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ABSTRACT

Neural Processes (NPs) are a powerful class of model for forming predictive distri-
butions. Rather than use an assumed prior over functions to form uncertainties—
as is done with Gaussian Processes—NPs can meta-learn uncertainties for unseen
tasks; however, in practice meta-learning uncertainties may require a great deal of
data. To address this, we propose representing the inputs to the model as a graph
and labelling the edges of the graph with similarities or differences between points
in the context and target sets, allowing for invariant representations. We propose
an architecture that can operate over such a graph and experimentally show that it
achieves strong performance even when there is limited data available. We then
apply our model on three real world regression tasks to demonstrate the advan-
tages of representing the data as a graph.

1 INTRODUCTION

When tasked with a decision making problem in the real world, one common approach is to use
collected data to learn a surrogate model that can inform action selection. This strategy is not
without its challenges, however, there is uncertainty in the model’s predictions due to inherent noise
in the real-world system or a lack of data. Forming accurate predictive uncertainties is therefore
essential, and indeed, intelligent decision making algorithms take advantage of such uncertainties
(Snoek et al.| 2012} |Chua et al., 2018 |Shyam et al.l|2019; Mehta et al., 2022} |Li et al., 2022al).

In this work, we learn these uncertainties using a type of model known as a Neural Process (NP)
(Garnelo et al., 2018b)). These models are neural networks which take a context set of previous
observations as input and predict a distribution for a specified target set. Rather than assuming a
prior over possible functions—as is done with a Gaussian Process (GP)—we instead use collected
data to meta-learn (Hospedales et al., 202 1)) these uncertainties. This model class is powerful and has
been used for many real-world applications such as neuroscience (Pakman et al.|[2020; |Cotton et al.|
2020)), astronomy (Cvorovié-Hajdinjak et al.,[2022; [Park & Choil 2021;Pondaven et al.,[2022), and
robotics (Chen et al.| 2022; |Li et al., 2022b; |Yildirim & Ugur, 2022)).

Figure 1: A Visualization of the Data as a Graph. The diagram depicts how one can construct a graph (in
red) from observations from an unknown function (points in black) using a distance or similarity metric ¢.
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Most NP models operate directly on the raw data representations; however, this does not take ad-
vantage of invariances that may be in the data, resulting in the sample inefficiency. An important
exception to this are Convolutional NPs (Gordon et al., 2019). These models enforce translational
equivariance through so-called “convolutional deep sets”. However, these models require forming a
grid over the support of the data, which becomes infeasible with high dimensional input spaces.

To remedy this, we advocate for representing the condition and target set as a graph. Depending on
the choice of edge labels, this representation can be invariant to translations or rotations, and at the
same time, it can be extended to higher dimensional settings. We start this work by first describing
how to formulate the context and target set into a graph. We then suggest an architecture that can
operate over such a graph, which is a graph transformer architecture (Shi et al.| [2020). In addition,
we introduce a second novel architecture inspired by Gaussian elimination, but leave the description
and analyses in appendix. Through synthetic experiments we show that our proposed model not
only achieve strong results, but is dramatically more sample efficient. We then show how these
advantages translate to real data with three experiments on a nuclear fusion application, a weather
prediction application, and on a cheminformatics application.

2 METHOD

2.1 PRELIMINARIES

Let ¥ ¢ RPX and Y C R be input and output spaces, and let f : X — A()’) be a random function,
where f ~ P and A()) is the set of distributions over ). Sometimes P is known or assumed (e.g
one could use a Gaussian Process prior (Williams & Rasmussen,2005))); however, it may be the case
that one only has access to data produced by the random function. Let D be such a dataset where

D = {{(zj,y; ~ filz;)} 1L,

and where f; ~ P. In other words, D is a dataset composed of M different function samples, and
for the 5™ sample, there are V; function evaluations.

This work focuses on learning a deep network that approximates the random function f using the
dataset D. Let py be such a network where 6 is the set of parameters for the network. Moreover, let
pg be a so-called Neural Process (NP) (Garnelo et al., 2018b)). The hallmark of these models is that
they can produce a predictive distribution given an input « and a context set of previous observations.

Concretely, let x € X'V be a collection of N “points” in X. Further, let the first C € ZT of these
points, X;.c, belong to the context set, and let the remainder of the points, X¢41.n, be the target
set. Along with this, the model also has access to the observations corresponding to the context
set, y..c € Y. The goal is for the model to predict a distribution for the target observations,
Yoi1.n» Which usually takes the form of a multivariate normal distribution where target points
are independent from each other. In summary, the model produces i, 0 = py(X,y;.c), where
u,0 € RN~ are the mean and standard deviations of the predicted normal distribution. Lastly, for
notational convenience, we let p(-|X, y;.) be the pdf of the predicted distribution.

For most NPs (including the ones we will propose), the training objective is to maximize the log
likelihood. That is, the objective function is

J(0) = Eoxy [10gpo(Yoi1.n1% ¥Y1.0)] (1)

where context size, X, and y all have underlying distribution. In the rest of this subsection, we give a
brief overview of different members of the NP family that are most salient for our work. For a more
thorough review, see \Jha et al.[(2022).

Latent, Conditional, and Attentive Neural Processes Latent and conditional NPs (LN(Garnelo
et al., |2018b) and CNP (Garnelo et al., 2018a)), respectively) were the first proposed NP models.
Both of these architectures use a DeepSet (Zaheer et al., 2017) over the context set to create an
encoding which captures the relevant information of the context set. This encoding is then used,
along with x¢ 1.y, to predict independent normal distributions for the targets. The key difference

'In the original paper, this model is simply called a “Neural Process”. Following other works, we instead
call it a Latent Neural Process to differentiate it from the broad class of models.
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between the two is that the LNP assumes a latent distribution over the encoding and therefore uses
a variational approximation. Kim et al.| (2019) improves on these NP architectures by introducing
attention (Vaswani et al.,|2017) into the encoding scheme. In particular, they replace the DeepSet
with self-attention and add cross-attention between the context and target sets.

Convolutional Neural Processes All of the NPs discussed up until now work directly on x rep-
resentations. This is not the case, however, with the Convolutional Conditional NP (ConvCNP)
(Gordon et al.l [2019)). Instead of a DeepSet architecture, the ConvCNP uses a ConvDeepSet,
which operates over a grid covering x. By operating over this grid rather than x representations, the
ConvCNP is translation equivariant and more sample efficient. While operating over a grid is natural
for image based domains, it has challenges when operating in the regression setting, especially when
dealing with high dimensional X'. While there have been follow up works introducing new variants
(Wang et al.| 2021} Kawano et al.,2021)), these methods are still bound to a grid.

Autoregressive Neural Processes and Transformers Most NPs assume conditional independence
over the target set given the context set. That is, the output of these networks are the mean and
standard deviation parameterizing an independent normal distribution for each y_ ;.,y. While there
are works which predict multivariate normal distributions over the target set (Bruinsma et al., 2021}
Markou et al.| 2022; Nguyen & Grover, [2022)), recent work has shown that models that are trained
assuming conditional independence can predict the joint distribution in an auto-regressive fashion to
produce competitive results (Bruinsma et al., 2023; [Nguyen & Grover, |2022). Concretely, one can
form the joint distribution using the chain rule:

N-1

Po(Yor1n /X Y1) = H Po (Vi1 X111, Y1)
i=C
where y, is the i observation in y. As noted by Bruinsma et al.[(2023), using these NPs in “autore-
gressive mode” results in highly expressive model at the cost of coherence. In this work, we will
default to the autoregressive mode for evaluation.

An architecture of particular interest for this work is the transformer (Vaswani et al., 2017). Previous
works have shown that transformers are excellent at meta-learning for reinforcement learning (Melo,
2022), drug discovery (Chen & Bajorath|[2023)), and—most related to this work—for approximating
Bayesian inference (Miiller et al.,|2021). Nguyen & Grover| (2022) use the transformer architecture
to create the Transformer NP (TNP). This model frames the context and target sets as sequences, and
then uses a transformer architecture to directly predict normal distributions for each target. Because
our proposed architectures are variants of the transformer, we briefly review self-attention.

Consider N embeddings 21, 29, . . ., v € R%. We use d to denote the size of embeddings throughout
this work. Fix an ¢ € [1, N]. To start, three linear projections of z; are made. They are known as
the key, query, and value vectors and are denoted by k;, g;,v; € R?, respectively. We denote the
attention operator for the ith embedding as At tent ion; and define it as the following:

N
Attention;(z1,...,2N) = E Qi Un
n=1

exp (ﬁ(qm kj>)
Yoo exp (ﬁ(% kn>)

In practice, transformers use multi-headed self-attention, repeating the mechanism H times, con-
catenating the results, and applying a final linear projection.

where «;; =

2.2 FRAMING THE DATA AS A GRAPH

In this subsection, we argue for representing the context and target sets as a graph. We define a
graph as G := (V, E), where V is the vertex set and E is the set of edges between the vertices.
Here, vertex v; € V, where i € {1,..., N}, corresponds to x;. We will often refer to {v;}{_, as
context vertices and {;}/¥ ., as target vertices. In a slight abuse of notation, we consider E to
be a tensor in RV*N*d where E; ; € R? is the label for the edge between v; and v;, i is the row
of the tensor, and j is the column of the tensor. A diagram of such a graph can be seen in Figure[I]
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Although the exact formation of the graph is architecture dependent, the key idea is that F; ; should
capture information from ¢(x;,X,), where ¢ can be a distance metric or a kernel function. This
representation is powerful because one can encode different properties depending on the choice of
¢. For example, when ¢(z,2') = || — 2'||2, the representation is both translation and rotation
1nvariant.

We propose an NP architecture operating on such graphs. Our main model is a graph trans-
former (Shi et al.| 2020) that evolves vertex features. A second, more expressive model focusing
on evolving edge features (GEENP) is described in Appendix [A]and[B.2} however, it underperforms
the main model unless large amounts of data are available and is significantly more computationally
expensive, especially for large N.

Graph Transformer Neural Process To start, we describe a model that takes advantage of
the graph transformer architecture (Shi et al.l 2020). Accordingly, we refer to this model as the
Graph Transformer Neural Process (GTNP). To start, the graph is initialized by setting E; ; =
fF(#(x;,x;)) and initializing vertex features to v = fY (y;) when i < C and v? = f) (0) other-
wise; here, the super-script on v; indicates how many graph transformer block transformations the
vertex encoding has undergone. Both f)” and f£ are fully-connected neural networks.

After this intialization, the vertices of the graph are updated via a number of graph transformer
blocks. These blocks closely match the structure of those in the GPT-2 model Radford et al.|(2019)
(where each instead of token embeddings we have vertex embeddings); however, attention is re-
placed with graph attention in order to fold in edge information. For each edge, E; ;, key and value
linear projections are made, which we denote as A; j, 8;; € R?, respectively. The graph attention
operator for vertex ¢ is defined as

N
GraphAttention;(V, E) = Z i (Vn + Bin)
n=1

exp (ﬁ@i, kj + >\1:,j>>
2521 exp (%(qz‘, ky, + )\m>)

In practice we use a multi-headed version of graph attention. Additionally, we also use a masking
scheme that prevents all vertices from attending to a target vertex. After L blocks, the vertices are
used for predicting the mean and standard deviation of a normal, i.e. p;,0; = gp (I/iL), where gy is
another fully-connected network. See Figure2]for a diagram of this architecture. In practice, we use
the masking trick in Nguyen & Grover|(2022) to train the GTNP autoregressively (i.e. akin to TNP-

A in|Nguyen & Grover| (2022)). We detail this as well as a thorough description of the architecture
in Appendix B.1]

where «;; =

Context Set Repeat L
{(x1,¥1)s Blocks
(x2,2), W = Y (0) (ja,00) = go(vf)  Target Set
(x3,¥3)} Marginal
Predictions
Target Set {(pa,04),
{x4,x5} (5, 05)}
1/? = j‘(}’(}'l) Vg _ ,f;'(y;)
Eyp= ng((D(Xl,Xz)) GraphAttention

Figure 2: An Illustration of the GTNP Architecture. Data in the context and target set are first formed into a
graph. The vertex features of the graph are then transformed via a graph transformer network (Shi et al., 2020).
Lastly, mean and standard deviations are predicted using the final vertex features.

3 EXPERIMENTS
In this section, we experimentally answer the following questions:

* How expressive is GTNP compared to other NPs? How robust are each of these NPs to
translational shifts at test time? (Section|3.1))

4
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» How sample efficient is GTNP compared to other NPs? (Section
* How does GTNP perform on real world datasets? (Sections [3.3]an

For comparison, we use the attentive versions of LNP and CNP (we refer to these as AttnLNP and
AttnCNP, respectively), ConvCNP, and the autoregressive version of TNP (i.e. TNP-A). The imple-
mentation for AttnLNP, AttnCNP, and TNP were taken from the official TNP GitHub repositoryﬂ
and we use the same hyperparameters as in Nguyen & Grover| (2022) for each of these models. For
ConvCNP, we use a repository made by one of the authors of |Gordon et al.| (2019) ﬂ We use the
same parameters as their regression experiments and choose the “XL” version of their architecture,
which leverages a U-Net (Ronneberger et al., [2015). Unfortunately, we were unable to find any
implementations extending the “off-the-grid” version of ConvCNP for any dimensions higher than
1D. While higher dimensional versions of the algorithm are theoretically possible, forming a grid
with high enough fidelity quickly becomes computationally taxing as the dimensionality increases.

For our proposed graph NPs, we try to match the hyperparameters of TNP as closely as possible.
In particular, we use 6 blocks, H = 4 attention heads, and an embedding size of d = 64 for each
architecture. We use the following for ¢,

H

o(z,2) = W@Hx @ wp, — ' @ w2
h=1

where @ representation concatenation, ® represents the Hadamard product, and W € R4*H and
wy, € RP= are learnable parameters. Note that this ¢ results in a translation invariant representation.

Table 1: Infinite Dataset Results. The reported metric average joint log likelihood over the test set. We use
five seeds to report the average and the standard error.

Dimension |  AttnLNP AttnCNP ConvCNP TNP | GTNP

1D 12.92 +0.03 12.62 +0.03 20.64 4+ 0.08 21.34+0.02 21.80 £+ 0.01

2D —4.43+0.02 —4.694+0.02 — —4.16 £0.55 | —2.99 £+ 0.01

4D —9.37+0.01 —9.4040.00 — —9.86 £ 0.00 | —9.25 £+ 0.00
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Figure 3: Log Likelihood vs. Translational Offset in the 1D Infinite Data Case. The y-axis shows the
average log joint likelihood over the test set and the x-axis shows the amount of translational shift on the inputs.

3.1 SYNTHETIC EXPERIMENTS IN THE INFINITE DATA REGIME

We start by repeating the experiment first done in|Garnelo et al.| (2018a) in which the NP is trained
from data generated from a hierarchical, 1D GP. The GP has an RBF kernel parameterized by length-
scale £ ~ U(0.1,0.6) and scale o, ~ U(0.1,1.0). Each point in x is drawn independently from
U(—2.0,2.0), and we draw N and C' uniformly from [6, 50] and [3, 47], respectively. We refer to
this regime as the “infinite data regime” because there is no fixed dataset D. Instead, because P is

Zhttps://github.com/tung-nd/TINP-pytorch/tree/master
*https://github.com/cambridge-mlg/convcnp
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Table 2: Finite Dataset Results. The metric is a standardized score where a score of 100 means that the NP
has exactly reproduced the GP, and a score of 0 means that the NP produces a worse log likelihood than simply
predicting the prior (see Appendix [C.4]for the exact definition of this metric). We use five seeds to report the
average and the standard error.

Dataset | AttnLNP AttnCNP ConvCNP TNP | GTNP

1D 1K 4.88 +1.74 —2.72+4.20 34.26 £5.38 —2.62+1.86 | 61.90 4 1.92
1D 10K 66.83 = 0.75 63.94 +1.06 65.48 £4.52  82.01 & 0.58 83.73 £+ 0.59
1D 100K 71.76 £ 0.74 71.92 £0.68 93.04 +0.35 92.95+0.38 | 93.86 £+ 0.23
2D 1K —2.56 £1.48 —2.80+£1.79 — —8.78 £ 7.38 | 56.94 4 0.64
2D 10K 61.18 = 0.96 57.81 £2.24 — 63.92 4+ 0.42 73.49 + 1.06
2D 100K 66.04 £+ 2.10 68.33 + 1.07 — 82.334+0.35 | 82.92 4+ 0.34
4D 1K —31.04 £ 15.97 —41.94+19.01 — -924+1.22 | —6.10 £+ 2.91
4D 10K 24.74 £+ 7.62 —43.79 4+ 29.08 — —2.594+2.31 | 78.90 + 1.40
4D 100K 59.83 £+ 2.40 51.47 £ 4.58 — 71.30 £ 1.54 91.08 £ 0.49
Average ‘ 35.74 24.69 — 41.03 ‘ 68.53

known exactly, new x and y are sampled every batch. This is a luxury that is usually absent from
real-world cases with fixed datasets.

In addition to this 1 dimensional GP, we also consider 2 and 4 dimensional GPs. We keep
X = [-2.0,2.0]P=, but we adjust the range of lengthscales to be (0.1y/D,,0.6,1/D,). We use
anisotropic kernels and sample lengthscales independently for each dimension. As an evaluation
metric, we compute the joint log likelihood using the NPs in “autoregressive mode”, see Section
and Bruinsma et al.| (2023)).

Table [T] shows the results averaged over five random seeds. GTNP achieves better results than the
other baselines, likely because it is translation invariant while not being bound to a grid. We also
show how the test metric changes as a translational shift is applied to x in Figure[3] This figure helps
demonstrate that our architectures and ConvCNP are robust to translational shifts while the other
baselines are highly susceptible.

3.2 SYNTHETIC EXPERIMENTS IN THE FINITE DATA REGIME

We now consider the “finite” data regime where there is a fixed dataset D to learn from. To better
understand the performance of the NPs, we simplify the problem by making the data generating
process a GP with fixed parameters. In particular, we set the lengthscale for each dimension to the
midpoint of the ranges in Section[3.1] we set oy, to 1.0, and we fix N = 50. At test time, we compute
the joint likelihood for every possible context size and average the results. We also standardize this
metric so that 0.0 corresponds to predicting a standard normal for each point, and 100.0 corresponds
to matching the performance of the true underlying GP. More details can be found in Appendix[C.4]

Table [2] shows the results for datasets generated from 1D, 2D, and 4D GPs. In addition, we consider
dataset sizes of 1K, 10K, and 100K points (i.e. the 1K dataset has 1,000 <+ 50 = 20 GP function
samples). In these experiments, it is clear that GTNP shines in low data regimes. Figure [4] shows
contour plots for the standard deviation predictions in 2D for a dataset size of 1K. Under the limited
data regime, it is clear that TNP cannot learn any useful uncertainty. GTNP produces far better
uncertainties than any other NP in this regime. Overall, these results suggest that GTNP is the best
choice in any data size but especially when there is a limited amount of data.

3.3 NUCLEAR FUSION APPLICATION

We now turn to real-world data, applying our models to a key fusion energy application: tokamaks,
devices that magnetically confine plasma in a toroidal chamber to achieve nuclear fusion. A major
challenge in this domain is predicting plasma evolution, a task well-suited to machine learning,
which can leverage historical data to learn dynamics models (Abbate et al., 2021} |Char et al., 2023;
Jalalvand et al.| 2021; [Kolemen et al.| 2023; |Wang et al., 2023).
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Figure 4: Contour of the Predicted Standard Deviation for the 2D 1K Task. The far right plot titled
“Oracle” shows the standard deviation of the posterior GP that generated the data. The orange points show
points in the context set.

Prediction is difficult due to the complex dynamics and variability of conditions across experiments
(each typically comprising several “shots”). Assuming similar dynamics within an experiment, we
aim to estimate uncertainties in these models by meta-learning from previous experiments.

We predict two plasma properties: rotation and Sy, the normalized plasma-to-magnetic pressure
ratio. Let X C R represent the plasma state and actuator settings. The transition function 7" :

X — R? outputs 3 and rotation 25 ms ahead, while T is the learned approximation. We define the
residual f(x) = T'(xz) — T'(x), and adjust NPs to output an uncorrelated multivariate normal.

Our dataset contains 3,226 experimental groupings and 736,900 transitions from the DIII-D toka-
mak, split 80/10/10 for training 7', training NPs, and testing. We set N = 50 and use the most recent

points as context, drawn from the current or previous shots. T follows the “Probabilistic Neural Net-
work” (PNN) architecture from Chua et al.|(2018)), producing a normal distribution; we use its mean
for predictions and its variance as a baseline, alongside a fixed Gaussian baseline.

Table 3] reports the joint log-likelihood averaged over context sizes:

1 M N-1 1
D0 2 > N oepe iy [ X i) @

m=1 c=1

Most NPs do not outperform the unconditioned PNN, but TNP and GTNP yield superior results,
with GTNP achieving the highest score. Interestingly, although our choice of ¢ assumes translation
invariance in f—Ilikely false—the sample efficiency gained appears to outweigh the resulting bias.

Table 3: Average Joint Log Likelihood for Nuclear Fusion Task. We use five seeds to report the average
and the standard error. The method “Fixed Normal” is the result of predicting a single normal distribution over
the test set using statistics from the training dataset and as such does not have an associate standard error.

Fixed Normal PNN ‘ AttnL NP AttnCNP TNP ‘ GTNP
—2.65 —2.26£0.00 | —2.37£0.03 —3.56+0.06 —2.21+0.01 | —2.17 £ 0.01

3.4 WEATHER PREDICTION APPLICATION

As another real-world application, we consider weather prediction, which is still a challenging prob-
lem for current machine learning models. (Bonavita, 2024) We use the ERAS-Land dataset by
Munoz-Sabater et al.| (2021)), which has daily meteorological fields such as precipitation and tem-
perature. Each input x € X C R* comprises standardized latitude, longitude, 2m-temperature, and
geopotential (a proxy for elevation) from the same day; the target y € ) C R is the standardized
daily total precipitation. After standardization, we treat the process as approximately stationary.

For training, we use a central European region (like (Foong et al.,[2020)), note that we do not compare
to them since they have no official code released for the climate experiments) and sample 500 days
uniformly between January 1, 1981 and December 31, 2020. For each day, we choose a random
28 x 28 spatial window restricted to valid cells. Each point is assigned to the context with probability
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0.7, with the remainder as targets. For GTNP, edge features exclude temperature and geopotential;
edges encode only pairwise geographic distance.

We hold out 10% of this data for validation. To test robustness to distribution shifts, we create 500
test samples from a different region and an earlier period (1 January 1970 - 31 December 1980).
Note that climate change has been in effect significantly especially since 70s. (Sarkar & Maity,
2021) We also use 32 x 32 windows and, per example, sample the number of target points uniformly
from {1,...,49}, placing them at random on the grid. This means any reasonable method would
do better on the test set since the task depends on more context points and requires the prediction on
a smaller target set. However, all other models fail under the shift, whereas GTNP performs even
better due to injected equivariances, and outperforms other methods significantly in both tasks.

Table 4: Total Target Log Likelihood for the Weather Prediction Tasks. Validation log likelihood is the
best seen during training. We use five seeds to report the mean and the standard error.

Task | AttnLNP AttnCNP TNP | GTNP
Best Validation Set 75.37 £ 30.73 114.56 £+ 6.69 —332.37 £ 21.99 796.62 £ 26.99
Test Set —386.28 £ 111.59 —488.80+138.32 —1608.01 £ 36.93 | 2752.63 £+ 134.63

3.5 LIPOPHILICITY APPLICATION

Lipophilicity is a fundamental physicochemical property that influences drug pharmacokinetics and
pharmacodynamics [Miller et al.| (2020); Constantinescu et al.| (2019). Accurate prediction of it,
together with well-calibrated uncertainty estimates, is therefore highly valuable in cheminformatics
and drug discovery (Isert et al.| [2023). Here, we use GTNP to meta-learn posteriors over unseen
molecule lipophilicity, conditioned on a set of structurally similar molecules from a training dataset.

We use the Lipophilicity dataset from the GAUCHE library |Griffiths et al.| (2023), which contains
4,200 compounds represented as SMILES strings curated from the ChEMBL database Zdrazil et al.
(2024). Each label corresponds to the octanol/water distribution coefficient (log D at pH 7.4). Ad-
ditional dataset details are available in |Griffiths et al.[(2023)).

Our NPs are trained by meta-learning across many local regression problems. This approach is
motivated by the observation that, in many real-world tasks, local Gaussian Process (GP) models
outperform global ones (Eriksson et al.,[2019; |[Krityakierne & Ginsbourger, [2015). Global GPs of-
ten struggle because commonly used kernels are too rigid, and a single set of kernel hyperparameters
is rarely optimal for the entire input space. For instance, if different regions of X" require different
kernel lengthscales, forcing a single global model to use one lengthscale typically degrades predic-
tive performance. By contrast, local models tuned to the neighborhood of a specific test-time task
can capture finer-grained structure. In Appendix we show that optimal kernel lengthscales for
our lipophilicity task exhibit clear multi-modality, further motivating a local approach.

Following |Griffiths et al.| (2023)), we represent each molecule using Mordred descriptors (Moriwaki
et al.,[2018)), followed by dimensionality reduction via PCA to a 51-dimensional feature vector. We
evaluate GTNP against two local GP baselines: (1) a GP conditioned on the context set with a fixed
set of kernel hyperparameters chosen for strong overall performance, and (2) a GP that tunes its
kernel hyperparameters locally by maximizing the marginal log-likelihood of the context set using
L-BFGS (Liu & Nocedal, [1989). Both baselines use the Rational Quadratic (RQ) kernel, and we
also replace the norm in ¢ with the RQ kernel for consistency.

We split the dataset into training, validation, and test sets of 1,400 molecules each. For every
molecule, we identify the 24 most similar molecules (by RQ kernel similarity) within the same
split to form the context set, with the molecule itself serving as the target (N = 25, C = 24).
This design allows the model to focus on localized prediction tasks that mimic realistic discovery
scenarios where only a small set of relevant analogs is available.

We do not compare against other Neural Process variants for this task because the combination of
high-dimensional molecular representations and relatively small data size makes them impractical.
As an additional reference, we include an uninformed baseline that predicts from a fixed standard
normal distribution, which serves as a prior after whitening the labels.
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Table [5]reports the mean and median log-likelihood on the test set for the single target point. GTNP
performs reasonably compared to both GP baselines, demonstrating that meta-learning can serve as
an effective alternative to carefully engineered priors, even with limited training data.

Table 5: Target Log Likelihood for Lipophilicity Task We use five seeds to report the mean and standard
deviation of the statistics.

| Mean Median
Standard Normal —1.53 —1.21
GP (Fixed) —1.38 +£0.00 —1.03 +0.00
GP (With Tuning) | —1.27 +0.00 —1.01 &+ 0.00
GTNP —1.45+0.01 —1.434+0.01

4 RELATED WORK

There are several other NPs that incorporate graphs into their architecture. |[Nassar et al.[(2018)) in-
troduce the “Conditional Graph NP’ (CGNP), which leverages bipartite graph convolutions (Nassar,
2018)) to group samples in the context set that are in some neighborhood of each other. Importantly,
they do not label the edges of their graph, a key aspect of our architectures. In addition, the “Function
Neural Process” (FNP) (Louizos et al.,|2019) first projects x into a latent space and then constructs
two directed acyclic graphs in this space: one between the context points and one which is a bipartite
graph between context and target sets. This avoids the need to create a global latent encoding that
summarizes the context set. Our work differs from theirs since our graph encodes relationships in
the original X" space via edge labels. Lastly, in contrast to our work which frames regression data
as a graph, there are also works on neural processes that operate on graph datasets (Carr & Wingate
2019; Day et al.| [2020; |Liang & Gao, [2022)).

Another relevant approach is the Graph Structured Surrogate Model (GSSM) (Wang & van Hoof],
2021), which was proposed in a meta-reinforcement learning setting and focuses on how well a
downstream policy can adapt by inferring a latent task embedding from context data. While GSSM
also incorporates graph structure and attention, its architecture and training objective are tightly
coupled to policy optimization. In contrast, our work introduces a graph transformer—based neural
process that directly meta-learns predictive uncertainties through global attention, without relying
on latent task embeddings or reinforcement learning objectives.

In addition, there are two works that combine graph neural processes with attention, though in
ways distinct from ours. The first is a chemical application by |Garcia-Ortegon et al.| (2024), where
molecules are represented as graphs of atoms and attention is used as the aggregator in the GNN.
In contrast, our graph transformer employs global attention across the entire graph. The second is
a spatio-temporal sensing application by Hu et al.| (2023, where node features are time-dependent
signals with external covariates, and distant nodes are truncated. Their method primarily relies on
a Bayesian aggregator, using a local attentive aggregator only as a baseline, whereas our approach
builds on global attention as a core mechanism.

5 DISCUSSION

In this work, we advocate for representing the context and target sets for an NP as a graph. While
our proposed models often had stronger performance over previous baselines, we found that they
are especially stronger when the data is scarce. There are several limitations to our architectures,
however. One of these limitations is that these architectures incur higher computational costs (Ap-
pendix [C.8). This cost is unavoidable when viewing the data as a fully-connected graph since the
architecture must account for the N2 edges. Additionally, in this work we only use ¢ that is based
on the norm between two points in X'. Depending on the application, this may be a drawback if the
underlying process is non-stationary in X or if the data lies on a lower dimensional manifold.
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A GRAPH EDGE EVOLUTION NEURAL PROCESS

Graph Edge Evolution Neural Process In GTNP, the embeddings for the vertices are updated
after each block; however, a more powerful model would iteratively update the edge embeddings.
Towards this, we propose the Graph Edge Evolution NP (GEENP) which acts exclusively on the
edge embeddings of the graph. As such, we must include both information from x and y in the
edges. The edge encoder, f£ now takes in five inputs:

EY, = fF(o(xix;),y;,1{i < C},y,1{j < C},
1{i <C},1{j < C})

This additional information is also used to indicate which vertices are context vertices and which
are target vertices.

How should one update these edge embeddings? One naive approach would be to use a transformer
on the N2 edge embeddings. Not only would the computational costs of this scale with O(N*), but
this model would likely have too much flexibility and not enough structure. To strike the correct
balance, we look to the Gaussian Process (GP) for inspiration.

The GP is a stochastic process where the distribution of any finite collection of points is distributed
as a multivariate normal. The GP is fully characterized by a mean function and a kernel function
kX xX — R Let K € RV*N be the matrix such that K; ; = x(x;,X;). After conditioning
on a context set of observations, the posterior is again a multivariate normal distribution. The bulk
of the computational effort for computing the posterior is dedicated to inverting Ki.¢,1.¢c, and one
straight-forward way of doing this is via Gaussian elimination. Thus, perhaps the only operation
necessary for sophisticated behavior is updating each row of E with a linear combination of the
other rows’ features.

Leveraging this idea, we replace the regular attention scheme over the N2 edge embeddings with
“Gaussian Elimination Attention” (GEAttention). Thinking about the set of edges as a matrix of
embeddings, the key idea is to constrain the attention mechanism to only make convex combinations
of values in the same column. Moreover, the weighting scheme for these values must be the same
for each column in E. This key idea is depicted in Figure[5] The GEAttention operator for the
edge embedding at row ¢ and column j is

N
GEAttention;;(E) =Y  i,vn;
r=1

1 N exp <ﬁ<q7’.nwk1:n>>

where «;, = —

N
N n=1 Zm,:'l exXp <ﬁ <q7.7l,? km.u>>

Because it is somewhat unconventional, we will now further explain «; ; for GEAttention. First
note that «; ,. prescribes the weighting on values from row r when updating embeddings in row i.
The term inside the summation is standard attention across the n™ column. The sum is then used
for averaging this information across columns. This scheme reduces the computational complexity
from O(N%) to O(N?). Again, we use a multi-headed version of this scheme in practice. After L
blocks, the mean and standard deviation of a normal are predicted via u;, 0; = gg (Ele) The full
architecture description can be found in Appendix

B IMPLEMENTATION

B.1 MORE GTNP DETAILS

Algorithm [I]shows one graph transformer block. Here ¢g is a neural network with one hidden layer
neural network with a ReLU activation function. Before multi-headed graph attention and before g
we use LayerNorm (Ba et al.|[2016). Note that the architecture for this block is almost exactly the
same as the blocks in GPT2 (Radford et al., 2019)); however, we use 2d hidden units in gg following
Nguyen & Grover| (2022)) instead of 4d.
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Figure 5: An Illustration of the Key Idea behind GEAttention. Each edge embedding outputs a key,
query, and value (left of the divider). However, we combine entire rows of values together inspired by the row
operations of Gaussian Elimination (right of the divider).

Autoregressive Training Scheme. We use the same scheme as TNP-A in [Nguyen & Grover
(2022) in order to efficiently consider multiple context sizes at once per mini-batch update. To
do this, instead of using x we use X = X @ X¢+1:n. The corresponding node embeddings are then
vi = f¥(y;) fori < Nandv; = fY(0)ifi > N. Let M € R?N=Cx2N=C pe 3 matrix of the
masks for the attention where M, ; = 1 if the i vertex can attend to the 5™ vertex and 0 otherwise.
The entries of this matrix are as follows:

1 5<C
1 i<Nandj <1
M;; = T T
J 1 j—C<i—N
0 else

This is visualized on page four of Nguyen & Grover (2022). Effectively, this masking scheme
allows target points to attend to observations of other target points occuring earlier in the sequence.
Alternatively, we could simply use X, the vertex encoding scheme described in Section and a
masking matrix of M € RV*Y where

1 j<C
M; ;= -
! {0 else

This would only consider one context during training (although at test time, the target set could still
be predicted autoregressively). This is akin to TNP-D in|Nguyen & Grover|(2022), which was found
to achieve worse log likelihood. We also find that this more straightforward masking scheme yields
slightly worse results for GTNP. Check Appendix [D]for experimental results of GEENP.

B.2 MORE GEENP DETAILS

Algorithm [2] shows one GEENP block. Note that most of the details are indistinguishable from
Algorithm || besides the type of attention used and the operation over edge embeddings instead of
vertex embeddings.

Algorithm 1 One Graph Transformer Block
Input: V. I/
for v/ € V do
v = vf + MultiHeadedGraphAttention;(
LayerNorm(V), E)

vt = vf + go(LayerNorm(vf))
end for
Return: V
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C EXPERIMENT DETAILS

C.1 REPRODUCIBILITY

We include an anonymized pytorch (Paszke et al., [2019) implementation of GTNP and GEENP in
the supplementary material, instructions for installing dependencies, and directions for launching
synthetic experiments (i.e. the experiments in Sections [3.1] and [3.2). See README.md for more

details.

C.2 HYPERPARAMETERS

Table 6: Hyperparameters for GTNP and GEENP.

Batch Size 16
Learning Rate Se-4
Learning Rate Scheduler Cosine Annealing
d 64
H 4
Blocks 6
Activation Function ReLU
fg/ and f(f Depth 4
fy and fF Width 64
go Depth 1
go Width 128
qe width (see Algorithms|1|and 128

Table [6] show the hyperparameters used for GTNP and GEENP. We selected these hyperparameters
to be as close as possible to the ones used in TNP for a fair comparison. For each of the other
baselines, we use the same hyperparameters they report. In particular, we use the same configura-
tions that appear in https://github.com/tung—nd/TNP-pytorch/tree/master and
https://github.com/cambridge—-mlg/convcnpl

C.3 ADDITIONAL INFINITE DATA REGIME DETAILS

Following the procedure in[Nguyen & Grover|(2022), all methods were trained on 1M batch updates,
where each batch contains 16 sampled functions. The exception to this is in the 4D case, where it
seemed that models were still learning after 1M batch updates. Thus we increase the number of batch
updates to 10M for this setting. For test time, we generate 3,000 of these batches to evaluate on.
Like during training, each batch has a random N and C chosen in the ranges of [6,50] and [3,47],
respectively. We use the code in the official repository for[Nguyen & Grover|(2022) to generate the
test set for the 1D experiment and our own code for the higher dimensions.

C.4 ADDITIONAL FINITE DATA REGIME DETAILS

When dealing with finite datasets, we shuffle the data every epoch in order to get different context-
target splits in the data. We reserve 10% of the total data as a validation set. We train each model

Algorithm 2 One GEENP Block
Input: £
for £ ; € E do
Ef,j = Ef_j +MultiHeadedGEAttention; ;(

LayerNorm(E))
Efjl = Ef] + QG(LayerNorm(Ei{j))
end for
Return: F

16


https://github.com/tung-nd/TNP-pytorch/tree/master
https://github.com/cambridge-mlg/convcnp

Under review as a conference paper at ICLR 2026

until 100 epochs after the best validation loss was observed (with a maximum of 5,000 epochs). We
checkpoint the model that achieves the best validation loss and use this during evaluation.

We use a test set with 100,000 data points for each of the dimensions. The same test set is used
regardless of how much training data is used. We now describe how to compute the normalized
metrics found in Table 2] Let s. be the average log joint likelihood that the trained model achieves
on the test set given a context size of c¢. Furthermore, let f be the true GP that generated the data.
We then define s™" and s™ as

yc+1 NlXchl N)

2 \

mm _
max _

yc+1 N|X 7y(”Z))

i_

i

where x(") and y("™ are the m™ set of test points. In other words, s™" is the joint log likelihood

using the true prior and s is the joint log likelihood using the true posterior. The final reported

score is then
49

1 Se — Smln
100 x — _
49 Cz:; gmax _ gmin
Note that when M is large this score cannot be over 100; however, it is possible to get a score lower
than 0.

C.5 ADDITIONAL NUCLEAR FUSION EXPERIMENT DETAILS

The dimensions of X for the nuclear fusion data are the current measurements of 3, rotation,
power injected from the neutral beams, torque injected from the neutral beams, and the backward
difference of these four measurements. Additionally, because the power and torque injected from
the neutral beams are actuators, we include the forward differences for the power and torque. Each
shot on average has roughly 107 time steps.

The architecture for the PNN is the same as it appears in [Chua et al.| (2018). In particular, we use
a fully connected network with 4 hidden layers each with 200 units. We use the swish activation
function (Ramachandran et al., [2017) and have two dedicated heads for the mean and log variance
predictions. We use mini-batches of size 256 and a learning rate of le-3.

C.6 ADDITIONAL WEATHER PREDICTION EXPERIMENT DETAILS

The daily precipitation values are accumulated from 23:00 of the previous day to 23:00 of the day
of interest. Our training and validation region if 48°N-56°N, 8°E-26°E, whereas the test region is
42°N-46°N, 19°E-26°E.

We keep architectural and training settings as elsewhere but set mini-batch size to 1 due to high
context and test sizes.

C.7 ADDITIONAL LIPOPHILICITY EXPERIMENT DETAILS

The RQ kernel is defined as
\2
kro(a,a’) = o (14 &2
ro(z, ') =0 ( + 202

Recall that the train split used to train our GTNP models contains sequences of molecule representa-
tions. For each of the 1400 sequences, we compute the optimal hyperparameters using L-BFGS that
maximise the marginal log-likelihood of the context points in the sequence. The two histograms in
Figure [6] show the distribution of optimal hyperparameters over the train split. For « in particular,
two clear peaks are present, which illustrate the inappropriateness of using a global GP model with
a single choice of kernel hyperparameters to fit all the training data.

For the GP (fixed) baseline, « and ¢ were chosen to be right modes in their respective histograms,
¢ =247, a = exp(7.01). The scale parameter o> was set to 1 as we are using whitened data.
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Figure 6: Histograms of Optimal log o and ¢ RQ Kernel Hyperparameters for the Lipophilicity Task.
Note the two peaks illustrating the multi-modal nature of optimal kernel hyperparamters for our task.

C.8 COMPUTE DETAILS

We train our models using Nvidia Titan Xp GPUs. Other baselines were trained using a mix of these
GPUs and Titan X Pascals. Since the cluster we use to train on has many users, it is difficult to get
a precise timing comparison; however, we give estimates in Table[7] Note that TNP and GTNP are
considerably faster at evaluation because only one forward pass is necessary to compute the joint
log probability due to the masking scheme described in Appendix [B.1]

Table 7: Approximate Run Times. Each estimate is for one seed on the infinite 1D experiment.
Method | Train Evaluation

AttnLNP 45m 2m 23s
AttnCNP 33m 1m 57s
ConvCNP | 27m 2m 11s
TNP 52m 16s
GTNP 92m 39s
GEENP 89m 15m 32s
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D EXPERIMENTAL RESULTS WITH GEENP

Here, we re-report some of the tables and figures from the main paper with GEENP results included.

The results in Table [§] and Figure [7] shows that in infinite data regime, because of its flexibility
GEENP even outperforms GTNP.

Table 8: Infinite Dataset Results. The reported metric average joint log likelihood over the test set. We use
five seeds to report the average and the standard error.

Dimension ‘ AttnLNP AttnCNP ConvCNP TNP ‘ GTNP GEENP
1D 12.924£0.03 12.62+£0.03 20.64+0.08 21.3440.02 | 21.8040.01  22.48 4 0.05
2D —4.4340.02 —4.69+0.02 — —4.164+0.55 | —2.994+0.01 —2.54+0.03
4D —9.374£0.01 —9.40 4 0.00 — —9.86+0.00 | —9.25 4+ 0.00 —9.25 % 0.00
| = = = 1

8

8 20-

<
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S, —4— GTNP

8 10- —— GEENP

o —— TNP

g 5- —$— ConvCNP

; AttnCNP

0- —4— AttnLNP

00 05 1.0 1.5 20 25 30 35 40
Translational Offset

Figure 7: Log Likelihood vs. Translational Offset in the 1D Infinite Data Case. The y-axis shows the
average log joint likelihood over the test set and the x-axis shows the amount of translational shift made on the
z inputs.

Figure[9)and Table 9] show that although GTNP is reasonable, its uncertainty contours look unstruc-
tured away from observation points, and we need 100K data to match GTNP in performance, again
solidifying the hyopthesis that GEENP is better only with more data.

Table[10]shows that GEENP is not particularly good in the fusion task.

We did not do the lipophilicity experiment with GEENP. Similarly, the weather prediction test set
is simply infeasible with GEENP due to high context set size. The runs would take days. But
validation performance is reported in Table[TT]

TNP Oracle
.0+ —— R .0- .0-

Figure 8: Contour of the Predicted Standard Deviation for the 2D 1K Task. The far right plot titled
“Oracle” shows the standard deviation of the posterior GP that generated the data. The orange points show
points in the context set.
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Table 9: Finite Dataset Results. The metric is a standardized score where a score of 100 means that the NP
has exactly reproduced the GP, and a score of O means that the NP produces a worse log likelihood than simply
predicting the prior (see Appendix [C.4]for the exact definition of this metric). We use five seeds to report the
average and the standard error.

Dataset | AttnLNP AttnCNP ConvCNP TNP | GTNP GEENP
1D 1K 4.88 +1.74 —2.724+4.20 34.26 +£5.38 —2.62+1.86 | 61.90 £+ 1.92 44.81 +£0.95
1D 10K 66.83 £ 0.75 63.94 £+ 1.06 65.48 £4.52 82.01 £0.58 | 83.73 £+ 0.59 74.94 + 2.00
1D 100K 71.76 £ 0.74 71.92 +0.68 93.04 £0.35 92.954+0.38 | 93.86 £ 0.23 93.45 + 0.66
2D 1K —2.56 £1.48 —2.80+1.79 — —8.78 £7.38 | 56.94 1+ 0.64 11.20 £ 7.68
2D 10K 61.18 + 0.96 57.81 +2.24 — 63.92 + 0.42 73.49 £+ 1.06 62.58 + 2.74
2D 100K 66.04 + 2.10 68.33 +1.07 — 82.33 +0.35 82.92+0.34 88.67 £+ 1.08
4D 1K —31.04 £15.97 —41.94+19.01 — -9.244+1.22 | —6.10 £ 2.91 —9.52 £ 3.07
4D 10K 24.74 + 7.62 —43.79 + 29.08 — —2.594+2.31 | 78.90 & 1.40 70.04 + 3.34
4D 100K 59.83 + 2.40 51.47 £ 4.58 — 71.30 +£1.54 | 91.08 4= 0.49 90.31 + 0.60
Average ‘ 35.74 24.69 — 41.03 ‘ 68.53 58.50

Table 10: Average Joint Log Likelihood for Nuclear Fusion Task. We use five seeds to report the average
and the standard error. The method “Fixed Normal” is the result of predicting a single normal distribution over
the test set using statistics from the training dataset and as such does not have an associate standard error.
Fixed Normal PNN | AtnLNP AttnCNP TNP | GTNP GEENP
—2.65 —2.26£0.00 | —2.37+£0.03 —3.56+0.06 —2.21+0.01 | —2.174+0.01 —2.27+0.01

Table 11: GEENP Best Performance on Weather Prediction Validation Set. Average log likelihood for the
targets.

Training & Validation Time | Log Likelihood

48h 150.99
31h21m 79.24
47h 59m 120.54
22h 08m 203.09
20h 59m -90.99
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