & Tarau, 2004;
Rose et al., 2010). Some methods also combine textual or
semantic features with graph or embedding features to form
hybrid models(Mahata et al., 2018a;b). The newest gen-
erative methods use instruction-tuned LMs (Ouyang et al.,
2022) directly with a prefixed context of the text and an in-
struction in the form of a contextualized prompt to generate
keywords directly from the text. However, most of these
approaches have some inherent drawbacks. Specifically,
statistical and graph-based methods rely on local corpus
features, hence they disregard natural language regularities
and typically require some hyper-parameter tuning. Seman-
tic and embedding methods tend to struggle with phrases
that do not match the document’s context without proper
tuning. Generative models, on the other hand, can produce
unreliable and unpredictable results due to biases and hallu-
cinations (Ji et al., 2023), which hinder their use in practice.
In contrast, EntropyRank incorporates language regularities
and semantics directly from the LM, suggesting that it works
well whenever the LM reasonably predicts tokens under a
cross-entropy (log) loss, the typical training objective of
modern LMs.

1.4. Organization

The rest of this paper is organized as follows. In Section 2
we describe the method. In Section 3 we analyze the method
under the lens of source coding in information theory. In
Section 4 we report on empirical results. Concluding re-
marks are provided in Section 5.

2. Method Description
Let Pmodel be a causal LM, i.e., a set of conditional prob-
ability distributions over sequences of tokens w1:n =
(w1, . . . , wn) of the form

Pmodel(·|w1:i−1) = Pr[Wi|W1:i−1 = w1:i−1], i ≤ n.

Above and throughout we use the notation u1:0 := ∅ for any
sequence u. By extension, Pmodel also provides conditional
probabilities of the form Pr[Xi|X1:i−1 = x1:i−1] where
x1:n = (x1, . . . , xn) is a sequence of text phrases and each
phrase is a sequence of tokens. Specifically, if phrase xi

consists of tokens (wi,1, . . . , wi,ni
), then the probability of

xi is

Pmodel(xi|x1:i−1) =

ni∏
j=1

Pmodel(wi,j |x1:i−1, wi,1:j−1).

Algorithm 1 EntropyRank
Input: Text document D, number of keyphrases k, lan-
guage model Pmodel

Segment text to phrases x1:n = (x1, . . . , xn)
for i = 1 to n do

Hi ← H(Pmodel(·|x1:i−1))
end for
J∗ = argmax

J : |J|≤k

∑
j∈J Hi

return {Xj}j∈J∗

Our method first segments the document into phrases, for ex-
ample using noun phrases or stop words as in (Schopf et al.,
2022; Rose et al., 2010). Given the segmented document
x1:n = (x1, . . . , xn), we refer to

Hi := H(Xi|X1:i−1 = x1:i−1) = H(Pmodel(·|x1:i−1)),
(1)

as the entropy of the i-th phrase under the LM. Here
Pmodel(·|x1:i−1) is the distribution of the i-th phrase in the
document given the previous i− 1 phrases as provided by
the LM and Hi is Shannon’s entropy of this distribution
(Cover & Thomas, 2012). Note that Hi is a function of the
phrases preceding xi but not of xi itself.

Our method outputs a set of phrases {Xj , j ∈ J∗}, J∗ ⊂
{1, . . . , n}, that maximizes the sum of phrase entropies
subject to the cardinality constraint of at most k elements.
Namely, J∗ maximizes∑

j∈J

Hj , subject to |J∗| ≤ k; (2)

the entire procedure is summarized in Algorithm 1. Another
useful practice is to report the smallest set of keyphrases
such that the sum in (2) exceeds some specified bit threshold.
An operational interpretation of the phrase entropies and
this bit threshold is given next.

3. Information Theoretic Analysis
We provide two viewpoints to motivate EntropyRank.

3.1. Lossless text compression with side information

Consider the problem of compressing the text using a bi-
nary code when a set of phrases indexed by J is provided
as side information while the cardinality of J is restricted.
We can interpret the entropy Hi of (1) as the amount of
information keyphrase xi provides on the text in the fol-
lowing sense. It is the expected reduction in the number of
bits needed to encode the text using the LM Pmodel and an
entropy encoder when xi and its location i are provided as
side information (regardless of the distribution of the text).
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Figure 1. Expected remaining normalized text entropy H(J̄∗)
versus the number of keyphrases. The remaining entropy is the
expected number of bits needed to encode the text via a LM and
an entropy encoder when the keyphrases are provided as side
information.

To better explain what we mean by this kind of encoding,
suppose that we encode x1:n when (xm,m), 2 < m ≤ n
is provided as side information and using an arithmetic en-
coder as the entropy encoder (Langdon, 1984). Starting
with x1, we find a partition of the interval [a0, b0) = [0, 1)
according to the distribution Pmodel(·|∅) in a pre-determined
order; we denote by [a1, b1) the interval corresponding to
x1 in this partition. Next, we partition [a1, b1) according
to Pmodel(·|x1) in the same order and denote by [a2, b2) the
interval corresponding to x2 in this partition. The situation
continues until we reach xm, in which case we add xm as
a context to the LM but otherwise ignore it and move to
partition [am−1, bm−1) according to Pmodel(·|x1:m). The
resulting encoded representation of the text is the shortest
binary representation falling within the interval correspond-
ing to xn at the last step with the leading zero removed.
This encoding process is clearly reversible given Pmodel and
(xm,m). The extension to more than one phrase provided
as side information is straightforward. This form of encod-
ing but without incorporating side information is used in
(Izacard et al., 2019; Liu et al., 2019; Goyal et al., 2021).
Our method ranks each phrase according to the entropy Hi

of (1) associated with its location in the text. By design,
the highest-ranked keyphrase provides more information
(in the sense of expected code length reduction) on the text
than the second-highest, and so forth. The expected code
length is the remaining text entropy provided by the sum
H(J̄∗) :=

∑
j /∈J∗ Hi. This can be seen empirically in Fig-

ure 1, showing the average entropy of keyphrases based on
their rank over the Inspec dataset (Hulth, 2003).

3.2. Approximating the Information Maximizing Set

EntropyRank also arises as a tractable approximation to an
optimal information-theoretic solution of the keyphrases ex-
traction problem. In order to formulate this problem, denote
by X1:n = (X1, . . . , Xn) the sequence of phrases constitut-
ing a document, viewed as random variables over a dictio-
nary. Let J ⊂ {1, . . . , n} be a set of indexes of phrases in
this document. We seek a set of keyphrases indexed by J†

that captures most of the information as measured by Shan-
non’s entropy H(X1:n). Namely, with J̄ = {1, . . . , n} \ J ,
J† minimizes H(XJ̄ |XJ) in the decomposition

H(X1:n) = H(XJ) +H(XJ̄ |XJ) (3)

subject to the cardinality constraint |J | ≤ k. Since the
mutual information decomposes as

I(X1:n;XJ) = H(X1:n)−H(X1:n|XJ)

= H(X1:n)−H(XJ̄ |XJ),

we can also think of J† as the maximizer of the mutual
information between the set of keyphrases and the entire
text subject to the cardinality constraint.

It is usually intractable to minimize H(XJ̄ |XJ) directly
and evaluate J† for large texts due to the large search space
and the need to evaluate non-causal conditional probability
expressions1. We turn to seek an approximation to J†. We
decompose the entropy of the text as

H(X1:n) =
∑
i∈J

H(Xi|X1:i−1) +
∑
i∈J̄

H(Xi|X1:i−1) (4)

and look for a set J∗ that maximizes
∑

i∈J Hi, i.e. the
observed version of the first sum in (4), subject to the car-
dinality constraint. Our method provides the set J∗ under
the assumption that the conditional distribution of the text
is provided by the LM. In the case of a distributional mis-
match between the LM and the text, an analogous logic
applies when replacing entropy with cross-entropy (Cover
& Thomas, 2012).

4. Empirical Results
4.1. Implementation

We use GPT-Neo 1.7B (Black et al., 2021), a pre trained LM
trained on the PILE dataset (Gao et al., 2020), to estimate
the natural language distribution of the text. We segment
the text into noun phrases that match the parts of speech tag
patterns <J.*>*<N.*>+, capturing zero or more adjectives
followed by one or more nouns. We rank these segments by
the sum of the entropy of their words and extract the top k
candidates with the highest entropy as keyphrases.

4.2. Datasets

We evaluated our method on three common datasets with ex-
pert annotations, which are often used to evaluate keyphrase
extraction methods in the literature.

1We only have an interface to evaluate causal conditional prob-
abilities of the form Pr[Xi|X1:i−1 = x1:i−1], hence we must
marginalize over the dictionary to evaluate non-causal probabil-
ities like Pr[X2|X1 = x1, X3 = x3]. Each marginalization
involves several thousands of LM evaluations hence the entire
search quickly becomes impractical.
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METHOD @5 KEYPHRASES @10 KEYPHRASES

P R F1 RO1 P R F1 RO1

IN
S

P
E

C
PATTERNRANK 32.9 30.99 29.42 44.51 28.5 49.7 33.85 48.71
ENTROPYRANK 32.21 29.18 28.26 43.8 27.47 47.12 32.39 48.15
RAKE 21.34 20.6 19.32 37.39 22.24 39.71 26.63 43.29
YAKE 17.33 17.02 15.74 33.3 14.34 27.4 17.46 30.04
TEXTRANK 30.45 27.83 26.86 39.61 25.51 44.52 30.24 43.8

S
E

20
10

PATTERNRANK 7.95 4.73 5.75 23.41 6.8 7.83 7.06 21.82
ENTROPYRANK 4.92 2.56 3.31 15.31 5.53 5.93 5.58 18.98
RAKE 0.08 0.05 0.06 5.18 0.04 0.05 0.04 9.17
YAKE 11.72 6.31 7.98 16.97 10.45 11.06 10.46 20.59
TEXTRANK 4.84 2.63 3.3 14.88 4.1 4.44 4.12 14.81

S
E

20
17

PATTERNRANK 35.52 16.24 21.43 29.08 32.04 28.5 28.87 42.9
ENTROPYRANK 28.36 12.88 17.0 26.15 25.82 23.09 23.3 39.72
RAKE 18.0 8.52 11.12 25.01 20.64 18.78 18.89 39.53
YAKE 18.16 8.2 10.84 19.85 17.86 16.12 16.17 28.58
TEXTRANK 25.68 11.73 15.48 25.6 24.2 21.59 21.88 37.59

Table 1. Performance evaluation of keyphrase extraction models on benchmark datasets. Bolded values indicate highest score, underlined
values indicate our method.

Inspec (Hulth, 2003)- abstracts of 2,000 English scientific
papers from the Inspec database.

SE-2010 (Kim et al., 2010)- full scientific articles that are
obtained from the ACM Digital Library.

SE-2017 (Augenstein et al., 2017)- abstracts of 500 English
scientific papers from the ScienceDirect publications.

4.3. Baseline Methods

We compared our method to popular baseline methods:

PatternRank (Schopf et al., 2022) - an extension of Key-
BERT which extracts the noun phrases with the highest
document similarity.

RAKE (Rose et al., 2010) - extracts phrases based on delim-
iters(stopwords, punctuation) and co-occurrences scoring.

YAKE (Campos et al., 2018) - based on statistical features
such as term frequency, and position.

TextRank (Mihalcea & Tarau, 2004) - applies a graph-based
ranking algorithm to words and phrases.

4.4. Evaluation Metrics

To assess the quality of our key phrase extraction method,
we used classification and summarization metrics. The for-
mer included recall, precision, and f1 scores at different
k values, measuring the agreement with the ground truth
labels. The latter was ROUGE1(Lin, 2004), which calcu-
lates the single word overlap between the concatenated key
phrases and the gold key phrases, reflecting the information
distillation aspect of the task.

4.5. Discussion

The benchmark results on Table 1 show that EntropyRank
performs well on short text datasets, such as SE2017 and
INSPEC, where it achieves similar results to PatternRank
and surpasses all the other methods. However, it struggles
with long texts, such as SE2010, possibly due to the low
rank our method gives to phrases with many occurrences
which in long texts are more likely to be keyphrases. This
limitation is easy to resolve in practice by using a simple
term frequency-based extractor in parallel to EntropyRank.
A comparison of the extracted key phrases by EntropyRank
and PatternRank on INSPEC reveals a low Jacard similarity
score of 0.21, indicating that they produce different and
complementary results. Thus, EntropyRank has shown to be
a suitable keyphrase extraction method for short texts and
can enhance other methods as a complementary approach.

5. Conclusions
We presented EntropyRank, a novel unsupervised method
for keyphrase extraction based on the information-theoretic
principles of conditional entropy minimization under a pre-
trained language model. The method is simple and very
direct to apply. Nevertheless, empirical results demonstrate
that our method is comparable to state-of-the-art methods
on several benchmark challenges.

In future work, we plan to explore the connection between
our method and task-oriented lossy compression. For exam-
ple, by evaluating the impact of our keyphrases on down-
stream tasks such as IR, clustering, or categorization.
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