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ABSTRACT

Large language models have been successful at tasks involving basic forms of
in-context reasoning, such as generating coherent language, as well as storing
vast amounts of knowledge. At the core of the Transformer architecture behind
such models are feed-forward and attention layers, which are often associated to
knowledge and reasoning, respectively. In this paper, we study this distinction
empirically and theoretically in a controlled synthetic setting where certain next-
token predictions involve both distributional and in-context information. We find
that feed-forward layers tend to learn simple distributional associations such as
bigrams, while attention layers focus on in-context reasoning. Our theoretical
analysis identifies the noise in the gradients as a key factor behind this discrepancy.
Finally, we illustrate how similar disparities emerge in pre-trained models through
ablations on the Pythia model family on simple reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) have shown impressive capabilities on a variety of tasks, from
generating coherent and grammatically correct text, to language understanding and basic mathematical
reasoning (Brown et al., 2020; Touvron et al., 2023). At the heart of this success is the Transformer
architecture (Vaswani et al., 2017), which relies on a sequence of self-attention and feed-forward
layers to efficiently combine information from the input context and patterns learned from training
data. Despite recent progress on interpreting the mechanisms learned by different layers (Meng et al.,
2022; Wang et al., 2022), these models remain largely black boxes. A better understanding of the role
of Transformer layers and how they are affected by the training process could enable new monitoring
and editing techniques, better training data, and ultimately more reliable LLMs.

The task of next-token prediction in language modeling inherently involves different subtasks that
may be at odds with each other, as shown in Figure 1. For instance, given the context “John gave
a book to”, the word “the” is a natural and grammatically correct next word to predict, and relying
on global bigram statistics might be enough to predict it given the last word “to”. Nonetheless,
if another character is present in the context, say Mary, then the name “Mary” may be a better
prediction, and this would require a more involved form of reasoning over the context to retrieve
this name. In the context of Transformer language models, previous work on interpretability has
found that circuits of attention heads seem responsible for such in-context predictions (Wang et al.,
2022), while feed-forward layers may be storing more general statistics such as the bigram “to
the” or factual knowledge (Geva et al., 2021; Meng et al., 2022; Bietti et al., 2023). To further
strengthen this observation, the recent work (Sharma et al., 2023) found that selectively replacing
certain layer weights to their low-rank approximation, particularly late feed-forward layers, may
improve performance on various reasoning benchmarks, and observed that the truncated components
were often responsible for predicting “generic” tokens such as the word “the”.

In this paper, we provide a finer understanding of these phenomena by studying how such mechanisms
arise during training, in particular how simple distributional associations, such as the bigram “to the”,

∗The implementation is at https://github.com/leichen2018/ATTN_vs_MLP
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Figure 1: Distributional association v.s. in-context reasoning. In this work, we decompose tasks
of next-token prediction into the distributional and the in-context ones, finding that MLPs learn
distributional associations before attention develops in-context reasoning capabilities. Furthermore,
truncating MLPs promotes in-context reasoning by weakening distributional associations. See
Figure 5 for an example of this on the Pythia model (Biderman et al., 2023).

tend to be localized in feed-forward layers, while attention focuses on in-context reasoning. We first
provide a fine-grained study of training dynamics on a synthetic task with two-layer transformers
exhibiting similar properties, where the task is in-context recall (Bietti et al., 2023) with additional
noise on in-context tokens consisting of a fixed “generic” token:

• In a two-layer model with feed-forward layers (FF), we show that the generic noise token is
mainly learned in FF and the attention attends towards correct in-context targets. Removing
the feed-forward layers then leads to clean in-context predictions. We provide some theoretical
justification through early training steps.

• In a model without FF, we show that the generic noise can be identified in a rank-one subspace of
the value matrix in attention block. When the noise level is small, low-rank truncation can filter it
out and predict clean outputs.

We then investigate such a separation between distributional association and in-context reasoning
on pre-trained language models, namely the Pythia family, which has checkpoints available at
different training steps (Biderman et al., 2023). Overall, we provide a useful description of how
distributional associations and in-context reasoning mechanisms are learned during training, and tend
to be disentangled in different parts of the model, such that selectively removing certain components
may lead to better predictions in reasoning tasks.

Related work. Sharma et al. (2023) recently empirically observed that a low-rank approximation of
some weights in some pre-trained LLMs can improve reasoning capabilities. Several interpretability
works have looked at the role of attention versus feed-forward layers for different tasks. The
prominence of feed-forward/MLP layers for storing “global” or “persistent” associations or facts has
been observed in (Sukhbaatar et al., 2019; Geva et al., 2021; Meng et al., 2022; Geva et al., 2023). In
contrast, several works have investigated the role of attention heads for “reasoning” or computation
over the context, e.g., for simple copying mechanisms with so-called induction heads (Elhage et al.,
2021; Olsson et al., 2022; Bietti et al., 2023), or for more complex tasks (Merrill et al., 2022; Wang
et al., 2022; Zhang et al., 2022; Liu et al., 2023; Sanford et al., 2024b).

Training dynamics of transformers and attention have been studied in various works (Snell et al.,
2021; Jelassi et al., 2022; Li et al., 2023; Oymak et al., 2023; Tian et al., 2023; Bietti et al., 2023;
Reddy, 2024; Tian et al., 2024; Zhang et al., 2024; Nichani et al., 2024; Edelman et al., 2024). In
particular, the two-layer model and copy task we consider are similar to Bietti et al. (2023), yet their
data model does not involve noise on in-context predictions, and they do not study learning of global
associations. Chan et al. (2022); Reddy (2024) study in-context vs. in-weights learning empirically,
on different tasks than ours. Cabannes et al. (2024) study training dynamics of linear associative
memories, but focuses on deterministic data while our setup has generic noise. Training dynamics
were also studied empirically for interpretability (Olsson et al., 2022; Nanda et al., 2023; Quirke et al.,
2023; Chen et al., 2024). Edelman et al. (2022); Bai et al. (2023); Abernethy et al. (2024) studied
sample complexity of self-attention and in-context learning, but did not consider training dynamics.
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2 PRELIMINARIES

In this section, we provide some background and motivation on reasoning tasks, and describe the
weight truncation technique which we use for ablating weights.

2.1 REASONING FROM CONTEXT

Recent LLMs have shown promising results in more complex “reasoning” tasks which may involve
multiple steps of logical or computational processing from context or prompt (Srivastava et al., 2022;
Wei et al., 2022; Bubeck et al., 2023; Dziri et al., 2024), as opposed to simple pattern matching or
memorization of training data, for instance using learned n-gram predictions.

While it is difficult to clearly separate reasoning from memorization, in this work we will make the
simplifying distinction that in-context reasoning involves dependencies between multiple tokens po-
tentially far away in the context, while we consider distributional associations as simpler predictions
that only depend on the last token, e.g., through a bigram model. Thus, due to the residual structure of
Transformers, reasoning will typically require using attention operations in Transformers over context,
while feed-forward layers should suffice for learning distributional associations. We note that our
assumption of distributional associations depending only on the last token is mainly for convenience
of our analysis, and could be extended to depend on the last token’s residual stream (Elhage et al.,
2021), which may contain additional information from the context. For instance, this could include
previous tokens thanks to position-based attention heads (Voita et al., 2019; Elhage et al., 2021;
Akyürek et al., 2024), which allows capturing n-grams instead of just bigrams.

Under this definition, we list a few simple examples of reasoning that we will consider below:

• In-context recall: when the last token is a, we’d like to copy the token that follows previous
occurrences of a in the context. This [.. a b .. a]→ b pattern typically requires a two-
layer induction head mechanism (Elhage et al., 2021; Bietti et al., 2023; Sanford et al., 2024a);

• Indirect object identification (IOI): we consider contexts of the form “When Mary and John went
to the store, John gave the ice cream to” where the prediction should be “Mary” (IO, the indirect
object), instead of “John” (S, the subject). Wang et al. (2022) found a circuit of several attention
heads that perform this task by copying the name which only occurs once in the context;

• Factual recall: sentences of the form “Paul Citroen is a native speaker of” with target “Dutch” as
in (Sharma et al., 2023). While this may be seen as retrieving a distributional association, we will
treat it here as reasoning since it involves combining the subject and relation from the context,
while a bigram model that only depends on the last token “of” might instead predict the generic
word “the”.

2.2 TRUNCATING WEIGHTS WITH LASER (SHARMA ET AL., 2023)

In order to assess the importance of different weight components for certain predictions, we use the
weight truncation technique introduced by Sharma et al. (2023). They observed that reducing the rank
of MLP matrices in certain layers of LLMs effectively brings better performance on several reasoning
benchmarks. Their proposed method, Layer-Selective Rank Reduction (LASER), replaces any matrix
in the full model by its low-rank approximation with fraction ρ, i.e., a matrix W ∈ Rdin,dout would be
replaced by its rank-⌊ρ ·min{din, dout}⌋ approximation via Singular Value Decomposition (SVD).
After searching for the best parameters of different models on different datasets, Sharma et al. (2023)
found that applying their method to weight matrices of MLPs on relatively deep layers can enhance
in-context reasoning performance on various benchmarks, consistent with our findings. The optimal
ρ is smaller than 0.2 for many datasets.

Another observation from Sharma et al. (2023) is that, when LASER improves the model’s prediction
on some samples, the full model often predicts “generic” words while the improved model is able
to predict the ground-truth answer. For instance, given an input “Madrid is located in”, the full
model predicts “the” while the truncated model predicts the target “Spain” in Table 1. Here, the
generic word is consistent with our definition of distributional associations in Section 2.1, as it may
naturally follow from a bigram distribution conditioned on “in”, while the factual answer is more
akin to reasoning from context. Thus, we would like to better understand how such a modification of
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feed-forward layers improves the model from predicting generic words to inferring the answer from
context, and how such a gap appears during training.

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider simple one- or two-layer transformers on an in-context recall task with
added generic token noise, which allows us to study the trade-offs between MLPs and attention layers
for storing in-context versus distributional associations, in a controlled setting. We empirically show
how transformers solve this task by storing the generic noise token in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing that feed-forward
layers are more likely to store the distributional association (generic token) while attention learns to
attend to in-context targets. Finally, we show that when the model has no feed-forward layers, the
value matrix in attention stores both in-context and distributional information, in different subspaces.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N,N + 1}. The token τ ≜ N + 1 is the generic noise token.
We fix a trigger token q ∈ [N ], which governs in-context recall, and a context length T . Each
sequence of tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T−1 according to the following Markov process (πu, πb are distributions on [N ]

defined later): z1 ∼ πu(·), and

zt+1|zt ∼
{
πb(·|zt), if zt ̸= q,

pα,ȳ(·), otherwise,
pα,ȳ(x) =


1− α, if x = ȳ,

α, if x = τ,

0, otherwise.

iii. Set zT = q, and sample the final output y = zT+1 ∼ pα,ȳ(·).

Note that the true ȳ varies across sequences, so that the model needs to infer it from context, e.g.,
using an induction head as in (Bietti et al., 2023). Predicting ȳ may thus be seen as a basic “reasoning”
task, yet when training with α > 0, the noisy output also requires the model to learn a distributional
trigger-noise association, similar to the “of/in the” bigram discussed in Section 2. We also consider
using multiple trigger tokens in Appendix B.4 and Figure 9.

Two-layer transformer. We consider a simplified
two-layer transformer formulated below. The in-
put is a sequence of tokens z1:T = [z1, . . . , zT ] ∈
[N + 1]T , and the output is ξ. The embedding ma-
trix WE ∈ R(N+1)×d and un-embedding matrix
WU ∈ R(N+1)×d are fixed at random initializa-
tion. The two attention layers have learnable weights
W1

QK ,W1
V ,W

2
QK ,W2

V ∈ Rd×d with σ(·) the soft-
max on a vector. The two feed-forward layers F1, F2

are also learnable, and typically we set them as two-
layer MLPs with ReLU activation. We will discuss dif-
ferent architectural choices of F1, F2 in Appendix B.5.
We use the cross-entropy loss to predict y = zT+1

from the logits ξT ∈ RN+1.

xt ≜ WE(zt) + pt,

h1
t ≜

∑
s≤t

[
σ(x⊤

t W
1
QKx1:t)

]
s
·W1

V xs,

x1
t ≜ xt + h1

t + F1(xt + h1
t ),

h2
t ≜

∑
s≤t

[
σ(x1

t
⊤
W2

QKx1
1:t)
]
s
·W2

V x
1
s,

x2
t ≜ x1

t + h2
t + F2(x

1
t + h2

t ),

ξt ≜ WUx
2
t .

(1)

Table 1: Probabilities of the top-5 next-tokens in Pythia-1B before and after LASER. The input
prompt is “Madrid is located in”. Probabilities of two generic words, i.e., “the” and “a”, drop sharply
after LASER, while probabilities of meaningful words increase, especially the target “Spain”.

“the” “Spain” “a” “southern” “northern”

Full 0.499 0.079 0.069 0.023 0.021
LASER 0.027 0.300 0.002 0.044 0.046
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Layer 0

Layer 1

Layer 2

Attn-2:∑
k≠τ

(W̃E(q) + WE(k))WE(q)⊤ FF-2: (q → τ) ∼ Ptrain

Attn-1 Attn-1

⋯ ⋯ ⋯
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Figure 2: Noisy in-context recall. Purpose of design: understand mechanisms of attention and
feed-forward layers for tasks with in-context reasoning (predict ȳ) and distributional association
(predict τ ). Task: predict tokens ȳ v.s. τ from a sentence [. . . , q, ȳ, . . . , q, τ, . . . , q] where q is trigger,
ȳ is sampled target token for a sentence, and τ is a fixed generic token across sentences. Our findings:
in a two-layer transformer, the second-layer attention (Attn-2) only attends towards target tuples [q, ȳ]
while the feed-forward layer (FF-2) learns to predict τ .
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Figure 3: Left three: Average probability of predicting correct and noise tokens, and test loss
on clean data (α = 0), with different fractions ρ of preserved rank in Uin of the second-layer
MLP F2. The full model learns to predict noise with probability around α = 0.5, as expected
from training data. When F2 is dropped (ρ = 0), the model predicts the correct token ȳ with
probability ≈ 0.98. Rightmost: the FF-2 margin of τ v.s. all the other tokens with input as q,
i.e., [WUF2(WE(q))]τ − maxk≤N [WUF2(WE(q))]k. It reveals that FF-2 learns trigger-noise
association in early steps.

Experimental observations. Following Bietti et al. (2023), we take πu and πb to be the unigram and
brigram character-level distributions estimated from the tiny Shakespeare dataset with N = 65. The
model setup includes d = 256 and two-layer MLPs with ReLU for both F1, F2. The training setup
includes batch size as 512 and the context length T = 256. When evaluating trained models, we
consider LASER on the input weight Uin of F2. We consider a noise level α = 0.5 for training data
(though any other constant value would lead to similar observations). During test time, we set α = 0
to compute the test loss, aiming to measure how likely the (full or after-truncation) model predicts
the ground-truth ȳ.

Experimental results are reported in Figure 3 and 8. The full model predicts noise with probability
close to α, which is expected since it is trained to predict the noise token w.p. α. However, when
dropping the second-layer MLP F2, the truncated model predicts the ground-truth ȳ with an almost
perfect probability ≈ 0.98. This suggests that F2 is responsible for storing the distributional
association “[trigger] + [noise]”. Another observation is that the full model first learns to predict the
noise with high probability in very early steps, after which it starts learning to predict the correct
ȳ, which resembles the dynamics observed for learning the “to/in the” bigram in Pythia models
in Figure 5. This suggests that learning the (distributional) trigger-noise association is easier than
predicting ȳ, and we will study this theoretically in Section 3.1.
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Figure 4: The second-layer attention scores of models trained with noise (left), fine-tuned with noise
(right, initialized as a model pre-trained without noise), given the same input. It turns out both models
learn to attend to the informative structure “[trigger]+ȳ” instead of “[trigger]+noise”. This implies
that the attention in these models is only responsible to predict ȳ, although the training input and
output have noise with probability α = Θ(1). The fine-tuning setting is in Appendix B.1.

After the distributional noise association is learned, we observe a slower learning of an induction
head mechanism, with similar dynamics to Bietti et al. (2023). Compared to Bietti et al. (2023),
we notice that the induction head (i.e., the second layer attention head) filters out the noise tokens
and only attends to non-noisy output tokens following the trigger, corresponding to the correct ȳ, as
shown in Figure 4. We present theoretical understanding for this mechanism in Section 3.2. Figure 2
and Appendix B.2 summarize the roles of all components of the two-layer transformer in this task.

Simplified architecture and data for theoretical analysis. Understanding the full dynamics of
the model used in our experiments is out of the scope of the present paper, due to the many moving
parts and the complexity of non-linear MLPs. Instead, we focus on a simpler model involving
one linear feed-forward layer and one attention layer, and look at the gradient dynamics near
initialization. We consider the following simplified 1-layer model. The input xt ∈ Rd at position
t is defined as xt ≜ WE(zt) + W̃E(zt−1), where zt ∈ [N + 1] is the token at position t, WE(zt)

is its embedding and W̃E(zt−1) is a different embedding of the previous token to a different
direction, as in the previous token head construction of Bietti et al. (2023), where the value matrix
remaps the previous token to a different subspace. We assume all embeddings to be orthogonal
(Assumption D.1), which requires large enough d, and holds in the infinite-width limit with random
embeddings. This model allows us to simplify our analysis by considering a single attention layer
with no positional embeddings, while capturing the difficulty of long-range interactions. We note
that such a simplification is standard in the in-context learning literature (e.g., Akyürek et al., 2023;
Mahankali et al., 2024; Zhang et al., 2024), For data generation, πu and πb are uniform distributions
on [N ]. Given a sequence of inputs, x1:T ∈ RT×d, the output of model is ξ ≜ ξattn + ξff as

xt ≜ WE(zt) + W̃E(zt−1) ∈ Rd,

ϕ(xT , x1:T ) ≜
∑
t≤T

[
σ
(
x⊤
TWQKx1:T

)]
t
·WV xt ∈ Rd,

ξattn(x1:T ) ≜ WUϕ(xT , x1:T ) ∈ RN+1,

ξff(x1:T ) ≜ WUF (xT ) = WUWFxT ∈ RN+1,

(2)

where WU ∈ R(N+1)×d is the unembedding matrix, ϕ(s, t) is the attention module with query s
and context t, and F (·) is a linear feed-forward layer. This architecture is similar to a one-layer
transformer, but already highlights the difference between feed-forward and attention layers in a way
that we expect to still hold for more layers. In the above parametrization, the learnable matrices
are WQK ,WF ,WV ∈ Rd×d. At initialization, we set WQK ,WF ,WV = 0, noting that random
initialization in high dimension would lead to similar behaviors thanks to near-orthogonality.
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3.1 FEED-FORWARD LAYERS STORE THE GENERIC NOISE

As we saw in Figure 3 and 8, the model very quickly learns to predict the noise token after a few steps.
Then the gap between ρ = 0 and 1 in Figure 3 suggests that the feed-forward layer F2 is responsible
for storing the distributional association about noise, which is verified in Figure 7 (middle). We now
provide theoretical justification for this behavior. In particular, we will show that, at initialization, the
gradients over the feed-forward parameters are much more informative than the attention gradient,
which is dominated by noise unless the sample size is very large. This shows that the feed-forward
layer is much more likely to capture the distributional association.

We now look at the first gradient step from initialization, which has commonly been used to understand
feature learning and sample complexity in neural networks (Damian et al., 2022; Ba et al., 2022;
Dandi et al., 2023; Oymak et al., 2023; Bietti et al., 2023). Note that WQK has no gradient at
initialization, so that the gradient of WV is most relevant initially (see also Snell et al., 2021; Li et al.,
2023; Oymak et al., 2023; Bietti et al., 2023).
Theorem 1 (Logits after one gradient step). Assume N,T ≫ 1, α = Θ(1). For the model in Eq(2),
consider one gradient step update from zero-initialization on m i.i.d. samples of z1:T with separate
learning rates ηf for WF and ηv for WV (note that the gradient on WQK is zero). With probability
1− δ, the resulting logits for the feed-forward and attention blocks satisfy, for any test sequence z1:T ,

|∆(ξff(x1:T ))− ηf · α| ≤ ηf ·O


√

ln 2(N+1)
δ

m

 ,

∣∣∣∆(ξattn(x1:T ))−
ηv
N

· α̂
∣∣∣ ≤ ηv ·O


√

( 1
TN + 1

N2 ) ln
2(N+1)

δ

m
+

ln 2(N+1)
δ

m

 ,

where ∆(ξ) = ξN+1 − maxj∈[N ] ξj is the margin of predicting the generic noise token and α̂ =

(α2q̂ + α(1− q̂)), where q̂ = 1
T

∑
t≤T 1{zt = N + 1} is the fraction of noise tokens in z1:T .

The margin ∆(ξ) reflects how much signal there is in the logits for predicting the noise token, and
the theorem provides concentration bounds on the contributions of the updates on WF and WV to
the margin. Note that q̂ ≪ 1 w.h.p. for large N,T , so α̂ ≈ α. We make the following observations:

i. When m = Ω̃(1), there is enough signal in WF to predict the noise, say with ηf = 1, and a
choice of ηv = O(1) will lead to a small but controlled contribution to the prediction from WV .

ii. When m = Ω̃(N), WV can also reliably predict the noise by setting ηv = Θ(N) (i.e., with
small deviation on the r.h.s.), at the cost of many more samples.

Our result shows that in the initial phase of training, feed-forward layers are more likely to pick up
the noise token, leading to a structure of the form WF ≈ WU (N +1)WE(q)

⊤, while attention will
be slower due to additional noise and possibly smaller step-sizes. We may then expect the attention
layers to focus instead on in-context reasoning, as we observe empirically and discuss next.

3.2 ATTENTION ATTENDS TO IN-CONTEXT TARGETS AND AVOIDS NOISE

When the feed-forward weight learns to predict the noise as shown in Theorem 1, Figure 4 reveals that
the second-layer attention in the two-layer model attends only towards the correct tokens. In contrast,
a model pre-trained without noise has second-layer attention attend towards all tokens just after the
triggers (Bietti et al., 2023), as observed in the attention pattern at the first step in Figure 4(right).
Then, after being fine-tuned on noise data, the attention becomes only focused on the correct tokens.
Understanding this mechanism requires the analysis of the dynamics of WQK .

Following the simplified model and data distribution in Eq(2), we take a step towards understanding
how attention “avoids” the noise tokens. Concretely, this mechanism appears because, after the initial
training phase when FF learns noise association much faster than the attention, WV has a structure of∑

k≤N+1 WU (k)(WE(k)+W̃E(k))
⊤, similar to the non-noise setting in Bietti et al. (2023). After

such a WV is learned, the trigger-label association provides a stronger gradient signal on WQK than
the trigger-noise association. We show this in the following theorem.
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Theorem 2 (Attention attends to in-context targets). Assume N,T ≫ 1 and Assumption F.1 hold.
Consider the simplified model in Eq(2) with infinite samples as m → ∞. After WF learns the noise
association as in Theorem 1, in one step the attention weight WQK learns to attend to positions
t ∈ [T ] where the correct label follows a trigger word, i.e., zt−1 = q, zt = ȳ.

More concretely, WQK has the following structure

ξq→j − ξk→l = Ω(N−3) > 0, if k ̸= q, ∀ j, l, (3)

ξq→j − ξq→N+1 = Ω(N−4) > 0, ∀ j ≤ N, (4)

where ξi→j ≜ WE(q)
⊤WQK(W̃E(i) +WE(j)) denotes the attention logit for different combina-

tions of zt−1 = i, zt = j, with i, j ≤ N + 1.

Note that a set of logits induces a probability distribution via differences between them as
exp(ξi)/

∑
j exp(ξj) = 1/

∑
j exp(ξj − ξi). Therefore, the above theorem reveals that the at-

tention has two patterns: Eq. (3) shows that WQK prefers attending to locations just after a trigger q,
i.e., such that zt−1 = q, similar to Bietti et al. (2023), and Eq. (4) shows that among all positions
that follow a trigger q, WQK places less attention on the noise token, i.e., zt = N + 1, compared to
correct tokens zt = ȳ ≤ N . Such a key difference for attention between noisy and non-noise tasks
verifies our experimental observations in Figure 4.

3.3 NO FEED-FORWARD LAYERS: VALUE MATRIX STORES GENERIC NOISE ASSOCIATION

In the above discussion, we’ve seen separate roles of attention and feed-forward layers play to
conduct noisy in-context learning. A natural question is, when there is no feed-forward layer, how
the attention layer stores both in-context and distributional information. Figure 13 indicates that the
value matrix stores the noise association in subspace with smaller singular values. In this section, we
propose a setting of linear associative memory with noise to understand this mechanism.

Unlike Theorem 1 and 2 showing the separate roles of attention and FF, the attention in a non-FF
model has to handle both noise and in-context information once the model is sufficiently trained to
reach a global minimum. Due to symmetry from uniformly random sampling ȳ from N tokens, we
consider passing the output x ∈ Rd of the attention to the value matrix WV and output matrix WU

to predict next-token probability y ∈ RN+1 given z1:T ∈ [N + 1]T with noise probability of α as
follows

x|ȳ, z1:T ≜ WE(ȳ) +W(z1:T ) ∈ Rd, ξ ≜ WUWV x ∈ RN+1,

pα(y|ȳ) = (1− α) · 1{y = ȳ}+ α · 1{y = N + 1},
(5)

where W(z1:T ) is an aggregate embedding independent of ȳ. When T → ∞, W(z1:T ) converges
to a fixed embedding W independent of ȳ, so that we may consider a simplified model x|ȳ ≜
WE(ȳ), ξ ≜ Wx ∈ RN+1 with W ∈ R(N+1)×d, since W only contributes a fixed offset in all
logits that can be easily canceled in the softmax predictions. Therefore, we investigate the following
linear associative memory with noise.

Model and data. Consider a learnable weight matrix W ∈ Rd×d with d > N . Consider embeddings
for N input tokens as {ei}Ni=1 ⊂ Rd and embeddings for (N + 1) output tokens as {ui}N+1

i=1 ⊂
Rd. Given any pair of input and output tokens, the associative memory model takes the form
f(i, j;W) ≜ ⟨uj ,Wei⟩, ∀ i, j ∈ [N ] × [N + 1], as logits to approximate pα(·|i) in (5). When
k ≤ d, we denote the rank-k approximation of f as f (k) by replacing W with W(k), where W(k) is
its rank-k approximation.

Experiments. During training, the dataset Dα is generated with non-zero noise probability α > 0.
At test time, the dataset D0 is without noise as α = 0, so the computed loss is called pure-label loss.
The full model is trained with Gradient Descent (GD) subjected to cross-entropy loss. The results are
reported in Figure 18, with more discussions in Appendix G.1.

Low-rank subspace stores noise. In Figure 18, the rank-1 subspace corresponding to the smallest
non-zero singular value is responsible to store the noise. We prove this mechanism as follows. Note
that, here N = 2 is for simplicity, which is easy to extend to any N > 2.
Theorem 3. Assume Assumptions G.1 and G.2 hold, considering N = 2 and α ∈ (0.2, 0.4), we train
the full model f(·, ·;W) with gradient flow. Denote P (i, j;W) as the model’s predicted probability
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for output j conditioned on input i. Then, for t → ∞ and i ∈ {1, 2}, we have

P (i, j;W) = (1− α) · 1{j = i}+ α · 1{j = N + 1},
P (i, j;W(1)) = (1−Θ(t−

1/2)) · 1{j = i}+Θ(t−
1/2) · 1{j = N + 1}.

The above theorem implies, the full model always predicts noise w.p. α, while the rank-1 model
eventually predicts correctly without noise, although training is only on the full model with noise.
Actually when N > 2, the noise is stored in rank-1 subspace and the correct correspondence is stored
in rank-(N − 1) space. Therefore, this explains how the value matrix stores both in-context and noise
information when the model is without FF.

4 EXPERIMENTS

In this section, we empirically investigate how LLMs process distributional vs in-context associations,
and how this evolves during training. Meanwhile, we provide numerical results of how much low-rank
truncation improves complex reasoning on a real-world reasoning benchmark, GSM8K. Appendix J
provides another synethetic IOI dataset that requires counting tokens.

4.1 AN INVESTIGATION ON GPT-2 SMALL AND PYTHIA MODELS

We consider GPT-2 small and Pythia models on the indirect object identification (IOI) and factual
recall tasks described in Section 2.1.

Quick demonstration: IOI on GPT2 Small. Different from Wang et al. (2022), we would like
to consider whether a model proposes an output beyond the input x. A quick demonstration is to
consider the IOI task with input x =“When Mary and John went to a store, John gave a drink to”1.
The top 4 predicted tokens for GPT-2 Small (Radford et al., 2019) on x are [“Mary”, “them”, “the”,
“John”]. Although GPT-2 Small successfully predicts Mary (the IO target) instead of John (S), the
other two top candidate tokens, i.e., “them” and “the”, do not even appear in the context. This
prominence of such “generic” words is similar to the factual recall example from Section 2.2, and
plausibly follows from a distributional associative mechanism conditioned on the preposition “to”.

Comprehensive experiment: IOI on Pythia-1B. Now we would like to verify this observation on
more models and, more comprehensively, track the behavior of these models along training. We
choose to conduct the IOI experiments on Pythia (Biderman et al., 2023), a family of models ranging
in sizes from 14M to 12B trained on web data, with hundreds of training checkpoints for each size.
We generate an IOI dataset of 100 sentences with random names for [IO] and [S] in each sample.
Figure 5 reports the test results of Pythia-1B along training. Here LASER is conducted on MLP
weights, with parameters given in Appendix C.2. LASER boosts the probability ratio of [IO] over
“the” from 2.3× to 12.3× at 14K steps.

Factual recall on Pythia-1B. As in Table 1, we verify factual recall with input as “Madrid is located
in”. The full model of Pythia-1B generates “Madrid is located in the north of Spain”, while the model
after LASER generates “Madrid is located in Spain”. We track the probability of predicting “Spain”
and “the” along training in Figure 5. LASER turns out to boost the probability ratio of “Spain” over
“the” from 0.16× to 11.3× at 14K steps. We note that better prompting could avoid the need for
LASER in this case (e.g., “Madrid is located in the country of” predicts “Spain”), but increases the
context length and thus the inference cost, though this is outside the scope of this paper.

Training dynamics on Pythia. The behavior of the Pythia models on the IOI and factual recall tasks
during their pre-training process displays several phases, as shown in Figure 5. For IOI, we observe:

i. Initialization: all tokens have similar logits since the weights are random initialized.
ii. Between 10 and 1000 steps: the models consistently output “the”. They cannot solve IOI task

at all, as long as they have almost the same prediction for [IO] and [S]. After 500 steps, [IO]
starts the growth towards one of the top predictions.

iii. After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than [S] and “the”.
Meanwhile, the benefit of LASER appears as enhancing the leading position of [IO].

1Note that here we use “a” store instead of “the” store in the original example of Wang et al. (2022). The
reason is to rule out the word “the“ from the input context.
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Figure 5: Left: average probability of tokens [IO], [S] and “the” in 100-sentence IOI task in the
prediction by Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a
factual task predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks,
the full model learns to predict “the” with high probability starting from ∼10 steps, and then learns
to solve the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the
average probability ratio of correct answers against “the” improves from 2.3× to 12.3× (in IOI) and
from 0.16× to 11.3× (in factual) at 14K steps.

Therefore, the training process reveals the capacity of predicting “the” is learnt much earlier than
predicting [IO]. The reason might be that predicting “the” requires a simpler grammar structure,
while predicting [IO] requires a complicated architecture of attention heads of different roles across
layer (Wang et al., 2022). Then we note that the IOI task always has “to” before the masked [IO],
which means “to” may be an indicator for the model to predict “the” with non-negligible probability.
Similarly, for factual recall we see early learning of the “generic” answer, while the factual answer is
learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix C.1.

4.2 THE EFFECT OF TRUNCATING FEED-FORWARD LAYERS ON GSM8K

As our previous examples of in-context reasoning tasks are too simple for real-world reasoning, we
verify whether truncating MLPs improves reasoning on the GSM8K benchmark (Cobbe et al., 2021).
As shown in Table 2, LASER improves the few-shot Chain-of-Thought (Wei et al., 2022) reasoning
performance on GSM8K when only using 1 or 2 shots, although the performance is worse in the
standard 8-shot setting. This suggests that truncating MLPs may help promote in-context reasoning
even in more complex settings, perhaps by removing spurious distributional associations.

Table 2: Few-shot accuracy (%) of pretrained and finetuned language models on GSM8K. Truncating
MLPs (LASER) improves reasoning performances in few-shot CoT settings while it has worse
performance in the standard 8-shot setting. The LASER hyper-parameters are in Appendix C.2.

1-shot 2-shot 4-shot 8-shot (standard)

Phi-3 (Abdin et al., 2024) 56.0 72.2 78.2 82.7
Phi-3 + LASER 66.1 74.4 77.0 82.3

Llama-3.1-8B (AI@Meta, 2024) 44.7 50.0 57.6 56.0
Llama-3.1-8B + LASER 46.1 50.7 55.9 53.8

Llama-3.1-8B-Instruct (AI@Meta, 2024) 72.6 74.7 78.5 79.7
Llama-3.1-8B-Instruct + LASER 73.6 75.6 77.7 77.0

5 DISCUSSION AND LIMITATIONS

In this paper, we studied the questions of how transformer language models learn to process dis-
tributional associations differently than in-context inputs, and how truncating specific weights or
layers, particularly feed-forward layers, can help in-context reasoning. While our work provides
some initial theoretical understanding of how this may arise on simple controlled settings, it would be
interesting to study how these ideas may extend to more complex tasks where in-context reasoning
and distributional knowledge interact in more intricate ways.
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A CONTRIBUTIONS AND IMPLICATIONS

Our contribution focuses on understanding the different roles of attention and FF weights in disentan-
gling distributional vs in-context associations, both empirically and theoretically. The application of
low-rank truncation is simply a way to verify our claims, and is consistent with the findings in the
LASER paper that truncating some FF layers may improve performance on some reasoning tasks.

Nevertheless, our perspective based on distributional associations versus in-context reasoning may
be helpful in thinking about how to allocate parameters to feed-forward versus attention layers:
for instance, in Figure 6 on our synthetic task, we found that for a fixed total parameter budget,
models with fewer MLP parameters achieve higher loss on distributional predictions (e.g., non-
contextual bigrams) compared to models with more MLP parameters (and fewer attention parameters).
These notions may also provide a different way to reason about circuit discovery in mechanistic
interpretability from the perspective of training dynamics and properties of the training data. Finally,
this disentanglement may inform more effective ways to fine-tune models, e.g., by selectively
choosing which layers to fine-tune.
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Figure 6: The training loss of approximating the global bigram πb with various allocations of
parameters in MLP and Attentions. For each configuration of total parameters and ratios, we use the
corresponding best learning rate after search to train 100 steps.

B HOW DOES THE TWO-LAYER MODEL SOLVE NOISY IN-CONTEXT RECALL?

B.1 TRAINING SETTINGS

In most parts of this work, we consistently train the model with a fixed level of α > 0. However, we
also present numerical results of fine-tuning in Figure 8 and 4 to show the mechanism of avoiding
generic noise token in the second-layer attention. The details of such a fine-tuning setting is as
follows.

Fine-tuning: there are two phases of training as

• phase 1 (pre-training): starting from a model with random initialized weights, we train the
model on data generated with α = 0. This is exactly the same as Bietti et al. (2023). At the
end of this phase, the second-layer attention is expected to attend all tokens after the trigger
token, i.e., t ≤ T such that zt−1 = q no matter what zt is.
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• phase 2 (fine-tuning): starting from a model after phase 1, we train all weights in the model
on data generated with α > 0. At the end of this phase, the second-layer attention learns to
avoid the generic noise token, i.e., t ≤ T such that zt = N1, zt−1 = q, as shown in Figure 4.

B.2 SUMMARIZING: ROLES OF KEY COMPONENTS IN THE TWO-LAYER TRANSFORMER

Recall the architecture of two-layer transformers in Section 3 as

xt ≜ WE(zt) + pt,

h1
t ≜

∑
s≤t

[
σ(x⊤

t W
1
QKx1:t)

]
s
·W1

V xs,

x1
t ≜ xt + h1

t + F1(xt + h1
t ),

h2
t ≜

∑
s≤t

[
σ(x1

t
⊤
W2

QKx1
1:t)
]
s
·W2

V x
1
s,

x2
t ≜ x1

t + h2
t + F2(x

1
t + h2

t ),

ξt ≜ WUx
2
t .

When the task is without noise, i.e., α = 0, Bietti et al. (2023) point out the first-layer attention attends
to the previous token through W1

QK =
∑T

t=2 pt−1p
⊤
t . Therefore, when zt = ȳ with zt−1 = q, the

output of the first layer is x1
t ≈ WE(ȳ)+W1

V WE(q). Then they show that the second-layer attention
matches such x1

t with zT = q by W2
QK = (WV WE(q))WE(q)

⊤, through which the information
of ȳ in x1

t is copied to last token as h2
T ≈ W2

V WE(ȳ). Finally W2
V =

∑
z∈[N ] WU (z)WE(z)

⊤

helps output the correct label of ȳ.

In our work with noise α > 0, the key difference is that there is a fixed probability α for a noise token
N + 1 to appear after each trigger q. This requires W2

QK to not only match the trigger but also avoid
the noise token after trigger. Let’s first summarize the whole pipeline of this model for our task.

Roles of key components. The first layer will be basically the same as Bietti et al. (2023), where
W1

QK =
∑T

t=2 pt−1p
⊤
t attends to the previous token. Consider two positions t1, t2 with zt1−1 =

zt2−1 = q, zt1 = ȳ, zt2 = N + 1, then outputs of the first layer at these two positions are x1
t1 ≈

WE(ȳ) + W1
V WE(q), x1

t2 ≈ WE(N + 1) + W1
V WE(q). Then the second-layer attention

WQK = (WV WE(q) − c · WE(N + 1))WE(q)
⊤ with some positive c makes the attention

attend to t1 and avoid t2 simultaneously, matching with the last token zT = q. Therefore, the
output of the second-layer attention at T is basically h2

T ≈ W2
V WE(ȳ). Similar to the noiseless

case, W2
V =

∑
z∈[N ] WU (z)WE(z)

⊤ helps output the correct label of ȳ. Meanwhile, note that
x1
T actually contains WE(q) through xT , so F2 is able to predict the noise N + 1 when seeing a

fixed WE(q). As a result, combining the two streams from h2
T and F2(x

1
T ), the full model is able to

predict any ȳ w.p. 1− α and predict the noise N + 1 w.p. α.

Evidence. Figure 4 illustrates that the second-layer attention learns to attend to zt1 = ȳ and avoid
zt2 = N + 1, with Appendix B.3 presenting a primitive exploration on how the avoidance is learnt
in a simplified setting. Figure 7 (left) shows the attention pattern from W1

QK of attending to the
previous token. Figure 7 (middle) shows the memory recall of WU (N + 1)⊤F2(WE(q)) to predict
the noise. Figure 7 (right) illustrates the memory recall of WU (i)

⊤W2
V WE(i) to predict the correct

token.

B.3 HOW DOES ATTENTION ATTEND LESS TOWARDS THE NOISE TOKEN?

We use the same simplified model as in Section 3.1 to understand how the second-layer attention
learns to avoid the noise. When using the same learning rate η = ηv = ηf , Theorem 1 implies that
the feed-forward WF makes the most contribution for predicting the noise after the first-step update.
Denote the logits for the noise of the model at time t as ξt. The arguments in this section make the
following assumptions, which hold at least after the first-step update:

i. WF dominates the logits ξt of predicting the noise token, compared with WV .
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Figure 7: Left: first-layer attention attending to the previous token from the current token. Middle:
logits to predict noise from ⟨F2(WE(i)),WU (j)⟩ with input i ∈ [N + 1] and output j ∈ [N + 1],
where the output channel 2 is set as the noise channel. It turns out, for all input i, the logits on output
2 are large, which matches our construction that, at least for trigger q as input, the output 2 has large
logits. Right: logits to predict singal from ⟨W2

V WE(i),WU (j)⟩ for input i ∈ [N + 1] and output
j ∈ [N + 1]. It matches our construction that i = j has large logits. Meanwhile, i = j = 2 does not
have large logits since 2 is the noise channel.
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Figure 8: Fractions of predicting the noise token and the other non-noise tokens with α = 0.5. (Left)
pretraining steps on noisy data; (right) finetuning steps on noisy data, after pretraining on clean data
with α = 0. In both cases, the models learn to predict noise with probability nearly 0.5. In the first
few (∼ 5) steps, the models quickly learn to predict noise with probability close to 1. The fine-tuning
setting is in Appendix B.1.

ii. Logits for predicting any k ≤ N is close to 0, which means the predicted probability pt is
approximately pt ≈ exp(ξt)

N+exp(ξt)
.

iii. The predicted probability pt < α.

iv. The attention matrix WQK is approximately 0, inducing a uniform attention.

v. The dataset has T,N ≫ 1 and m → ∞, so the gradient is from population loss.

The first assumption holds after the first step from Theorem 1 with ηf = ηv .

Then, since |WU (k)
⊤(∇WF

L)WE(q)| = O( 1
N ) · |WU (N +1)⊤(∇WF

L)WE(q)| for any k ≤ N
in Lemma D.1, the second assumption holds. Meanwhile, the projection of ∇WV

L onto any direction
in Lemma D.2 is also smaller than WU (N + 1)⊤(∇WF

L)WE(q) by a factor of O(1/N).

Let’s check the condition of the third assumption. In the proof of Lemma D.1, the gradient of WF

has the form of

WU (N + 1)⊤(−∇WF
L)WE(q) = α− pt.
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This update induces ξt to increase by η(α− pt). This implies

ξt ≈ ξt−1 + η

(
α− exp(ξt)

N + exp(ξt)

)
, ∀ t ≥ 1.

This sequence {ξt}t≥1 has stationary point ξ∗ = logN + log( α
1−α ). Denoting ξ̂t ≜ ξt − ξ∗ with

ξ̂1 = −ξ∗ < 0, the iteration becomes

ξ̂t+1 ≈ ξ̂t + η

(
α− exp(ξ̂t)

1−α
α + exp(ξ̂t)

)
.

If we would like to have ξ̂t not hit the positive region by controlling η, it suffices to bound η with any
ξ̂ < 0,

η ≤ ξ̂
exp(ξ̂)

1−α
α +exp(ξ̂)

− α
,

where RHS is continuous and decreasing on ξ < 0 when α < 0.5. Hence, we have η ≤ 1
α(1−α)

evaluated at ξ̂ = 0 by L’Hospital rule. This bound of η is very strong, since η = O(logN) can still
have ξ̂ < 0 after one step.

The fourth assumption is basically from what we will show at the end of this section, as the second
observation.

Then consider the dynamics of WV , which is much slower than WF . From the proof of Lemma D.2,
the gradient of WV satisfies

∇WV
L = Ex

[
N+1∑
k=1

(pW(k|x)− 1{y = k})WU (k)

(
1

T

t∑
t=1

xt

)⊤
]
,

WU (N + 1)⊤(−∇WV
L)WE(k) ≈

1

N

∑
t≥1

(α− pt)(1{k ≤ N}+ α · 1{k = N + 1})

≜ c · 1{k ≤ N}+ c · α · 1{k = N + 1} = Θ(
1

N
),

(6)
where the projection on WE(N +1) is always positive and smaller than that on other directions when
pt < α. Projections onto other directions WU (j)WE(k)

⊤, ∀ j ≤ N , are smaller as Θ( 1
N2 ).

Finally, let’s consider the dynamics of WQK . At initialization, WQK = 0 and ∇WQK
L = 0

due to zero initialization of WV . After one-step, WV has such a structure in Eq.(6). Then, with
x̄1:T ≜ 1

T

∑
1≤t≤T xt from uniform attention, the gradient of WQK satisfies

−∇WQK
L = Ex

[
N∑

k=1

(1{y = k} − pW(k|x)) 1
T

T∑
t=1

(WU (k)
⊤WV xt) · (xt − x̄1:T )WE(q)

⊤

]

≈
N∑

k=1

(
1− α

N
− 1− pt

N

)
E

[
1

T

T∑
t=1

WU (k)
⊤WV xt · (xt − x̄1:T )WE(q)

⊤

]
︸ ︷︷ ︸

≜A

+ (α− pt)E

[
1

T

T∑
t=1

(WU (N + 1)⊤WV xt) · (xt − x̄1:T )WE(q)
⊤

]
︸ ︷︷ ︸

≜B

.

(7)
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Then, we have

WE(N + 1)⊤BWE(q) = E

[
1

T

T∑
t=1

(WU (N + 1)⊤WV xt) ·WE(N + 1)⊤(xt − x̄1:T )

]
(a)
= E

[
1

T

T∑
t=1

(c+ c(α− 1) · 1{zt = N + 1}) ·WE(N + 1)⊤(xt − x̄1:T )

]
(b)
= E

[
1

T

T∑
t=1

(c(α− 1) · 1{zt = N + 1}) ·WE(N + 1)⊤(xt − x̄1:T )

]

=
α

N
· c(α− 1)(1− α

N
) = Θ(

1

N2
) < 0.

where (a) is from Eq.(6), (b) is due to x̄1:T = 1
T

∑
t xt and note that c = Θ( 1

N ).

Similarly, we also have

WE(N + 1)⊤AWE(q) = E

[
1

T

T∑
t=1

(WU (k)
⊤WV xt)WE(N + 1)⊤ · (xt − x̄1:T )

]

= E

[
1

T

T∑
t=1

Θ(
1

N2
) · 1{zt = N + 1}WE(N + 1)⊤ · (xt − x̄1:T )

]
= Θ(

1

N3
).

For any k ≤ N , we have

WE(k)
⊤BWE(q) = E

[
1

T

T∑
t=1

(WU (N + 1)⊤WV xt) ·WE(k)
⊤(xt − x̄1:T )

]

= E

[
1

T

T∑
t=1

(c(α− 1) · 1{zt = k}) ·WE(N + 1)⊤(xt − x̄1:T )

]

=
α

N
· c(α− 1)(− 1

N
) = Θ(

1

N3
) > 0,

and

WE(k)
⊤AWE(q) = E

[
1

T

T∑
t=1

(WU (k)
⊤WV xt)WE(k)

⊤ · (xt − x̄1:T )

]

= E

[
1

T

T∑
t=1

Θ(
1

N2
) · 1{zt = N + 1}WE(k)

⊤ · (xt − x̄1:T )

]
= Θ(

1

N4
).

Combining the above four esimation of projections of A and B with Eq.(7), we have

WE(N + 1)⊤(−∇WQK
L)WE(q) = Θ(

1

N2
) < 0,

∀ k ≤ N, WE(k)
⊤(−∇WQK

L)WE(q) = Θ(
1

N3
) > 0.

Then we have three observations

i. WQK in this phase avoids the noise token N + 1 and uniformly attends to all tokens k ≤ N .

ii. The update of WQK is in Θ( 1
N2 ), while the update of WF is Θ(1) in Lemma D.1 and that

of WV is Θ( 1
N ) in Lemma D.2. These three levels of updating speed also coincide with the

assumptions that WF dominates first and then WV has a micro structure that induces the
evolving of WQK .

iii. The current proof for WQK strongly depends on the fact that the noise token appears less than
other token by a factor α in expectation. The proof will have the opposite result if the noise
token is made to appear more by manipulating the data distribution. Therefore, we leave a new
proof that is robust to such an assumption in data distribution as future work.

21



Published as a conference paper at ICLR 2025

B.4 MULTIPLE TRIGGERS

In Section 3, we assume there is only one fixed trigger q ∈ [N ] for simplicity. Actually the case of
multiple triggers has the same mechanism. As discussed by Bietti et al. (2023) and Appendix B.2,
for one trigger, the second-layer attention has large logits in ⟨W1

V WE(i)
⊤,W2

QKWE(j)⟩ only for
i = j = q. For multiple triggers, basically ⟨W1

V WE(i)
⊤,W2

QKWE(j)⟩ only have large values
when q ∈ Q. This is verified in Figure 9.
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Figure 9: Logits of ⟨W1
V WE(i)

⊤,W2
QKWE(j)⟩ for input i and output j when there is one trigger

(left, q = 1) and five triggers (right, q ∈ Q = {1, 39, 43, 53, 58}). In both cases, the logits only have
large values when i = j = q, verifies the matching mechanism in Appendix B.2.

B.5 ARCHITECTURAL CHOICES

In Section 3 and Appendix B.2, we were focused on experiments with both F1, F2 being two-layer
ReLU MLPs. Meanwhile, we have also tried other choices of F1, F2 and then search for the best
truncation method for each architecture. In this section, we would like to summarize our experimental
results for better understanding of all modules in the two-layer transformer.

Generally, the feed-forward layer can be two-layer ReLU MLPs, one-layer Linear or “None”, where
None stands for there is no feed-forward layer so that the value matrices in attention layers are the
only weight matrices that transform features.

Both F1, F2 are two-layer MLPs. This is our main setting. The best truncation method is to fully
drop F2. We also try to fully drop F1, as reported in Figure 10. It turns out fully dropping F1 makes
the model predict the noise with high probability.

F1 is MLPs and F2 is Linear. Figure 11 reports the results. Dropping F1 and F2 both improve the
correct prediction, and dropping F1 is better with lower test loss. Note that, when test accuracies are
near 100%, lower test loss is a better measurement of the prediction quality, because accuracies are
taken by argmax over the output logits while test loss are about the exactly predicted probability.

F1 is Linear and F2 is MLPs. Figure 12 reports the results. Dropping F2 improves the correct
prediction while dropping F1 makes the model predict noise more.

Both F1 and F2 are None. Figure 13 reports the results. While there is no feed-forward layer any
more, low-rank truncating a part W1

O of the first-layer matrix improves the model’s prediction a little.
This implies that, when there is not feed-forward layers, the noise association is possible stored in
the first-layer value matrix of attention. Note that the improvement of such low-rank truncation is
clearly smaller than fully dropping one of feed-forward layers in the previous cases. Meanwhile, a
smaller ρ = 0.01 destroys the model’s performance. This implies fully dropping is not the optimal
choice for low-rank truncation of the value matrix, and there is low-rank subspace in it that is useful
for predicting the correct tokens. Our discussion of the role of W1

V in Appendix B.2 is a possible
answer to this phenomena.
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Figure 10: Test performance of fully dropping F1, F2 when both F1, F2 are two-layer MLPs. It turns
out, while dropping F2 makes the model predict correctly w.p. near 1, dropping F1 has the model
predict noise with high probability.
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Figure 11: Test performance of fully dropping F1, F2 when both F1 is MLPs and F2 Linear. Both
dropping methods turn out to help predict more correctly than the full model. Meanwhile, dropping
the MLP F1 is better with lower test loss.

B.6 TRAINING DETAILS ABOUT EXPERIMENTS

All of the training is with SGD optimization with learning rate in {0.001, 0.03}. The batch size is
512. The dimension is 256. The context length is 256. All results in the experiments are stable for
any learning rate between 0.001 and 0.03. Each run of experiments is on a single Nvidia Tesla V100
GPU. It takes 3 hours to finish each run for 2K steps, which probably can be optimized a lot since we
are tracking a lot of measurement along training, not limited to hundreds of possible truncations at
each test time.

C MORE EXPERIMENTS ON PYTHIA

C.1 LEARNING ASSOCIATION WITH PREPOSITIONS

We would like to verify our guess about the structure of “to + the” in Pythia in Section 4.1. To make
the argument generalizable than IOI dataset, we consider a structure of “[preposition] + the”, where
[preposition] has a pool of 30 prepositions in English, including “to”. The input is a raw “[preposition]”
or a random sentence ending with “[preposition]”, with some examples in Appendix I.1. For both
kinds of inputs, Pythia-160M/410M/1B turns out to learn the structure of “[preposition] + the” around
10 steps, as shown in Figure 14.
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Figure 12: Test performance of fully dropping F1, F2 when both F1 is Linear and F2 MLPs. Only
dropping F2 helps predict more correctly. Dropping F1 makes the model predicting noise more.
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Figure 13: Test performance of low-rank truncating of W1
O when there is no F1, F2. Here ρ is the

fraction of preserved rank of W1
O, where actually we re-parametrize the first-layer value matrix in

attention as W1
OW

1
V ∈ Rd×d. It turns out the best ρ = 0.05 improves the model’s prediction a little.

Meanwhile, a smaller ρ destroys the model’s performance.

C.2 LASER PARAMETERS FOR EVALUATED LLMS

Following the definition of LASER in Section 2.2, we search for the optimal layer, ρ and target
weights in Pythia models and GPT-2 Small for each dataset.

IOI on Pythia-410M. The model has 24 layers. The truncation is on the input matrix of MLPs on
the 22-th layer with ρ = 0.02.

IOI on Pythia-1B. The model has 16 layers. The truncation is on the input matrix of MLPs on the
11-th layer with ρ = 0.008.

Factual recall on Pythia-1B. The truncation is on the input matrix of MLPs on the 16-th layer with
ρ = 0.0125.

Factual recall on Pythia-1.4B. The model has 24 layers. The truncation is on the input matrix of
MLPs on the 24-th layer with ρ = 0.025.

Factual recall on Pythia-2.8B. The model has 32 layers. The truncation is on the input matrix of
MLPs on the 32-th layer with ρ = 0.04.

IOI on GPT2 Small. Related parameters have been contained in Section 4.1.

Phi-3 on GSM8K. The model has 32 layers. The truncation is on the output matrix of MLPs on the
28-th layer with ρ = 0.02.
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Figure 14: Average ranking of tokens “the” in the prediction by Pythia-160M/410M/1B along training.
The inputs are 30 preposition words (left) and 40 sentences ending with prepositions. It turns out
“the” becomes one of top predictions around 10 steps.

Llama3.1-8B(-instruct) on GSM8K. The models have 32 layers. The truncation is on the output of
MLPs on the 27-th layer with ρ = 0.02.

C.3 OTHER PYTHIA MODELS ON IOI AND MORE EXAMPLES OF FACTUAL RECALL

IOI. In the same setting of Figure 5 (left), we plot the prediction distributions of Pythia-410M and 1B
on the 100 IOI inputs in Figure 15. The model checkpoints are the final ones after training. LASER
turns out to decrease the probability of ”the” while keeping that of the correct [IO] high.

More examples of Factual Recall. In additional to the factual query “Madrid is located in” in
Figure 5 (right), we consider more such examples in Table 5. We plot the prediction distributions
of Pythia-1B, 1.4B and 2.8B on these inputs in Figure 16, where LASER significantly lowers the
probability of predicting ”the” vesus the correct outputs.

D PROOF OF THEOREM 1

In this section, we will present the expectations and variances of ∇WV
L̂ and ∇WF

L̂ with WV =
WF = 0 at initialization. The targets are to show:

1. a gap between limm→∞ ∇WV
L̂ and limm→∞ ∇WF

L̂ so that a step of GD with large
learning rates is enough to learn the noise in WF , and

2. sample complexity of ∇WV
L̂ and ∇WF

L̂ based on expectations and variances.

Assumption D.1 (Orthonormal embeddings). The embeddings uk ∈ Rd are assumed to be orthonor-
mal, i.e., u⊤

i uj = 1{i = j}. Meanwhile, if a matrix W ∈ Rd×d is random initialized, it holds
u⊤
i Wuj = 0.

D.1 GRADIENT FOR THE FEED-FORWARD MATRIX WF

Lemma D.1. Consider zero initialization, WV = WF = WQK = 0 and N ≫ 1. Then with
probability 1− δ, for any j, k ∈ [N + 1], it holds∣∣∣WU (k)

⊤(∇WF
L̂)WE(q)− µ(k)

∣∣∣
≤

√
4σ2(k)

(
ln(N + 1) + ln(2δ )

)
m

+
4R(k)

(
ln(N + 1) + ln(2δ )

)
m

,

(8)

where µ(k), σ2(k), R(k) are expectation, variance and range for different choices of k ∈ [N ] as
follows:
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Figure 15: The prediction distributions of Pythia-410M and 1B on the IOI task. The setting is the
same as in Fgure 5 (left). The evaluated models are the final checkpoints after training. LASER turns
out to decrease the probability of ”the” while keeping that of the correct [IO] high.

µ(N + 1) = −α, σ2(N + 1) = α(1− α), R(N + 1) = max{α, 1− α},
∀ k ≤ N : µ(k) = 1

N+1 − 1−α
N , σ2(k) = 1−α

N , R(k) = 1.

Proof. Due to zero initialization, i.e., WV = WF = 0, the current predicted probability is
p̂W(k|xi) ≡ 1

N+1 for all i ∈ [m] and k ∈ [N + 1]. Therefore, from Lemma H.1, we have

∇WF
L̂ =

1

m

m∑
i=1

[
N+1∑
k=1

(
1

N + 1
− 1{yi = k}

)
WU (k)x

⊤
i,T

]
,

where xi,T ∈ Rd = WE(zi,T ) + pT is the input embedding with input token zi,T at position T in
sequence i, together with positional encoding pT for position T . Since zi,T is set to be the trigger
q in the data generation process and pT is assumed to orthogonal to any other vector in WE in
Assumption D.1, we have the following projections for ∇WF

L̂: ∀ k ∈ [N + 1],

WU (k)
⊤(∇WF

L̂)WE(q) =
1

m

m∑
i=1

(
1

N + 1
− 1{yi = k}

)
.

From the data generation process, it is obvious to get

E(x,y)

[
1

N + 1
− 1{y = k}

]
=

1

N + 1
− α · 1{k = N + 1} − 1− α

N
· 1{k ≤ N}. (9)
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Figure 16: The prediction distributions of Pythia-1B, 1.4B and 2.8B on more examples of factual
recall. Compared with the setting in Figure 5 (right), here we use 20 examples in Table 5. LASER
turns out to significantly decrease the probability of ”the” against the correct tokens.

Since α = Θ(1) is much larger than 1
N+1 when N ≫ 1, due to law of large numbers, we have the

population gradient ∇WF
L satisfying

WU (N + 1)⊤(−∇WF
L)WE(q) ≈ α = Θ(1),

∀ k ≤ N : WU (k)
⊤(−∇WF

L)WE(q) < 0, with absolute value in O(1/N).
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Figure 17: Predicted probability for c ∈ {“Mary”, “them”, “the”, “John”}. LASER is conducted on
input matrices of MLP layers on the layer l = 9, 10, 11, 12 of GPT-2 Small. The input is “When
Mary and John went to a store, John gave a drink to”. The horizontal is the fraction of perserved rank,
ρ ∈ [0, 1], where ρ = 1 stands for the full model. It turns out LASER clearly decreases probability of
“the” and “them” when ρ ∈ [0.1, 0.8] for layer l = 9, 10, 11, compared with the full model.

The variance of the gradient projection onto WU (N + 1)WE(q)
⊤ of a single data point follows that

of Bernoulli distribution with parameter α, which means

Var
[

1

N + 1
− 1{y = N + 1}

]
= α(1− α). (10)

Similarly, for any k ≤ N , the variance of the gradient projection onto WU (N + 1)WE(q)
⊤ of a

single data point follows that of Bernoulli distribution with parameter 1−α
N , which means

Var
[

1

N + 1
− 1{y = k}

]
=

1− α

N

(
1− 1− α

N

)
= Θ(1/N). (11)

The ranges of the gradient projections’ deviation from the expectation are∣∣∣∣ 1

N + 1
− 1{y = N + 1} −

(
1

N + 1
− α

)∣∣∣∣ ≤ max{α, 1− α},

∀ k ≤ N :

∣∣∣∣ 1

N + 1
− 1{y = k} −

(
1

N + 1
− 1− α

N

)∣∣∣∣ ⪅ 1.

(12)

For each choice of k ∈ [N + 1] individually, after having the expectation µ(k), variance σ2(k) and
range R(k), by applying Bernstein’s inequality, then: for each k ∈ [N + 1], with probability 1− δ, it
holds ∣∣∣WU (k)

⊤(∇WF
L̂)WE(q)− µ(k)

∣∣∣ ≤
√

4σ2(k) ln( 2δ )

m
+

4R(k) ln( 2δ )

m
.

Then by the union bound in probability, we need (N + 1) events above to hold at the same time, so
we can substitute δ with δ

N+1 to have: with probability 1− δ, for any k ∈ [N + 1], it holds

∣∣∣WU (k)
⊤(∇WF

L̂)WE(q)− µ(k)
∣∣∣ ≤

√
4σ2(k)

(
ln(N + 1) + ln(2δ )

)
m

+
4R(k)

(
ln(N + 1) + ln(2δ )

)
m

.

(13)

D.2 GRADIENT FOR THE VALUE MATRIX WV

Lemma D.2. Consider zero initialization, WV = WF = WQK = 0. Then with probability 1− δ,
for any j, k ∈ [N + 1], it holds∣∣∣WU (j)

⊤(∇WV
L̂)WE(k)− µ(j, k)

∣∣∣
≤

√
4σ2(j, k)

(
2 ln(N + 1) + ln(2δ )

)
m

+
4R(j, k)

(
2 ln(N + 1) + ln(2δ )

)
m

,

(14)
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Table 3: µ(j, k), σ2(j, k), R(j, k) for different choices of (j, k) in Lemma D.2.

j k µ σ2 R

N + 1 N + 1 −α2

N
α2

TN + α3−α4

N2
1
2

N + 1 q − α
N

α
TN + α−α2

N2 1

N + 1 [N ] \ {q} − α
N

α
TN + α−α2

N2 1

q N + 1 2α−1
N2

1
TN2 + α2−α+1

N3
1
2

q q 2α−1
αN2

α3−α2−α+2
α3TN2 + α2−α+1

α2N3 1
q [N ] \ {q} α

N2 (2− α) ·
(

1
TN2 + 1

N3

)
1

[N ] \ {q} N + 1 α2

N2 (2− α)
(

α
TN2 + α2

N3

)
1
3

[N ] \ {q} q α
N2 (2− α)

(
1

TN2 + 1
N3

)
1
2

[N ] \ {q} j −α2+3α−1
N2

1+(1−α)(2−α)
TN2 + 1+(1−α)(2−α)2

N3 1
[N ] \ {q} [N ] \ {q, j} α

N2 (2− α)
(

1
TN2 + 1

N3

)
1

where µ(j, k), σ2(j, k), R(j, k) are expectation, variance and range for different choices of (j, k) at
listed in Table 3.

Proof. Due to zero initialization, i.e., WV = WF = 0, the current predicted probability is
p̂W(k|xi) ≡ 1

N+1 for all i ∈ [m] and k ∈ [N + 1]. Meanwhile, the attention score is uniform
as 1

T for all context positions due to WK = 0. Therefore, from Lemma H.1, we have

∇WF
L̂ =

1

m

m∑
i=1

[
N+1∑
k=1

(
1

N + 1
− 1{yi = k}

)
WU (k)

(
1

T

T∑
t=1

xi,t

)⊤
]
,

where xi,t ∈ Rd = WE(zi,t) + pt is the input embedding with input token zi,t at position t in
sequence i, together with positional encoding pt for position t. With the assumption of orthonormality
in Assumption D.1, we have the projection of ∇WF

L̂: ∀ j, k ∈ [N + 1],

WU (j)
⊤(∇WV

L̂)WE(k) =
1

m

m∑
i=1

[(
1

N + 1
− 1{yi = j}

)(
1

T

T∑
t=1

1{zi,t = k}
)]

.

Since each sample is drawn i.i.d., it suffices to discuss the expectation and variance of

Γi(j, k) ≜

(
1

N + 1
− 1{zi,T+1 = j}

)(
1

T

T∑
t=1

1{zi,t = k}
)
,

Γ̂(j, k) ≜
1

m

m∑
i=1

Γi(j, k),

where we use the fact yi = zi,T+1.

Recall that, for each sample in the data generation process, the trigger q is fixed while the correct next
token ȳ ∼ Uniform([N ]). Hence, conditioning on zi,T = q, it has probability α for zi,T+1 = N + 1
and probability 1− α for zi,T+1 = ȳ. This leads to the necessity of discussing whether or not ȳ = k.
Meanwhile, a corner case of ȳ = q is also necessary to consider, as this implies an event that increases
the counting 1

T

∑T
t=1 1{zi,t = q} than the case of ȳ ̸= q.

Therefore, generally there are 10 cases due to different choices of (j, k) as follows:

1. j = N + 1, k = N + 1,

2. j = N + 1, k = q,

3. j = N + 1, k ∈ [N ] \ {q},
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4. j = q, k = N + 1,

5. j = q, k = q,

6. j = q, k ∈ [N ] \ {q},

7. j ∈ [N ] \ {q}, k = N + 1,

8. j ∈ [N ] \ {q}, k = q,

9. j ∈ [N ] \ {q}, k = j,

10. j ∈ [N ] \ {q}, k ∈ [N ] \ {q, j}.

For each Γi(j, k) individually, if we have its expectation µ(j, k), variance σ2(j, k) and range R(j, k),
by applying Bernstein’s inequality, then: for each j, k ∈ [N + 1], with probability 1− δ, it holds

∣∣∣Γ̂(j, k)− µ(j, k)
∣∣∣ ≤

√
4σ2(j, k) ln( 2δ )

m
+

4R(j, k) ln( 2δ )

m
.

Then by the union bound in probability, we need (N + 1)2 events above to hold at the same time, so
we can substitute δ with δ

(N+1)2 to have: with probability 1− δ, for any j, k ∈ [N + 1], it holds

∣∣∣Γ̂(j, k)− µ(j, k)
∣∣∣ ≤

√
4σ2(j, k)

(
2 ln(N + 1) + ln(2δ )

)
m

+
4R(j, k)

(
2 ln(N + 1) + ln(2δ )

)
m

.

(15)

As a final step of the proof, now we elaborate the expectation, variance and range of Γi(j, k) for these
10 cases.

Case 1: j = N + 1, k = N + 1.

There is probability 1
N for ȳ = q and probability N−1

N for ȳ ̸= q. Hence, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q],

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q].

From Lemma E.2 and the independence between 1{zi,T+1 = N + 1} and
∑

t≤T 1{zi,t =
k}, we have

E[Γi(j, k)|ȳ = q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ α ·

(
1

TN
+

1

N2

)
,

where the second is from

E
[(

1

N + 1
− 1{zi,T+1 = N + 1}

)2]
= (1− α) ·

(
1

N + 1

)2

+ α ·
(

1

N + 1
− 1

)2

≈ α.

Similarly, from Lemma E.5, we have

E[Γi(j, k)|ȳ ̸= q] ≈ −α · α

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ α ·

(
α

TN
+

α2

N2

)
.
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Therefore, it holds

E[Γi(j, k)] =
1

N

−α

N
+

N − 1

N

−α2

N
≈ −α2

N
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q]

≈ 1

N
α ·
(

1

TN
+

1

N2

)
+

N − 1

N
α ·
(

α

TN
+

α2

N2

)
≈ α2

TN
+

α3

N2
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α2

TN
+

α3 − α4

N2
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ≤
1

2
,

and the extreme case is when half of the sequence is N + 1 with the rest all being q.

Case 2: j = N + 1, k = q.

Similar to Case 1, we have 1{zi,T+1 = N + 1} is independent of
∑

t≤T 1{zi,t = k}.

From Lemma E.1, we have

E[Γi(j, k)|ȳ = q] ≈ −α · 1

αN
,

E[Γi(j, k)
2|ȳ = q] ≈ α ·

(
1

αTN

(
−1 +

2

α2

)
+

1

α2N2

)
.

From Lemma E.4, we have

E[Γi(j, k)|ȳ ̸= q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ α ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q] ≈ − α

N
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q] ≈ α

TN
+

α

N2
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α

TN
+

α− α2

N2
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = q and the sequence is all q’s.

Case 3: j = N + 1, k ∈ [N ] \ {q}.

Similar to Case 1, we have 1{zi,T+1 = N + 1} is independent of
∑

t≤T 1{zi,t = k}.

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ α ·

(
1

TN
+

1

N2

)
.
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From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ α ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] ≈ −α · 1

N
,

E[Γi(j, k)
2] ≈ α ·

(
1

TN
+

1

N2

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α

TN
+

α− α2

N2
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when all of the sequence except the last one is k.

Case 4: j = q, k = N + 1.

If ȳ ̸= q, we always have zi,T+1 ̸= q because zi,T+1 ∈ {ȳ, N + 1}. If conditioning on
ȳ = q, it has probability 1− α for zi,T+1 = q, independent of

∑
t≤T 1{zi,t = N + 1}.

From Lemma E.5, we have

E[Γi(j, k)|ȳ ̸= q] ≈ 1

N + 1
· α

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ 1

N + 1
·
(

α

TN
+

α2

N2

)
.

From Lemma E.2, we have

E[Γi(j, k)|ȳ = q] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q] ≈ 2α− 1

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q] ≈ 1

TN2
+

α2 − α+ 1

N3
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ 1

TN2
+

α2 − α+ 1

N3
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅
1

2
,

and the extreme case is when ȳ = q and half of the sequence is N +1 with the rest all being
q.

Case 5: j = q, k = q.

Similar to Case 4, if ȳ ̸= q, we always have zi,T+1 ̸= q. If conditioning on ȳ = q, it has
probability 1− α for zi,T+1 = q, independent of

∑
t≤T 1{zi,t = q}.
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From Lemma E.4, we have

E[Γi(j, k)|ȳ ̸= q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.1, we have

E[Γi(j, k)|ȳ = q] ≈ −(1− α) · 1

αN
,

E[Γi(j, k)
2|ȳ = q] ≈ (1− α) ·

(
1

αTN

(
−1 +

2

α2

)
+

1

α2N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q] ≈ 2α− 1

αN2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q]

≈ α3 − α2 − α+ 2

α3TN2
+

α2 − α+ 1

α2N3
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α3 − α2 − α+ 2

α3TN2
+

α2 − α+ 1

α2N3
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = q and all of the sequence are q.

Case 6: j = q, k ∈ [N ] \ {q}.

Similar to Case 4, if ȳ ̸= q, we always have zi,T+1 ̸= q. If conditioning on ȳ = q, it has
probability 1− α for zi,T+1 = q, independent of

∑
t≤T 1{zi,t = k}.

Moreover, we need to consider whether ȳ = k or not.

From Lemma E.6, we have

E[Γi(j, k)|ȳ ̸= q, k = ȳ] ≈ 1

N + 1
· 2− α

N
,

E[Γi(j, k)
2|ȳ ̸= q, k = ȳ] ≈ 1

N + 1
·
(
2− α

TN
+

(2− α)2

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q, k ∈ [N ] \ {q, ȳ}] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, k ∈ [N ] \ {q, ȳ}] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.
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Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ ̸= q, k = ȳ]

+
N − 2

N
E[Γi(j, k)|ȳ ̸= q, k ∈ [N ] \ {q, ȳ}]

≈ α

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ ̸= q, k = ȳ]

+
N − 2

N
E[Γi(j, k)

2|ȳ ̸= q, k ∈ [N ] \ {q, ȳ}]

≈ (2− α) ·
(

1

TN2
+

1

N3

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α) ·
(

1

TN2
+

1

N3

)
.

The range of Γi(j, k) is
|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when all of the sequence except the last one are k.

Case 7: j ∈ [N ] \ {q}, k = N + 1.

If ȳ ̸= j, we always have zi,T+1 ̸= j because zi,T+1 ∈ {ȳ, N + 1}. If conditioning on
ȳ = j, it has probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

From Lemma E.2, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.5, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
· α

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
·
(

α

TN
+

α2

N2

)
.

From Lemma E.5, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · α

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
α

TN
+

α2

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

N − 2

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ α2

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
N − 2

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ (2− α)

(
α

TN2
+

α2

N3

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α)

(
α

TN2
+

α2

N3

)
.
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The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅
1

3
,

and the extreme case is when ȳ = j and one-third of the sequence are k, where the sequence
has a repeated pattern like [q, j,N + 1, q, j,N + 1, . . . ].

Case 8: j ∈ [N ] \ {q}, k = q.

Similar to Case 7, if ȳ ̸= j, we always have zi,T+1 ̸= j. If conditioning on ȳ = j, it has
probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

From Lemma E.1, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

αN
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

T

αN

(
−1 +

2

α2

)
+

T 2

α2N2

)
.

From Lemma E.4, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.4, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

N − 2

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ α

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
N − 2

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ (2− α)

(
1

TN2
+

1

N3

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α)

(
1

TN2
+

1

N3

)
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅
1

2
,

and the extreme case is when ȳ = j and half of the sequence are q.

Case 9: j ∈ [N ] \ {q}, k = j.

Similar to Case 7, if ȳ ̸= j, we always have zi,T+1 ̸= j. If conditioning on ȳ = j, it has
probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.
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From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.6, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · 2− α

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
2− α

TN
+

(2− α)2

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

N − 2

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ −α2 + 3α− 1

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
N − 2

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ 1 + (1− α)(2− α)

TN2
+

1 + (1− α)(2− α)2

N3
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ 1 + (1− α)(2− α)

TN2
+

1 + (1− α)(2− α)2

N3
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = j and all of the sequence are j = k.

Case 10: j ∈ [N ] \ {q}, k ∈ [N ] \ {q, j}.

Similar to Case 7, if ȳ ̸= j, we always have zi,T+1 ̸= j. If conditioning on ȳ = j, it has
probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.
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From Lemma E.6, we have

E[Γi(j, k)|ȳ = k] ≈ 1

N + 1
· 2− α

N
,

E[Γi(j, k)
2|ȳ = k] ≈ 1

N + 1
·
(
2− α

TN
+

(2− α)2

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j, ȳ ̸= k] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j, ȳ ̸= k] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

1

N
E[Γi(j, k)|ȳ = k]

+
N − 3

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ α

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
1

N
E[Γi(j, k)

2|ȳ = k]

+
N − 3

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ (2− α)

(
1

TN
+

1

N2

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α)

(
1

TN2
+

1

N3

)
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = j and all of the sequence except the last are k.

D.3 COMPLETING THE PROOF OF THEOREM 1

Theorem 4 (Restatement of Theorem 1). Assume N,T ≫ 1, α = Θ(1). Consider a one gradient
step update from zero-initialization on m i.i.d. samples of z1:T with separate learning rates ηf for
WF and ηv for WV (note that the gradient on WQK is zero). For a test sequence z1:T , the resulting
logits for the feed-forward and attention blocks satisfy, with probability 1− δ

|∆(ξff(x1:T ))− ηf · α| ≤ ηf ·O


√

ln 2(N+1)
δ

m

 ,

∣∣∣∆(ξattn(x1:T ))−
ηv
N

· (α2q̂ + α(1− q̂))
∣∣∣ ≤ ηv ·O


√

( 1
TN + 1

N2 ) ln
2(N+1)

δ

m
+

ln 2(N+1)
δ

m

 ,

where ∆(ξ) = ξN+1 − maxj∈[N ] ξj is the margin of predicting the noise token and q̂ =
1
T

∑
t≤T 1{zt = N + 1}.

37



Published as a conference paper at ICLR 2025

Proof. For WF , since the input is always zT = q, the logits will be [ξff]k = WU (k)
⊤WFWE(q),

∀ k ∈ [N + 1]. As WF is initialized from 0 and updated by GD with learning rate ηf , after one-step
update, we have

ξff = WU (k)
⊤
(
− ηf∇WF

L̂

∣∣∣∣
WF=0

)
WE(q) ∈ RN+1.

By Lemma D.1, with probability 1− 1
2δ, we have

|[ξff]N+1 − ηf · α| ≤ ηf ·O


√

ln 2(N+1)
δ

m

 ,

∀ k ≤ N,

∣∣∣∣[ξff]k − ηf ·
(
1− α

N
− 1

N + 1

)∣∣∣∣ ≤ ηf ·O


√

ln 2(N+1)
δ

Nm
+

ln 2(N+1)
δ

m

 ,

and then triangle inequality finishes the proof for ξff.

For WV , since the gradient on WQK at initialization is zero, WQK being zero after the first step
induces a uniform attention over the input sequence. Consider the input sequence {zi}Ti=1, then the
logits will be [ξattn]j = WU (j)

⊤WV
1
T

∑T
t=1 WE(zt), ∀ j ∈ [N + 1].

Then considering the concentration bound of WV after one-step update in Lemma D.2, denoting
Γ(j, k) = WU (j)

⊤WV WE(k), we have

[ξattn]j =
1

T

∑
t≤T

Γ(j, zt) =
1

T

∑
k≤N+1

nk · Γ(j, k),

with concentration bound for each Γ(·, ·) in Lemma D.2. From Table 3, note that for all
j = N + 1, k ≤ N , the expectation and variances are the same, while k = N + 1 has slightly
different expectation and variance (but still in the same order of the others). Hence, denoting
q̂ = 1

T

∑
t≤T 1{zt = N + 1} dependent of the test sample z1:T , we have

∣∣∣[ξattn(x1:T )]N+1 −
ηv
N

· (α2q̂ + α(1− q̂))
∣∣∣ ≤ ηv ·O


√

( 1
TN + 1

N2 ) ln
2(N+1)

δ

m
+

ln 2(N+1)
δ

m

 .

Meanwhile, as the terms in Table 3 for j ̸= N + 1 always have much smaller mean and variance by a
factor 1/N , using the Bernstein’s inequalites for these terms in Lemma D.2 finishes the proof for
WV .

E PROOF FOR FIRST AND SECOND MOMENTS IN LEMMA D.2

In this section, we will show the proof of the first and second moments of
[∑

1≤t≤T 1{zt = k}|·
]

for all cases. Note that we do not consider zT = q, but including it will not change the results, as
T ≫ 1 and zT is explicitly fixed as q during data generation in Section 3. Generally, there are three
factors to classify the cases as follows:

1. The i.i.d. uniformly sampled correct token ȳ ∈ [N ]:
(a) ȳ = q,
(b) ȳ ̸= q.

2. The target token k ∈ [N + 1]:
(a) k = q,
(b) k = N + 1.
(c) k ≤ N, k ̸= q, k ̸= ȳ,
(d) (if ȳ ̸= q) k ≤ N, k ̸= q, k = ȳ,
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3. A condition about the token z0 before the sequence {zt}t≥1:

(a) z0 = q,
(b) z0 ∈ [N + 1] \ {q}.

Note that when z0 will be implicitly or explicitly considered. When there is no condition on the
first token, which means z1 ∼ Uniform([N ]), this belongs to Case (3b), i.e., z0 ∈ [N + 1] \ {q},
following the data generation process.

Table 4 summarizes all lemmas about the seven cases classified by the first two factors. The third
factor about z0 is explicitly presented in the proof of each corresponding lemma.

Table 4: All lemmas about the seven cases classified by ȳ and k.
(2a) (2b) (2c) (2d)

(1a) E.1 E.2 E.3 N/A
(1b) E.4 E.5 E.7 E.6

E.1 WHEN ȳ = q

Lemma E.1 (ȳ = q, k = q). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ = q and k = q, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = q

 ≈ T

αN
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = q

 ≈ T

αN

(
−1 +

2

α2

)
+

T 2

α2N2
.

(16)

Proof. For simplicity, we omit the condition of ȳ = q, k = q in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = p(z1 = q|z0 = q) · (1 + Y (T − 1)) + p(z1 = N + 1|z0 = q) · Ŷ (T − 1),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · (1 + Y (T − 1)) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ŷ (T − 1).

The iteration becomes

Y (T ) = (1− α) · Y (T − 1) + α · Ŷ (T − 1) + 1− α,

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

This gives

Y (T )− Ŷ (T ) = (1− α− 1

N
)(Y (T − 1)− Ŷ (T − 1)) + 1− α− 1

N
,

1

N
Y (T ) + αŶ (T ) =

1

N
Y (T − 1) + αŶ (T − 1) +

1

N
.
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Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T )− Ŷ (T ) =
1− α− 1

N

α+ 1
N

(
1−

(
1− α− 1

N

)T
)
,

1

N
Y (T ) + αŶ (T ) =

1

N
T.

Then we obtain

Y (T ) ≈ 1

αN + 1
(T − αN) +

α

(α+ 1
N )2

=
1

αN + 1

(
T − αN +

N2

αN + 1

)
≈ T

αN
− 1 +

1

α2
,

Ŷ (T ) ≈ 1

αN + 1
T − N

(αN + 1)2
+

1

αN + 1

≈ T

αN
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = q

 = Ŷ (T ) ≈ T

αN
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = p(z1 = q|z0 = q) · (1 + 2Y (T − 1) + Z(T − 1)) + p(z1 = N + 1|z0 = q) · Z(T − 1),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · (1 + 2Y (T − 1) + Z(T − 1)) + p(z1 ̸= q|z0 ̸= q) · Ẑ(T − 1),

where 2Y (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = (1− α) · (1 + 2Y (T − 1) + Z(T − 1)) + α · Ẑ(T − 1)

= (1− α)Z(T − 1) + αẐ(T − 1) + (1− α)(1 + 2Y (T − 1)),

Ẑ(T ) =
1

N
· (1 + 2Y (T − 1) + Z(T − 1)) +

N − 1

N
· Ẑ(T − 1)

=
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Y (T − 1)).

This gives

Z(T )− Ẑ(T ) = (1− α− 1

N
)(Z(T − 1)− Ẑ(T − 1)) + (1− α− 1

N
)(1 + 2Y (T − 1)),

1

N
Z(T ) + αẐ(T ) =

1

N
Z(T − 1) + αẐ(T − 1) +

1

N
(1 + 2Y (T − 1)).
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Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T )− Ẑ(T ) =
∑

t≤T−1

(1− α− 1

N
)T−t(1 + 2Y (t))

≈
∑

t≤T−1

(1− α− 1

N
)T−t

(
1 +

2t

αN
− 2 +

2

α2

)

≈
(
−1 +

2

α2

)
1− α

α
+

2(1− α)

α2
· T
N

.

1

N
Z(T ) + αẐ(T ) =

T

N
+

2

N

∑
1≤t≤T−1

Y (t)

≈ T

N
+

2

N

∑
1≤t≤T−1

(
t

αN
− 1 +

1

α2

)

≈ T

N

(
−1 +

2

α2

)
+

T 2

αN2
.

Then we obtain

Z(T ) ≈ T

N

(
− 3

α
+

2

α2
+

2

α3

)
+

T 2

α2N2
+

1− α

α
(
2

α2
− 1),

Ẑ(T ) ≈ T

αN

(
−1 +

2

α2

)
+

T 2

α2N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = q

 = Ẑ(T ) ≈ T

αN

(
−1 +

2

α2

)
+

T 2

α2N2
.

Lemma E.2 (ȳ = q, k = N + 1). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ = q and k = N + 1, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = N + 1

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = N + 1

 ≈ T

N
+

T 2

N2
.

(17)

Proof. For simplicity, we omit the condition of ȳ = q, k = N + 1 in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = p(z1 = q|z0 = q) · Y (T − 1) + p(z1 = N + 1|z0 = q) · (1 + Ŷ (T − 1)),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ŷ (T − 1).
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The iteration becomes

Y (T ) = (1− α) · Y (T − 1) + α · Ŷ (T − 1) + α,

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1).

This gives

Y (T )− Ŷ (T ) = (1− α− 1

N
)(Y (T − 1)− Ŷ (T − 1)) + α,

1

N
Y (T ) + αŶ (T ) =

1

N
Y (T − 1) + αŶ (T − 1) +

α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T )− Ŷ (T ) =
α

α+ 1
N

(
1−

(
1− α− 1

N

)T
)
,

1

N
Y (T ) + αŶ (T ) =

α

N
T.

Then we obtain

Y (T ) ≈ T

N
+ 1,

Ŷ (T ) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = N + 1

 = Ŷ (T ) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = p(z1 = q|z0 = q) · Z(T − 1) + p(z1 = N + 1|z0 = q) · (1 + 2Ŷ (T − 1) + Ẑ(T − 1)),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ̸= q|z0 ̸= q) · Ẑ(T − 1),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = (1− α) · Z(T − 1) + α · (1 + 2Ŷ (T − 1) + Ẑ(T − 1))

= (1− α)Z(T − 1) + αẐ(T − 1) + α(1 + 2Ŷ (T − 1)),

Ẑ(T ) =
1

N
· Z(T − 1) +

N − 1

N
· Ẑ(T − 1).

This gives

Z(T )− Ẑ(T ) = (1− α− 1

N
)(Z(T − 1)− Ẑ(T − 1)) + α(1 + 2Ŷ (T − 1)),

1

N
Z(T ) + αẐ(T ) =

1

N
Z(T − 1) + αẐ(T − 1) +

α

N
(1 + 2Ŷ (T − 1)).
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Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T )− Ẑ(T ) =
∑

t≤T−1

α(1− α− 1

N
)T−1−t(1 + 2Ŷ (t))

≈
∑

t≤T−1

α(1− α− 1

N
)T−1−t

(
1 +

2t

N

)
≈ 2T

N
+ 1,

1

N
Z(T ) + αẐ(T ) =

αT

N
+

2α

N

∑
1≤t≤T−1

Ŷ (t)

≈ αT

N
+

2α

N

∑
1≤t≤T−1

t

N

≈ αT

N
+

αT 2

N2
.

Then we obtain

Z(T ) ≈ 3α
T

N
+ α

T 2

N2
+ α,

Ẑ(T ) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = N + 1

 = Ẑ(T ) ≈ T

N
+

T 2

N2
.

Lemma E.3 (ȳ = q, k ≤ N, k ̸= q). Following the data generation process, assuming N,T ≫ 1
and α = Θ(1), if ȳ = q and k ∈ [N ] \ {q}, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 ≈ T

N
+

T 2

N2
.

(18)

Proof. For simplicity, we omit the condition of ȳ = q, k ∈ [N ] \ {q} in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = p(z1 = q|z0 = q) · Y (T − 1) + p(z1 = N + 1|z0 = q) · Ŷ (T − 1),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · Y (T − 1)

+ p(z1 ∈ [N ] \ {q}|z0 ̸= q) · (p(z1 = k|z1 ∼ Uniform([N ] \ {q}) + Ŷ (T − 1)).
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The iteration becomes

Y (T ) = (1− α) · Y (T − 1) + α · Ŷ (T − 1),

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· (Ŷ (T − 1) +

1

N − 1
).

This gives

Y (T )− Ŷ (T ) = (1− α− 1

N
)(Y (T − 1)− Ŷ (T − 1))− 1

N
,

1

N
Y (T ) + αŶ (T ) =

1

N
Y (T − 1) + αŶ (T − 1) +

α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T )− Ŷ (T ) =
− 1

N

α+ 1
N

(
1−

(
1− α− 1

N

)T
)
,

1

N
Y (T ) + αŶ (T ) =

α

N
T.

Then we obtain

Y (T ) ≈ T

N
,

Ŷ (T ) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = N + 1

 = Ŷ (T ) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = p(z1 = q|z0 = q) · Z(T − 1) + p(z1 = N + 1|z0 = q) · Ẑ(T − 1),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ̸= q|z0 ̸= q) · Ẑ(T − 1)

+ p(z1 = k|z0 ̸= q) · (1 + 2Ŷ (T − 1)),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = (1− α) · Z(T − 1) + α · Ẑ(T − 1),

Ẑ(T ) =
1

N
· Z(T − 1) +

N − 1

N
· Ẑ(T − 1) +

1

N
(1 + 2Ŷ (T − 1)).

This gives

Z(T )− Ẑ(T ) = (1− α− 1

N
)(Z(T − 1)− Ẑ(T − 1))− 1

N
(1 + 2Ŷ (T − 1)),

1

N
Z(T ) + αẐ(T ) =

1

N
Z(T − 1) + αẐ(T − 1) +

α

N
(1 + 2Ŷ (T − 1)).
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Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T )− Ẑ(T ) = − 1

N

∑
t≤T−1

(1− α− 1

N
)T−1−t(1 + 2Ŷ (t))

≈ − 1

N

∑
t≤T−1

(1− α− 1

N
)T−1−t

(
1 +

2t

N

)

≈ − 1

αN

(
2T

N
+ 1

)
,

1

N
Z(T ) + αẐ(T ) =

αT

N
+

2α

N

∑
1≤t≤T−1

Ŷ (t)

≈ αT

N
+

2α

N

∑
1≤t≤T−1

t

N

≈ αT

N
+

αT 2

N2
.

Then we obtain

Z(T ) ≈ T

N
+

T 2

N2
,

Ẑ(T ) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 = Ẑ(T ) ≈ T

N
+

T 2

N2
.

E.2 WHEN ȳ ̸= q

Lemma E.4 (ȳ ̸= q, k = q). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ ̸= q and k = q, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k = q

 ≈ T

N
+

T 2

N2
.

(19)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k = q in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = Ŷ (T − 1),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · (1 + Y (T − 1)) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ŷ (T − 1).
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The iteration becomes

Y (T ) = Ŷ (T − 1),

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

This gives

Y (T )− Ŷ (T ) = − 1

N
(Y (T − 1)− Ŷ (T − 1))− 1

N
,

1

N
Y (T ) + Ŷ (T ) =

1

N
Y (T − 1) + Ŷ (T − 1) +

1

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T )− Ŷ (T ) =
− 1

N

1 + 1
N

(
1−

(
− 1

N

)T
)
,

1

N
Y (T ) + Ŷ (T ) =

1

N
T.

Then we obtain

Y (T ) ≈ T

N
,

Ŷ (T ) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T ) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = Ẑ(T − 1),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · (1 + 2Y (T − 1) + Z(T − 1)) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ẑ(T − 1),

where 2Y (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = Ẑ(T − 1),

Ẑ(T ) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Y (T − 1)).

This gives

Z(T )− Ẑ(T ) = − 1

N
(Z(T − 1)− Ẑ(T − 1))− 1

N
(1 + 2Y (T − 1)),

1

N
Z(T ) + Ẑ(T ) =

1

N
Z(T − 1) + Ẑ(T − 1) +

1

N
(1 + 2Y (T − 1)).
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Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T )− Ẑ(T ) = − 1

N

∑
t≤T−1

(− 1

N
)T−1−t(1 + 2Y (t))

≈ − 1

N

∑
t≤T−1

(− 1

N
)T−1−t

(
1 +

2t

N

)
≈ − 1

N
− 2T

N2
,

1

N
Z(T ) + Ẑ(T ) =

T

N
+

2

N

∑
1≤t≤T−1

Y (t)

≈ T

N
+

2

N

∑
1≤t≤T−1

t

N

≈ T

N
+

T 2

N2
.

Then we obtain

Z(T ) ≈ T

N
+

T 2

N2
,

Ẑ(T ) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 = Ẑ(T ) ≈ T

N
+

T 2

N2
.

Lemma E.5 (ȳ ̸= q, k = N + 1). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ ̸= q and k = N + 1, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = N + 1

 ≈ αT

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k = N + 1

 ≈ αT

N
+

α2T 2

N2
.

(20)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k = N + 1 in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = Ŷ (T − 1) + p(z1 = N + 1|z0 = q),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ŷ (T − 1).

The iteration becomes
Y (T ) = Ŷ (T − 1) + α,

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1).
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This gives

Y (T )− Ŷ (T ) = − 1

N
(Y (T − 1)− Ŷ (T − 1)) + α,

1

N
Y (T ) + Ŷ (T ) =

1

N
Y (T − 1) + Ŷ (T − 1) +

α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T )− Ŷ (T ) =
α

1 + 1
N

(
1−

(
− 1

N

)T
)
,

1

N
Y (T ) + Ŷ (T ) =

α

N
T.

Then we obtain

Y (T ) ≈ αT

N
+ α,

Ŷ (T ) ≈ αT

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T ) ≈ αT

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = Ẑ(T − 1) + p(z1 = N + 1|z0 = q) · (1 + 2Ŷ (T − 1)),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ẑ(T − 1),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = Ẑ(T − 1) + α(1 + 2Ŷ (T − 1)),

Ẑ(T ) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1).

This gives

Z(T )− Ẑ(T ) = − 1

N
(Z(T − 1)− Ẑ(T − 1)) + α(1 + 2Ŷ (T − 1)),

1

N
Z(T ) + Ẑ(T ) =

1

N
Z(T − 1) + Ẑ(T − 1) +

α

N
(1 + 2Ŷ (T − 1)).
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Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T )− Ẑ(T ) = α
∑

t≤T−1

(− 1

N
)T−1−t(1 + 2Ŷ (t))

≈ α
∑

t≤T−1

(− 1

N
)T−1−t

(
1 +

2αt

N

)

≈ 2α2T

N
+ α,

1

N
Z(T ) + Ẑ(T ) =

αT

N
+

2α

N

∑
1≤t≤T−1

Ŷ (t)

≈ αT

N
+

2α

N

∑
1≤t≤T−1

αt

N

≈ αT

N
+

α2T 2

N2
.

Then we obtain

Z(T ) ≈ T

N
(2α2 + α) +

α2T 2

N2
+ α,

Ẑ(T ) ≈ αT

N
+

α2T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 = Ẑ(T ) ≈ αT

N
+

α2T 2

N2
.

Lemma E.6 (ȳ ̸= q, k = ȳ). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ ̸= q and k = ȳ, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = ȳ

 ≈ (2− α)
T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k = ȳ

 ≈ (2− α)T

N
+

(2− α)2T 2

N2
.

(21)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k = ȳ in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = Ŷ (T − 1) + p(z1 = ȳ|z0 = q),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ŷ (T − 1) + p(z1 = ȳ|z0 ̸= q).

The iteration becomes
Y (T ) = Ŷ (T − 1) + (1− α),

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.
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This gives

Y (T )− Ŷ (T ) = − 1

N
(Y (T − 1)− Ŷ (T − 1)) + (1− α− 1

N
),

1

N
Y (T ) + Ŷ (T ) =

1

N
Y (T − 1) + Ŷ (T − 1) +

2− α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T )− Ŷ (T ) =
1− α− 1

N

1 + 1
N

(
1−

(
− 1

N

)T
)
,

1

N
Y (T ) + Ŷ (T ) =

2− α

N
T.

Then we obtain

Y (T ) ≈ (1− α) + (2− α)
T

N
,

Ŷ (T ) ≈ (2− α)
T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T ) ≈ (2− α)
T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = Ẑ(T − 1) + p(z1 = ȳ|z0 = q) · (1 + 2Ŷ (T − 1)),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ẑ(T − 1)

+ p(z1 = ȳ|z0 ̸= q) · (1 + 2Ŷ (T − 1)),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = Ẑ(T − 1) + (1− α)(1 + 2Ŷ (T − 1)),

Ẑ(T ) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Ŷ (T − 1)).

This gives

Z(T )− Ẑ(T ) = − 1

N
(Z(T − 1)− Ẑ(T − 1)) + (1− α− 1

N
)(1 + 2Ŷ (T − 1)),

1

N
Z(T ) + Ẑ(T ) =

1

N
Z(T − 1) + Ẑ(T − 1) +

2− α

N
(1 + 2Ŷ (T − 1)).
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Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T )− Ẑ(T ) = (1− α− 1

N
)
∑

t≤T−1

(− 1

N
)T−1−t(1 + 2Ŷ (t))

≈ (1− α− 1

N
)
∑

t≤T−1

(− 1

N
)T−1−t

(
1 +

2(2− α)t

N

)

≈ (1− α)

(
1 +

2(2− α)T

N

)
,

1

N
Z(T ) + Ẑ(T ) =

(2− α)T

N
+

2(2− α)

N

∑
1≤t≤T−1

Ŷ (t)

≈ (2− α)T

N
+

2(2− α)

N

∑
1≤t≤T−1

(2− α)t

N

≈ (2− α)T

N
+

(2− α)2T 2

N2
.

Then we obtain

Z(T ) ≈ T

N
(2− α)(3− 2α) +

(2− α)2T 2

N2
+ (1− α),

Ẑ(T ) ≈ (2− α)T

N
+

(2− α)2T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 = Ẑ(T ) ≈ (2− α)T

N
+

(2− α)2T 2

N2
.

Lemma E.7 (ȳ ̸= q, k ≤ N, k ̸= q, k ̸= ȳ). Following the data generation process, assuming
N,T ≫ 1 and α = Θ(1), if ȳ ̸= q and k ∈ [N ] \ {ȳ, q}, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k ∈ [N ] \ {ȳ, q}

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k ∈ [N ] \ {ȳ, q}

 ≈ T

N
+

T 2

N2
.

(22)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k ∈ [N ] \ {ȳ, q} in this proof. Denote

Y (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T ) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T ) = Ŷ (T − 1),

Ŷ (T ) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ŷ (T − 1) + p(z1 = k|z0 ̸= q).
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The iteration becomes

Y (T ) = Ŷ (T − 1) + (1− α),

Ŷ (T ) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

Note that these two equations are exactly the same as those in Lemma E.4 with same initialization as
Y (0) = Ŷ (0) = 0. Therefore, we have

Y (T ) ≈ T

N
,

Ŷ (T ) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T ) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T ) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T ) = Ẑ(T − 1),

Ẑ(T ) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ∈ [N ] \ {q}|z0 ̸= q) · Ẑ(T − 1)

+ p(z1 = k̄|z0 ̸= q) · (1 + 2Ŷ (T − 1)),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T ) = Ẑ(T − 1),

Ẑ(T ) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Ŷ (T − 1)).

Again note that, since Y (T ) ≈ Ŷ (T ), these two equations are the same as those in Lemma E.4.
Therefore, we have

Z(T ) ≈ T

N
+

T 2

N2
,

Ẑ(T ) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N ] \ {q}

 = Ẑ(T ) ≈ T

N
+

T 2

N2
.
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F PROOF OF THEOREM 2: TRAINING DYNAMICS OF THE ATTENTION LAYER

We consider the following simplified 1-layer model for the noisy in-context recall task.

xt ≜ WE(zt) + W̃E(zt−1) ∈ Rd,

ϕ(xT , x1:T ) ≜
∑
t≤T

[
σ
(
x⊤
TWQKx1:T

)]
t
·WV xt ∈ Rd,

ξattn(x1:T ) ≜ WUϕ(xT , x1:T ) ∈ RN+1,

ξff(x1:T ) ≜ WUF (xT ) = WUWFxT ∈ RN+1,

(23)

With zero initialization of WQK ,WV ,WF , we analyze the training dynamics of these three matrices
in three phases:

1. WF learns the noise association in O( 1η ) time,

2. WV learns to be identity for all tokens k ∈ [N + 1],

3. WQK attends to any position t such that zt−1 = q and zt = ȳ.

Assumption F.1. In this section, we make the following assumptions

1. (orthonormal embedding) WE(i)
⊤WE(j) = W̃E(i)

⊤W̃E(j) = 1{i = j} and
WE(i)

⊤W̃E(j) = 0 for any i, j ∈ [N + 1].

2. (Feed-forward learns noise association) After phase 1, the prediction for noise always
satisfies p̂(N + 1|z1:T ) = α for any z1:T ∈ [N + 1]⊗T . If p̂ deviates from α, WF will
learn the noise association in a more quick speed than the other weights, so that it is fair to
assume p̂ = α for computing gradients of these weights.

3. (Infinite samples) m → ∞ so the training loss L is population loss.

4. α ≤ 1.5 −
√
5/2 ≈ 0.38. This is to ensure the sign WU (j)

⊤(−∇WV
L)WE(k) > 0 for

any j = k ≤ N in (25).

Phase 1: In this phase, the impact of W̃E(zT−1) on WF and WV is negligible compared with that
of WE(zT ) because ZT−1 is close to uniform in [N + 1] while zT = q is fixed.

Lemma D.1 gives

WU (k)
⊤(−∇WF

L)WE(q) =

{
Θ(1), if k = N + 1,

Θ( 1
N ), if k ≤ N.

Lemma D.2 gives

WU (j)
⊤(−∇WV

L)WE(k) =

{
Θ( 1

N ), if j = N + 1,∀ k,

Θ( 1
N2 ), if j ≤ N, ∀ k.

(24)

Note that the entries of the above projection have the following signs, with details as −µ in Table 3,

WU (j)
⊤(−∇WV

L)WE(k)

{
> 0, if (j = N + 1) or (j = k) or (j = q, k = N + 1),

< 0, otherwise.
(25)

The arguments in Appendix B.3 show

WE(j)
⊤(−∇WQK

L)WE(q) =

{
−Θ( 1

N2 ), if j = N + 1,

Θ( 1
N3 ), if j ≤ N.

(26)

Therefore, during this phase, WF learns the noise association with effective graident norm of
Θ(1) as WU (N + 1)⊤(−∇WF

L)WE(q) = Θ(1). Meanwhile, WF moves in the other directions
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uniformly in Θ( 1
N ) as WU (k)

⊤(−∇WF
L)WE(q) = Θ( 1

N ) for any k ≤ N , which in fact ensures
p̂(k|z1:T ) = 1−p̂(N+1|z1:T )

N for any k ≤ N and z1:T ∈ [N + 1]⊗T .

After O(η−1) steps in this phase, we have p̂(N + 1|z1:T ) = α and p̂(k|z1:T ) = 1−α
N for any k ≤ N

and z1:T .

Phase 2: Assume p̂(N + 1|·) = α starting from the beginning of this phase as discussed above. Due
to symmetry for the rest k channels, we have p̂(k|·) = 1−α

N . Note that the attention scores in ϕ(·, ·)
are still close to uniform, i.e.,

[
σ
(
x⊤
TWQKx1:T

)]
t
≈ 1

T , since the update of WQK is in O(N−2)

whose impact on attention scores is also in O(N−2) through exp(x) ≈ 1 + x for x ≈ 0. Then we
track the movement of WV under these conditions.

Since m → ∞, taking x̄ ≜ 1
T

∑T
i=1 xi, µk ≜ E[x̄|y = k] and µ̂k ≜ E[ p̂(k|x)

p(y=k) x̄] = E[x̄] since
p̂(k|x) = α1{k = N + 1}+ 1−α

N 1{k ≤ N} = p(y|k), Lemma H.1 gives

∇WV
L =

N+1∑
k=1

p(y = k)WU (k)(E[x̄]− E[x̄|y = k])⊤

=

N∑
k=1

p(y = k)WU (k)(E[x̄]− E[x̄|y = k])⊤

=

N∑
k=1

1− α

N
WU (k)(E[x̄]− E[x̄|y = k])⊤

= −1− α

N2

N∑
k=1

WU (k)(WE(k)−WE + W̃E(k)− W̃E)
⊤,

where the second equality is due to E[x̄] = E[x̄|y = N + 1] due to y = N + 1 is uniform for any
correct token ȳ ≤ N , and the last equality is from

E[x̄]− E[x̄|y = k] ≈ − 1

N
(WE(k)−WE)−

1

N
(W̃E(k)− W̃E)

with WE = N−1
∑N

i=1 WE(i), W̃E = N−1
∑N

i=1 W̃E(i) because E[x̄] = Ey[Ex[x̄|y]], and the
expected number of the tuple (q, ŷ) in a context length T is Θ( T

N ) by comparing Lemma E.6 and E.7.

Therefore, the gradient for WV has the following structure

WU (j)
⊤(−∇WV

L)WE(k) ≈
1

N2
1{j = k}+O

(
1

N3

)
,∀ j, k ≤ N,

WU (j)
⊤(−∇WV

L)W̃E(k) ≈
1

N2
1{j = k}+O

(
1

N3

)
,∀ j, k ≤ N.

(27)

Denote steps of phase 1 and phase 2 as t1 and t2. Combined with the structure of WV in phase 1 as
in Eq.(24,25), ignoring projections that are O(N−3) or negative, WV has the following structure
after phase 2

WU (j)
⊤WV WE(k) =


Θ(ηt1N

−1), if j = N + 1,∀k,
Θ(ηt1N

−2 + ηt2N
−2), if j = k ≤ N,

Θ(ηt1N
−2), if j = q, k = N + 1,

WU (j)
⊤WV W̃E(k) = Θ(ηt2N

−2), if j = k ≤ N.

(28)

Phase 3: now assume WV has the structure in Eq(28). The model still predicts p̂W(k|z) = α1{k =
N + 1} + 1−α

N 1{k ≤ N} because the above projections of WV onto WU (j : j ≤ N) is o( 1
N ).
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Meanwhile, the attention scores are uniform as 1
T as WQK ≈ 0. Therefore, the gradient of WQK is

∇WQK
L =

1

T

N+1∑
k=1

∑
t≤T

p(y = k)(E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤]

− E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤|y = k])

=
1− α

TN

N∑
k=1

∑
t≤T

(E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤]

− E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤|y = k]),

where x̄ = T−1
∑

t≤T xt and the last equality holds due to the condition of y = N + 1 uniform
for any correct token ŷ ≤ N . Then, considering the above structure of WV , we notice that
WU (j)

⊤WV xt ≈ β11{zt = j}+β21{zt−1 = j} with β1 = ηt1N
−2+ηt2N

−2 and β2 = ηt2N
−2

for any j, k ≤ N . Here note that we ignore the projection of j = q, k = N + 1 in Eq(28) because
ŷ = q is with probability 1/N = o(1) so that it will not influence much the following derivation.

Plug-in WU (j)
⊤WV xt and we get

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(b2)) =
1− α

TN

∑
k≤N

∑
t≤T

E[A(t)
k,b1,b2

|y = k]− E[A(t)
k,b1,b2

]

(29)
where
A

(t)
k,b1,b2

= (β11{zt = k}+ β21{zt−1 = k})

·
(
1{zt = b1} −

∑
s≤T 1{zs = b1}

T
+ 1{zt−1 = b2} −

∑
s≤T 1{zs−1 = b2}

T

)
.

Now we are to control ∆k,b1,b2 ≜
∑

t≤T E[A(t)
k,b1,b2

|y = k] − E[A(t)
k,b1,b2

] for different choices of

b1, b2. Note that b1 and b2 co-exist by sum in A
(t)
k,b1,b2

, so the additivity of expectation allows us to
discuss choices of b1, b2 separately and then combine the results. Denote

B
(t)
k,b1

= (β11{zt = k}+ β21{zt−1 = k})
(
1{zt = b1} −

∑
s≤T 1{zs = b1}

T

)
,

C
(t)
k,b2

= (β11{zt = k}+ β21{zt−1 = k})
(
1{zt−1 = b2} −

∑
s≤T 1{zs−1 = b2}

T

)
.

(30)

Controlling
∑

t≤T E[B(t)
k,b1

|y = k]− E[B(t)
k,b1

]:

• If b1 = k, from Lemma E.6 and E.7, we have

E

∑
t≤T

β11{zt = k}1{zt = k}
∣∣∣∣y = k

− E

∑
t≤T

β11{zt = k}1{zt = k}

 = β1(1− α)
T

N
.

E

−∑
t≤T

β11{zt = k}
∑

s≤T 1{zs = k}
T

∣∣∣∣y = k

− E

−∑
t≤T

β11{zt = k}
∑

s≤T 1{zs = k}
T


= −E

β1T
−1(
∑
s≤T

1{zs = k})2|y = k

+ E

β1T
−1(
∑
s≤T

1{zs = k})2


= β1T
−1

(
T

N
+

T 2

N2
− (2− α)T

N
− (2− α)2T 2

N2

)
= o

(
β1

T

N

)
.

The terms involving 1{zt−1 = k} are negligible as O(T/N2). Therefore, we have∑
t≤T

E[B(t)
k,k|y = k]− E[B(t)

k,k] = β1(1− α)
T

N
. (31)
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• If b1 ̸= k, all terms are O(T/N2) because
– If b1 ≤ N , it holds p(zt = b1|zt−1 = k) = 1/N with the expected number of k in

context of length L being Θ(T/N) from lemmas in Appendix E.
– If b1 = N + 1, it holds p(zt = N + 1|zt−1 = k) = O(1/N) · 1{k = q} and the

expected number of q in context of length T is Θ(T/N) from Lemma E.1 and E.4.
– E[

∑
t 1{zt−1 = k}#b1/T |·] = E[#k · #b1/T ] = O(T/N2) no matter it is with

condition y = k or not.
Therefore, for any b1 ̸= k, we have∑

t≤T

E[B(t)
k,b1

|y = k]− E[B(t)
k,b1

] = o(T/N). (32)

Controlling
∑

t≤T E[C(t)
k,b2

|y = k]− E[C(t)
k,b2

]:

• If b2 = q, Lemma E.4 gives

E

∑
t≤T

β11{zt = k}
(
1{zt−1 = q} − #q

T

) ∣∣∣∣y = k


−E

∑
t≤T

β11{zt = k}
(
1{zt−1 = q} − #q

T

)
= (1− p(ŷ = k)) · E

∑
t≤T

β11{zt = k}
(
1{zt−1 = q} − #q

T

) ∣∣∣∣y = k

+ o

(
β1

T

N

)

≈ β1(1− α)
T

N
,

where the last equality is from p(zt = k|ȳ = k, zt−1 = q) = 1− α.
All the other terms are negligible with the same reason as above.
Therefore, we have ∑

t≤T

E[C(t)
k,q|y = k]− E[C(t)

k,q] = β1(1− α)
T

N
. (33)

• If b2 = k, similar to the above discussion about Bk,k, we have∑
t≤T

E[C(t)
k,k|y = k]− E[C(t)

k,k] = β2(1− α)
T

N
. (34)

Note that the key difference is that here we use β2 instead of β1, and β2 < β1.
• If b2 ̸= q and b2 ̸= k, similar to the discussion for Eq(32), we have∑

t≤T

E[C(t)
k,b2

|y = k]− E[C(t)
k,b2

] = o(T/N). (35)

Therefore, combining the above results in Eq(31, 32, 33, 34, 35), taking sums of the corresponding B
and C from Eq(30) gives

∆k,b1,b2 =



β1(1− α)TN−1 + β1(1− α)TN−1, if b1 = k, b2 = q,

β1(1− α)TN−1 + β2(1− α)TN−1, if b1 = k, b2 = k,

β1(1− α)TN−1, if b1 = k, other b2,
β1(1− α)TN−1, if b1 ̸= k, b2 = q,

β2(1− α)TN−1, if b1 ̸= k, b2 = k,

O(TN−1), otherwise.

To take the summation over all k ≤ N in Eq(29), we discuss the following cases of b1 and b2 for
WE(q)

⊤(−∇WQK
L)(WE(b1) + W̃E(b2)).
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• If b1 ≤ N, b1 ̸= b2, b2 = q:
– when k = b1, we take ∆k,b1,b2 under the condition of b1 = k, b2 = q.
– when k ̸= b1, we take ∆k,b1,b2 under the condition of b1 ̸= k, b2 = q. Note that there

are (N − 1) such k.
Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(q)) =
1− α

TN
β1(1− α)T (1 +N−1). (36)

• If b1 = b2 = q:
– when k = b1, we take ∆k,b1,b2 under the condition of b1 = k, b2 = k to achieve a

lower bound of the gap later.
– when k ̸= b1, we take ∆k,b1,b2 under the condition of b1 ̸= k, b2 = q. Note that there

are (N − 1) such k.
Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(q)) ≥
1− α

TN

(
β1(1− α)T + β2(1− α)TN−1

)
.

(37)

• If b1 = N + 1, b2 = q: for any k ≤ N , it holds k ̸= b1, so we take ∆k,b1,b2 under the
condition of b1 ̸= k, b2 = q. Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(N + 1) + W̃E(q)) =
1− α

TN
β1(1− α)T. (38)

• If b2 ̸= q,∀ b1: To get an upper bound of the projection length, we take ∆k,b1,b2 under the
condition of b=k, b2 = k or b1 ̸= k, b2 = k. Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(b2)) ≤
1− α

TN
(β1 + 2β2)(1− α)TN−1. (39)

Comparing the above four cases, for any ȳ ≤ N , the attention weight WQK to attend more to
xt = WE(ȳ) + W̃E(q) than to xt = WE(N + 1) + W̃E(q), with

WE(q)
⊤(−∇WQK

L)(WE(ȳ) + W̃E(q))−WE(q)
⊤(−∇WQK

L)(WE(N + 1) + W̃E(q))

≥ (1− α)2

N2
β2.

Meanwhile, any other setting of b1, b2 has smaller projection in (−∇WQK
L).

In summary, WQK has the following patterns

1. it learns to attend to indices t such that zt−1 = q is the trigger word,
2. when there are multiple ti’s such that zti−1=q , it learns to attend to those with zt = ȳ more

than zt = N + 1.

G LINEAR ASSOCIATIVE MEMORY

G.1 EXPERIMENTS AND DISCUSSIONS

In Section 3, we showed that fully truncating a feed-forward layer can be helpful for reasoning. We
now present a setting where noisy associations are stored in a rank-one subspace of a layer, so that
intermediate levels of truncation are more useful to remove noise.

Model and data. We consider a simple associative memory setting where the goal is learn an
fixed permutation from input tokens to output tokens (w.l.o.g. taken to be the identity), with a
linear model similar to Cabannes et al. (2024). Consider a learnable weight matrix W ∈ Rd×d.
Consider embeddings for n input tokens as {ei}ni=1 ⊂ Rd and embeddings for c output tokens as
{ui}ci=1 ⊂ Rd. In contrast to Cabannes et al. (2024), we consider an additional “common noise”
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output token c = n + 1, which is chosen for any input with probability α ∈ (0, 1). For any input
x ∈ [n], the target distribution pα(·|x) is defined by

pα(y|x) = (1− α) · 1{y = x}+ α · 1{y = c}. (40)

In other words, the last channel (c) for output is the common noise with probability α for any input.
The training dataset Dα consists of uniformly distributed inputs x ∈ [n], and outputs conditionally
sampled as y|x ∼ pα(·|x).
Given any pair of input and output tokens, the associative memory model takes the form

f(i, j;W) ≜ ⟨uj ,Wei⟩, ∀ i, j ∈ [n]× [c], (41)

When k ≤ d, we denote the rank-k approximation of f as f (k) by replacing W with W(k), where
W(k) is the rank-k approximation of W.

Training. During training, the dataset Dα is generated with non-zero noise probability α > 0. At
test time, the dataset D0 is without noise as α = 0, so the computed loss is called pure-label loss.
The model is trained with Gradient Descent (GD) subjected to cross-entropy loss.

Experiments with randomness. Assume both {ei}ni=1 and {ui}ci=1 are i.i.d. uniformly drawn from
sphere Sd−1. Also assume the model is initialized as Wi,j ∼ N (0, 1

d ). Due to randomness from
embeddings and model initialization, let’s first conduct 20 runs of experiments to obtain significant
factors before moving the theoretical argument.

Note that only full models are trained, and we track loss for low-rank models by conducting SVD in
each step without manipulating training. In Figure 5, we illustrate the pure-label loss v.s. training
steps for models of different ranks, where n = 3, α = 0.03 and d = 8 or 12. It turns out, while the
full model (rank≥ 3) has a constant pure-label loss (∼ 0.03, dependent on α), the rank-2 model is
very likely to have a significant loss than the full model. Meanwhile, the larger d has more stable
results than small d.
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Figure 18: Pure-label loss for rank-1,2,3,4 models with n = 3, α = 0.03 and d = 12 (left) or 8
(right). Only full models are trained, and we report low-rank results by conducting SVD in each step
without manipulating the training. In both figures, the experiments are run for 20 times to examine
the randomness. For each rank, we plot curves of the median, 25% and 75% out of 20 runs. It turns
out: i) rank-2 models are very likely to have significantly lower pure-label loss thant full models
(rank≥ 3), and ii) the larger dimension d has more stable results.

Therefore, we can qualify the following important factors for this model:

i. d v.s. n, c: when d ≫ n, c, random drawn embeddings tend to be orthogonal to each other, with
inner product in O(1/

√
d). If n, c = Ω(d), embeddings will be in strong correlations, making

the problem extremely difficult to understand. Cabannes et al. (2024) also discussed about such
particle interaction in associative memory.

ii. Low-rank subspace storing the noise. In Figure 18, the rank-1 subspace between the full
and rank-2 models is responsible to store the noise, removing which will induce a model
ideally predicting the ground-truth without noise. This is understandable if the embeddings are
orthogonal, as shown in Theorem 3.
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iii. α v.s. n. When n is large, orthogonal embeddings still induces a low-rank subspace storing
the noise, but α decides whether the low-rank subspace corresponds to the smallest singular
values of W. If not, it requires more careful manipulation of the spectrum instead of low-rank
approximation of W.

G.2 PROOF OF THEOREM 3

Now we present a theoretical analysis of this problem with some assumptions.

Assumption G.1 (Orthonormality). Embeddings of input and output tokens are orthonormal, i.e.,
e⊤i ej = 1{i = j},∀ i, j and u⊤

i uj = 1{i = j},∀ i, j.

Assumption G.2 (Initialization). The learnable matrix W is initialized from 0 when t = 0.

Theorem 5 (Restatement of Theorem 3). Assume Assumptions G.1 and G.2 hold, considering
n = 2, c = 3 and α ∈ (0.2, 0.4), we train the full model f(·, ·;W) with gradient flow. Denote
P (i, j;W) as the model’s predicted probability for output j conditioned on input i. Then, for t → ∞
and i ∈ {1, 2}, we have

P (i, j;W) = (1− α) · 1{j = i}+ α · 1{j = c},
P (i, j;W(1)) = (1−Θ(t−

1/2)) · 1{j = i}+Θ(t−
1/2) · 1{j = c}.

Remark 1. Note that here the assumption α ∈ (0.2, 0.4) is a technical choice. In experiments, any
value α ∈ (0, 0.4) still has the same result.

Proof. W.l.o.g., we assume the embeddings are standard basis in Rd. For any W, the gradient ∇WL
can be decomposed as

∇WL = γ1

[
1
−1
0

]
[1 −1 0] + γ2

[
1
1
−2

]
[1 1 0] . (42)

Since W initializes from zero, this implies W can always be decomposed with the same basis

W = β1

[
1
−1
0

]
[1 −1 0] + β2

[
1
1
−2

]
[1 1 0] . (43)

Then gradient flow gives the following ODE

β̇1 = −γ1 =
exp(−β1 + β2)− exp(β1 + β2)

exp(−β1 + β2) + exp(β1 + β2) + exp(−2β2)
+ 1− α

=
exp(−2β1)− 1

exp(−2β1) + exp(−β1 − 3β2) + 1
+ 1− α,

β̇2 = −γ2 =
3 exp(−2β2)

exp(−β1 + β2) + exp(β1 + β2) + exp(−2β2)
− 3α

=
3 exp(−β1 − 3β2)

exp(−2β1) + exp(−β1 − 3β2) + 1
− 3α.

(44)

Denoting a = −2β1, b = −β1 − 3β2, the ODE becomes

ȧ =
2− 2 exp(a)

exp(a) + exp(b) + 1
− 2 + 2α,

ḃ =
2− 8 exp(b)

exp(a) + exp(b) + 1
− 2 + 10α.

(45)

Lemma H.3 gives the solution as, when t → ∞,

a → − log(t)− log(1− α)(4− 2α), b → log
α

1− α
.
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For the full model, taking the scores W1,: of the first input token as an example, we have W11 =
β1 + β2,W12 = −β1 + β2,W13 = −2β2, so the margins are

W11 −W12 = 2β1 = −a,W11 −W13 = β1 + 3β2 = −b.

For the rank-1 model (assuming β1 > β2), the margins are

W
(1)
11 −W

(1)
12 = 2β1,W

(1)
11 −W

(1)
13 = β1.

The proof finishes by computing softmax on the margins.

H USEFUL LEMMAS

Lemma H.1. Let p be a data distribution on (x, y) ∈ Rd × [N ]. Consider training data as m i.i.d.
samples D ≜ {(xi, yi)}mi=1 ⊂ Rd × [N + 1] from p. Consider the following classification problem,
with fixed output embeddings WU :

L̂(W) =
1

m

m∑
i=1

[l(yi,WUWxi)].

The gradients take the following form: denoting p̂W(k|xi) as the current predicted probability of
class k in [N + 1] classes for input xi,

∇WL̂(W) =
1

m

m∑
i=1

[
N+1∑
k=1

(p̂W(k|xi)− 1{yi = k})WU (k)x
⊤
i

]
.

When m → ∞, the above equation becomes

∇WL(W) =

N+1∑
k=1

p(y = k)WU (k)(µ̂k − µk)
⊤,

where µk ≜ E[x|y = k] and µ̂k ≜ Ex[
p̂W(k|x)
p(y=k) x].

Remark 2. This lemma is from Lemma 2 in Bietti et al. (2023).

Proof. Recall the form of the cross-entropy loss for classification with K classes:

l(y, ϵ) = −
K∑

k=1

1{y = k} log eξk∑
j e

ξj
.

Its derivatives take the form
∂l

∂ξk
(y, ξ) = s(ξ)k − 1{y = k},

where s(ξ)k = eξk∑
j eξj

.

The gradient of L is then given by

∇WL̂(W) =
1

m

m∑
i=1

[
N+1∑
k=1

∂l

∂ξk
(yi,WUWxi)∇W(WU (k)

⊤Wxi)

]

=
1

m

m∑
i=1

[
N+1∑
k=1

(p̂W(k|xi)− 1{yi = k})WU (k)x
⊤
i

]
.

When m → ∞, the above equation becomes

∇WL(W) =

N+1∑
k=1

WU (k)E[p̂W(k|x)x⊤]−
N+1∑
k=1

E[1{y = k}WU (k)E[x|y]⊤]

=

N+1∑
k=1

WU (k)E[p̂W(k|x)x⊤]−
∑
j,k

p(y = k)1{j = k}WU (k)E[x|y = j]⊤

=

N+1∑
k=1

p(y = k)WU (k)(µ̂k − µk)
⊤.
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Lemma H.2. Consider a sequence {St}t≥1 with St = at · t where a ̸= 1. Then
∑

1≤t≤T St =
a(1−aT )
(a−1)2 + aT+1·T

a−1 .

Proof. Denote Xt ≜
∑

1≤t≤T St. Then we have a ·Xt =
∑

2≤t≤T+1 a
t · (t− 1). Hence, it holds

(a− 1)Xt = −
∑

2≤t≤T at − a+ aT+1 · T = −a(1−aT )
1−a + aT+1 · T. Therefore, we have

Xt =
a(1− aT )

(a− 1)2
+

aT+1 · T
a− 1

.

Lemma H.3. Consider the following ODE with with a(0) = b(0) = 0 and α ∈ (0.2, 0.4),

ȧ =
2− 2 exp(a)

exp(a) + exp(b) + 1
− 2 + 2α,

ḃ =
2− 8 exp(b)

exp(a) + exp(b) + 1
− 2 + 10α.

Then, when t → ∞, we have

a → − log(t)− log(1− α)(4− 2α), b → log
α

1− α
.

Proof. The ODE can be re-written as

ȧ = 2 · (α− 2) exp(a) + (α− 1) exp(b) + α

exp(a) + exp(b) + 1
≜

2D

exp(a) + exp(b) + 1
,

ḃ = 10 ·
(α− 1

5 ) exp(a) + (α− 1) exp(b) + α

exp(a) + exp(b) + 1
≜

10E

exp(a) + exp(b) + 1
.

At t = 0, it holds ȧ(0) < 0, ḃ(0) < 0 since D = 3α− 3 < 0, E = 3α− 6
5 < 0. Hence, a and b start

to decrease from t = 0. The ending of the decreasing happens when one of D and E gets positive.
Let’s show D and E will never be positive when α ∈ (0.2, 0.4) by contradiction.

Assume time T1 is when one of E and E equals to 0 for the first time. This means E = 0, because,
for any time t, it always holds D < E since exp(a) > 0 for any a ∈ R. Then at T1, we have
ȧ < 0, ḃ = 0, which means exp(a) will decrease for any small time window ∆t > 0 and exp(b)
stays unchanged. Together with α > 0.2, this means it has E < 0 again at time T1 +∆t. Therefore,
it is possible for E to be 0, but E will never be positive. Meanwhile, this also guarantees D will
always be negative because D < E.

Then, we make an observation that when D is always negative and E is always non-positive, the
decreasing nature of a will have D ≈ E when t → ∞ by exp(a) ≈ 0. This implies b = log α

1−α .
Then, by taking exp(a) = β · t−γ , the ODE gives

−γ
1

t
=

(2α− 4)β · t−γ

β · t−γ + 1
1−α

,

which gives γ = 1, β = 1
(1−α)(4−2α) .

Therefore, when t → ∞, we have

a → log

(
1

(1− α)(4− 2α)
t−1

)
, b → log

α

1− α
.
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I INPUT EXAMPLES FOR LLMS

I.1 EXAMPLES FOR PREPOSITIONS

For experiments in Appendix C.1, we use two synthetic datasets: inputs are 30 prepositions, and
inputs are 40 incomplete sentences ending with a preposition.

The 30 prepositions are:

"about", "above", "across", "after", "against", "along", "around", "at", "before", "behind", "below",
"beneath", "beside", "between", "by", "during", "for", "from", "in", "inside", "into", "near", "of",
"on", "over", "through", "to", "under", "with", "without".

Generated by Claude 3 (Anthropic, 2024), the 40 incomplete sentences are:

[ "Inspired painter gazed at pristine canvas, envisioning next creation about", "Children’s delighted
squeals filled yard as they frolicked, stumbling across", "Singer inhaled deeply, calming nerves before
gracing stage before", "Ominous storm clouds amassed, promising downpour that would soon roll
in", "Awestruck trekker admired breathtaking summit vista, looking over", "Rich aroma of freshly
roasted beans permeated cozy cafe, enticing during", "With deft sleight of hand, illusionist made
coin vanish, leaving spectators in awe without", "Majestic oak stood tall, branches reaching skyward
above", "Gentle waves caressed shoreline, soothing rhythm lulling along", "Meticulous investigator
scoured crime scene, searching for any evidence left behind", "Radiant sunbeams filtered through
sheer curtains, warming hardwood floor beneath", "Concert pianist’s nimble fingers glided across
ivory keys, room resonating with melody around", "Crickets’ evening chorus filled silent field from
nearby meadow during", "Jubilant laughter resounded down corridor as jovial group headed towards
celebration without", "Struggling poet tapped pen restlessly, seeking words to capture elusive emotion
beneath", "Soothing patter of raindrops danced on windowpane, inviting serene relaxation with",
"Mouthwatering scent of fresh bread beckoned passersby into cozy bakery without", "Mighty waves
thundered against jagged cliffs, echoing roar along rugged shoreline around", "Seasoned trekker
carefully navigated winding trail, cautiously avoiding exposed roots and rocks beneath", "Graceful
ballerina flowed across stage, movements blending seamlessly with melody during", "Crackling
campfire cast dancing shadows across gathered faces around", "Vibrant brush strokes danced across
canvas, bold hues bursting into life before", "Photographer framed breathtaking sunset, capturing
fleeting beauty over glistening ocean without", "Stern librarian hushed raucous group, reminding
them to stay quiet inside", "Ink flowed from author’s pen, words brimming with raw passion as page
filled during", "Earthy aroma of freshly steeped tea perfumed air, inviting moment of serenity along",
"Masterful guitarist’s fingers danced nimbly across strings, room alive with haunting melody around",
"Meticulous chef artfully garnished plate, adding delicate finishing touches over", "Indomitable
marathoner pushed through punishing final stretch, fortitude driving every stride before", "Engrossed
scientist examined specimen’s intricate structures through microscope beneath", "Nervous thespian
steadied breathing, striding into dazzling spotlight, delivering flawless performance with", "Skilled
artist’s pencil glided gracefully, deftly capturing subject’s essence without", "Weary hiker paused
to catch breath, marveling at sweeping panorama from lofty peak above", "Deep in thought, writer
drummed fingers, seeking perfect phrasing to convey profound emotion without", "Lost in reverie,
violinist swayed gently, fingers dancing across delicate strings during", "Painter’s brushstrokes burst
into radiant life, canvas ablaze with vivid sunset hues over", "Adept photographer framed picturesque
scene, preserving landscape’s beauty without", "World-renowned chef meticulously garnished plate,
each component strategically placed around", "Dedicated researcher scrutinized specimen under
microscope, documenting minute details beneath", "Seasoned actor inhaled deeply, embodying
character as bright lights engulfed stage with", ].

I.2 MORE EXAMPLES OF FACTUAL RECALL

We consider more examples of factual recall with pairs of input and output shown in Table 5.
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Table 5: Inputs and Outputs of Factual Knowledge
Input Target output
The Great Wall is located in China
Mount Kilimanjaro is located in Tanzania
The Nobel Prize is awarded in Sweden
The Statue of Liberty stands in New York Harbor
Vatican City is enclosed within Rome
The Acropolis is situated in Athens
The Sydney Opera House is located on Bennelong Point
The Galápagos Islands belong to Ecuador
The Aurora Borealis can be seen in Norway
The Amazon River flows through Brazil
The Andes Mountains extend through Chile
Machu Picchu is found in Peru
The Kremlin is located in Moscow
Uluru is a landmark found in Australia
Petra is an archaeological city in Jordan
Angkor Wat is located in Cambodia
The city of Toronto is in Canada
The city of Barcelona is in Spain
The city of Mumbai is in India
The Eiffel Tower is located in Paris

J SYNTHETIC IOI TASK

Data and task. Here we consider a synthetic data model similar to the IOI task Wang et al. (2022),
with additional noise. Consider a vocabulary V = {1, 2, . . . , N,N +1}. The token τ ≜ N +1 is the
generic noise token. We fix a trigger token q ∈ [N ], which governs in-context recall, and a context
length T . Each sequence of tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ and a different distractor token yD uniformly in [N ].

ii. Sample three indices i1, i2, i3 ∈ [T − 2] such that their distances are no smaller than 2. (This is
for non-overlapping.)

iii. Set zi1 = zi2 = zi3 = q. Among the three indices i1 + 1, i2 + 1, i3 + 1, random select one of
them with zik+1 = ȳ with the other two as zik+1 = yD.

iv. Set zT = q and sample zT+1 ∼ pα,ȳ(·) with

pα,ȳ(x) =


1− α, if x = ȳ,

α, if x = τ,

0, otherwise.

v. Random fill with tokens from V \{q} into the remaining positions in [T +1]\{i1, i1+1, i2, i2+
1, i3, i3 + 1, T, T + 1}.

The key difference between the above data and noisy in-context recall in Section 3 is that, in additional
to detecting the tokens ȳ and yD after the trigger q, this task also requires counting to decide which
of ȳ and yD appear more. This mechanism is exactly the definition of the correct IO token in Wang
et al. (2022).

Most of the other settings are the same as that in Section 3, including the training procedure, the
architecture of a transformer layer, dimensionality and the vocabulary size.

Results. Figure 19 shows the test performance for models with layers L = 3, 4, 5, 6, 7, where
the models are trained with SGD. Dropping the last-layer MLP consistently improves the test
performance across all models. Figure 20 shows the test performance for L = 3, 4, 5 trained with
Adam (Kingma, 2014). Truncating the last MLP’s input weights with ρ = 0.01 significantly
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Figure 19: Synthetic IOI trained with SGD: test loss and accuracy for transformers with different
layers. Dropping the last-layer MLP consistently improves the test accuracies across all models.

improves the performance for L = 3, 4. We also note that the model fails to converge for L = 5,
possibly because we do not use any normalization technique in the architecture, so the Adam training
is less stable for deep transformers.
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Figure 20: Synthetic IOI trained with Adam: test loss and accuracy for transformers with layers
L = 3, 4, 5. Truncating the last-layer MLP’s input weights with ρ = 0.01 improves the test
performances for L = 3, 4, while the model fails to converge for L = 5.
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