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Abstract

Ordinary Differential Equations (ODE) based models have become popular as foundation
models for solving many time series problems. Combining neural ODEs with traditional
RNN models has provided the best representation for irregular time series. However, ODE-
based models typically require the trajectory of hidden states to be defined based on either
the initial observed value or the most recent observation, raising questions about their ef-
fectiveness when dealing with longer sequences and extended time intervals. In this article,
we explore the behaviour of the ODE models in the context of time series data with varying
degrees of sparsity. We introduce SeqLink, an innovative neural architecture designed to en-
hance the robustness of sequence representation. Unlike traditional approaches that solely
rely on the hidden state generated from the last observed value, SeqLink leverages ODE
latent representations derived from multiple data samples, enabling it to generate robust
data representations regardless of sequence length or data sparsity level. The core concept
behind our model is the definition of hidden states for the unobserved values based on the
relationships between samples (links between sequences). Through extensive experiments
on partially observed synthetic and real-world datasets, we demonstrate that SeqLink im-
proves the modelling of intermittent time series, consistently outperforming state-of-the-art
approaches.

1 Introduction

Time series analysis of a complex irregular system is regarded as one of the big problems in contemporary data
science (Weerakody et al., 2021). Irregular time series occur in many fields, particularly for medical systems
where the data is only captured intermittently, leading to gaps in the sequences (Singh et al., 2019). These
gaps may sometimes extend over long periods - for example, if a patient misses his/her appointments or fails
to use the medical devices at home regularly. However, irregular time series capture dynamic observations
without a constant time basis, which makes it hard to model them (Scargle, 1982). Recently, the advances in
neural ordinary differential equations (neural ODEs) (Chen et al., 2018), which can produce networks with
continuous hidden states, have become fundamental models for handling irregular sequences. ODEs describe
the evolution in time of a process that depends on one variable (initial condition) (Chen et al., 2018); hence,
for ODE-based models, the continuous trajectories of the hidden state are described by just one variable
(either the initial value or the last observed value). Since this trajectory represents the data, it is important
to have the best possible representation of the hidden state. Thus ODEs are effective but may not provide
the optimal representation for the whole sequence, especially when using sequences with long time lapses
between observations (e.g. data from medical records). In such cases, the hidden states count on the one
initial value for a long time.

To illuminate the limitations of ODE-based models, we describe two distinctive irregular time series patterns:
(a) bumpy series (Figure 1.a), which are characterised by frequent and short unobserved intervals, and (b)
intermittent series (Figure 1.b), known for having long gaps with numerous unobserved values over extended
periods, as outlined in (Zhang et al., 2021). Subsequently, we investigate the behaviour of the ODE-based
model under the influence of these irregular time series patterns by conducting a set of experiments on
synthetic intermittent datasets with varying levels of sparsity (sets of consecutive unobserved values) as
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Figure 1: (a) Bumpy irregular time series (with unobserved data highlighted using a yellow-hatched). (b)
Intermittent, irregular time series (with unobserved data highlighted using a yellow-hatched). (c) Perfor-
mance of ODE-RNN model on synthetic intermittent trajectory data with different lengths (100, 500, and
1000 time points) and varying levels of sparseness. The results show that ODE-RNN model is influenced by
both the length of the sequence and the sparsity level (time lapse between observations).

described below in Section 5.1. We study the ODE-based model’s performance on sequences of different
lengths -using ODE-RNN as an exemplar model. Specifically, we assessed the model forecasting accuracy
for sequence lengths of 100, 500, and 1000 time points, each with varying sparsity levels ranging from 10%
to 40%.

The results, illustrated in Figure 1.c, show that both sequence length and the degree of sparsity significantly
impact the prediction accuracy. However, the main challenge lies in having consecutive unobserved values for
a long time. The ODE-based model shows a consistent pattern across different sequence lengths, indicating an
inverse relation between the percentage of unavailable observations and prediction accuracy. For example,
when 30% of the data is unavailable, the error rate increases by an average of 17.8%, 32%, and 14% for
sequence lengths of 100, 500, and 1000 time points respectively, compared to the results when only 10% of
the values are unavailable. These results indicate that the ODE representation of continuous unobserved
data may vary based on the amount of available data in relation to the sequence length. In the case of longer
gaps, the model may not effectively capture the underlying dynamics of irregular time series. This behaviour
might be related to the fact mentioned before that ODE models rely on a single initial state.

To overcome the limitation of ODE-based models on modelling long intermittent sequences, we present a
novel ODE-based architecture (SeqLink) that does not rely on one trajectory (generated by the last available
observation) to represent the data; it also produces more generalised hidden trajectories using information
learned from similar samples. Our architecture comprises three major parts: (1) an ODE auto-encoder to
learn a better representation of the data by employing an encoder to construct hidden trajectories based
on ODEs; (2) an attention module to categorise the learned representations based on the relations between
samples; (3) a new ODE based model (Link-ODE) designed and used to model time series by integrating
all the categorised learned hidden trajectories from various samples and providing a continuous effective
representation for the sequences. The contributions of this work are as follows:

• We have demonstrated how traditional ODE-based models may yield inaccurate predictions and less
effective hidden representation when applied to data with a high level of sparsity. Additionally, we
show how they are affected by the length of the time lapse between observations. These experiments
also serve as the motivation for this work.

• We have proposed a novel approach that utilises diverse ODE-based hidden trajectories to provide
an unrestricted representation for unobserved data, enabling us to maintain a good continuous
representation over a long period.

• Our proposed method, SeqLink, achieves improved performance over other recent models for time
series forecasting on both multivariate and univariate datasets. Additionally, our results demon-
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strate that SeqLink enhances the latent space representation of unobserved time series and improves
prediction accuracy.

2 Related Work

Irregularity issues (also known as partially-observed time series) are related to non-uniform intervals between
observations (Kidger et al., 2020; Weerakody et al., 2021). In a regular time series, the data follows a specific
temporal sequence with a regular interval - for example, samples may always be observed daily. By contrast,
in an irregular time series, samples are observed at unevenly spaced intervals. This issue is common for data
captured from humans (such as medical data and data on human behaviour), where the system depends on
people’s commitment (Scargle, 1982; Zhang et al., 2021; Lipton et al., 2016). Irregularity may also be caused
by capturing data from heterogeneous sources and sensors (Deldari et al., 2020; Abushaqra et al., 2021;
Almaghrabi et al., 2022). However, irregular sampling does not fit with standard machine learning models
that assume fixed-size features (Narayan Shukla & Marlin, 2021). Up until the last few years, there were
a number of traditional techniques used to handle irregularity, including analysing fully observed samples,
performing a features analysis rather than a temporal analysis, or re-sampling and imputation (Zhang et al.,
2021; Singh et al., 2019); these methods can destroy temporal information and dependencies.

Although recurrent neural network (RNN) (Robinson & Fallside, 1987; Werbos, 1988) shows outstanding
performance in modelling temporal data, it does, on the other hand, assume both fixed gaps between
observations and fully observed samples. Recently, with the development of neural ordinary differential
equations (neural ODEs) (Chen et al., 2018) in 2018, more effective models have been proposed for irregular
data. A neural ODEs is a continuous-time model that defines a latent variable h(i) as the solution for
an ODE initial value problem. Rather than specifying a discrete sequence of hidden layers, a continuous
representation became possible using the parameterisation of the derivative. To utilise this advantage of the
hidden state in neural ODEs, recent models like ODE-RNN and latent ODEs (Rubanova et al., 2019) have
presented a continuous-time latent state, where the formation of the dynamics between observations is not
predefined. These models define the state between observations to be the solution to an ODE, while normal
RNN hidden cells are used to update the hidden state at each observation. Therefore the trajectories of the
hidden state between observations are defined by the last observed value. As a particular case of the ODE-
RNN model, Brouwer et al. provided the GRU-ODE-Bayes model (De Brouwer et al., 2019), which includes
a continuous-time version of the GRU (GRU-ODE) and a Bayesian update network to handle the sporadic
observations. The model combines GRU-ODE and GRU-Bayes, where the first one is used to update the
hidden state h(i) in continuous time between observations, and the second is responsible for transforming
the hidden state based on the new observation. In recent years, many models based on differential equations
(DE) have been presented. These models, including work by Kidger et al. (2020); Morrill et al. (2021);
Herrera et al. (2021); Jia & Benson (2019) and others, have enriched our comprehension of DE behaviour
and demonstrated enhanced performance across various scales.

To tackle the challenge of modifying the hidden trajectories based on newly received data, the controlled
differential equation (CDE) and the neural rough differential equations (RDE) were introduced (Kidger et al.,
2020; Morrill et al., 2021). In contrast to ODE, which primarily relies on their initial states with limited
provisions for adjustments, CDE updates the driven value of the ODE equation, denoted as ds, by utilising
a matrix vector represented as dXs. Therefore the solution of CDE depends continuously on the evolution
of x (driven by the control X). Neural RDE is an extended neural CDE where, in order to increase memory
efficiency, especially for long sequences, the data is modelled without embedding the interpolated path.
In recent work by Iakovlev et al. (2023), the authors also focused on faster modelling for long sequences;
they provided multiple shooting framework for latent ODE models that works by splitting trajectories of
neural ODEs into short segments, optimising them in parallel to facilitate efficient training. Another notable
contribution is the work by Schirmer et al. (2022), where they introduced continuous recurrent units (CRUs).
These units integrate a linear stochastic differential equation (SDE) within an encoder-decoder framework,
using the continuous-discrete Kalman filter to ensure smooth transitions between hidden states and an
effective gating mechanism. It is worth noting, however, that the focus of these improved models has
primarily been on either facilitating faster learning or enhancing the representation of long sequences. In
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contrast, our focus is directed towards generating a stable representation for irregular data sets characterised
by longer gaps.

Researchers have also explored irregular time series modelling by combining ODE models with attention
mechanisms (Narayan Shukla & Marlin, 2021; Jhin et al., 2022; Yuan et al., 2022) and long short-term
memory (LSTM) networks (Lechner & Hasani, 2020). Furthermore, ODEs has recently been applied in
various different fields, for instance, in (Yan et al., 2020), where the authors studied the robustness of
the neural ODEs model and proposed the time-invariant steady neural ODE (TisODE). Their model was
then applied to an image classification task by removing the time dependence of the dynamics in an ODE
(Garsdal et al., 2022). Additionally, efforts have been made to reduce the high computational overhead
caused by the ODE models. Habiba & Pearlmutter (2020) redesigned RNN architectures such as GRU
and LSTM using ODE, resulting in GRU-ODE and LSTM-ODE models that reduce the computation costs.
The models leverage ODE solvers to compute hidden states and cell states, thus substantially reducing the
computational cost of additional encoding and decoding used in the previous models (such as Latent-ODE
and ODE-RNN). In a recent development, Zhou et al. (2023) introduced the LS4 generative model. LS4,
short for latent state space sequential sampler, is designed to capture and generate sequences of data by
incorporating latent variables that evolve according to a state space ODE. This model overcomes limitations
in existing ODE-based generative models, especially for sequences with sudden changes. LS4 demonstrates
enhanced performance and faster training. Another recent contribution Chowdhury et al. (2023) introduced a
method for self-supervised learning on irregular multivariate time series. This approach employs contrastive
learning and data reconstruction tasks, maintaining the native irregularity of the data. Additionally, it
incorporates a time-sensitive data reconstruction task, masking a fixed duration of data instead of a fixed
number of observations to ensure tractable reconstruction across regions with varying sampling density.

As numerical integration, which is used to approximate the solutions of ODEs using numerical methods,
significantly influences the model performance, it remains a subject of ongoing investigation. Zhu et al.
(2022) explored neural ODEs and their interplay with numerical integration, revealing how neural ODEs
approximate certain equations during training. Ott et al. (2020) analysed the connection between differen-
tial equations and ResNet, highlighting the strong link between ODE-based models and numerical solvers.
Krishnapriyan et al. (2022) conducted experiments to demonstrate the impact of numerical solvers on neural
ODEs and proposed a convergence test to select suitable solvers for continuous dynamics.

3 Preliminaries

In this section, we introduce the fundamental concepts of ODEs models, along with the notion of ODE
solvers. These concepts serve as the foundation for our proposed methodology. The notations used in the
paper are summarised in Table 1.

ODE: ODE is a mathematical equation that describes the rate of change of a function with respect to an
independent variable. In the context of time series data, ODEs capture the dynamics and relationships
between variables over time. A simple form of an ODE is given by: dx(t)

dt = f(x(t), t), where x(t) represents
the state of a system at time t, and f(x(t), t) defines the rate of change of x(t) at a given time point.

ODE Solvers: Solving an ODE involves finding the solution x(t) that satisfies the given differential equation.
ODE solvers are numerical methods used to approximate the solution of an ODE over a specified time interval.
One common approach is the ODESolve method, which numerically integrates the ODE using discrete time
steps. Given an initial condition x(t0), an ODE solver approximates the values of x(t) at subsequent time
points.

Neural ODEs: Neural ODE are an extension of traditional ODEs, where the function f(x(t), t) is param-
eterized by a neural network. Neural ODEs allow us to model complex and continuous-time dynamics in a
data-driven manner. The formulation of a Neural ODE is given by:

dh(t)
dt

= fθ(h(t), t), where h(t0) = h0 (1)

h0, · · · , hn = ODESolve(fθ, h0, (t0, · · · , tn)), (2)
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Table 1: Symbols and Notations.

Notation Description
K A size of data of time series sequences.
k An individual time series sequence extracted from the dataset, denoting

a sample sequence within the dataset.
D The dimensionality of each time series, referring to the number of fea-

tures it encompasses.
t A time index indicating the chronological order of measurements within

a time series, starting from 1 to n.
n The final time point within a time series.
i A specific time point within the time index t.
ti A time point where t = i.
x The actual observed values of a time series.
xi The actual observed value at time i of a time series.
m A mask matrix indicating the availability of observations.
mi A mask value for a specific time point, with a value of either 0 or 1,

indicating the presence or absence of a measurement at time point i.
hi A hidden state representing the internal activation of a neural network

layer at time point i.

where fθ is a neural network function with learnable parameters θ, and h(t) denotes the state of the system at
time t. Given a function fθ and an initial condition h0 the ODESolve function is used to solve the differential
equation and compute the values of h at sequence time points t0, · · · , tn.

ODE-RNN: is a model that combines the strengths of ODEs and RNNs to model irregular time series data.
In the ODE-RNN framework, the hidden state hi between observations is defined using solutions to an ODE.
While at observations, the hidden state is updated using an RNN cell, ensuring that both continuous-time
dynamics and observation-specific information are captured. The ODE-RNN formulation is given by:

hi =
{

RNNCell(hi−1, xi) if mi = 1
ODESolve(fθ, hi−1, (ti−1, · · · , ti)) if mi = 0,

(3)

where hi represents the hidden state at time ti, xi is the observation at time ti, mi is a mask value indicating
if the observation is available (mi = 1) or not (mi = 0), and ODESolve is an ODE solver that integrates the
ODE using the given function fθ, an initial state hi−1, and a sequence of time points (ti−1, . . . , ti).

4 Methodology

4.1 Problem Statement

We consider modelling K sporadically observed time series with D dimensions. For example, data from K
samples (e.g. patients) where D variables are potentially measured at a specific time point ti. Each time
series is measured at time points t = (1, 2, .., n). The values of the observations are defined by a value matrix
x ∈ Rn×D and a mask matrix m of size (n×D): m ∈ (0, 1) to indicate if the variable is observed (mi = 1) or
not (mi = 0) at each time point i. We assume a specific time series to be sporadically sampled when some
samples x have m equal to (0) at one or more time points. The goal is to model the sporadic time series
effectively by finding the best continuous latent representation h for the entire sequences.
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4.2 Overview of SeqLink

In this article, we present a novel system for modelling irregular time series data, aiming to derive generalised
continuous hidden representations for unobserved values. As shown in Figure 2: our model comprises
three key components: (1) ODE Auto-Encoder: This component uses neural ODEs to learn optimal
hidden representations for each sample. It takes datasets as input, employing neural ODEs to capture
continuous hidden trajectories that best represent each sample. Subsequently, it returns the most suitable
representation for each sample. (2) Pyramidal Attention Mechanism: Designed to delineate correlations
between samples, this method maps data with each other. By leveraging the learned representations as
input, it discerns, for each sample, the most relevant representations of other samples. It then sorts these
representations based on their relationships to each sample. (3) Link-ODE: A generalised ODE-based
model tailored to modelling partially observed irregular time series. By utilising the best-hidden trajectories
to fill in gaps in the data, this model incorporates learned latent states from another related sample alongside
sample-specific latent states to represent each sample effectively. The remaining parts in this section will
address each module of SeqLink.

ODE denoising auto-encoder

Learned representations

DecoderODE-RNN
encoder

Attention
Output: importance rates 

0 0 00 11111 000 1 1

Cutout
time points

Reconstructed
data

Original data

Corrupted
 data

ODE latent
representation 
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ODE-RNN

Decoder:
Linear

network

ODE auto-encoder

Pyramid sorting

 

Inputs:

Pyramidal Attention

 

Mapping sample and learned
representations 

Output: ODE latent representations 

Output: List of the learn
representations sorted
based on the importance
rates to diffrent levels: 

Input: ODE latent representations of
sequence data

Figure 2: The architecture of SeqLink model with auto-encoder that generates the learned representation
for each sequence, pyramidal attention module to sort the representation based on the correlations between
samples, and Link-ODE to provide a continuous effective representation for the sequence based on the
learned information, where U (generated by ODE auto-encoder) is a set of the best-learned representations
(u1, u2, . . . , uk) for each sample, α: the importance weights for each latent representation. l: a level number
from 1 to |L| used to sort the learn representations.

4.3 ODE auto-encoder

Inspired by the idea of the denoising auto-encoder (AE) (Vincent et al., 2010), which utilises a corrupted
input to train the encoder in order to obtain a high-quality embedding, our ODE-based auto-encoder aims
to identify the optimal hidden representation (ODE hidden trajectory). The denoising AE is a type of neural
network that learns to denoise data by encoding corrupted inputs and then reconstructing the original data.
In a similar vein, our ODE-based AE seeks to minimise the reconstructing error between the original data
values x and the decoder output y through the identification of the ODE hidden trajectory. However, our
ODE AE deviates from the traditional denoising AE objective, as our primary goal is to obtain a robust and
effective latent representation of the data rather than focusing on explicitly denoising it. Therefore, the task
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is reconstructing x′ (corrupted x) to the original data x and then obtaining the learned data representations
that yield the best result. The proposed ODE AE is presented on the left-hand side of Figure 2, and consists
of the following steps:

• Generate x′ by corrupting observed x in a time series k using a cut_out function based on a specific
number of points to be removed from the timeline. The cut_out function removes the data points
by setting them to zero in both the value and mask vectors.

• Each corrupted x′ is processed by the ODE-RNN encoder to learn the hidden representation hi at
each time point t = i. See Equations (4) and (5). Where the RNN function is used to update the
hidden state ui at observation time i for observation xi. While ODE solver is to solve ODE and
get state ui at time ti when there are no observations (the time between i − 1 and i, as Equations
4) as described in Section 3. In other words, Equation 4 is used to find the hidden state for the
observations, and Equation 5 is used to find the hidden state between the observations (the gaps).

ui = ODE_RNN(xi) = RNNCell(ui−1, xi) (4)
ui = ODE_RNN(ti) = ODESolve(fθ, ui−1, (ti−1, · · · , ti)) (5)

• The latent representations are solved back and decoded to the data space (to undo the effect of the
corruption process), where a decoder model of linear sequence layers generates the predicted data y.

• The generated data y is compared to the original x with the goal of minimizing the re-generating
error between y and x as arg min

ρ
Loss(X, Y ), where arg min

ρ
represents the argument (or value) of

ρ that minimizes the function Loss(X, Y ), ρ = w, w′, b, b′ is the set of learning parameters to be
optimized for the encoder and decoder, and Loss(·) is the loss function used to measure the similarity
between x and y. Finally, the learned hidden trajectories of each sample are saved for the next phase
as a set of U =u1, u2, . . . , uk.

4.4 Pyramidal Attention

We use the previously learned hidden states U to define a set of latent representations for each sequence
based on the correlation between samples. Hence, we find the attention score between the samples and the
learned representations from the auto-encoder. As shown in Figure 2, we first map the original data (x)
to the learned representations (u) by embedding both vectors as Equations 6 and 7, where φ refers to the
embedding layer and θ represents the learning weights.

eik
x = φx(xk

i , θφx
) (6)

eik
u = φu(uk

i , θφu) (7)

Next, a concatenate layer combines both vectors as (Sx) as Equation 8, where θ is a set of learning parameters.
This is followed by an attention layer that defines an attention score to find the importance rate αx between
each x and u using Softmax function as the following formula:

Sx = (eik
x ⊕ eik

u ) · θ (8)

αx = exp(Sx)∑K
k exp(Sx)

(9)

The assigned importance weights αx are used to generate a set of hierarchical levels of related latent repre-
sentations as {l1 = {ui ⊆ U} , . . . , lL = {ui ⊆ U}}. At this stage, we use pyramidal sorting for each sample
and corresponding learned representations according to the attention importance weights αx (as shown in
Algorithm (1)). The input consists of the importance weights obtained through the attention layer, the
learned representation for each sample, and the total number of levels L, which determines the pyramid
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height. The output is a list of sorted representations for each sample, defining the categorisation of entities
based on their importance scores.

The pyramidal attention mechanism in our model sorts learned representations based on correlations for each
sample, offering advantages over selecting a single best representation. This sorting ensures that the final
representation for an unobserved value incorporates information from multiple related latent representations,
reducing reliance on a single sample and enhancing the model’s generalisability. By constructing a relevance
pyramid, higher levels contain representations with higher importance rates, while lower levels contain repre-
sentations with lower rates, allowing comprehensive consideration of information from all samples, avoiding
over-reliance on individual samples and reducing the influence of outliers or noise. Moreover, the pyramidal
mechanism introduces a negligible additional computational cost compared to using only attention, as it
involves the same standard operations.

Algorithm 1: Pyramidal sorting
1 Input: Attention_weights (rates) α , Learned_representations U , number_of_level L
2 sorted_uk = [] // sorted weights for one sample
3 sorted_u = [] // sorted weights for all sample
4 for k in 1, 2, .., K do:
5 rates = α[k, ]
6 for l in 1, 2, .., L:
7 MeanV =

∑
rates/K

8 Current_L = [rates <= MeanV ]
9 Current_U = U [Current_L].mean()

10 rates = [rates > MeanV ]
11 sorted_uk.append(Current_U)
12 end for
13 sorted_u.append(sorted_uk)
14 Output: sorted_u

4.5 Link-ODE

Initial hidden
state

Hidden state learned by ODE for
other samples

O
D
E-
R
N
N

Li
nk
-O
D
E

Figure 3: Architecture of Link-ODE model (the green part in Figure 2). Continuous-time modelling for
irregular samples, where h0 is the initial state of a time point ti, f(·) is an ODE cell (update function) to
solve the ODE for h, and ux

0 is the previously learned trajectories from other samples xk at the same time
point.

Using the learned hidden representations, we define a Link-ODE network (shown in Figure 3) that in gen-
erating a continuous representation for the unobserved part not only considers the last observed value but
also uses the ODE trajectories learned from different samples. The implementation of the Link-ODE is
represented in Algorithm 2. An ODE solver is used to define the hidden state at time i + 1 based on the
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last observed value (initial value), while another ODE solver is used to define a hidden state trajectory for
i + 1 for other samples (ODE solver from the ODE AE discussed in section 4.3). Finally, an RNN cell is
used to find the hidden state when there is an observation based on hidden states from the ODE solver for
the current sample, the hidden states of other samples, and the current value of xi. In other words, when
mi = 1 the hidden state is defined based on the last hidden state and the current value of xi for each xi, and
when mi = 0 the hidden state is defined based on the ODE solver for the last hidden state and the hidden
states learned from other samples. The previously learned states are combined and multiplied by a specific
weight based on their level of correlation to the sample (p), as expressed in the following Equations (10,11):

p = w · l1, w · l2, · · · , w · lL (10)
hi+1 = RNNCell(hi+1, p, xi+1) (11)

p is a matrix encompassing all levels, where each l corresponds to latent representations assigned to that
specific level. The weight values, denoted by w, are established according to the levels, wherein latent
representations at a given level l receive higher weights when positioned at the pyramid’s apex. This apex
placement signifies a heightened relevance to the current value of x, as determined by the attention layer.
After obtaining a continuous representation that encapsulates the learned relationships and dynamics within
the data, a conventional output dense layer is employed, where the representations are then fed to generate
the final output.

Algorithm 2: Link-ODE
1 Input: Data points x
2 Output: hN

3 for i in 1, 2, .., n do:
4 ḧi+1 = ODESolve(fθ, hxi

, (ti, ti+1)) // Solve ODE to get state at ti+1 based on last hidden
state of xi.

5 h̄i+1 = ODESolve(fθ, hxk
i
, (ti, ti+1)) // Solve ODE of hi+1 of other sample in K.

6 hi+1 = RNNCell(ḧi+1, h̄i+1, xi+1)
7 end for Pass;

5 Experiments

5.1 Datasets

Synthetic data (Gaussian trajectories): To evaluate the performance of our proposed model and analyse
the model’s robustness, we generated three synthetic datasets with 1000 samples of periodic trajectories and
varying sequence lengths using the standard Gaussian function. The standard Gaussian function, denoted
as N(0, 1), is a specific form of the Gaussian distribution with a mean (µ) of 0 and a standard deviation
(s) of 1. It is a fundamental probability distribution to model random variables with continuous outcomes.
Using that function, we generate the following three periodic datasets: (1) a dataset with 100 time points
(refer to it as PeriodicDataset_100 ), (2) a dataset with 500 time points (as PeriodicDataset_500 ) and (3)
a dataset with 1000 time points (as PeriodicDataset_1000 ). For each dataset, we use a cut-out function to
simulate unobserved values by sub-sampling the data and generating sporadic sequences. We generate four
sets for each dataset with different percentages of sparsity (10%, 20%, 30%, and 40%). The cut-out function
removes a value by setting it to zero in the value tensor (x) and mask tensor (m). In total, twelve synthetic
trajectories are used. This dataset was able to show the effect of sequence length and number of unobserved
values on the performance of the models.

Real-world datasets: Additionally, we used four benchmark real-world datasets, including:

• Electricity Consumption Load (ECL) 1: A public dataset that describes the electricity consumption
(Kwh) of 321 clients. From the ECL dataset, we used observations for one year and ten sites. We

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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generated sequences with 30 days lag and prediction one day ahead. Since the ECL dataset is a
regular time series, we performed a cut-out function on the samples. We randomly cut out 30% of
the time points to generate a sporadic series. In total, 3350 univariate sequences were used.

• Electricity Transformer Temperature (ETT) (Zhou et al., 2021)2: A multivariate time series that
records two years of hourly data. The data has six features used to predict the electrical transformers’
oil temperature based on load capacity. We used the available small dataset from 2016 and generated
2000 sequences with lag length of 24 hours and prediction one hour ahead. For the ETT series we
also cut out 30% of the observations to generate a sporadic series.

• Weather Data3: This data describes local climatological conditions for various US sites. It includes
11 climate features and the target value (a wet-bulb temperature). We built sequences of 7 day lag
using hourly data with prediction one hour ahead. We used 2000 sequences and performed a 30%
cut-out to generate irregular samples.

• MIMIC-II (PhysioNet Challenge 2012 data) (Silva et al., 2012)4: An irregular medical data, describ-
ing measurements for patients in ICU. It includes 48 measurements, 37 features, and a binary target
value for in-hospital mortality. For our experiments, we used data for 1000 patients. Following
(Rubanova et al., 2019), we rounded up the time stamps to one minute to speed up the training
process.

5.2 Experiment Details

Baselines: As our architecture is built based on ODE-RNN (Rubanova et al., 2019), we selected ODE-RNN
as our major baseline. We also compared our models’ performance to latent ODE (as this is a popular
baseline model for irregularly sampled time series)(Rubanova et al., 2019), two classical time series models
(RNN and RNN-VAE), and a novel neural DE model (CDE) (Kidger et al., 2020). Along with a recent
state-of-the-art forecasting model, TSMixer (Chen et al., 2023).

Setup: For all the experiments, we applied a shuffled splitting to divide the data into a training set and a
testing set. 80% of the samples were used for training, while the testing set held the remaining 20%. We
re-scaled (normalised) the features between (0,1) for each dataset. To generate sparse data for the ECL,
ETT, and weather datasets, we randomly cut out samples by setting the value to zero for the value and
mask vectors. For all these real-world forecasting datasets, we cut out 30% of the time points in each sample.
MIMIC-II is already a sparse dataset, so no cut-out function was performed. For model hyperparameters, to
make the experiments fair and consistent, we followed (Rubanova et al., 2019) and chose the hyperparameters
that yield the best performance for the original ODE-RNN. We ran both baselines and SeqLink with the
exact same size of the hidden state and the same number of layers and units. For the auto-encoder in
SeqLink we used ODE-RNN for the encoder and a shallow sequential network of one linear layer to decode
the data to the data space and solve back the ODE. While for Link-ODE we used the ODE function of one
hidden layer and 100 units. The latent dimension used was 10 for all data sets. The fifth-order “dopri5”
solver from the “torchdiffeq” python package was used as the ODE solver. This is the same one used in the
traditional ODE-RNN model. We run 200 epochs on a batch size of 200. The same settings are used for all
models (SeqLink and the baselines). Finally, We used mean squared error (MSE) to evaluate the prediction
performance and area under curve (AUC) for the classification task.

Resource and Training: We used Adam optimizer and a learning rate of 0.01. The experiments were run
on a desktop with an NVIDIA GeForce MX230.

Implementation: We build our code on the publicly available code for ODE-RNN at (https://github.
com/YuliaRubanova/latent_ode), using PyTorch. For the baselines (RNN-VAE, Latent ODE and ODE-
RNN) we follow the implementation available at https://github.com/YuliaRubanova/latent_ode). While
for the CDE model, we follow the implementation available at (https://github.com/patrick-kidger/

2https://github.com/zhouhaoyi/ETDataset
3https://www.ncei.noaa.gov/ data/local-climatological-data
4https://pubmed.ncbi.nlm.nih.gov/24678516/
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Table 2: Comparison of MSE values (for forecasting) and AUC values (for classification) of SeqLink against
various baseline models.

Forecasting task (MSE)
Dataset RNN RNN VAE Latent ODE CDE ODE-RNN TSMixer SeqLink
Gaussian data 0.767 7.695 8.28 8.686 0.126 1.606 0.114
ECL 0.520 3.400 0.620 2.136 0.500 1.2848 0.480
ETT 0.212 0.374 0.202 0.424 0.230 0.556 0.199
Weather 0.735 11.724 0.783 0.897 0.660 1.389 0.630

Classification task (AUC)
MIMIC-II 0.667 0.518 0.701 NA 0.692 NA 0.720

Table 3: STD for test results over three runs for all baseline models and SeqLink on real-world datasets.

Dataset RNN RNN VAE Latent ODE CDE ODE-RNN TSMixer SeqLink
Gaussian data 0.044 0.006 0.009 0.0856 6.59E-04 0.5061 2.24E-04
ECL 0.0018 0.0042 0.0024 0.009 0.0001 1.44 0.0001
ETT 0.1833 0.0057 0.0004 0.016 0.0081 0.1740 0.0509
Weather 0.0208 0.2216 0.0389 0.114 0.0274 0.1303 0.0065

NeuralCDE). For TSMixer we follow the implementation available at (https://github.com/ditschuk/
pytorch-tsmixer). Our code will be available soon.

5.3 Model Performance

Tables 2 presents the results of the SeqLink model against different baselines. The first part shows the MSE
values for forecasting tasks on real-world data and the average performance for synthetic data (Gaussian
trajectories), while the last row sets out the AUC results for the classification task performed on the MIMIC-
II dataset. The results are the average of three runs with different random seeds used to initialise the
model parameters. The best performance against each dataset is highlighted in bold. In general, our
method outperforms the baselines for all real-world datasets. Among the baseline models, the ODE-RNN
model achieved the best performance for the forecasting task. By contrast, RNN-VAE and latent ODE
failed to model these partially observed datasets. Although the CDE model was established to increase the
representation learning capability of the neural ODE model, it required a longer processing time and failed
to solve forecasting tasks. In the classification task, SeqLink has the highest accuracy on the MIMIC-II
data, while the Latent ODE model had the best performance among the baseline models. For completeness,
since we report the average performance across three runs, we present the standard deviation error for each
dataset in Table 3.

Additionally, we present a comprehensive analysis of the performance of SeqLink and the baseline models
using the synthetic trajectories to highlight the effectiveness and the behaviour of the model. The detailed
MSE values for all models using the synthetic dataset described before are given in Table 4, and the stan-
dard deviation error for three time runs are presented in Table 5. Remarkably, across all sparsity levels,
SeqLink consistently outperforms the baseline. Again baseline models, including ODE-based (latent-ODE,
CDE), have failed to model this data, especially since the unobserved values are consecutive. However,
when examining the performance on synthetic datasets with varying sequence lengths, both ODE-RNN and
SeqLink exhibit improved performance for longer sequences. For instance, the average MSE value for Period-
icDataset_100 using the ODE-RNN model is 0.33, but this figure significantly improves by over 89% to 0.033
for the PeriodicDataset_500 dataset and further to 0.014 for the PeriodicDataset_1000 dataset. A similar
trend is observed for SeqLink with a more than 90% reduction in MSE values for the PeriodicDataset_1000
and PeriodicDataset_500 datasets compared to the PeriodicDataset_100 dataset. This observed improve-
ment aligns with the intuitive notion that providing a longer sequence for learning equips the model with
more information, enhancing its effectiveness compared to shorter sequences with less information.
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Table 4: Comparison of MSE values of SeqLink against various baseline models on Gaussian trajectories
datasets with different sparsity level.

Dataset
% of sparseness RNN RNN VAE Latent ODE CDE ODE-RNN TSMixer SeqLink
PeriodicDataset_100 10% 1.127 7.535 8.390 7.106 0.297 2.952 0.280

20% 1.231 7.783 8.356 8.207 0.319 1.158 0.297
30% 1.097 7.345 8.425 8.772 0.349 1.084 0.318
40% 5.099 7.21 8.404 9.215 0.356 1.645 0.307

PeriodicDataset_500 10% 0.106 7.855 8.334 7.312 0.028 0.945 0.027
20% 0.131 7.884 8.391 8.418 0.029 1.715 0.026
30% 0.095 7.671 8.166 9.397 0.037 1.253 0.030
40% 0.128 7.565 8.072 9.948 0.039 1.646 0.032

PeriodicDataset_1000 10% 0.048 7.992 8.230 7.761 0.012 2.0512 0.012
20% 0.054 7.901 8.209 8.187 0.013 1.669 0.011
30% 0.040 7.872 8.289 9.897 0.014 1.3875 0.012
40% 0.052 7.731 8.094 10.02 0.017 1.765 0.015

Table 5: STD for test results over three runs on the synthetic datasets.

Dataset
% of sparseness RNN RNN VAE Latent ODE CDE ODE-RNN TSMixer SeqLink
PeriodicDataset_100 10% 0.0205 0.0022 0.0178 0.1087 0.0003 1.7898 0.001

20% 0.0212 0.0586 0.012 0.0643 0.0011 0.2244 0.0006
30% 0.0196 0.0021 0.0095 0.0399 0.0022 0.0603 0.0002
40% 0.468 0.002 0.0115 0.0355 0.0002 0.9501 2.8E-05

PeriodicDataset_500 10% 0.001 0.0007 0.0051 0.028 0.0012 0.0236 0.0003
20% 0.0017 0.0005 0.018 0.034 0.0009 0.6892 0.0002
30% 0.0016 0.0004 0.0065 0.046 0.0007 0.1594 0.0001
40% 0.0035 0.0008 0.0003 0.066 0.0009 0.7661 0.0001

PeriodicDataset_1000 10% 0.0001 7.0E-06 0.0058 0.1205 0.0003 0.5511 7.0E-06
20% 7.0E-06 0.0007 0.0004 0.057 7.0E-07 0.2017 8.7E-06
30% 5.6E-06 0.0001 0.0225 0.403 0.0001 0.1155 4.6E-05
40% 7.0E-06 0.0008 0.0004 0.025 2.8E-06 0.5416 0.0001

Furthermore, when considering the impact of sparsity levels, a distinct advantage of SeqLink becomes evident,
particularly in datasets with higher sparsity levels (fewer available observations). This advantage is highly
explicit when the sequence length is short. In comparison, when examining the performance of SeqLink to the
baseline (ODE-RNN), SeqLink consistently outperforms in scenarios with higher sparsity levels, especially
when the sequence is short. This is because having long gaps in a short sequence means there is less
information (actual observation) available for learning.

Table 6 provides insights into the percentage improvement achieved by utilising SeqLink over the traditional
ODE-RNN. For the PeriodicDataset_100 with 10% sparsity, the performance of SeqLink exhibited a 5.5%
improvement over the ODE-RNN. In contrast, this improvement increased to 14% when 40% of the values
from the same dataset were unobserved. This suggests that our methodology, which defines hidden states
between observations by considering data from different sequences, contributes to a better representation,
especially when the available observations are limited. Moreover, both methods performed better for longer
sequence lengths. Thus, the evaluation indicates that the model’s performance is not solely dependent on
the ratio of available to unavailable observations but also, to some extent, on the number of observations
available. Additionally, this evaluation further emphasises that hidden states generated using traditional
ODE-based models do not provide an effective representation of the whole sequences.

From our detailed analysis of the results for datasets with different lengths, we can draw attention to
the following conclusions: (1) The process of modelling irregular sequences is quite challenging for shorter
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Table 6: Percentage improvement when using SeqLink over traditional ODE-RNN. Note the increased ben-
efits as the time lapses (gaps) grow longer, especially when the sequence length is short.

Percentage of sparseness 10% 20% 30% 40%
PeriodicDataset_100 5.5% 6% 7% 14%
PeriodicDataset_500 1% 11% 18% 17%
PeriodicDataset_1000 3% 10% 7% 9%

Improvement rate 1% 20%

sequences. (2) A model’s efficiency on irregular series does not only rely on the percentage of unavailable
observations, as the total number of available observations also impacts performance.

5.4 Ablation Study

To explore the effectiveness of SeqLink we conducted a series of experiments and tested the following various
configurations to define the latent trajectories:

• Unified hidden trajectories: Directly uses all learned hidden representations from the autoencoder
without considering the relation between the samples (by removing the pyramid attention module).

• Most related trajectories: Uses only those representations with the highest importance rate from
among all the learned representations.

• Least related trajectories: Uses the representations with the lowest importance rates.

The results of the ablation study are presented in Table 7. The performance of the original SeqLink model
is superior to the other three configurations. On the other hand, using the most important latent trajectory
and the unified representation (underlined) outperform the least important learned representations that
show weak performance, which indicates that the attention layer does learn the relations between samples.
Injecting hidden states of unrelated samples lowers the performance of the model, where unrelated samples
affect the final representation. On the other hand, relying on all sequences may also introduce unrelated
information to the representation but with less effect compared with the previous case. Conversely, relying
solely on the best related trajectories provides a very restrictive and biased hidden trajectory. Therefore, we
can observe that the original framework of SeqLink outperforms.

Table 7: Average MSE results from ablation studies of three different configurations.

Dataset Unified hidden
trajectories

Most related
trajectories

Least related
trajectories

SeqLink

PeriodicDataset_100 0.339 0.320 0.338 0.318
PeriodicDataset_500 0.031 0.033 0.034 0.030
PeriodicDataset_1000 0.013 0.013 0.023 0.012
ECL 0.491 0.501 0.505 0.480
ETT 0.203 0.204 0.211 0.199
Weather 0.708 0.684 0.711 0.630
MIMIC-II (AUC) 0.706 0.691 0.69 0.720

6 Model Interpretation and Discussion

The total number of levels for the pyramid, denoted as L (as illustrated in Figure 2 and discussed in Section
4.4), is a critical parameter in the SeqLink model. The value of L determines the height of the pyramid,
thereby influencing the importance assigned to each correlated sample. To research this parameter, we
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Figure 4: Illustration of the model’s behaviour in terms of the attention weights for samples from different
datasets using several values of L. Each plot shows the number of samples (n) assigned to the topmost layer
of the pyramid after using different values of L. For each value, we display the average importance rates for
these samples (avg) and the MSE (or AUC) values achieved by the model (blue line plot). Using a very high
or very low value of L affects the model’s performance, with the optimal performance consistently achieved
at a suitable value of L, which also depends on the size and correlation between the samples.

examined several pyramids with different sizes: (1) shorter pyramids with compacted levels, indicating fewer
levels with more samples in each, and (2) taller pyramids with loose levels, signifying more levels but fewer
samples in each.

Figure 4 presents the importance rates for samples from various datasets, showcasing the top layer of the
pyramid at different values of L, along with the number of samples n assigned to that layer, the average
weight (importance) rate for these samples and the MSE error achieved by the model (blue line). Our
findings reveal that highly compacted layers tend to allocate more weight scores to less important samples
due to the longer radius between the samples and correlated samples. Consequently, less correlated samples
are considered more important. On the other hand, too loose levels focus on very few correlated samples,
introducing bias toward a limited set of samples. For instance, when L = 3, 51 samples were considered
highly related for the Gaussian dataset with an average importance rate of 0.44, while only three were
deemed related when L = 7, with an average importance rate of 0.49. To see the effect of that on the model
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performance, we can notice that the MSE values (presented as a blue line plot) improve when having a
larger value of L but then decrease for a very large value of L. In the case of the Gaussian dataset, the best
performance achieved was 0.31 for L = 5, while MSE values were 0.321 when using L = 3 or L = 7. Similar
trends could be noticed for other datasets where the performance improved for a suitable value of L. For
MIMIC-II, we report the AUC, where the model also showed improvement for L = 7 with an accuracy of
70%, while it dropped to 67%, 68%, and 64% for L = 8, 6, and 5 respectively. Notice that the value of L is
also determined by the total size of the dataset, where we experimentally defined the range of L values to
explore for each dataset.

(a) (b)
(a) Sequences of a sample with 10% unobserved values

(a) (b)
(b) Sequences of a sample with 40% unobserved values

Figure 5: Case Study: Sequences of two samples from PeriodicDataset_100 dataset with 10% unobserved
values (a) and 40% unobserved values (b). Actual values are shown with the green dashed line, SeqLink
predictions are shown with the red dashed line, and baseline (ODE-RNN) predictions are shown with the
blue dashed line. SeqLink outperforms the baseline and can give more accurate predictions for the values
that appear after the gap.

Furthermore, to demonstrate the robustness of the hidden representation of SeqLink, two case studies are
investigated in Figures 5.a and b. The figures show two samples from PeriodicDataset_100 dataset, one
with 10% unobserved values, and the other with 40% of its values unobserved. Each figure illustrates the
sequence of the actual values, the SeqLink predictions, and the ODE-RNN predictions. We have highlighted
the predictions at different time points for more clarity. The generated sequences show that our model not
only outperforms the overall sequence prediction but also gives a closer prediction for the values that show
up directly after a gap, even when the gaps are longer. For instance, in Figure 5.b, the difference between the
predicted and actual values for the time points 58 to 63 is about 8% less when using SeqLink as compared
with ODE-RNN. More case studies are presented in Figure 6. Although the baseline is better at some time
point (Figure 6.d), our proposed method outperforms most sequences. These cases implicitly prove that
our model’s hidden representations for the unobserved time points are more related than the hidden state
calculated in the traditional ODE-RNN.

Test of significance: Finally, we employed the Wilcoxon rank-sum test to determine whether the proposed
model significantly outperformed the baseline model. The results from the previous examples demonstrated a
statistically significant difference in performance (p=0.0226) on average, indicating that the proposed model
produced superior results.

7 Conclusion

In this work, we have proposed a novel ODE-based model to generalise hidden trajectories and analyse
irregular data. We first explored the behaviour of the ODE-based model on partially observed sequences
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(a) (b)

(c) (d)

Figure 6: Extra examples of the predictions generated by ODE-RNN and SeqLink.

with different lengths and time lapses. In response to the issues found, we presented the SeqLink model
that can build unrestricted ODE representations for the unobserved values and maintain good continuous
representations over a long time. The results of extensive experiments on different tasks and datasets show
that SeqLink outperforms other state-of-the-art models. Our ablation study and case studies show that the
framework of our model is able to improve the representation of the unobserved values for partially-observed
time series. Nevertheless, our proposed model was built on the ODE-RNN model as a basic ODE-based
model. For future work, we plan to explore and investigate other ODE-based models using our proposed
framework.
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