
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISTRIBUTIONAL ASSOCIATIONS VS IN-CONTEXT
REASONING: A STUDY OF FEED-FORWARD AND
ATTENTION LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have been successful at tasks involving basic forms of
in-context reasoning, such as generating coherent language, as well as storing
vast amounts of knowledge. At the core of the Transformer architecture behind
such models are feed-forward and attention layers, which are often associated to
knowledge and reasoning, respectively. In this paper, we study this distinction
empirically and theoretically in a controlled synthetic setting where certain next-
token predictions involve both distributional and in-context information. We find
that feed-forward layers tend to learn simple distributional associations such as
bigrams, while attention layers focus on in-context reasoning. Our theoretical
analysis identifies the noise in the gradients as a key factor behind this discrepancy.
Finally, we illustrate how similar disparities emerge in pre-trained models through
ablations on the Pythia model family on simple reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) have shown impressive capabilities on a variety of tasks, from
generating coherent and grammatically correct text, to language understanding and basic mathematical
reasoning (Brown et al., 2020; Touvron et al., 2023). At the heart of this success is the Transformer
architecture (Vaswani et al., 2017), which relies on a sequence of self-attention and feed-forward
layers to efficiently combine information from the input context and patterns learned from training
data. Despite recent progress on interpreting the mechanisms learned by different layers (Meng et al.,
2022; Wang et al., 2022), these models remain largely black boxes. A better understanding of the role
of Transformer layers and how they are affected by the training process could enable new monitoring
and editing techniques, better training data, and ultimately more reliable LLMs.

The task of next-token prediction in language modeling inherently involves different subtasks that
may be at odds with each other, as shown in Figure 1. For instance, given the context “John gave
a book to”, the word “the” is a natural and grammatically correct next word to predict, and relying
on global bigram statistics might be enough to predict it given the last word “to”. Nonetheless,
if another character is present in the context, say Mary, then the name “Mary” may be a better
prediction, and this would require a more involved form of reasoning over the context to retrieve
this name. In the context of Transformer language models, previous work on interpretability has
found that circuits of attention heads seem responsible for such in-context predictions (Wang et al.,
2022), while feed-forward layers may be storing more general statistics such as the bigram “to
the” or factual knowledge (Geva et al., 2021; Meng et al., 2022; Bietti et al., 2023). To further
strengthen this observation, the recent work (Sharma et al., 2023) found that selectively replacing
certain layer weights to their low-rank approximation, particularly late feed-forward layers, may
improve performance on various reasoning benchmarks, and observed that the truncated components
were often responsible for predicting “generic” tokens such as the word “the”.

In this paper, we provide a finer understanding of these phenomena by studying how such mechanisms
arise during training, in particular how simple distributional associations, such as the bigram “to the”,
tend to be localized in feed-forward layers, while attention focuses on in-context reasoning. We first
provide a fine-grained study of training dynamics on a synthetic task with two-layer transformers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

MLP learns
distribution

Madrid is located in
distributional association

in-context reasoning

P(y |x)

Training steps

Attention learns
in-context reasoning

the

Spain Truncating MLP promotes
in-context reasoning

x y

Figure 1: Distributional association v.s. in-context reasoning. In this work, we decompose tasks
of next-token prediction into the distributional and the in-context ones, finding that MLPs learn
distributional associations before attention develops in-context reasoning capabilities. Furthermore,
truncating MLPs promotes in-context reasoning by weakening distributional associations. See
Figure 5 for an example of this on the Pythia model (Biderman et al., 2023).

exhibiting similar properties, where the task is in-context recall (Bietti et al., 2023) with additional
noise on in-context tokens consisting of a fixed “generic” token:

• In a two-layer model with feed-forward layers (FF), we show that the generic noise token is
mainly learned in FF and the attention attends towards correct in-context targets. Removing
the feed-forward layers then leads to clean in-context predictions. We provide some theoretical
justification through early training steps.

• In a model without FF, we show that the generic noise can be identified in a rank-one subspace of
the value matrix in attention block. When the noise level is small, low-rank truncation can filter it
out and predict clean outputs.

We then investigate such a separation between distributional association and in-context reasoning
on pre-trained language models, namely the Pythia family, which has checkpoints available at
different training steps (Biderman et al., 2023). Overall, we provide a useful description of how
distributional associations and in-context reasoning mechanisms are learned during training, and tend
to be disentangled in different parts of the model, such that selectively removing certain components
may lead to better predictions in reasoning tasks.

Related work. Sharma et al. (2023) recently empirically observed that a low-rank approximation of
some weights in some pre-trained LLMs can improve reasoning capabilities. Several interpretability
works have looked at the role of attention versus feed-forward layers for different tasks. The
prominence of feed-forward/MLP layers for storing “global” or “persistent” associations or facts has
been observed in (Sukhbaatar et al., 2019; Geva et al., 2021; Meng et al., 2022; Geva et al., 2023). In
contrast, several works have investigated the role of attention heads for “reasoning” or computation
over the context, e.g., for simple copying mechanisms with so-called induction heads (Elhage et al.,
2021; Olsson et al., 2022; Bietti et al., 2023), or for more complex tasks (Merrill et al., 2022; Wang
et al., 2022; Zhang et al., 2022; Liu et al., 2023; Sanford et al., 2024b).

Training dynamics of transformers and attention have been studied in various works (Snell et al.,
2021; Jelassi et al., 2022; Li et al., 2023; Oymak et al., 2023; Tian et al., 2023; Bietti et al., 2023;
Reddy, 2024; Tian et al., 2024; Zhang et al., 2024; Nichani et al., 2024; Edelman et al., 2024). In
particular, the two-layer model and copy task we consider are similar to Bietti et al. (2023), yet their
data model does not involve noise on in-context predictions, and they do not study learning of global
associations. Chan et al. (2022); Reddy (2024) study in-context vs. in-weights learning empirically,
on different tasks than ours. Cabannes et al. (2024) study training dynamics of linear associative
memories, but focuses on deterministic data while our setup has generic noise. Training dynamics
were also studied empirically for interpretability (Olsson et al., 2022; Nanda et al., 2023; Quirke et al.,
2023; Chen et al., 2024). Edelman et al. (2022); Bai et al. (2023); Abernethy et al. (2024) studied
sample complexity of self-attention and in-context learning, but did not consider training dynamics.

2 PRELIMINARIES

In this section, we provide some background and motivation on reasoning tasks, and describe the
weight truncation technique which we use for ablating weights.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 REASONING FROM CONTEXT

Recent LLMs have shown promising results in more complex “reasoning” tasks which may involve
multiple steps of logical or computational processing from context or prompt (Srivastava et al., 2022;
Wei et al., 2022; Bubeck et al., 2023; Dziri et al., 2024), as opposed to simple pattern matching or
memorization of training data, for instance using learned n-gram predictions.

While it is difficult to clearly separate reasoning from memorization, in this work we will make the
simplifying distinction that in-context reasoning involves dependencies between multiple tokens po-
tentially far away in the context, while we consider distributional associations as simpler predictions
that only depend on the last token, e.g., through a bigram model. Thus, due to the residual structure of
Transformers, reasoning will typically require using attention operations in Transformers over context,
while feed-forward layers should suffice for learning distributional associations. We note that our
assumption of distributional associations depending only on the last token is mainly for convenience
of our analysis, and could be extended to depend on the last token’s residual stream (Elhage et al.,
2021), which may contain additional information from the context. For instance, this could include
previous tokens thanks to position-based attention heads (Voita et al., 2019; Elhage et al., 2021;
Akyürek et al., 2024), which allows capturing n-grams instead of just bigrams.

Under this definition, we list a few simple examples of reasoning that we will consider below:

• In-context recall: when the last token is a, we’d like to copy the token that follows previous
occurrences of a in the context. This [.. a b .. a]→ b pattern typically requires a two-
layer induction head mechanism (Elhage et al., 2021; Bietti et al., 2023; Sanford et al., 2024a);

• Indirect object identification (IOI): we consider contexts of the form “When Mary and John went
to the store, John gave the ice cream to” where the prediction should be “Mary” (IO, the indirect
object), instead of “John” (S, the subject). Wang et al. (2022) found a circuit of several attention
heads that perform this task by copying the name which only occurs once in the context;

• Factual recall: sentences of the form “Paul Citroen is a native speaker of” with target “Dutch” as
in (Sharma et al., 2023). While this may be seen as retrieving a distributional association, we will
treat it here as reasoning since it involves combining the subject and relation from the context,
while a bigram model that only depends on the last token “of” might instead predict the generic
word “the”.

2.2 TRUNCATING WEIGHTS WITH LASER (SHARMA ET AL., 2023)

In order to assess the importance of different weight components for certain predictions, we use the
weight truncation technique introduced by Sharma et al. (2023). They observed that reducing the rank
of MLP matrices in certain layers of LLMs effectively brings better performance on several reasoning
benchmarks. Their proposed method, Layer-Selective Rank Reduction (LASER), replaces any matrix
in the full model by its low-rank approximation with fraction ρ, i.e., a matrix W ∈ Rdin,dout would be
replaced by its rank-⌊ρ ·min{din, dout}⌋ approximation via Singular Value Decomposition (SVD).
After searching for the best parameters of different models on different datasets, Sharma et al. (2023)
found that applying their method to weight matrices of MLPs on relatively deep layers can enhance
in-context reasoning performance on various benchmarks, consistent with our findings. The optimal
ρ is smaller than 0.2 for many datasets.

Another observation from Sharma et al. (2023) is that, when LASER improves the model’s prediction
on some samples, the full model often predicts “generic” words while the improved model is able
to predict the ground-truth answer. For instance, given an input “Madrid is located in”, the full

Table 1: Probabilities of the top-5 next-tokens in Pythia-1B before and after LASER. The input
prompt is “Madrid is located in”. Probabilities of two generic words, i.e., “the” and “a”, drop sharply
after LASER, while probabilities of meaningful words increase, especially the target “Spain”.

“the” “Spain” “a” “southern” “northern”

Full 0.499 0.079 0.069 0.023 0.021
LASER 0.027 0.300 0.002 0.044 0.046

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

model predicts “the” while the truncated model predicts the target “Spain” in Table 1. Here, the
generic word is consistent with our definition of distributional associations in Section 2.1, as it may
naturally follow from a bigram distribution conditioned on “in”, while the factual answer is more
akin to reasoning from context. Thus, we would like to better understand how such a modification of
feed-forward layers improves the model from predicting generic words to inferring the answer from
context, and how such a gap appears during training.

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider simple one- or two-layer transformers on an in-context recall task with
added generic token noise, which allows us to study the trade-offs between MLPs and attention layers
for storing in-context versus distributional associations, in a controlled setting. We empirically show
how transformers solve this task by storing the generic noise token in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing that feed-forward
layers are more likely to store the distributional association (generic token) while attention learns to
attend to in-context targets. Finally, we show that when the model has no feed-forward layers, the
value matrix in attention stores both in-context and distributional information, in different subspaces.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N,N + 1}. The token τ ≜ N + 1 is the generic noise token.
We fix a trigger token q ∈ [N], which governs in-context recall, and a context length T . Each
sequence of tokens z1:T = [z1, z2, . . . , zT] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N].

ii. Sample z1:T−1 according to the following Markov process (πu, πb are distributions on [N]
defined later): z1 ∼ πu(·), and

zt+1|zt ∼
{
πb(·|zt), if zt ̸= q,

pα,ȳ(·), otherwise,
pα,ȳ(x) =

1− α, if x = ȳ,

α, if x = τ,

0, otherwise.

iii. Set zT = q, and sample the final output y = zT+1 ∼ pα,ȳ(·).

Note that the true ȳ varies across sequences, so that the model needs to infer it from context, e.g.,
using an induction head as in (Bietti et al., 2023). Predicting ȳ may thus be seen as a basic “reasoning”
task, yet when training with α > 0, the noisy output also requires the model to learn a distributional
trigger-noise association, similar to the “of/in the” bigram discussed in Section 2. We also consider
using multiple trigger tokens in Appendix B.4 and Figure 9.

Two-layer transformer. We consider a simplified
two-layer transformer formulated below. The in-
put is a sequence of tokens z1:T = [z1, . . . , zT] ∈
[N + 1]T , and the output is ξ. The embedding ma-
trix WE ∈ R(N+1)×d and un-embedding matrix
WU ∈ R(N+1)×d are fixed at random initializa-
tion. The two attention layers have learnable weights
W1

QK ,W1
V ,W

2
QK ,W2

V ∈ Rd×d with σ(·) the soft-
max on a vector. The two feed-forward layers F1, F2

are also learnable, and typically we set them as two-
layer MLPs with ReLU activation. We will discuss dif-
ferent architectural choices of F1, F2 in Appendix B.5.
We use the cross-entropy loss to predict y = zT+1

from the logits ξT ∈ RN+1.

xt ≜ WE(zt) + pt,

h1
t ≜

∑
s≤t

[
σ(x⊤

t W
1
QKx1:t)

]
s
·W1

V xs,

x1
t ≜ xt + h1

t + F1(xt + h1
t),

h2
t ≜

∑
s≤t

[
σ(x1

t
⊤
W2

QKx1
1:t)
]
s
·W2

V x
1
s,

x2
t ≜ x1

t + h2
t + F2(x

1
t + h2

t),

ξt ≜ WUx
2
t .

(1)

Experimental observations. Following Bietti et al. (2023), we take πu and πb to be the unigram and
brigram character-level distributions estimated from the tiny Shakespeare dataset with N = 65. The
model setup includes d = 256 and two-layer MLPs with ReLU for both F1, F2. The training setup
includes batch size as 512 and the context length T = 256. When evaluating trained models, we
consider LASER on the input weight Uin of F2. We consider a noise level α = 0.5 for training data

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

pt1−1 WE(q)

q

pt1 WE(ȳ)

ȳ

⋯

pt2−1 WE(q)

q

pt2 WE(τ)

τ

⋯

pT WE(q)

q

⋯ ⋯⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯ ⋯ ȳ τ

Layer 0

Layer 1

Layer 2

Attn-2:∑
k≠τ

(W̃E(q) + WE(k))WE(q)⊤ FF-2: (q → τ) ∼ Ptrain

Attn-1 Attn-1

⋯ ⋯ ⋯

ȳ sampled target token τ fixed generic tokenq trigger token

Sequence

WE(ȳ)W̃E(q) W̃E(q) WE(τ) ⋯ WE(q)

Figure 2: Noisy in-context recall. Purpose of design: understand mechanisms of attention and
feed-forward layers for tasks with in-context reasoning (predict ȳ) and distributional association
(predict τ). Task: predict tokens ȳ v.s. τ from a sentence [. . . , q, ȳ, . . . , q, τ, . . . , q] where q is trigger,
ȳ is sampled target token for a sentence, and τ is a fixed generic token across sentences. Our findings:
in a two-layer transformer, the second-layer attention (Attn-2) only attends towards target tuples [q, ȳ]
while the feed-forward layer (FF-2) learns to predict τ .

0 500 1000 1500 2000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Average prob for correct token

MLP2: = 0
MLP2: = 0.2
full

0 500 1000 1500 2000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Average prob for noise token

MLP2: = 0
MLP2: = 0.2
full

0 500 1000 1500 2000
Training step

10 1

100

Lo
ss

Test loss

MLP2: = 0
MLP2: = 0.2
full

0 500 1000 1500 2000
Training step

0

1

2

M
ar

gi
n

FF-2 Margin: q max([N])

Figure 3: Left three: Average probability of predicting correct and noise tokens, and test loss
on clean data (α = 0), with different fractions ρ of preserved rank in Uin of the second-layer
MLP F2. The full model learns to predict noise with probability around α = 0.5, as expected
from training data. When F2 is dropped (ρ = 0), the model predicts the correct token ȳ with
probability ≈ 0.98. Rightmost: the FF-2 margin of τ v.s. all the other tokens with input as q,
i.e., [WUF2(WE(q))]τ − maxk≤N [WUF2(WE(q))]k. It reveals that FF-2 learns trigger-noise
association in early steps.

(though any other constant value would lead to similar observations). During test time, we set α = 0
to compute the test loss, aiming to measure how likely the (full or after-truncation) model predicts
the ground-truth ȳ.

Experimental results are reported in Figure 3 and 8. The full model predicts noise with probability
close to α, which is expected since it is trained to predict the noise token w.p. α. However, when
dropping the second-layer MLP F2, the truncated model predicts the ground-truth ȳ with an almost
perfect probability ≈ 0.98. This suggests that F2 is responsible for storing the distributional
association “[trigger] + [noise]”. Another observation is that the full model first learns to predict the
noise with high probability in very early steps, after which it starts learning to predict the correct
ȳ, which resembles the dynamics observed for learning the “to/in the” bigram in Pythia models
in Figure 5. This suggests that learning the (distributional) trigger-noise association is easier than
predicting ȳ, and we will study this theoretically in Section 3.1.

After the distributional noise association is learned, we observe a slower learning of an induction
head mechanism, with similar dynamics to Bietti et al. (2023). Compared to Bietti et al. (2023),
we notice that the induction head (i.e., the second layer attention head) filters out the noise tokens
and only attends to non-noisy output tokens following the trigger, corresponding to the correct ȳ, as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Token position

0
1
2
4
8

16
32
50
75

100
125
150
175
200
225
250

Tr
ai

ni
ng

 st
ep

Train: second-layer attention scores

Token position

0
1
2
4
8

16
32
50
75

100
125
150
175
200
225
250

Tr
ai

ni
ng

 st
ep

Finetune: second-layer attention scores

0.0

0.2

0.4

0.6

0.8

trigger
noise
correct

Figure 4: The second-layer attention scores of models trained with noise (left), fine-tuned with noise
(right, initialized as a model pre-trained without noise), given the same input. It turns out both models
learn to attend to the informative structure “[trigger]+ȳ” instead of “[trigger]+noise”. This implies
that the attention in these models is only responsible to predict ȳ, although the training input and
output have noise with probability α = Θ(1). The fine-tuning setting is in Appendix B.1.

shown in Figure 4. We present theoretical understanding for this mechanism in Section 3.2. Figure 2
and Appendix B.2 summarize the roles of all components of the two-layer transformer in this task.

Simplified architecture and data for theoretical analysis. Understanding the full dynamics of
the model used in our experiments is out of the scope of the present paper, due to the many moving
parts and the complexity of non-linear MLPs. Instead, we focus on a simpler model involving
one linear feed-forward layer and one attention layer, and look at the gradient dynamics near
initialization. We consider the following simplified 1-layer model. The input xt ∈ Rd at position
t is defined as xt ≜ WE(zt) + W̃E(zt−1), where zt ∈ [N + 1] is the token at position t, WE(zt)

is its embedding and W̃E(zt−1) is a different embedding of the previous token to a different
direction, as in the previous token head construction of Bietti et al. (2023), where the value matrix
remaps the previous token to a different subspace. We assume all embeddings to be orthogonal
(Assumption D.1), which requires large enough d, and holds in the infinite-width limit with random
embeddings. This model allows us to simplify our analysis by considering a single attention layer
with no positional embeddings, while capturing the difficulty of long-range interactions. We note
that such a simplification is standard in the in-context learning literature (e.g., Akyürek et al., 2023;
Mahankali et al., 2024; Zhang et al., 2024), For data generation, πu and πb are uniform distributions
on [N]. Given a sequence of inputs, x1:T ∈ RT×d, the output of model is ξ ≜ ξattn + ξff as

xt ≜ WE(zt) + W̃E(zt−1) ∈ Rd,

ϕ(xT , x1:T) ≜
∑
t≤T

[
σ
(
x⊤
TWQKx1:T

)]
t
·WV xt ∈ Rd,

ξattn(x1:T) ≜ WUϕ(xT , x1:T) ∈ RN+1,

ξff(x1:T) ≜ WUF (xT) = WUWFxT ∈ RN+1,

(2)

where WU ∈ R(N+1)×d is the unembedding matrix, ϕ(s, t) is the attention module with query s
and context t, and F (·) is a linear feed-forward layer. This architecture is similar to a one-layer
transformer, but already highlights the difference between feed-forward and attention layers in a way
that we expect to still hold for more layers. In the above parametrization, the learnable matrices
are WQK ,WF ,WV ∈ Rd×d. At initialization, we set WQK ,WF ,WV = 0, noting that random
initialization in high dimension would lead to similar behaviors thanks to near-orthogonality.

3.1 FEED-FORWARD LAYERS STORE THE GENERIC NOISE

As we saw in Figure 3 and 8, the model very quickly learns to predict the noise token after a few steps.
Then the gap between ρ = 0 and 1 in Figure 3 suggests that the feed-forward layer F2 is responsible
for storing the distributional association about noise, which is verified in Figure 7 (middle). We now
provide theoretical justification for this behavior. In particular, we will show that, at initialization, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

gradients over the feed-forward parameters are much more informative than the attention gradient,
which is dominated by noise unless the sample size is very large. This shows that the feed-forward
layer is much more likely to capture the distributional association.

We now look at the first gradient step from initialization, which has commonly been used to understand
feature learning and sample complexity in neural networks (Damian et al., 2022; Ba et al., 2022;
Dandi et al., 2023; Oymak et al., 2023; Bietti et al., 2023). Note that WQK has no gradient at
initialization, so that the gradient of WV is most relevant initially (see also Snell et al., 2021; Li et al.,
2023; Oymak et al., 2023; Bietti et al., 2023).

Theorem 1 (Logits after one gradient step). Assume N,T ≫ 1, α = Θ(1). For the model in Eq(2),
consider one gradient step update from zero-initialization on m i.i.d. samples of z1:T with separate
learning rates ηf for WF and ηv for WV (note that the gradient on WQK is zero). With probability
1− δ, the resulting logits for the feed-forward and attention blocks satisfy, for any test sequence z1:T ,

|∆(ξff(x1:T))− ηf · α| ≤ ηf ·O

√

ln 2(N+1)
δ

m

 ,

∣∣∣∆(ξattn(x1:T))−
ηv
N

· α̂
∣∣∣ ≤ ηv ·O

√

(1
TN + 1

N2) ln
2(N+1)

δ

m
+

ln 2(N+1)
δ

m

 ,

where ∆(ξ) = ξN+1 − maxj∈[N] ξj is the margin of predicting the generic noise token and α̂ =

(α2q̂ + α(1− q̂)), where q̂ = 1
T

∑
t≤T 1{zt = N + 1} is the fraction of noise tokens in z1:T .

The margin ∆(ξ) reflects how much signal there is in the logits for predicting the noise token, and
the theorem provides concentration bounds on the contributions of the updates on WF and WV to
the margin. Note that q̂ ≪ 1 w.h.p. for large N,T , so α̂ ≈ α. We make the following observations:

i. When m = Ω̃(1), there is enough signal in WF to predict the noise, say with ηf = 1, and a
choice of ηv = O(1) will lead to a small but controlled contribution to the prediction from WV .

ii. When m = Ω̃(N), WV can also reliably predict the noise by setting ηv = Θ(N) (i.e., with
small deviation on the r.h.s.), at the cost of many more samples.

Our result shows that in the initial phase of training, feed-forward layers are more likely to pick up
the noise token, leading to a structure of the form WF ≈ WU (N +1)WE(q)

⊤, while attention will
be slower due to additional noise and possibly smaller step-sizes. We may then expect the attention
layers to focus instead on in-context reasoning, as we observe empirically and discuss next.

3.2 ATTENTION ATTENDS TO IN-CONTEXT TARGETS AND AVOIDS NOISE

When the feed-forward weight learns to predict the noise as shown in Theorem 1, Figure 4 reveals that
the second-layer attention in the two-layer model attends only towards the correct tokens. In contrast,
a model pre-trained without noise has second-layer attention attend towards all tokens just after the
triggers (Bietti et al., 2023), as observed in the attention pattern at the first step in Figure 4(right).
Then, after being fine-tuned on noise data, the attention becomes only focused on the correct tokens.
Understanding this mechanism requires the analysis of the dynamics of WQK .

Following the simplified model and data distribution in Eq(2), we take a step towards understanding
how attention “avoids” the noise tokens. Concretely, this mechanism appears because, after the initial
training phase when FF learns noise association much faster than the attention, WV has a structure of∑

k≤N+1 WU (k)(WE(k)+W̃E(k))
⊤, similar to the non-noise setting in Bietti et al. (2023). After

such a WV is learned, the trigger-label association provides a stronger gradient signal on WQK than
the trigger-noise association. We show this in the following theorem.

Theorem 2 (Attention attends to in-context targets). Assume N,T ≫ 1 and Assumption F.1 hold.
Consider the simplified model in Eq(2) with infinite samples as m → ∞. After WF learns the noise
association as in Theorem 1, in one step the attention weight WQK learns to attend to positions
t ∈ [T] where the correct label follows a trigger word, i.e., zt−1 = q, zt = ȳ.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

More concretely, WQK has the following structure

ξq→j − ξq→N+1 = Ω(N−4) > 0, ∀ j ≤ N,

ξq→j − ξk→l = Ω(N−3) > 0, if k ̸= q, ∀ j, l,

where ξi→j ≜ WE(q)
⊤WQK(W̃E(i) +WE(j)) denotes the attention logit for different combina-

tions of zt−1 = i, zt = j, with i, j ≤ N + 1.

Note that a set of logits induces a probability distribution via differences between them as
exp(ξi)/

∑
j exp(ξj) = 1/

∑
j exp(ξj − ξi). Therefore, the above theorem reveals that the at-

tention has two patterns: i) WQK attends to indices with the trigger q as the previous token, which
is zt−1 = q, the same as Bietti et al. (2023), and ii) among all indices following q, WQK pays less
attention to the noise, i.e., zt = N + 1 than correct tokens zt = ȳ ≤ N . Such a key difference for
attention between noisy and non-noise tasks verifies our experimental observations in Figure 4.

3.3 NO FEED-FORWARD LAYERS: VALUE MATRIX STORES GENERIC NOISE ASSOCIATION

In the above discussion, we’ve seen separate roles of attention and feed-forward layers play to
conduct noisy in-context learning. A natural question is, when there is no feed-forward layer, how
the attention layer stores both in-context and distributional information. Figure 13 indicates that the
value matrix stores the noise association in subspace with smaller singular values. In this section, we
propose a setting of linear associative memory with noise to understand this mechanism.

Unlike Theorem 1 and 2 showing the separate roles of attention and FF, the attention in a non-FF
model has to handle both noise and in-context information once the model is sufficiently trained to
reach a global minimum. Due to symmetry from uniformly random sampling ȳ from N tokens, we
consider passing the output x ∈ Rd of the attention to the value matrix WV and output matrix WU

to predict next-token probability y ∈ RN+1 given z1:T ∈ [N + 1]T with noise probability of α as
follows

x|ȳ, z1:T ≜ WE(ȳ) +W(z1:T) ∈ Rd, ξ ≜ WUWV x ∈ RN+1,

pα(y|ȳ) = (1− α) · 1{y = ȳ}+ α · 1{y = N + 1},
(3)

where W(z1:T) is an aggregate embedding independent of ȳ. When T → ∞, W(z1:T) converges
to a fixed embedding W independent of ȳ, so that we may consider a simplified model x|ȳ ≜
WE(ȳ), ξ ≜ Wx ∈ RN+1 with W ∈ R(N+1)×d, since W only contributes a fixed offset in all
logits that can be easily canceled in the softmax predictions. Therefore, we investigate the following
linear associative memory with noise.

Model and data. Consider a learnable weight matrix W ∈ Rd×d with d > N . Consider embeddings
for N input tokens as {ei}Ni=1 ⊂ Rd and embeddings for (N + 1) output tokens as {ui}N+1

i=1 ⊂
Rd. Given any pair of input and output tokens, the associative memory model takes the form
f(i, j;W) ≜ ⟨uj ,Wei⟩, ∀ i, j ∈ [N] × [N + 1], as logits to approximate pα(·|i) in (3). When
k ≤ d, we denote the rank-k approximation of f as f (k) by replacing W with W(k), where W(k) is
its rank-k approximation.

Experiments. During training, the dataset Dα is generated with non-zero noise probability α > 0.
At test time, the dataset D0 is without noise as α = 0, so the computed loss is called pure-label loss.
The full model is trained with Gradient Descent (GD) subjected to cross-entropy loss. The results are
reported in Figure 18, with more discussions in Appendix G.1.

Low-rank subspace stores noise. In Figure 18, the rank-1 subspace corresponding to the smallest
non-zero singular value is responsible to store the noise. We prove this mechanism as follows. Note
that, here N = 2 is for simplicity, which is easy to extend to any N > 2.

Theorem 3. Assume Assumptions G.1 and G.2 hold, considering N = 2 and α ∈ (0.2, 0.4), we train
the full model f(·, ·;W) with gradient flow. Denote P (i, j;W) as the model’s predicted probability
for output j conditioned on input i. Then, for t → ∞ and i ∈ {1, 2}, we have

P (i, j;W) = (1− α) · 1{j = i}+ α · 1{j = N + 1},
P (i, j;W(1)) = (1−Θ(t−

1/2)) · 1{j = i}+Θ(t−
1/2) · 1{j = N + 1}.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The above theorem implies, the full model always predicts noise w.p. α, while the rank-1 model
eventually predicts correctly without noise, although training is only on the full model with noise.
Actually when N > 2, the noise is stored in rank-1 subspace and the correct correspondence is stored
in rank-(N − 1) space. Therefore, this explains how the value matrix stores both in-context and noise
information when the model is without FF.

4 EXPERIMENTS

In this section, we empirically investigate how LLMs process distributional vs in-context associations,
and how this evolves during training. Meanwhile, we provide numerical results of how much low-rank
truncation improves complex reasoning on a real-world reasoning benchmark, GSM8K.

4.1 AN INVESTIGATION ON GPT-2 SMALL AND PYTHIA MODELS

We consider GPT-2 small and Pythia models on the indirect object identification (IOI) and factual
recall tasks described in Section 2.1.

Quick demonstration: IOI on GPT2 Small. Different from Wang et al. (2022), we would like
to consider whether a model proposes an output beyond the input x. A quick demonstration is to
consider the IOI task with input x =“When Mary and John went to a store, John gave a drink to”1.
The top 4 predicted tokens for GPT-2 Small (Radford et al., 2019) on x are [“Mary”, “them”, “the”,
“John”]. Although GPT-2 Small successfully predicts Mary (the IO target) instead of John (S), the
other two top candidate tokens, i.e., “them” and “the”, do not even appear in the context. This
prominence of such “generic” words is similar to the factual recall example from Section 2.2, and
plausibly follows from a distributional associative mechanism conditioned on the preposition “to”.

Comprehensive experiment: IOI on Pythia-1B. Now we would like to verify this observation on
more models and, more comprehensively, track the behavior of these models along training. We
choose to conduct the IOI experiments on Pythia (Biderman et al., 2023), a family of models ranging
in sizes from 14M to 12B trained on web data, with hundreds of training checkpoints for each size.
We generate an IOI dataset of 100 sentences with random names for [IO] and [S] in each sample.
Figure 5 reports the test results of Pythia-1B along training. Here LASER is conducted on MLP
weights, with parameters given in Appendix C.2. LASER boosts the probability ratio of [IO] over
“the” from 2.3× to 12.3× at 14K steps.

Factual recall on Pythia-1B. As in Table 1, we verify factual recall with input as “Madrid is located
in”. The full model of Pythia-1B generates “Madrid is located in the north of Spain”, while the model
after LASER generates “Madrid is located in Spain”. We track the probability of predicting “Spain”
and “the” along training in Figure 5. LASER turns out to boost the probability ratio of “Spain” over
“the” from 0.16× to 11.3× at 14K steps. We note that better prompting could avoid the need for
LASER in this case (e.g., “Madrid is located in the country of” predicts “Spain”), but increases the
context length and thus the inference cost, though this is outside the scope of this paper.

Training dynamics on Pythia. The behavior of the Pythia models on the IOI and factual recall tasks
during their pre-training process displays several phases, as shown in Figure 5. For IOI, we observe:

i. Initialization: all tokens have similar logits since the weights are random initialized.
ii. Between 10 and 1000 steps: the models consistently output “the”. They cannot solve IOI task

at all, as long as they have almost the same prediction for [IO] and [S]. After 500 steps, [IO]
starts the growth towards one of the top predictions.

iii. After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than [S] and “the”.
Meanwhile, the benefit of LASER appears as enhancing the leading position of [IO].

Therefore, the training process reveals the capacity of predicting “the” is learnt much earlier than
predicting [IO]. The reason might be that predicting “the” requires a simpler grammar structure,
while predicting [IO] requires a complicated architecture of attention heads of different roles across
layer (Wang et al., 2022). Then we note that the IOI task always has “to” before the masked [IO],
which means “to” may be an indicator for the model to predict “the” with non-negligible probability.

1Note that here we use “a” store instead of “the” store in the original example of Wang et al. (2022). The
reason is to rule out the word “the“ from the input context.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105

training steps

10 5

10 4

10 3

10 2

10 1

100

pr
ob

ab
ili

ty

IOI: average probability

[IO]: full
[IO]: LASER
[S]: full
[S]: LASER
'the': full
'the': LASER

100 101 102 103 104 105

training steps

10 5

10 4

10 3

10 2

10 1

100

pr
ob

ab
ili

ty

Factual: average probability

'the': full
'the': LASER
'Spain': full
'Spain': LASER

Figure 5: Left: average probability of tokens [IO], [S] and “the” in 100-sentence IOI task in the
prediction by Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a
factual task predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks,
the full model learns to predict “the” with high probability starting from ∼10 steps, and then learns
to solve the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the
average probability ratio of correct answers against “the” improves from 2.3× to 12.3× (in IOI) and
from 0.16× to 11.3× (in factual) at 14K steps.

Similarly, for factual recall we see early learning of the “generic” answer, while the factual answer is
learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix C.1.

4.2 THE EFFECT OF TRUNCATING FEED-FORWARD LAYERS ON GSM8K

As our previous examples of in-context reasoning tasks are too simple for real-world reasoning, we
verify whether truncating MLPs improves reasoning on the GSM8K benchmark (Cobbe et al., 2021).
As shown in Table 2, LASER improves the few-shot Chain-of-Thought (Wei et al., 2022) reasoning
performance on GSM8K when only using 1 or 2 shots, although the performance is worse in the
standard 8-shot setting. This suggests that truncating MLPs may help promote in-context reasoning
even in more complex settings, perhaps by removing spurious distributional associations.

Table 2: Few-shot accuracy (%) of pretrained and finetuned language models on GSM8K. Truncating
MLPs (LASER) improves reasoning performances in few-shot CoT settings while it has worse
performance in the standard 8-shot setting. The LASER hyper-parameters are in Appendix C.2.

1-shot 2-shot 4-shot 8-shot (standard)

Phi-3 (Abdin et al., 2024) 56.0 72.2 78.2 82.7
Phi-3 + LASER 66.1 74.4 77.0 82.3

Llama-3.1-8B (AI@Meta, 2024) 44.7 50.0 57.6 56.0
Llama-3.1-8B + LASER 46.1 50.7 55.9 53.8

Llama-3.1-8B-Instruct (AI@Meta, 2024) 72.6 74.7 78.5 79.7
Llama-3.1-8B-Instruct + LASER 73.6 75.6 77.7 77.0

5 DISCUSSION AND LIMITATIONS

In this paper, we studied the questions of how transformer language models learn to process dis-
tributional associations differently than in-context inputs, and how truncating specific weights or
layers, particularly feed-forward layers, can help in-context reasoning. While our work provides
some initial theoretical understanding of how this may arise on simple controlled settings, it would be
interesting to study how these ideas may extend to more complex tasks where in-context reasoning
and distributional knowledge interact in more intricate ways.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Jacob Abernethy, Alekh Agarwal, Teodor Vanislavov Marinov, and Manfred K Warmuth. A mecha-
nism for sample-efficient in-context learning for sparse retrieval tasks. In International Conference
on Algorithmic Learning Theory, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In International Conference
on Learning Representations (ICLR), 2023.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitec-
tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Vivien Cabannes, Berfin Simsek, and Alberto Bietti. Learning associative memories with gradient
descent. arXiv preprint arXiv:2402.18724, 2024.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. 2022.

Angelica Chen, Ravid Schwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra.
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms. In
International Conference on Learning Representations, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, 2022.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. Learning two-layer
neural networks, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 2024.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, 2022.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution
of statistical induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004,
2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2021.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
In Advances in Neural Information Processing Systems, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In International Conference on Learning Representations, 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably
the optimal in-context learner with one layer of linear self-attention. In International Conference
on Learning Representations (ICLR), 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 2022.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In International Conference on Learning Representations,
2023.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. In International Conference on Learning Representations, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In International Conference on Machine Learning, 2023.

Lucia Quirke, Lovis Heindrich, Wes Gurnee, and Neel Nanda. Training dynamics of contextual
n-grams in language models. arXiv preprint arXiv:2311.00863, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. Technical report, OpenAI, 2019.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In International Conference on Learning Representations, 2024.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
heads task. arXiv preprint arXiv:2408.14332, 2024a.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. arXiv preprint arXiv:2402.09268, 2024b.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. In Advances in Neural Information
Processing Systems, 2023.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying
multilayer transformers via joint dynamics of mlp and attention. 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 2022.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Preliminaries 2

2.1 Reasoning from Context . 3

2.2 Truncating Weights with LASER (Sharma et al., 2023) 3

3 Two-layer Transformer on Noisy In-context Recall 4

3.1 Feed-forward layers store the generic noise . 6

3.2 Attention attends to in-context targets and avoids noise 7

3.3 No feed-forward Layers: value matrix stores generic noise association 8

4 Experiments 9

4.1 An Investigation on GPT-2 Small and Pythia Models 9

4.2 The effect of truncating feed-forward layers on GSM8K 10

5 Discussion and Limitations 10

A Contributions and Implications 16

B How Does the Two-layer Model Solve Noisy In-context Recall? 16

B.1 Training settings . 16

B.2 Summarizing: roles of key components in the two-layer transformer 17

B.3 How does attention attend less towards the noise token? 17

B.4 Multiple Triggers . 21

B.5 Architectural Choices . 21

B.6 Training Details about Experiments . 22

C More Experiments on Pythia 22

C.1 Learning Association with Prepositions . 22

C.2 LASER Parameters for Evaluated LLMs . 23

C.3 Other Pythia models on IOI and More Examples of Factual Recall 24

D Proof of Theorem 1 24

D.1 Gradient for the Feed-forward Matrix WF . 24

D.2 Gradient for the Value Matrix WV . 27

D.3 Completing the Proof of Theorem 1 . 36

E Proof for First and Second moments in Lemma D.2 37

E.1 When ȳ = q . 38

E.2 When ȳ ̸= q . 44

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

F Proof of Theorem 2: Training Dynamics of the Attention Layer 52

G Linear Associative Memory 56

G.1 Experiments and Discussions . 56

G.2 Proof of Theorem 3 . 58

H Useful Lemmas 59

I Input Examples for LLMs 61

I.1 Examples for Prepositions . 61

I.2 More Examples of Factual Recall . 61

J Synthetic IOI Task 62

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A CONTRIBUTIONS AND IMPLICATIONS

Our contribution focuses on understanding the different roles of attention and FF weights in disentan-
gling distributional vs in-context associations, both empirically and theoretically. The application of
low-rank truncation is simply a way to verify our claims, and is consistent with the findings in the
LASER paper that truncating some FF layers may improve performance on some reasoning tasks.

Nevertheless, our perspective based on distributional associations versus in-context reasoning may
be helpful in thinking about how to allocate parameters to feed-forward versus attention layers:
for instance, in Figure 6 on our synthetic task, we found that for a fixed total parameter budget,
models with fewer MLP parameters achieve higher loss on distributional predictions (e.g., non-
contextual bigrams) compared to models with more MLP parameters (and fewer attention parameters).
These notions may also provide a different way to reason about circuit discovery in mechanistic
interpretability from the perspective of training dynamics and properties of the training data. Finally,
this disentanglement may inform more effective ways to fine-tune models, e.g., by selectively
choosing which layers to fine-tune.

104 105

#parameters in total

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

bi
gr

am
 lo

ss

Bigram Loss after 100 Steps

#Params - MLP : Attention
0:8
1:7
4:4
7:1

Figure 6: The training loss of approximating the global bigram πb with various allocations of
parameters in MLP and Attentions. For each configuration of total parameters and ratios, we use the
corresponding best learning rate after search to train 100 steps.

B HOW DOES THE TWO-LAYER MODEL SOLVE NOISY IN-CONTEXT RECALL?

B.1 TRAINING SETTINGS

In most parts of this work, we consistently train the model with a fixed level of α > 0. However, we
also present numerical results of fine-tuning in Figure 8 and 4 to show the mechanism of avoiding
generic noise token in the second-layer attention. The details of such a fine-tuning setting is as
follows.

Fine-tuning: there are two phases of training as

• phase 1 (pre-training): starting from a model with random initialized weights, we train the
model on data generated with α = 0. This is exactly the same as Bietti et al. (2023). At the
end of this phase, the second-layer attention is expected to attend all tokens after the trigger
token, i.e., t ≤ T such that zt−1 = q no matter what zt is.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• phase 2 (fine-tuning): starting from a model after phase 1, we train all weights in the model
on data generated with α > 0. At the end of this phase, the second-layer attention learns to
avoid the generic noise token, i.e., t ≤ T such that zt = N1, zt−1 = q, as shown in Figure 4.

B.2 SUMMARIZING: ROLES OF KEY COMPONENTS IN THE TWO-LAYER TRANSFORMER

Recall the architecture of two-layer transformers in Section 3 as

xt ≜ WE(zt) + pt,

h1
t ≜

∑
s≤t

[
σ(x⊤

t W
1
QKx1:t)

]
s
·W1

V xs,

x1
t ≜ xt + h1

t + F1(xt + h1
t),

h2
t ≜

∑
s≤t

[
σ(x1

t
⊤
W2

QKx1
1:t)
]
s
·W2

V x
1
s,

x2
t ≜ x1

t + h2
t + F2(x

1
t + h2

t),

ξt ≜ WUx
2
t .

When the task is without noise, i.e., α = 0, Bietti et al. (2023) point out the first-layer attention attends
to the previous token through W1

QK =
∑T

t=2 pt−1p
⊤
t . Therefore, when zt = ȳ with zt−1 = q, the

output of the first layer is x1
t ≈ WE(ȳ)+W1

V WE(q). Then they show that the second-layer attention
matches such x1

t with zT = q by W2
QK = (WV WE(q))WE(q)

⊤, through which the information
of ȳ in x1

t is copied to last token as h2
T ≈ W2

V WE(ȳ). Finally W2
V =

∑
z∈[N] WU (z)WE(z)

⊤

helps output the correct label of ȳ.

In our work with noise α > 0, the key difference is that there is a fixed probability α for a noise token
N + 1 to appear after each trigger q. This requires W2

QK to not only match the trigger but also avoid
the noise token after trigger. Let’s first summarize the whole pipeline of this model for our task.

Roles of key components. The first layer will be basically the same as Bietti et al. (2023), where
W1

QK =
∑T

t=2 pt−1p
⊤
t attends to the previous token. Consider two positions t1, t2 with zt1−1 =

zt2−1 = q, zt1 = ȳ, zt2 = N + 1, then outputs of the first layer at these two positions are x1
t1 ≈

WE(ȳ) + W1
V WE(q), x1

t2 ≈ WE(N + 1) + W1
V WE(q). Then the second-layer attention

WQK = (WV WE(q) − c · WE(N + 1))WE(q)
⊤ with some positive c makes the attention

attend to t1 and avoid t2 simultaneously, matching with the last token zT = q. Therefore, the
output of the second-layer attention at T is basically h2

T ≈ W2
V WE(ȳ). Similar to the noiseless

case, W2
V =

∑
z∈[N] WU (z)WE(z)

⊤ helps output the correct label of ȳ. Meanwhile, note that
x1
T actually contains WE(q) through xT , so F2 is able to predict the noise N + 1 when seeing a

fixed WE(q). As a result, combining the two streams from h2
T and F2(x

1
T), the full model is able to

predict any ȳ w.p. 1− α and predict the noise N + 1 w.p. α.

Evidence. Figure 4 illustrates that the second-layer attention learns to attend to zt1 = ȳ and avoid
zt2 = N + 1, with Appendix B.3 presenting a primitive exploration on how the avoidance is learnt
in a simplified setting. Figure 7 (left) shows the attention pattern from W1

QK of attending to the
previous token. Figure 7 (middle) shows the memory recall of WU (N + 1)⊤F2(WE(q)) to predict
the noise. Figure 7 (right) illustrates the memory recall of WU (i)

⊤W2
V WE(i) to predict the correct

token.

B.3 HOW DOES ATTENTION ATTEND LESS TOWARDS THE NOISE TOKEN?

We use the same simplified model as in Section 3.1 to understand how the second-layer attention
learns to avoid the noise. When using the same learning rate η = ηv = ηf , Theorem 1 implies that
the feed-forward WF makes the most contribution for predicting the noise after the first-step update.
Denote the logits for the noise of the model at time t as ξt. The arguments in this section make the
following assumptions, which hold at least after the first-step update:

i. WF dominates the logits ξt of predicting the noise token, compared with WV .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 5 10 15
context position

0

5

10

15

cu
rr

en
t p

os
iti

on

First-layer attention scores

0 20 40 60
output token

0

10

20

30

40

50

60

in
pu

t t
ok

en

Memory recall: noise

0 20 40 60
output token

0

10

20

30

40

50

60

in
pu

t t
ok

en

Memory recall: signal

Figure 7: Left: first-layer attention attending to the previous token from the current token. Middle:
logits to predict noise from ⟨F2(WE(i)),WU (j)⟩ with input i ∈ [N + 1] and output j ∈ [N + 1],
where the output channel 2 is set as the noise channel. It turns out, for all input i, the logits on output
2 are large, which matches our construction that, at least for trigger q as input, the output 2 has large
logits. Right: logits to predict singal from ⟨W2

V WE(i),WU (j)⟩ for input i ∈ [N + 1] and output
j ∈ [N + 1]. It matches our construction that i = j has large logits. Meanwhile, i = j = 2 does not
have large logits since 2 is the noise channel.

0 100 200 300 400
training steps

0.0

0.2

0.4

0.6

0.8

1.0
Pre-train: prediction diversity

0 100 200 300 400
training steps

0.0

0.2

0.4

0.6

0.8

1.0
Fine-tuning: prediction diversity

pred: Non-noise
pred: Noise

Figure 8: Fractions of predicting the noise token and the other non-noise tokens with α = 0.5. (Left)
pretraining steps on noisy data; (right) finetuning steps on noisy data, after pretraining on clean data
with α = 0. In both cases, the models learn to predict noise with probability nearly 0.5. In the first
few (∼ 5) steps, the models quickly learn to predict noise with probability close to 1. The fine-tuning
setting is in Appendix B.1.

ii. Logits for predicting any k ≤ N is close to 0, which means the predicted probability pt is
approximately pt ≈ exp(ξt)

N+exp(ξt)
.

iii. The predicted probability pt < α.

iv. The attention matrix WQK is approximately 0, inducing a uniform attention.

v. The dataset has T,N ≫ 1 and m → ∞, so the gradient is from population loss.

The first assumption holds after the first step from Theorem 1 with ηf = ηv .

Then, since |WU (k)
⊤(∇WF

L)WE(q)| = O(1
N) · |WU (N +1)⊤(∇WF

L)WE(q)| for any k ≤ N
in Lemma D.1, the second assumption holds. Meanwhile, the projection of ∇WV

L onto any direction
in Lemma D.2 is also smaller than WU (N + 1)⊤(∇WF

L)WE(q) by a factor of O(1/N).

Let’s check the condition of the third assumption. In the proof of Lemma D.1, the gradient of WF

has the form of

WU (N + 1)⊤(−∇WF
L)WE(q) = α− pt.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This update induces ξt to increase by η(α− pt). This implies

ξt ≈ ξt−1 + η

(
α− exp(ξt)

N + exp(ξt)

)
, ∀ t ≥ 1.

This sequence {ξt}t≥1 has stationary point ξ∗ = logN + log(α
1−α). Denoting ξ̂t ≜ ξt − ξ∗ with

ξ̂1 = −ξ∗ < 0, the iteration becomes

ξ̂t+1 ≈ ξ̂t + η

(
α− exp(ξ̂t)

1−α
α + exp(ξ̂t)

)
.

If we would like to have ξ̂t not hit the positive region by controlling η, it suffices to bound η with any
ξ̂ < 0,

η ≤ ξ̂
exp(ξ̂)

1−α
α +exp(ξ̂)

− α
,

where RHS is continuous and decreasing on ξ < 0 when α < 0.5. Hence, we have η ≤ 1
α(1−α)

evaluated at ξ̂ = 0 by L’Hospital rule. This bound of η is very strong, since η = O(logN) can still
have ξ̂ < 0 after one step.

The fourth assumption is basically from what we will show at the end of this section, as the second
observation.

Then consider the dynamics of WV , which is much slower than WF . From the proof of Lemma D.2,
the gradient of WV satisfies

∇WV
L = Ex

[
N+1∑
k=1

(pW(k|x)− 1{y = k})WU (k)

(
1

T

t∑
t=1

xt

)⊤
]
,

WU (N + 1)⊤(−∇WV
L)WE(k) ≈

1

N

∑
t≥1

(α− pt)(1{k ≤ N}+ α · 1{k = N + 1})

≜ c · 1{k ≤ N}+ c · α · 1{k = N + 1} = Θ(
1

N
),

(4)
where the projection on WE(N +1) is always positive and smaller than that on other directions when
pt < α. Projections onto other directions WU (j)WE(k)

⊤, ∀ j ≤ N , are smaller as Θ(1
N2).

Finally, let’s consider the dynamics of WQK . At initialization, WQK = 0 and ∇WQK
L = 0

due to zero initialization of WV . After one-step, WV has such a structure in Eq.(4). Then, with
x̄1:T ≜ 1

T

∑
1≤t≤T xt from uniform attention, the gradient of WQK satisfies

−∇WQK
L = Ex

[
N∑

k=1

(1{y = k} − pW(k|x)) 1
T

T∑
t=1

(WU (k)
⊤WV xt) · (xt − x̄1:T)WE(q)

⊤

]

≈
N∑

k=1

(
1− α

N
− 1− pt

N

)
E

[
1

T

T∑
t=1

WU (k)
⊤WV xt · (xt − x̄1:T)WE(q)

⊤

]
︸ ︷︷ ︸

≜A

+ (α− pt)E

[
1

T

T∑
t=1

(WU (N + 1)⊤WV xt) · (xt − x̄1:T)WE(q)
⊤

]
︸ ︷︷ ︸

≜B

.

(5)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then, we have

WE(N + 1)⊤BWE(q) = E

[
1

T

T∑
t=1

(WU (N + 1)⊤WV xt) ·WE(N + 1)⊤(xt − x̄1:T)

]
(a)
= E

[
1

T

T∑
t=1

(c+ c(α− 1) · 1{zt = N + 1}) ·WE(N + 1)⊤(xt − x̄1:T)

]
(b)
= E

[
1

T

T∑
t=1

(c(α− 1) · 1{zt = N + 1}) ·WE(N + 1)⊤(xt − x̄1:T)

]

=
α

N
· c(α− 1)(1− α

N
) = Θ(

1

N2
) < 0.

where (a) is from Eq.(4), (b) is due to x̄1:T = 1
T

∑
t xt and note that c = Θ(1

N).

Similarly, we also have

WE(N + 1)⊤AWE(q) = E

[
1

T

T∑
t=1

(WU (k)
⊤WV xt)WE(N + 1)⊤ · (xt − x̄1:T)

]

= E

[
1

T

T∑
t=1

Θ(
1

N2
) · 1{zt = N + 1}WE(N + 1)⊤ · (xt − x̄1:T)

]
= Θ(

1

N3
).

For any k ≤ N , we have

WE(k)
⊤BWE(q) = E

[
1

T

T∑
t=1

(WU (N + 1)⊤WV xt) ·WE(k)
⊤(xt − x̄1:T)

]

= E

[
1

T

T∑
t=1

(c(α− 1) · 1{zt = k}) ·WE(N + 1)⊤(xt − x̄1:T)

]

=
α

N
· c(α− 1)(− 1

N
) = Θ(

1

N3
) > 0,

and

WE(k)
⊤AWE(q) = E

[
1

T

T∑
t=1

(WU (k)
⊤WV xt)WE(k)

⊤ · (xt − x̄1:T)

]

= E

[
1

T

T∑
t=1

Θ(
1

N2
) · 1{zt = N + 1}WE(k)

⊤ · (xt − x̄1:T)

]
= Θ(

1

N4
).

Combining the above four esimation of projections of A and B with Eq.(5), we have

WE(N + 1)⊤(−∇WQK
L)WE(q) = Θ(

1

N2
) < 0,

∀ k ≤ N, WE(k)
⊤(−∇WQK

L)WE(q) = Θ(
1

N3
) > 0.

Then we have three observations

i. WQK in this phase avoids the noise token N + 1 and uniformly attends to all tokens k ≤ N .

ii. The update of WQK is in Θ(1
N2), while the update of WF is Θ(1) in Lemma D.1 and that

of WV is Θ(1
N) in Lemma D.2. These three levels of updating speed also coincide with the

assumptions that WF dominates first and then WV has a micro structure that induces the
evolving of WQK .

iii. The current proof for WQK strongly depends on the fact that the noise token appears less than
other token by a factor α in expectation. The proof will have the opposite result if the noise
token is made to appear more by manipulating the data distribution. Therefore, we leave a new
proof that is robust to such an assumption in data distribution as future work.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.4 MULTIPLE TRIGGERS

In Section 3, we assume there is only one fixed trigger q ∈ [N] for simplicity. Actually the case of
multiple triggers has the same mechanism. As discussed by Bietti et al. (2023) and Appendix B.2,
for one trigger, the second-layer attention has large logits in ⟨W1

V WE(i)
⊤,W2

QKWE(j)⟩ only for
i = j = q. For multiple triggers, basically ⟨W1

V WE(i)
⊤,W2

QKWE(j)⟩ only have large values
when q ∈ Q. This is verified in Figure 9.

0 20 40 60
output token

0

10

20

30

40

50

60

in
pu

t t
ok

en

One trigger: attention

0 20 40 60
output token

0

10

20

30

40

50

60
in

pu
t t

ok
en

Five triggers: attention

Figure 9: Logits of ⟨W1
V WE(i)

⊤,W2
QKWE(j)⟩ for input i and output j when there is one trigger

(left, q = 1) and five triggers (right, q ∈ Q = {1, 39, 43, 53, 58}). In both cases, the logits only have
large values when i = j = q, verifies the matching mechanism in Appendix B.2.

B.5 ARCHITECTURAL CHOICES

In Section 3 and Appendix B.2, we were focused on experiments with both F1, F2 being two-layer
ReLU MLPs. Meanwhile, we have also tried other choices of F1, F2 and then search for the best
truncation method for each architecture. In this section, we would like to summarize our experimental
results for better understanding of all modules in the two-layer transformer.

Generally, the feed-forward layer can be two-layer ReLU MLPs, one-layer Linear or “None”, where
None stands for there is no feed-forward layer so that the value matrices in attention layers are the
only weight matrices that transform features.

Both F1, F2 are two-layer MLPs. This is our main setting. The best truncation method is to fully
drop F2. We also try to fully drop F1, as reported in Figure 10. It turns out fully dropping F1 makes
the model predict the noise with high probability.

F1 is MLPs and F2 is Linear. Figure 11 reports the results. Dropping F1 and F2 both improve the
correct prediction, and dropping F1 is better with lower test loss. Note that, when test accuracies are
near 100%, lower test loss is a better measurement of the prediction quality, because accuracies are
taken by argmax over the output logits while test loss are about the exactly predicted probability.

F1 is Linear and F2 is MLPs. Figure 12 reports the results. Dropping F2 improves the correct
prediction while dropping F1 makes the model predict noise more.

Both F1 and F2 are None. Figure 13 reports the results. While there is no feed-forward layer any
more, low-rank truncating a part W1

O of the first-layer matrix improves the model’s prediction a little.
This implies that, when there is not feed-forward layers, the noise association is possible stored in
the first-layer value matrix of attention. Note that the improvement of such low-rank truncation is
clearly smaller than fully dropping one of feed-forward layers in the previous cases. Meanwhile, a
smaller ρ = 0.01 destroys the model’s performance. This implies fully dropping is not the optimal
choice for low-rank truncation of the value matrix, and there is low-rank subspace in it that is useful
for predicting the correct tokens. Our discussion of the role of W1

V in Appendix B.2 is a possible
answer to this phenomena.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 200 400 600 800
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Both MLPs: Test accuracy

drop F_1
drop F_2
full

0 200 400 600 800
Training step

10 1

100

Lo
ss

Both MLPs: Test loss

drop F_1
drop F_2
full

Figure 10: Test performance of fully dropping F1, F2 when both F1, F2 are two-layer MLPs. It turns
out, while dropping F2 makes the model predict correctly w.p. near 1, dropping F1 has the model
predict noise with high probability.

0 2000 4000 6000 8000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

MLPs + Linear: Test accuracy

drop F_1
drop F_2
full

0 2000 4000 6000 8000
Training step

10 1

100

Lo
ss

MLPs + Linear: Test loss

drop F_1
drop F_2
full

Figure 11: Test performance of fully dropping F1, F2 when both F1 is MLPs and F2 Linear. Both
dropping methods turn out to help predict more correctly than the full model. Meanwhile, dropping
the MLP F1 is better with lower test loss.

B.6 TRAINING DETAILS ABOUT EXPERIMENTS

All of the training is with SGD optimization with learning rate in {0.001, 0.03}. The batch size is
512. The dimension is 256. The context length is 256. All results in the experiments are stable for
any learning rate between 0.001 and 0.03. Each run of experiments is on a single Nvidia Tesla V100
GPU. It takes 3 hours to finish each run for 2K steps, which probably can be optimized a lot since we
are tracking a lot of measurement along training, not limited to hundreds of possible truncations at
each test time.

C MORE EXPERIMENTS ON PYTHIA

C.1 LEARNING ASSOCIATION WITH PREPOSITIONS

We would like to verify our guess about the structure of “to + the” in Pythia in Section 4.1. To make
the argument generalizable than IOI dataset, we consider a structure of “[preposition] + the”, where
[preposition] has a pool of 30 prepositions in English, including “to”. The input is a raw “[preposition]”
or a random sentence ending with “[preposition]”, with some examples in Appendix I.1. For both
kinds of inputs, Pythia-160M/410M/1B turns out to learn the structure of “[preposition] + the” around
10 steps, as shown in Figure 14.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000
Training step

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Linear + MLPs: Test accuracy

drop F_1
drop F_2
full

0 2000 4000 6000 8000
Training step

10 1

100

Lo
ss

Linear + MLPs: Test loss

drop F_1
drop F_2
full

Figure 12: Test performance of fully dropping F1, F2 when both F1 is Linear and F2 MLPs. Only
dropping F2 helps predict more correctly. Dropping F1 makes the model predicting noise more.

0 2000 4000 6000 8000 10000
Training step

0.0

0.2

0.4

0.6

0.8

Te
st

 a
cc

ur
ac

y

No Feed-forward: Test accuracy

W1
O : = 0.05

W1
O : = 0.01

full

0 2000 4000 6000 8000 10000
Training step

100Lo
ss

No Feed-forward: Test loss

W1
O : = 0.05

W1
O : = 0.01

full

Figure 13: Test performance of low-rank truncating of W1
O when there is no F1, F2. Here ρ is the

fraction of preserved rank of W1
O, where actually we re-parametrize the first-layer value matrix in

attention as W1
OW

1
V ∈ Rd×d. It turns out the best ρ = 0.05 improves the model’s prediction a little.

Meanwhile, a smaller ρ destroys the model’s performance.

C.2 LASER PARAMETERS FOR EVALUATED LLMS

Following the definition of LASER in Section 2.2, we search for the optimal layer, ρ and target
weights in Pythia models and GPT-2 Small for each dataset.

IOI on Pythia-410M. The model has 24 layers. The truncation is on the input matrix of MLPs on
the 22-th layer with ρ = 0.02.

IOI on Pythia-1B. The model has 16 layers. The truncation is on the input matrix of MLPs on the
11-th layer with ρ = 0.008.

Factual recall on Pythia-1B. The truncation is on the input matrix of MLPs on the 16-th layer with
ρ = 0.0125.

Factual recall on Pythia-1.4B. The model has 24 layers. The truncation is on the input matrix of
MLPs on the 24-th layer with ρ = 0.025.

Factual recall on Pythia-2.8B. The model has 32 layers. The truncation is on the input matrix of
MLPs on the 32-th layer with ρ = 0.04.

IOI on GPT2 Small. Related parameters have been contained in Section 4.1.

Phi-3 on GSM8K. The model has 32 layers. The truncation is on the output matrix of MLPs on the
28-th layer with ρ = 0.02.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

100 101 102 103 104 105

training steps

100

101

102

103

104

ra
nk

average ranking of ' the': input = prepositions

100 101 102 103 104 105

training steps

100

101

102

103

104

ra
nk

average ranking of ' the': input = sentence + prepositions

160M
410M
1B

Figure 14: Average ranking of tokens “the” in the prediction by Pythia-160M/410M/1B along training.
The inputs are 30 preposition words (left) and 40 sentences ending with prepositions. It turns out
“the” becomes one of top predictions around 10 steps.

Llama3.1-8B(-instruct) on GSM8K. The models have 32 layers. The truncation is on the output of
MLPs on the 27-th layer with ρ = 0.02.

C.3 OTHER PYTHIA MODELS ON IOI AND MORE EXAMPLES OF FACTUAL RECALL

IOI. In the same setting of Figure 5 (left), we plot the prediction distributions of Pythia-410M and 1B
on the 100 IOI inputs in Figure 15. The model checkpoints are the final ones after training. LASER
turns out to decrease the probability of ”the” while keeping that of the correct [IO] high.

More examples of Factual Recall. In additional to the factual query “Madrid is located in” in
Figure 5 (right), we consider more such examples in Table 5. We plot the prediction distributions
of Pythia-1B, 1.4B and 2.8B on these inputs in Figure 16, where LASER significantly lowers the
probability of predicting ”the” vesus the correct outputs.

D PROOF OF THEOREM 1

In this section, we will present the expectations and variances of ∇WV
L̂ and ∇WF

L̂ with WV =
WF = 0 at initialization. The targets are to show:

1. a gap between limm→∞ ∇WV
L̂ and limm→∞ ∇WF

L̂ so that a step of GD with large
learning rates is enough to learn the noise in WF , and

2. sample complexity of ∇WV
L̂ and ∇WF

L̂ based on expectations and variances.

Assumption D.1 (Orthonormal embeddings). The embeddings uk ∈ Rd are assumed to be orthonor-
mal, i.e., u⊤

i uj = 1{i = j}. Meanwhile, if a matrix W ∈ Rd×d is random initialized, it holds
u⊤
i Wuj = 0.

D.1 GRADIENT FOR THE FEED-FORWARD MATRIX WF

Lemma D.1. Consider zero initialization, WV = WF = WQK = 0 and N ≫ 1. Then with
probability 1− δ, for any j, k ∈ [N + 1], it holds∣∣∣WU (k)

⊤(∇WF
L̂)WE(q)− µ(k)

∣∣∣
≤

√
4σ2(k)

(
ln(N + 1) + ln(2δ)

)
m

+
4R(k)

(
ln(N + 1) + ln(2δ)

)
m

,

(6)

where µ(k), σ2(k), R(k) are expectation, variance and range for different choices of k ∈ [N] as
follows:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

[IO]: full [IO]: LASER [S]: full [S]: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-410M evaludated on IOI

[IO]: full [IO]: LASER [S]: full [S]: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-1B evaludated on IOI

Figure 15: The prediction distributions of Pythia-410M and 1B on the IOI task. The setting is the
same as in Fgure 5 (left). The evaluated models are the final checkpoints after training. LASER turns
out to decrease the probability of ”the” while keeping that of the correct [IO] high.

µ(N + 1) = −α, σ2(N + 1) = α(1− α), R(N + 1) = max{α, 1− α},
∀ k ≤ N : µ(k) = 1

N+1 − 1−α
N , σ2(k) = 1−α

N , R(k) = 1.

Proof. Due to zero initialization, i.e., WV = WF = 0, the current predicted probability is
p̂W(k|xi) ≡ 1

N+1 for all i ∈ [m] and k ∈ [N + 1]. Therefore, from Lemma H.1, we have

∇WF
L̂ =

1

m

m∑
i=1

[
N+1∑
k=1

(
1

N + 1
− 1{yi = k}

)
WU (k)x

⊤
i,T

]
,

where xi,T ∈ Rd = WE(zi,T) + pT is the input embedding with input token zi,T at position T in
sequence i, together with positional encoding pT for position T . Since zi,T is set to be the trigger
q in the data generation process and pT is assumed to orthogonal to any other vector in WE in
Assumption D.1, we have the following projections for ∇WF

L̂: ∀ k ∈ [N + 1],

WU (k)
⊤(∇WF

L̂)WE(q) =
1

m

m∑
i=1

(
1

N + 1
− 1{yi = k}

)
.

From the data generation process, it is obvious to get

E(x,y)

[
1

N + 1
− 1{y = k}

]
=

1

N + 1
− α · 1{k = N + 1} − 1− α

N
· 1{k ≤ N}. (7)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Correct: full Correct: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-1B on Factual Recall

Correct: full Correct: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-1.4B on Factual Recall

Correct: full Correct: LASER 'the': full 'the': LASER
0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Pre-trained Pythia-2.8B on Factual Recall

Figure 16: The prediction distributions of Pythia-1B, 1.4B and 2.8B on more examples of factual
recall. Compared with the setting in Figure 5 (right), here we use 20 examples in Table 5. LASER
turns out to significantly decrease the probability of ”the” against the correct tokens.

Since α = Θ(1) is much larger than 1
N+1 when N ≫ 1, due to law of large numbers, we have the

population gradient ∇WF
L satisfying

WU (N + 1)⊤(−∇WF
L)WE(q) ≈ α = Θ(1),

∀ k ≤ N : WU (k)
⊤(−∇WF

L)WE(q) < 0, with absolute value in O(1/N).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 9-th Layer

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 10-th Layer

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 11-th Layer

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

pr
ed

ic
te

d
pr

ob
ab

ili
ty

LASER on 12-th Layer

Mary
John
the
them

Figure 17: Predicted probability for c ∈ {“Mary”, “them”, “the”, “John”}. LASER is conducted on
input matrices of MLP layers on the layer l = 9, 10, 11, 12 of GPT-2 Small. The input is “When
Mary and John went to a store, John gave a drink to”. The horizontal is the fraction of perserved rank,
ρ ∈ [0, 1], where ρ = 1 stands for the full model. It turns out LASER clearly decreases probability of
“the” and “them” when ρ ∈ [0.1, 0.8] for layer l = 9, 10, 11, compared with the full model.

The variance of the gradient projection onto WU (N + 1)WE(q)
⊤ of a single data point follows that

of Bernoulli distribution with parameter α, which means

Var
[

1

N + 1
− 1{y = N + 1}

]
= α(1− α). (8)

Similarly, for any k ≤ N , the variance of the gradient projection onto WU (N + 1)WE(q)
⊤ of a

single data point follows that of Bernoulli distribution with parameter 1−α
N , which means

Var
[

1

N + 1
− 1{y = k}

]
=

1− α

N

(
1− 1− α

N

)
= Θ(1/N). (9)

The ranges of the gradient projections’ deviation from the expectation are∣∣∣∣ 1

N + 1
− 1{y = N + 1} −

(
1

N + 1
− α

)∣∣∣∣ ≤ max{α, 1− α},

∀ k ≤ N :

∣∣∣∣ 1

N + 1
− 1{y = k} −

(
1

N + 1
− 1− α

N

)∣∣∣∣ ⪅ 1.

(10)

For each choice of k ∈ [N + 1] individually, after having the expectation µ(k), variance σ2(k) and
range R(k), by applying Bernstein’s inequality, then: for each k ∈ [N + 1], with probability 1− δ, it
holds ∣∣∣WU (k)

⊤(∇WF
L̂)WE(q)− µ(k)

∣∣∣ ≤
√

4σ2(k) ln(2δ)

m
+

4R(k) ln(2δ)

m
.

Then by the union bound in probability, we need (N + 1) events above to hold at the same time, so
we can substitute δ with δ

N+1 to have: with probability 1− δ, for any k ∈ [N + 1], it holds

∣∣∣WU (k)
⊤(∇WF

L̂)WE(q)− µ(k)
∣∣∣ ≤

√
4σ2(k)

(
ln(N + 1) + ln(2δ)

)
m

+
4R(k)

(
ln(N + 1) + ln(2δ)

)
m

.

(11)

D.2 GRADIENT FOR THE VALUE MATRIX WV

Lemma D.2. Consider zero initialization, WV = WF = WQK = 0. Then with probability 1− δ,
for any j, k ∈ [N + 1], it holds∣∣∣WU (j)

⊤(∇WV
L̂)WE(k)− µ(j, k)

∣∣∣
≤

√
4σ2(j, k)

(
2 ln(N + 1) + ln(2δ)

)
m

+
4R(j, k)

(
2 ln(N + 1) + ln(2δ)

)
m

,

(12)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 3: µ(j, k), σ2(j, k), R(j, k) for different choices of (j, k) in Lemma D.2.

j k µ σ2 R

N + 1 N + 1 −α2

N
α2

TN + α3−α4

N2
1
2

N + 1 q − α
N

α
TN + α−α2

N2 1

N + 1 [N] \ {q} − α
N

α
TN + α−α2

N2 1

q N + 1 2α−1
N2

1
TN2 + α2−α+1

N3
1
2

q q 2α−1
αN2

α3−α2−α+2
α3TN2 + α2−α+1

α2N3 1
q [N] \ {q} α

N2 (2− α) ·
(

1
TN2 + 1

N3

)
1

[N] \ {q} N + 1 α2

N2 (2− α)
(

α
TN2 + α2

N3

)
1
3

[N] \ {q} q α
N2 (2− α)

(
1

TN2 + 1
N3

)
1
2

[N] \ {q} j −α2+3α−1
N2

1+(1−α)(2−α)
TN2 + 1+(1−α)(2−α)2

N3 1
[N] \ {q} [N] \ {q, j} α

N2 (2− α)
(

1
TN2 + 1

N3

)
1

where µ(j, k), σ2(j, k), R(j, k) are expectation, variance and range for different choices of (j, k) at
listed in Table 3.

Proof. Due to zero initialization, i.e., WV = WF = 0, the current predicted probability is
p̂W(k|xi) ≡ 1

N+1 for all i ∈ [m] and k ∈ [N + 1]. Meanwhile, the attention score is uniform
as 1

T for all context positions due to WK = 0. Therefore, from Lemma H.1, we have

∇WF
L̂ =

1

m

m∑
i=1

[
N+1∑
k=1

(
1

N + 1
− 1{yi = k}

)
WU (k)

(
1

T

T∑
t=1

xi,t

)⊤
]
,

where xi,t ∈ Rd = WE(zi,t) + pt is the input embedding with input token zi,t at position t in
sequence i, together with positional encoding pt for position t. With the assumption of orthonormality
in Assumption D.1, we have the projection of ∇WF

L̂: ∀ j, k ∈ [N + 1],

WU (j)
⊤(∇WV

L̂)WE(k) =
1

m

m∑
i=1

[(
1

N + 1
− 1{yi = j}

)(
1

T

T∑
t=1

1{zi,t = k}
)]

.

Since each sample is drawn i.i.d., it suffices to discuss the expectation and variance of

Γi(j, k) ≜

(
1

N + 1
− 1{zi,T+1 = j}

)(
1

T

T∑
t=1

1{zi,t = k}
)
,

Γ̂(j, k) ≜
1

m

m∑
i=1

Γi(j, k),

where we use the fact yi = zi,T+1.

Recall that, for each sample in the data generation process, the trigger q is fixed while the correct next
token ȳ ∼ Uniform([N]). Hence, conditioning on zi,T = q, it has probability α for zi,T+1 = N + 1
and probability 1− α for zi,T+1 = ȳ. This leads to the necessity of discussing whether or not ȳ = k.
Meanwhile, a corner case of ȳ = q is also necessary to consider, as this implies an event that increases
the counting 1

T

∑T
t=1 1{zi,t = q} than the case of ȳ ̸= q.

Therefore, generally there are 10 cases due to different choices of (j, k) as follows:

1. j = N + 1, k = N + 1,

2. j = N + 1, k = q,

3. j = N + 1, k ∈ [N] \ {q},

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

4. j = q, k = N + 1,

5. j = q, k = q,

6. j = q, k ∈ [N] \ {q},

7. j ∈ [N] \ {q}, k = N + 1,

8. j ∈ [N] \ {q}, k = q,

9. j ∈ [N] \ {q}, k = j,

10. j ∈ [N] \ {q}, k ∈ [N] \ {q, j}.

For each Γi(j, k) individually, if we have its expectation µ(j, k), variance σ2(j, k) and range R(j, k),
by applying Bernstein’s inequality, then: for each j, k ∈ [N + 1], with probability 1− δ, it holds

∣∣∣Γ̂(j, k)− µ(j, k)
∣∣∣ ≤

√
4σ2(j, k) ln(2δ)

m
+

4R(j, k) ln(2δ)

m
.

Then by the union bound in probability, we need (N + 1)2 events above to hold at the same time, so
we can substitute δ with δ

(N+1)2 to have: with probability 1− δ, for any j, k ∈ [N + 1], it holds

∣∣∣Γ̂(j, k)− µ(j, k)
∣∣∣ ≤

√
4σ2(j, k)

(
2 ln(N + 1) + ln(2δ)

)
m

+
4R(j, k)

(
2 ln(N + 1) + ln(2δ)

)
m

.

(13)

As a final step of the proof, now we elaborate the expectation, variance and range of Γi(j, k) for these
10 cases.

Case 1: j = N + 1, k = N + 1.

There is probability 1
N for ȳ = q and probability N−1

N for ȳ ̸= q. Hence, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q],

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q].

From Lemma E.2 and the independence between 1{zi,T+1 = N + 1} and
∑

t≤T 1{zi,t =
k}, we have

E[Γi(j, k)|ȳ = q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ α ·

(
1

TN
+

1

N2

)
,

where the second is from

E
[(

1

N + 1
− 1{zi,T+1 = N + 1}

)2]
= (1− α) ·

(
1

N + 1

)2

+ α ·
(

1

N + 1
− 1

)2

≈ α.

Similarly, from Lemma E.5, we have

E[Γi(j, k)|ȳ ̸= q] ≈ −α · α

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ α ·

(
α

TN
+

α2

N2

)
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Therefore, it holds

E[Γi(j, k)] =
1

N

−α

N
+

N − 1

N

−α2

N
≈ −α2

N
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q]

≈ 1

N
α ·
(

1

TN
+

1

N2

)
+

N − 1

N
α ·
(

α

TN
+

α2

N2

)
≈ α2

TN
+

α3

N2
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α2

TN
+

α3 − α4

N2
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ≤
1

2
,

and the extreme case is when half of the sequence is N + 1 with the rest all being q.

Case 2: j = N + 1, k = q.

Similar to Case 1, we have 1{zi,T+1 = N + 1} is independent of
∑

t≤T 1{zi,t = k}.

From Lemma E.1, we have

E[Γi(j, k)|ȳ = q] ≈ −α · 1

αN
,

E[Γi(j, k)
2|ȳ = q] ≈ α ·

(
1

αTN

(
−1 +

2

α2

)
+

1

α2N2

)
.

From Lemma E.4, we have

E[Γi(j, k)|ȳ ̸= q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ α ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q] ≈ − α

N
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q] ≈ α

TN
+

α

N2
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α

TN
+

α− α2

N2
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = q and the sequence is all q’s.

Case 3: j = N + 1, k ∈ [N] \ {q}.

Similar to Case 1, we have 1{zi,T+1 = N + 1} is independent of
∑

t≤T 1{zi,t = k}.

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ α ·

(
1

TN
+

1

N2

)
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q] ≈ −α · 1

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ α ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] ≈ −α · 1

N
,

E[Γi(j, k)
2] ≈ α ·

(
1

TN
+

1

N2

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α

TN
+

α− α2

N2
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when all of the sequence except the last one is k.

Case 4: j = q, k = N + 1.

If ȳ ̸= q, we always have zi,T+1 ̸= q because zi,T+1 ∈ {ȳ, N + 1}. If conditioning on
ȳ = q, it has probability 1− α for zi,T+1 = q, independent of

∑
t≤T 1{zi,t = N + 1}.

From Lemma E.5, we have

E[Γi(j, k)|ȳ ̸= q] ≈ 1

N + 1
· α

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ 1

N + 1
·
(

α

TN
+

α2

N2

)
.

From Lemma E.2, we have

E[Γi(j, k)|ȳ = q] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q] ≈ 2α− 1

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q] ≈ 1

TN2
+

α2 − α+ 1

N3
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ 1

TN2
+

α2 − α+ 1

N3
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅
1

2
,

and the extreme case is when ȳ = q and half of the sequence is N +1 with the rest all being
q.

Case 5: j = q, k = q.

Similar to Case 4, if ȳ ̸= q, we always have zi,T+1 ̸= q. If conditioning on ȳ = q, it has
probability 1− α for zi,T+1 = q, independent of

∑
t≤T 1{zi,t = q}.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

From Lemma E.4, we have

E[Γi(j, k)|ȳ ̸= q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.1, we have

E[Γi(j, k)|ȳ = q] ≈ −(1− α) · 1

αN
,

E[Γi(j, k)
2|ȳ = q] ≈ (1− α) ·

(
1

αTN

(
−1 +

2

α2

)
+

1

α2N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

N − 1

N
E[Γi(j, k)|ȳ ̸= q] ≈ 2α− 1

αN2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
N − 1

N
E[Γi(j, k)

2|ȳ ̸= q]

≈ α3 − α2 − α+ 2

α3TN2
+

α2 − α+ 1

α2N3
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ α3 − α2 − α+ 2

α3TN2
+

α2 − α+ 1

α2N3
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = q and all of the sequence are q.

Case 6: j = q, k ∈ [N] \ {q}.

Similar to Case 4, if ȳ ̸= q, we always have zi,T+1 ̸= q. If conditioning on ȳ = q, it has
probability 1− α for zi,T+1 = q, independent of

∑
t≤T 1{zi,t = k}.

Moreover, we need to consider whether ȳ = k or not.

From Lemma E.6, we have

E[Γi(j, k)|ȳ ̸= q, k = ȳ] ≈ 1

N + 1
· 2− α

N
,

E[Γi(j, k)
2|ȳ ̸= q, k = ȳ] ≈ 1

N + 1
·
(
2− α

TN
+

(2− α)2

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q, k ∈ [N] \ {q, ȳ}] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, k ∈ [N] \ {q, ȳ}] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ ̸= q, k = ȳ]

+
N − 2

N
E[Γi(j, k)|ȳ ̸= q, k ∈ [N] \ {q, ȳ}]

≈ α

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ ̸= q, k = ȳ]

+
N − 2

N
E[Γi(j, k)

2|ȳ ̸= q, k ∈ [N] \ {q, ȳ}]

≈ (2− α) ·
(

1

TN2
+

1

N3

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α) ·
(

1

TN2
+

1

N3

)
.

The range of Γi(j, k) is
|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when all of the sequence except the last one are k.

Case 7: j ∈ [N] \ {q}, k = N + 1.

If ȳ ̸= j, we always have zi,T+1 ̸= j because zi,T+1 ∈ {ȳ, N + 1}. If conditioning on
ȳ = j, it has probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

From Lemma E.2, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.5, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
· α

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
·
(

α

TN
+

α2

N2

)
.

From Lemma E.5, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · α

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
α

TN
+

α2

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

N − 2

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ α2

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
N − 2

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ (2− α)

(
α

TN2
+

α2

N3

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α)

(
α

TN2
+

α2

N3

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅
1

3
,

and the extreme case is when ȳ = j and one-third of the sequence are k, where the sequence
has a repeated pattern like [q, j,N + 1, q, j,N + 1, . . .].

Case 8: j ∈ [N] \ {q}, k = q.

Similar to Case 7, if ȳ ̸= j, we always have zi,T+1 ̸= j. If conditioning on ȳ = j, it has
probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

From Lemma E.1, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

αN
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

T

αN

(
−1 +

2

α2

)
+

T 2

α2N2

)
.

From Lemma E.4, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.4, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

N − 2

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ α

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
N − 2

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ (2− α)

(
1

TN2
+

1

N3

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α)

(
1

TN2
+

1

N3

)
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅
1

2
,

and the extreme case is when ȳ = j and half of the sequence are q.

Case 9: j ∈ [N] \ {q}, k = j.

Similar to Case 7, if ȳ ̸= j, we always have zi,T+1 ̸= j. If conditioning on ȳ = j, it has
probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.6, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · 2− α

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
2− α

TN
+

(2− α)2

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

N − 2

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ −α2 + 3α− 1

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
N − 2

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ 1 + (1− α)(2− α)

TN2
+

1 + (1− α)(2− α)2

N3
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ 1 + (1− α)(2− α)

TN2
+

1 + (1− α)(2− α)2

N3
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = j and all of the sequence are j = k.

Case 10: j ∈ [N] \ {q}, k ∈ [N] \ {q, j}.

Similar to Case 7, if ȳ ̸= j, we always have zi,T+1 ̸= j. If conditioning on ȳ = j, it has
probability 1− α for zi,T+1 = j, independent of

∑
t≤T 1{zi,t = N + 1}.

Moreover, in the case of ȳ ̸= j, we need to discuss whether or not ȳ = q.

From Lemma E.3, we have

E[Γi(j, k)|ȳ = q] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ = q] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ = j] ≈ −(1− α) · 1

N
,

E[Γi(j, k)
2|ȳ = j] ≈ (1− α) ·

(
1

TN
+

1

N2

)
.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

From Lemma E.6, we have

E[Γi(j, k)|ȳ = k] ≈ 1

N + 1
· 2− α

N
,

E[Γi(j, k)
2|ȳ = k] ≈ 1

N + 1
·
(
2− α

TN
+

(2− α)2

N2

)
.

From Lemma E.7, we have

E[Γi(j, k)|ȳ ̸= q, ȳ ̸= j, ȳ ̸= k] ≈ 1

N + 1
· 1

N
,

E[Γi(j, k)
2|ȳ ̸= q, ȳ ̸= j, ȳ ̸= k] ≈ 1

N + 1
·
(

1

TN
+

1

N2

)
.

Therefore, we have

E[Γi(j, k)] =
1

N
E[Γi(j, k)|ȳ = q] +

1

N
E[Γi(j, k)|ȳ = j] +

1

N
E[Γi(j, k)|ȳ = k]

+
N − 3

N
E[Γi(j, k)|y ̸= q, ȳ ̸= j]

≈ α

N2
,

E[Γi(j, k)
2] =

1

N
E[Γi(j, k)

2|ȳ = q] +
1

N
E[Γi(j, k)

2|ȳ = j] +
1

N
E[Γi(j, k)

2|ȳ = k]

+
N − 3

N
E[Γi(j, k)

2|y ̸= q, ȳ ̸= j]

≈ (2− α)

(
1

TN
+

1

N2

)
,

Var[Γi(j, k)] = E[Γi(j, k)
2]− E[Γi(j, k)]

2 ≈ (2− α)

(
1

TN2
+

1

N3

)
.

The range of Γi(j, k) is

|Γi(j, k)− E[Γi(j, k)]| ⪅ 1,

and the extreme case is when ȳ = j and all of the sequence except the last are k.

D.3 COMPLETING THE PROOF OF THEOREM 1

Theorem 4 (Restatement of Theorem 1). Assume N,T ≫ 1, α = Θ(1). Consider a one gradient
step update from zero-initialization on m i.i.d. samples of z1:T with separate learning rates ηf for
WF and ηv for WV (note that the gradient on WQK is zero). For a test sequence z1:T , the resulting
logits for the feed-forward and attention blocks satisfy, with probability 1− δ

|∆(ξff(x1:T))− ηf · α| ≤ ηf ·O

√

ln 2(N+1)
δ

m

 ,

∣∣∣∆(ξattn(x1:T))−
ηv
N

· (α2q̂ + α(1− q̂))
∣∣∣ ≤ ηv ·O

√

(1
TN + 1

N2) ln
2(N+1)

δ

m
+

ln 2(N+1)
δ

m

 ,

where ∆(ξ) = ξN+1 − maxj∈[N] ξj is the margin of predicting the noise token and q̂ =
1
T

∑
t≤T 1{zt = N + 1}.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Proof. For WF , since the input is always zT = q, the logits will be [ξff]k = WU (k)
⊤WFWE(q),

∀ k ∈ [N + 1]. As WF is initialized from 0 and updated by GD with learning rate ηf , after one-step
update, we have

ξff = WU (k)
⊤
(
− ηf∇WF

L̂

∣∣∣∣
WF=0

)
WE(q) ∈ RN+1.

By Lemma D.1, with probability 1− 1
2δ, we have

|[ξff]N+1 − ηf · α| ≤ ηf ·O

√

ln 2(N+1)
δ

m

 ,

∀ k ≤ N,

∣∣∣∣[ξff]k − ηf ·
(
1− α

N
− 1

N + 1

)∣∣∣∣ ≤ ηf ·O

√

ln 2(N+1)
δ

Nm
+

ln 2(N+1)
δ

m

 ,

and then triangle inequality finishes the proof for ξff.

For WV , since the gradient on WQK at initialization is zero, WQK being zero after the first step
induces a uniform attention over the input sequence. Consider the input sequence {zi}Ti=1, then the
logits will be [ξattn]j = WU (j)

⊤WV
1
T

∑T
t=1 WE(zt), ∀ j ∈ [N + 1].

Then considering the concentration bound of WV after one-step update in Lemma D.2, denoting
Γ(j, k) = WU (j)

⊤WV WE(k), we have

[ξattn]j =
1

T

∑
t≤T

Γ(j, zt) =
1

T

∑
k≤N+1

nk · Γ(j, k),

with concentration bound for each Γ(·, ·) in Lemma D.2. From Table 3, note that for all
j = N + 1, k ≤ N , the expectation and variances are the same, while k = N + 1 has slightly
different expectation and variance (but still in the same order of the others). Hence, denoting
q̂ = 1

T

∑
t≤T 1{zt = N + 1} dependent of the test sample z1:T , we have

∣∣∣[ξattn(x1:T)]N+1 −
ηv
N

· (α2q̂ + α(1− q̂))
∣∣∣ ≤ ηv ·O

√

(1
TN + 1

N2) ln
2(N+1)

δ

m
+

ln 2(N+1)
δ

m

 .

Meanwhile, as the terms in Table 3 for j ̸= N + 1 always have much smaller mean and variance by a
factor 1/N , using the Bernstein’s inequalites for these terms in Lemma D.2 finishes the proof for
WV .

E PROOF FOR FIRST AND SECOND MOMENTS IN LEMMA D.2

In this section, we will show the proof of the first and second moments of
[∑

1≤t≤T 1{zt = k}|·
]

for all cases. Note that we do not consider zT = q, but including it will not change the results, as
T ≫ 1 and zT is explicitly fixed as q during data generation in Section 3. Generally, there are three
factors to classify the cases as follows:

1. The i.i.d. uniformly sampled correct token ȳ ∈ [N]:
(a) ȳ = q,
(b) ȳ ̸= q.

2. The target token k ∈ [N + 1]:
(a) k = q,
(b) k = N + 1.
(c) k ≤ N, k ̸= q, k ̸= ȳ,
(d) (if ȳ ̸= q) k ≤ N, k ̸= q, k = ȳ,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

3. A condition about the token z0 before the sequence {zt}t≥1:

(a) z0 = q,
(b) z0 ∈ [N + 1] \ {q}.

Note that when z0 will be implicitly or explicitly considered. When there is no condition on the
first token, which means z1 ∼ Uniform([N]), this belongs to Case (3b), i.e., z0 ∈ [N + 1] \ {q},
following the data generation process.

Table 4 summarizes all lemmas about the seven cases classified by the first two factors. The third
factor about z0 is explicitly presented in the proof of each corresponding lemma.

Table 4: All lemmas about the seven cases classified by ȳ and k.
(2a) (2b) (2c) (2d)

(1a) E.1 E.2 E.3 N/A
(1b) E.4 E.5 E.7 E.6

E.1 WHEN ȳ = q

Lemma E.1 (ȳ = q, k = q). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ = q and k = q, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = q

 ≈ T

αN
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = q

 ≈ T

αN

(
−1 +

2

α2

)
+

T 2

α2N2
.

(14)

Proof. For simplicity, we omit the condition of ȳ = q, k = q in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = p(z1 = q|z0 = q) · (1 + Y (T − 1)) + p(z1 = N + 1|z0 = q) · Ŷ (T − 1),

Ŷ (T) = p(z1 = q|z0 ̸= q) · (1 + Y (T − 1)) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ŷ (T − 1).

The iteration becomes

Y (T) = (1− α) · Y (T − 1) + α · Ŷ (T − 1) + 1− α,

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

This gives

Y (T)− Ŷ (T) = (1− α− 1

N
)(Y (T − 1)− Ŷ (T − 1)) + 1− α− 1

N
,

1

N
Y (T) + αŶ (T) =

1

N
Y (T − 1) + αŶ (T − 1) +

1

N
.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T)− Ŷ (T) =
1− α− 1

N

α+ 1
N

(
1−

(
1− α− 1

N

)T
)
,

1

N
Y (T) + αŶ (T) =

1

N
T.

Then we obtain

Y (T) ≈ 1

αN + 1
(T − αN) +

α

(α+ 1
N)2

=
1

αN + 1

(
T − αN +

N2

αN + 1

)
≈ T

αN
− 1 +

1

α2
,

Ŷ (T) ≈ 1

αN + 1
T − N

(αN + 1)2
+

1

αN + 1

≈ T

αN
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = q

 = Ŷ (T) ≈ T

αN
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = p(z1 = q|z0 = q) · (1 + 2Y (T − 1) + Z(T − 1)) + p(z1 = N + 1|z0 = q) · Z(T − 1),

Ẑ(T) = p(z1 = q|z0 ̸= q) · (1 + 2Y (T − 1) + Z(T − 1)) + p(z1 ̸= q|z0 ̸= q) · Ẑ(T − 1),

where 2Y (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = (1− α) · (1 + 2Y (T − 1) + Z(T − 1)) + α · Ẑ(T − 1)

= (1− α)Z(T − 1) + αẐ(T − 1) + (1− α)(1 + 2Y (T − 1)),

Ẑ(T) =
1

N
· (1 + 2Y (T − 1) + Z(T − 1)) +

N − 1

N
· Ẑ(T − 1)

=
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Y (T − 1)).

This gives

Z(T)− Ẑ(T) = (1− α− 1

N
)(Z(T − 1)− Ẑ(T − 1)) + (1− α− 1

N
)(1 + 2Y (T − 1)),

1

N
Z(T) + αẐ(T) =

1

N
Z(T − 1) + αẐ(T − 1) +

1

N
(1 + 2Y (T − 1)).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T)− Ẑ(T) =
∑

t≤T−1

(1− α− 1

N
)T−t(1 + 2Y (t))

≈
∑

t≤T−1

(1− α− 1

N
)T−t

(
1 +

2t

αN
− 2 +

2

α2

)

≈
(
−1 +

2

α2

)
1− α

α
+

2(1− α)

α2
· T
N

.

1

N
Z(T) + αẐ(T) =

T

N
+

2

N

∑
1≤t≤T−1

Y (t)

≈ T

N
+

2

N

∑
1≤t≤T−1

(
t

αN
− 1 +

1

α2

)

≈ T

N

(
−1 +

2

α2

)
+

T 2

αN2
.

Then we obtain

Z(T) ≈ T

N

(
− 3

α
+

2

α2
+

2

α3

)
+

T 2

α2N2
+

1− α

α
(
2

α2
− 1),

Ẑ(T) ≈ T

αN

(
−1 +

2

α2

)
+

T 2

α2N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = q

 = Ẑ(T) ≈ T

αN

(
−1 +

2

α2

)
+

T 2

α2N2
.

Lemma E.2 (ȳ = q, k = N + 1). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ = q and k = N + 1, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = N + 1

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = N + 1

 ≈ T

N
+

T 2

N2
.

(15)

Proof. For simplicity, we omit the condition of ȳ = q, k = N + 1 in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = p(z1 = q|z0 = q) · Y (T − 1) + p(z1 = N + 1|z0 = q) · (1 + Ŷ (T − 1)),

Ŷ (T) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ŷ (T − 1).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

The iteration becomes

Y (T) = (1− α) · Y (T − 1) + α · Ŷ (T − 1) + α,

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1).

This gives

Y (T)− Ŷ (T) = (1− α− 1

N
)(Y (T − 1)− Ŷ (T − 1)) + α,

1

N
Y (T) + αŶ (T) =

1

N
Y (T − 1) + αŶ (T − 1) +

α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T)− Ŷ (T) =
α

α+ 1
N

(
1−

(
1− α− 1

N

)T
)
,

1

N
Y (T) + αŶ (T) =

α

N
T.

Then we obtain

Y (T) ≈ T

N
+ 1,

Ŷ (T) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = N + 1

 = Ŷ (T) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = p(z1 = q|z0 = q) · Z(T − 1) + p(z1 = N + 1|z0 = q) · (1 + 2Ŷ (T − 1) + Ẑ(T − 1)),

Ẑ(T) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ̸= q|z0 ̸= q) · Ẑ(T − 1),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = (1− α) · Z(T − 1) + α · (1 + 2Ŷ (T − 1) + Ẑ(T − 1))

= (1− α)Z(T − 1) + αẐ(T − 1) + α(1 + 2Ŷ (T − 1)),

Ẑ(T) =
1

N
· Z(T − 1) +

N − 1

N
· Ẑ(T − 1).

This gives

Z(T)− Ẑ(T) = (1− α− 1

N
)(Z(T − 1)− Ẑ(T − 1)) + α(1 + 2Ŷ (T − 1)),

1

N
Z(T) + αẐ(T) =

1

N
Z(T − 1) + αẐ(T − 1) +

α

N
(1 + 2Ŷ (T − 1)).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T)− Ẑ(T) =
∑

t≤T−1

α(1− α− 1

N
)T−1−t(1 + 2Ŷ (t))

≈
∑

t≤T−1

α(1− α− 1

N
)T−1−t

(
1 +

2t

N

)
≈ 2T

N
+ 1,

1

N
Z(T) + αẐ(T) =

αT

N
+

2α

N

∑
1≤t≤T−1

Ŷ (t)

≈ αT

N
+

2α

N

∑
1≤t≤T−1

t

N

≈ αT

N
+

αT 2

N2
.

Then we obtain

Z(T) ≈ 3α
T

N
+ α

T 2

N2
+ α,

Ẑ(T) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k = N + 1

 = Ẑ(T) ≈ T

N
+

T 2

N2
.

Lemma E.3 (ȳ = q, k ≤ N, k ̸= q). Following the data generation process, assuming N,T ≫ 1
and α = Θ(1), if ȳ = q and k ∈ [N] \ {q}, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 ≈ T

N
+

T 2

N2
.

(16)

Proof. For simplicity, we omit the condition of ȳ = q, k ∈ [N] \ {q} in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = p(z1 = q|z0 = q) · Y (T − 1) + p(z1 = N + 1|z0 = q) · Ŷ (T − 1),

Ŷ (T) = p(z1 = q|z0 ̸= q) · Y (T − 1)

+ p(z1 ∈ [N] \ {q}|z0 ̸= q) · (p(z1 = k|z1 ∼ Uniform([N] \ {q}) + Ŷ (T − 1)).

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

The iteration becomes

Y (T) = (1− α) · Y (T − 1) + α · Ŷ (T − 1),

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· (Ŷ (T − 1) +

1

N − 1
).

This gives

Y (T)− Ŷ (T) = (1− α− 1

N
)(Y (T − 1)− Ŷ (T − 1))− 1

N
,

1

N
Y (T) + αŶ (T) =

1

N
Y (T − 1) + αŶ (T − 1) +

α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T)− Ŷ (T) =
− 1

N

α+ 1
N

(
1−

(
1− α− 1

N

)T
)
,

1

N
Y (T) + αŶ (T) =

α

N
T.

Then we obtain

Y (T) ≈ T

N
,

Ŷ (T) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ = q, k = N + 1

 = Ŷ (T) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = p(z1 = q|z0 = q) · Z(T − 1) + p(z1 = N + 1|z0 = q) · Ẑ(T − 1),

Ẑ(T) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ̸= q|z0 ̸= q) · Ẑ(T − 1)

+ p(z1 = k|z0 ̸= q) · (1 + 2Ŷ (T − 1)),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = (1− α) · Z(T − 1) + α · Ẑ(T − 1),

Ẑ(T) =
1

N
· Z(T − 1) +

N − 1

N
· Ẑ(T − 1) +

1

N
(1 + 2Ŷ (T − 1)).

This gives

Z(T)− Ẑ(T) = (1− α− 1

N
)(Z(T − 1)− Ẑ(T − 1))− 1

N
(1 + 2Ŷ (T − 1)),

1

N
Z(T) + αẐ(T) =

1

N
Z(T − 1) + αẐ(T − 1) +

α

N
(1 + 2Ŷ (T − 1)).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T)− Ẑ(T) = − 1

N

∑
t≤T−1

(1− α− 1

N
)T−1−t(1 + 2Ŷ (t))

≈ − 1

N

∑
t≤T−1

(1− α− 1

N
)T−1−t

(
1 +

2t

N

)

≈ − 1

αN

(
2T

N
+ 1

)
,

1

N
Z(T) + αẐ(T) =

αT

N
+

2α

N

∑
1≤t≤T−1

Ŷ (t)

≈ αT

N
+

2α

N

∑
1≤t≤T−1

t

N

≈ αT

N
+

αT 2

N2
.

Then we obtain

Z(T) ≈ T

N
+

T 2

N2
,

Ẑ(T) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 = Ẑ(T) ≈ T

N
+

T 2

N2
.

E.2 WHEN ȳ ̸= q

Lemma E.4 (ȳ ̸= q, k = q). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ ̸= q and k = q, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k = q

 ≈ T

N
+

T 2

N2
.

(17)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k = q in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = Ŷ (T − 1),

Ŷ (T) = p(z1 = q|z0 ̸= q) · (1 + Y (T − 1)) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ŷ (T − 1).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

The iteration becomes

Y (T) = Ŷ (T − 1),

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

This gives

Y (T)− Ŷ (T) = − 1

N
(Y (T − 1)− Ŷ (T − 1))− 1

N
,

1

N
Y (T) + Ŷ (T) =

1

N
Y (T − 1) + Ŷ (T − 1) +

1

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T)− Ŷ (T) =
− 1

N

1 + 1
N

(
1−

(
− 1

N

)T
)
,

1

N
Y (T) + Ŷ (T) =

1

N
T.

Then we obtain

Y (T) ≈ T

N
,

Ŷ (T) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = Ẑ(T − 1),

Ẑ(T) = p(z1 = q|z0 ̸= q) · (1 + 2Y (T − 1) + Z(T − 1)) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ẑ(T − 1),

where 2Y (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = Ẑ(T − 1),

Ẑ(T) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Y (T − 1)).

This gives

Z(T)− Ẑ(T) = − 1

N
(Z(T − 1)− Ẑ(T − 1))− 1

N
(1 + 2Y (T − 1)),

1

N
Z(T) + Ẑ(T) =

1

N
Z(T − 1) + Ẑ(T − 1) +

1

N
(1 + 2Y (T − 1)).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T)− Ẑ(T) = − 1

N

∑
t≤T−1

(− 1

N
)T−1−t(1 + 2Y (t))

≈ − 1

N

∑
t≤T−1

(− 1

N
)T−1−t

(
1 +

2t

N

)
≈ − 1

N
− 2T

N2
,

1

N
Z(T) + Ẑ(T) =

T

N
+

2

N

∑
1≤t≤T−1

Y (t)

≈ T

N
+

2

N

∑
1≤t≤T−1

t

N

≈ T

N
+

T 2

N2
.

Then we obtain

Z(T) ≈ T

N
+

T 2

N2
,

Ẑ(T) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 = Ẑ(T) ≈ T

N
+

T 2

N2
.

Lemma E.5 (ȳ ̸= q, k = N + 1). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ ̸= q and k = N + 1, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = N + 1

 ≈ αT

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k = N + 1

 ≈ αT

N
+

α2T 2

N2
.

(18)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k = N + 1 in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = Ŷ (T − 1) + p(z1 = N + 1|z0 = q),

Ŷ (T) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ŷ (T − 1).

The iteration becomes
Y (T) = Ŷ (T − 1) + α,

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1).

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

This gives

Y (T)− Ŷ (T) = − 1

N
(Y (T − 1)− Ŷ (T − 1)) + α,

1

N
Y (T) + Ŷ (T) =

1

N
Y (T − 1) + Ŷ (T − 1) +

α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T)− Ŷ (T) =
α

1 + 1
N

(
1−

(
− 1

N

)T
)
,

1

N
Y (T) + Ŷ (T) =

α

N
T.

Then we obtain

Y (T) ≈ αT

N
+ α,

Ŷ (T) ≈ αT

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T) ≈ αT

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = Ẑ(T − 1) + p(z1 = N + 1|z0 = q) · (1 + 2Ŷ (T − 1)),

Ẑ(T) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ẑ(T − 1),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = Ẑ(T − 1) + α(1 + 2Ŷ (T − 1)),

Ẑ(T) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1).

This gives

Z(T)− Ẑ(T) = − 1

N
(Z(T − 1)− Ẑ(T − 1)) + α(1 + 2Ŷ (T − 1)),

1

N
Z(T) + Ẑ(T) =

1

N
Z(T − 1) + Ẑ(T − 1) +

α

N
(1 + 2Ŷ (T − 1)).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T)− Ẑ(T) = α
∑

t≤T−1

(− 1

N
)T−1−t(1 + 2Ŷ (t))

≈ α
∑

t≤T−1

(− 1

N
)T−1−t

(
1 +

2αt

N

)

≈ 2α2T

N
+ α,

1

N
Z(T) + Ẑ(T) =

αT

N
+

2α

N

∑
1≤t≤T−1

Ŷ (t)

≈ αT

N
+

2α

N

∑
1≤t≤T−1

αt

N

≈ αT

N
+

α2T 2

N2
.

Then we obtain

Z(T) ≈ T

N
(2α2 + α) +

α2T 2

N2
+ α,

Ẑ(T) ≈ αT

N
+

α2T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 = Ẑ(T) ≈ αT

N
+

α2T 2

N2
.

Lemma E.6 (ȳ ̸= q, k = ȳ). Following the data generation process, assuming N,T ≫ 1 and
α = Θ(1), if ȳ ̸= q and k = ȳ, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = ȳ

 ≈ (2− α)
T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k = ȳ

 ≈ (2− α)T

N
+

(2− α)2T 2

N2
.

(19)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k = ȳ in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = Ŷ (T − 1) + p(z1 = ȳ|z0 = q),

Ŷ (T) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ŷ (T − 1) + p(z1 = ȳ|z0 ̸= q).

The iteration becomes
Y (T) = Ŷ (T − 1) + (1− α),

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

This gives

Y (T)− Ŷ (T) = − 1

N
(Y (T − 1)− Ŷ (T − 1)) + (1− α− 1

N
),

1

N
Y (T) + Ŷ (T) =

1

N
Y (T − 1) + Ŷ (T − 1) +

2− α

N
.

Consider the initialization Y (0) = Ŷ (0) = 0. This implies

Y (T)− Ŷ (T) =
1− α− 1

N

1 + 1
N

(
1−

(
− 1

N

)T
)
,

1

N
Y (T) + Ŷ (T) =

2− α

N
T.

Then we obtain

Y (T) ≈ (1− α) + (2− α)
T

N
,

Ŷ (T) ≈ (2− α)
T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T) ≈ (2− α)
T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = Ẑ(T − 1) + p(z1 = ȳ|z0 = q) · (1 + 2Ŷ (T − 1)),

Ẑ(T) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ẑ(T − 1)

+ p(z1 = ȳ|z0 ̸= q) · (1 + 2Ŷ (T − 1)),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = Ẑ(T − 1) + (1− α)(1 + 2Ŷ (T − 1)),

Ẑ(T) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Ŷ (T − 1)).

This gives

Z(T)− Ẑ(T) = − 1

N
(Z(T − 1)− Ẑ(T − 1)) + (1− α− 1

N
)(1 + 2Ŷ (T − 1)),

1

N
Z(T) + Ẑ(T) =

1

N
Z(T − 1) + Ẑ(T − 1) +

2− α

N
(1 + 2Ŷ (T − 1)).

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Considering the initialization Z(0) = Ẑ(0) = 0, we have

Z(T)− Ẑ(T) = (1− α− 1

N
)
∑

t≤T−1

(− 1

N
)T−1−t(1 + 2Ŷ (t))

≈ (1− α− 1

N
)
∑

t≤T−1

(− 1

N
)T−1−t

(
1 +

2(2− α)t

N

)

≈ (1− α)

(
1 +

2(2− α)T

N

)
,

1

N
Z(T) + Ẑ(T) =

(2− α)T

N
+

2(2− α)

N

∑
1≤t≤T−1

Ŷ (t)

≈ (2− α)T

N
+

2(2− α)

N

∑
1≤t≤T−1

(2− α)t

N

≈ (2− α)T

N
+

(2− α)2T 2

N2
.

Then we obtain

Z(T) ≈ T

N
(2− α)(3− 2α) +

(2− α)2T 2

N2
+ (1− α),

Ẑ(T) ≈ (2− α)T

N
+

(2− α)2T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 = Ẑ(T) ≈ (2− α)T

N
+

(2− α)2T 2

N2
.

Lemma E.7 (ȳ ̸= q, k ≤ N, k ̸= q, k ̸= ȳ). Following the data generation process, assuming
N,T ≫ 1 and α = Θ(1), if ȳ ̸= q and k ∈ [N] \ {ȳ, q}, it holds

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k ∈ [N] \ {ȳ, q}

 ≈ T

N
,

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ ̸= q, k ∈ [N] \ {ȳ, q}

 ≈ T

N
+

T 2

N2
.

(20)

Proof. For simplicity, we omit the condition of ȳ ̸= q, k ∈ [N] \ {ȳ, q} in this proof. Denote

Y (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 = q

 ,

Ŷ (T) ≜ E

∑
t≤T

1{zt = k}
∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Y (T) = Ŷ (T − 1),

Ŷ (T) = p(z1 = q|z0 ̸= q) · Y (T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ŷ (T − 1) + p(z1 = k|z0 ̸= q).

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

The iteration becomes

Y (T) = Ŷ (T − 1) + (1− α),

Ŷ (T) =
1

N
· Y (T − 1) +

N − 1

N
· Ŷ (T − 1) +

1

N
.

Note that these two equations are exactly the same as those in Lemma E.4 with same initialization as
Y (0) = Ŷ (0) = 0. Therefore, we have

Y (T) ≈ T

N
,

Ŷ (T) ≈ T

N
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

∑
t≤T

1{zt = k}
∣∣∣∣ȳ ̸= q, k = q

 = Ŷ (T) ≈ T

N
.

To obtain the expectation of the quadratic term, we similarly denote the following terms with different
z0:

Z(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 = q

 ,

Ẑ(T) ≜ E

(∑
t≤T

1{zt = k}
)2∣∣∣∣z0 ∈ [N + 1], z0 ̸= q

 .

Then the data generation process implies, ∀ T ≥ 1,

Z(T) = Ẑ(T − 1),

Ẑ(T) = p(z1 = q|z0 ̸= q) · Z(T − 1) + p(z1 ∈ [N] \ {q}|z0 ̸= q) · Ẑ(T − 1)

+ p(z1 = k̄|z0 ̸= q) · (1 + 2Ŷ (T − 1)),

where 2Ŷ (T − 1) is due to E[(1 +
∑

2≤t≤T ·)2] = 1 + 2E[
∑

2≤t≤T ·] + E[(
∑

2≤t≤T ·)2].

Then the iteration becomes

Z(T) = Ẑ(T − 1),

Ẑ(T) =
1

N
Z(T − 1) +

N − 1

N
Ẑ(T − 1) +

1

N
(1 + 2Ŷ (T − 1)).

Again note that, since Y (T) ≈ Ŷ (T), these two equations are the same as those in Lemma E.4.
Therefore, we have

Z(T) ≈ T

N
+

T 2

N2
,

Ẑ(T) ≈ T

N
+

T 2

N2
.

Since the data generation process implicitly assumes z0 ̸= q, we have the desired expectation as

E

(∑
t≤T

1{zt = k}
)2∣∣∣∣ȳ = q, k ∈ [N] \ {q}

 = Ẑ(T) ≈ T

N
+

T 2

N2
.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

F PROOF OF THEOREM 2: TRAINING DYNAMICS OF THE ATTENTION LAYER

We consider the following simplified 1-layer model for the noisy in-context recall task.

xt ≜ WE(zt) + W̃E(zt−1) ∈ Rd,

ϕ(xT , x1:T) ≜
∑
t≤T

[
σ
(
x⊤
TWQKx1:T

)]
t
·WV xt ∈ Rd,

ξattn(x1:T) ≜ WUϕ(xT , x1:T) ∈ RN+1,

ξff(x1:T) ≜ WUF (xT) = WUWFxT ∈ RN+1,

(21)

With zero initialization of WQK ,WV ,WF , we analyze the training dynamics of these three matrices
in three phases:

1. WF learns the noise association in O(1η) time,

2. WV learns to be identity for all tokens k ∈ [N + 1],

3. WQK attends to any position t such that zt−1 = q and zt = ȳ.

Assumption F.1. In this section, we make the following assumptions

1. (orthonormal embedding) WE(i)
⊤WE(j) = W̃E(i)

⊤W̃E(j) = 1{i = j} and
WE(i)

⊤W̃E(j) = 0 for any i, j ∈ [N + 1].

2. (Feed-forward learns noise association) After phase 1, the prediction for noise always
satisfies p̂(N + 1|z1:T) = α for any z1:T ∈ [N + 1]⊗T . If p̂ deviates from α, WF will
learn the noise association in a more quick speed than the other weights, so that it is fair to
assume p̂ = α for computing gradients of these weights.

3. (Infinite samples) m → ∞ so the training loss L is population loss.

4. α ≤ 1.5 −
√
5/2 ≈ 0.38. This is to ensure the sign WU (j)

⊤(−∇WV
L)WE(k) > 0 for

any j = k ≤ N in (23).

Phase 1: In this phase, the impact of W̃E(zT−1) on WF and WV is negligible compared with that
of WE(zT) because ZT−1 is close to uniform in [N + 1] while zT = q is fixed.

Lemma D.1 gives

WU (k)
⊤(−∇WF

L)WE(q) =

{
Θ(1), if k = N + 1,

Θ(1
N), if k ≤ N.

Lemma D.2 gives

WU (j)
⊤(−∇WV

L)WE(k) =

{
Θ(1

N), if j = N + 1,∀ k,

Θ(1
N2), if j ≤ N, ∀ k.

(22)

Note that the entries of the above projection have the following signs, with details as −µ in Table 3,

WU (j)
⊤(−∇WV

L)WE(k)

{
> 0, if (j = N + 1) or (j = k) or (j = q, k = N + 1),

< 0, otherwise.
(23)

The arguments in Appendix B.3 show

WE(j)
⊤(−∇WQK

L)WE(q) =

{
−Θ(1

N2), if j = N + 1,

Θ(1
N3), if j ≤ N.

(24)

Therefore, during this phase, WF learns the noise association with effective graident norm of
Θ(1) as WU (N + 1)⊤(−∇WF

L)WE(q) = Θ(1). Meanwhile, WF moves in the other directions

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

uniformly in Θ(1
N) as WU (k)

⊤(−∇WF
L)WE(q) = Θ(1

N) for any k ≤ N , which in fact ensures
p̂(k|z1:T) = 1−p̂(N+1|z1:T)

N for any k ≤ N and z1:T ∈ [N + 1]⊗T .

After O(η−1) steps in this phase, we have p̂(N + 1|z1:T) = α and p̂(k|z1:T) = 1−α
N for any k ≤ N

and z1:T .

Phase 2: Assume p̂(N + 1|·) = α starting from the beginning of this phase as discussed above. Due
to symmetry for the rest k channels, we have p̂(k|·) = 1−α

N . Note that the attention scores in ϕ(·, ·)
are still close to uniform, i.e.,

[
σ
(
x⊤
TWQKx1:T

)]
t
≈ 1

T , since the update of WQK is in O(N−2)

whose impact on attention scores is also in O(N−2) through exp(x) ≈ 1 + x for x ≈ 0. Then we
track the movement of WV under these conditions.

Since m → ∞, taking x̄ ≜ 1
T

∑T
i=1 xi, µk ≜ E[x̄|y = k] and µ̂k ≜ E[p̂(k|x)

p(y=k) x̄] = E[x̄] since
p̂(k|x) = α1{k = N + 1}+ 1−α

N 1{k ≤ N} = p(y|k), Lemma H.1 gives

∇WV
L =

N+1∑
k=1

p(y = k)WU (k)(E[x̄]− E[x̄|y = k])⊤

=

N∑
k=1

p(y = k)WU (k)(E[x̄]− E[x̄|y = k])⊤

=

N∑
k=1

1− α

N
WU (k)(E[x̄]− E[x̄|y = k])⊤

= −1− α

N2

N∑
k=1

WU (k)(WE(k)−WE + W̃E(k)− W̃E)
⊤,

where the second equality is due to E[x̄] = E[x̄|y = N + 1] due to y = N + 1 is uniform for any
correct token ȳ ≤ N , and the last equality is from

E[x̄]− E[x̄|y = k] ≈ − 1

N
(WE(k)−WE)−

1

N
(W̃E(k)− W̃E)

with WE = N−1
∑N

i=1 WE(i), W̃E = N−1
∑N

i=1 W̃E(i) because E[x̄] = Ey[Ex[x̄|y]], and the
expected number of the tuple (q, ŷ) in a context length T is Θ(T

N) by comparing Lemma E.6 and E.7.

Therefore, the gradient for WV has the following structure

WU (j)
⊤(−∇WV

L)WE(k) ≈
1

N2
1{j = k}+O

(
1

N3

)
,∀ j, k ≤ N,

WU (j)
⊤(−∇WV

L)W̃E(k) ≈
1

N2
1{j = k}+O

(
1

N3

)
,∀ j, k ≤ N.

(25)

Denote steps of phase 1 and phase 2 as t1 and t2. Combined with the structure of WV in phase 1 as
in Eq.(22,23), ignoring projections that are O(N−3) or negative, WV has the following structure
after phase 2

WU (j)
⊤WV WE(k) =

Θ(ηt1N

−1), if j = N + 1,∀k,
Θ(ηt1N

−2 + ηt2N
−2), if j = k ≤ N,

Θ(ηt1N
−2), if j = q, k = N + 1,

WU (j)
⊤WV W̃E(k) = Θ(ηt2N

−2), if j = k ≤ N.

(26)

Phase 3: now assume WV has the structure in Eq(26). The model still predicts p̂W(k|z) = α1{k =
N + 1} + 1−α

N 1{k ≤ N} because the above projections of WV onto WU (j : j ≤ N) is o(1
N).

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Meanwhile, the attention scores are uniform as 1
T as WQK ≈ 0. Therefore, the gradient of WQK is

∇WQK
L =

1

T

N+1∑
k=1

∑
t≤T

p(y = k)(E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤]

− E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤|y = k])

=
1− α

TN

N∑
k=1

∑
t≤T

(E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤]

− E[(WU (k)
⊤WV xt) · xT (xt − x̄)⊤|y = k]),

where x̄ = T−1
∑

t≤T xt and the last equality holds due to the condition of y = N + 1 uniform
for any correct token ŷ ≤ N . Then, considering the above structure of WV , we notice that
WU (j)

⊤WV xt ≈ β11{zt = j}+β21{zt−1 = j} with β1 = ηt1N
−2+ηt2N

−2 and β2 = ηt2N
−2

for any j, k ≤ N . Here note that we ignore the projection of j = q, k = N + 1 in Eq(26) because
ŷ = q is with probability 1/N = o(1) so that it will not influence much the following derivation.

Plug-in WU (j)
⊤WV xt and we get

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(b2)) =
1− α

TN

∑
k≤N

∑
t≤T

E[A(t)
k,b1,b2

|y = k]− E[A(t)
k,b1,b2

]

(27)
where
A

(t)
k,b1,b2

= (β11{zt = k}+ β21{zt−1 = k})

·
(
1{zt = b1} −

∑
s≤T 1{zs = b1}

T
+ 1{zt−1 = b2} −

∑
s≤T 1{zs−1 = b2}

T

)
.

Now we are to control ∆k,b1,b2 ≜
∑

t≤T E[A(t)
k,b1,b2

|y = k] − E[A(t)
k,b1,b2

] for different choices of

b1, b2. Note that b1 and b2 co-exist by sum in A
(t)
k,b1,b2

, so the additivity of expectation allows us to
discuss choices of b1, b2 separately and then combine the results. Denote

B
(t)
k,b1

= (β11{zt = k}+ β21{zt−1 = k})
(
1{zt = b1} −

∑
s≤T 1{zs = b1}

T

)
,

C
(t)
k,b2

= (β11{zt = k}+ β21{zt−1 = k})
(
1{zt−1 = b2} −

∑
s≤T 1{zs−1 = b2}

T

)
.

(28)

Controlling
∑

t≤T E[B(t)
k,b1

|y = k]− E[B(t)
k,b1

]:

• If b1 = k, from Lemma E.6 and E.7, we have

E

∑
t≤T

β11{zt = k}1{zt = k}
∣∣∣∣y = k

− E

∑
t≤T

β11{zt = k}1{zt = k}

 = β1(1− α)
T

N
.

E

−∑
t≤T

β11{zt = k}
∑

s≤T 1{zs = k}
T

∣∣∣∣y = k

− E

−∑
t≤T

β11{zt = k}
∑

s≤T 1{zs = k}
T

= −E

β1T
−1(
∑
s≤T

1{zs = k})2|y = k

+ E

β1T
−1(
∑
s≤T

1{zs = k})2

= β1T
−1

(
T

N
+

T 2

N2
− (2− α)T

N
− (2− α)2T 2

N2

)
= o

(
β1

T

N

)
.

The terms involving 1{zt−1 = k} are negligible as O(T/N2). Therefore, we have∑
t≤T

E[B(t)
k,k|y = k]− E[B(t)

k,k] = β1(1− α)
T

N
. (29)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

• If b1 ̸= k, all terms are O(T/N2) because
– If b1 ≤ N , it holds p(zt = b1|zt−1 = k) = 1/N with the expected number of k in

context of length L being Θ(T/N) from lemmas in Appendix E.
– If b1 = N + 1, it holds p(zt = N + 1|zt−1 = k) = O(1/N) · 1{k = q} and the

expected number of q in context of length T is Θ(T/N) from Lemma E.1 and E.4.
– E[

∑
t 1{zt−1 = k}#b1/T |·] = E[#k · #b1/T] = O(T/N2) no matter it is with

condition y = k or not.
Therefore, for any b1 ̸= k, we have∑

t≤T

E[B(t)
k,b1

|y = k]− E[B(t)
k,b1

] = o(T/N). (30)

Controlling
∑

t≤T E[C(t)
k,b2

|y = k]− E[C(t)
k,b2

]:

• If b2 = q, Lemma E.4 gives

E

∑
t≤T

β11{zt = k}
(
1{zt−1 = q} − #q

T

) ∣∣∣∣y = k

−E

∑
t≤T

β11{zt = k}
(
1{zt−1 = q} − #q

T

)
= (1− p(ŷ = k)) · E

∑
t≤T

β11{zt = k}
(
1{zt−1 = q} − #q

T

) ∣∣∣∣y = k

+ o

(
β1

T

N

)

≈ β1(1− α)
T

N
,

where the last equality is from p(zt = k|ȳ = k, zt−1 = q) = 1− α.
All the other terms are negligible with the same reason as above.
Therefore, we have ∑

t≤T

E[C(t)
k,q|y = k]− E[C(t)

k,q] = β1(1− α)
T

N
. (31)

• If b2 = k, similar to the above discussion about Bk,k, we have∑
t≤T

E[C(t)
k,k|y = k]− E[C(t)

k,k] = β2(1− α)
T

N
. (32)

Note that the key difference is that here we use β2 instead of β1, and β2 < β1.
• If b2 ̸= q and b2 ̸= k, similar to the discussion for Eq(30), we have∑

t≤T

E[C(t)
k,b2

|y = k]− E[C(t)
k,b2

] = o(T/N). (33)

Therefore, combining the above results in Eq(29, 30, 31, 32, 33), taking sums of the corresponding B
and C from Eq(28) gives

∆k,b1,b2 =

β1(1− α)TN−1 + β1(1− α)TN−1, if b1 = k, b2 = q,

β1(1− α)TN−1 + β2(1− α)TN−1, if b1 = k, b2 = k,

β1(1− α)TN−1, if b1 = k, other b2,
β1(1− α)TN−1, if b1 ̸= k, b2 = q,

β2(1− α)TN−1, if b1 ̸= k, b2 = k,

O(TN−1), otherwise.

To take the summation over all k ≤ N in Eq(27), we discuss the following cases of b1 and b2 for
WE(q)

⊤(−∇WQK
L)(WE(b1) + W̃E(b2)).

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

• If b1 ≤ N, b1 ̸= b2, b2 = q:
– when k = b1, we take ∆k,b1,b2 under the condition of b1 = k, b2 = q.
– when k ̸= b1, we take ∆k,b1,b2 under the condition of b1 ̸= k, b2 = q. Note that there

are (N − 1) such k.
Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(q)) =
1− α

TN
β1(1− α)T (1 +N−1). (34)

• If b1 = b2 = q:
– when k = b1, we take ∆k,b1,b2 under the condition of b1 = k, b2 = k to achieve a

lower bound of the gap later.
– when k ̸= b1, we take ∆k,b1,b2 under the condition of b1 ̸= k, b2 = q. Note that there

are (N − 1) such k.
Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(q)) ≥
1− α

TN

(
β1(1− α)T + β2(1− α)TN−1

)
.

(35)

• If b1 = N + 1, b2 = q: for any k ≤ N , it holds k ̸= b1, so we take ∆k,b1,b2 under the
condition of b1 ̸= k, b2 = q. Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(N + 1) + W̃E(q)) =
1− α

TN
β1(1− α)T. (36)

• If b2 ̸= q,∀ b1: To get an upper bound of the projection length, we take ∆k,b1,b2 under the
condition of b=k, b2 = k or b1 ̸= k, b2 = k. Therefore, it holds

WE(q)
⊤(−∇WQK

L)(WE(b1) + W̃E(b2)) ≤
1− α

TN
(β1 + 2β2)(1− α)TN−1. (37)

Comparing the above four cases, for any ȳ ≤ N , the attention weight WQK to attend more to
xt = WE(ȳ) + W̃E(q) than to xt = WE(N + 1) + W̃E(q), with

WE(q)
⊤(−∇WQK

L)(WE(ȳ) + W̃E(q))−WE(q)
⊤(−∇WQK

L)(WE(N + 1) + W̃E(q))

≥ (1− α)2

N2
β2.

Meanwhile, any other setting of b1, b2 has smaller projection in (−∇WQK
L).

In summary, WQK has the following patterns

1. it learns to attend to indices t such that zt−1 = q is the trigger word,
2. when there are multiple ti’s such that zti−1=q , it learns to attend to those with zt = ȳ more

than zt = N + 1.

G LINEAR ASSOCIATIVE MEMORY

G.1 EXPERIMENTS AND DISCUSSIONS

In Section 3, we showed that fully truncating a feed-forward layer can be helpful for reasoning. We
now present a setting where noisy associations are stored in a rank-one subspace of a layer, so that
intermediate levels of truncation are more useful to remove noise.

Model and data. We consider a simple associative memory setting where the goal is learn an
fixed permutation from input tokens to output tokens (w.l.o.g. taken to be the identity), with a
linear model similar to Cabannes et al. (2024). Consider a learnable weight matrix W ∈ Rd×d.
Consider embeddings for n input tokens as {ei}ni=1 ⊂ Rd and embeddings for c output tokens as
{ui}ci=1 ⊂ Rd. In contrast to Cabannes et al. (2024), we consider an additional “common noise”

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

output token c = n + 1, which is chosen for any input with probability α ∈ (0, 1). For any input
x ∈ [n], the target distribution pα(·|x) is defined by

pα(y|x) = (1− α) · 1{y = x}+ α · 1{y = c}. (38)

In other words, the last channel (c) for output is the common noise with probability α for any input.
The training dataset Dα consists of uniformly distributed inputs x ∈ [n], and outputs conditionally
sampled as y|x ∼ pα(·|x).
Given any pair of input and output tokens, the associative memory model takes the form

f(i, j;W) ≜ ⟨uj ,Wei⟩, ∀ i, j ∈ [n]× [c], (39)

When k ≤ d, we denote the rank-k approximation of f as f (k) by replacing W with W(k), where
W(k) is the rank-k approximation of W.

Training. During training, the dataset Dα is generated with non-zero noise probability α > 0. At
test time, the dataset D0 is without noise as α = 0, so the computed loss is called pure-label loss.
The model is trained with Gradient Descent (GD) subjected to cross-entropy loss.

Experiments with randomness. Assume both {ei}ni=1 and {ui}ci=1 are i.i.d. uniformly drawn from
sphere Sd−1. Also assume the model is initialized as Wi,j ∼ N (0, 1

d). Due to randomness from
embeddings and model initialization, let’s first conduct 20 runs of experiments to obtain significant
factors before moving the theoretical argument.

Note that only full models are trained, and we track loss for low-rank models by conducting SVD in
each step without manipulating training. In Figure 5, we illustrate the pure-label loss v.s. training
steps for models of different ranks, where n = 3, α = 0.03 and d = 8 or 12. It turns out, while the
full model (rank≥ 3) has a constant pure-label loss (∼ 0.03, dependent on α), the rank-2 model is
very likely to have a significant loss than the full model. Meanwhile, the larger d has more stable
results than small d.

0 500 1000 1500 2000
Training step

10 3

10 2

10 1

100

Lo
ss

Pure-label loss for rank-1,2,3,4 models: dim=12

0 500 1000 1500 2000
Training step

10 3

10 2

10 1

100

Lo
ss

Pure-label loss for rank-1,2,3,4 models: dim=8

rank-1
rank-2
rank-3
rank-4

Figure 18: Pure-label loss for rank-1,2,3,4 models with n = 3, α = 0.03 and d = 12 (left) or 8
(right). Only full models are trained, and we report low-rank results by conducting SVD in each step
without manipulating the training. In both figures, the experiments are run for 20 times to examine
the randomness. For each rank, we plot curves of the median, 25% and 75% out of 20 runs. It turns
out: i) rank-2 models are very likely to have significantly lower pure-label loss thant full models
(rank≥ 3), and ii) the larger dimension d has more stable results.

Therefore, we can qualify the following important factors for this model:

i. d v.s. n, c: when d ≫ n, c, random drawn embeddings tend to be orthogonal to each other, with
inner product in O(1/

√
d). If n, c = Ω(d), embeddings will be in strong correlations, making

the problem extremely difficult to understand. Cabannes et al. (2024) also discussed about such
particle interaction in associative memory.

ii. Low-rank subspace storing the noise. In Figure 18, the rank-1 subspace between the full
and rank-2 models is responsible to store the noise, removing which will induce a model
ideally predicting the ground-truth without noise. This is understandable if the embeddings are
orthogonal, as shown in Theorem 3.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

iii. α v.s. n. When n is large, orthogonal embeddings still induces a low-rank subspace storing
the noise, but α decides whether the low-rank subspace corresponds to the smallest singular
values of W. If not, it requires more careful manipulation of the spectrum instead of low-rank
approximation of W.

G.2 PROOF OF THEOREM 3

Now we present a theoretical analysis of this problem with some assumptions.

Assumption G.1 (Orthonormality). Embeddings of input and output tokens are orthonormal, i.e.,
e⊤i ej = 1{i = j},∀ i, j and u⊤

i uj = 1{i = j},∀ i, j.

Assumption G.2 (Initialization). The learnable matrix W is initialized from 0 when t = 0.

Theorem 5 (Restatement of Theorem 3). Assume Assumptions G.1 and G.2 hold, considering
n = 2, c = 3 and α ∈ (0.2, 0.4), we train the full model f(·, ·;W) with gradient flow. Denote
P (i, j;W) as the model’s predicted probability for output j conditioned on input i. Then, for t → ∞
and i ∈ {1, 2}, we have

P (i, j;W) = (1− α) · 1{j = i}+ α · 1{j = c},
P (i, j;W(1)) = (1−Θ(t−

1/2)) · 1{j = i}+Θ(t−
1/2) · 1{j = c}.

Remark 1. Note that here the assumption α ∈ (0.2, 0.4) is a technical choice. In experiments, any
value α ∈ (0, 0.4) still has the same result.

Proof. W.l.o.g., we assume the embeddings are standard basis in Rd. For any W, the gradient ∇WL
can be decomposed as

∇WL = γ1

[
1
−1
0

]
[1 −1 0] + γ2

[
1
1
−2

]
[1 1 0] . (40)

Since W initializes from zero, this implies W can always be decomposed with the same basis

W = β1

[
1
−1
0

]
[1 −1 0] + β2

[
1
1
−2

]
[1 1 0] . (41)

Then gradient flow gives the following ODE

β̇1 = −γ1 =
exp(−β1 + β2)− exp(β1 + β2)

exp(−β1 + β2) + exp(β1 + β2) + exp(−2β2)
+ 1− α

=
exp(−2β1)− 1

exp(−2β1) + exp(−β1 − 3β2) + 1
+ 1− α,

β̇2 = −γ2 =
3 exp(−2β2)

exp(−β1 + β2) + exp(β1 + β2) + exp(−2β2)
− 3α

=
3 exp(−β1 − 3β2)

exp(−2β1) + exp(−β1 − 3β2) + 1
− 3α.

(42)

Denoting a = −2β1, b = −β1 − 3β2, the ODE becomes

ȧ =
2− 2 exp(a)

exp(a) + exp(b) + 1
− 2 + 2α,

ḃ =
2− 8 exp(b)

exp(a) + exp(b) + 1
− 2 + 10α.

(43)

Lemma H.3 gives the solution as, when t → ∞,

a → − log(t)− log(1− α)(4− 2α), b → log
α

1− α
.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

For the full model, taking the scores W1,: of the first input token as an example, we have W11 =
β1 + β2,W12 = −β1 + β2,W13 = −2β2, so the margins are

W11 −W12 = 2β1 = −a,W11 −W13 = β1 + 3β2 = −b.

For the rank-1 model (assuming β1 > β2), the margins are

W
(1)
11 −W

(1)
12 = 2β1,W

(1)
11 −W

(1)
13 = β1.

The proof finishes by computing softmax on the margins.

H USEFUL LEMMAS

Lemma H.1. Let p be a data distribution on (x, y) ∈ Rd × [N]. Consider training data as m i.i.d.
samples D ≜ {(xi, yi)}mi=1 ⊂ Rd × [N + 1] from p. Consider the following classification problem,
with fixed output embeddings WU :

L̂(W) =
1

m

m∑
i=1

[l(yi,WUWxi)].

The gradients take the following form: denoting p̂W(k|xi) as the current predicted probability of
class k in [N + 1] classes for input xi,

∇WL̂(W) =
1

m

m∑
i=1

[
N+1∑
k=1

(p̂W(k|xi)− 1{yi = k})WU (k)x
⊤
i

]
.

When m → ∞, the above equation becomes

∇WL(W) =

N+1∑
k=1

p(y = k)WU (k)(µ̂k − µk)
⊤,

where µk ≜ E[x|y = k] and µ̂k ≜ Ex[
p̂W(k|x)
p(y=k) x].

Remark 2. This lemma is from Lemma 2 in Bietti et al. (2023).

Proof. Recall the form of the cross-entropy loss for classification with K classes:

l(y, ϵ) = −
K∑

k=1

1{y = k} log eξk∑
j e

ξj
.

Its derivatives take the form
∂l

∂ξk
(y, ξ) = s(ξ)k − 1{y = k},

where s(ξ)k = eξk∑
j eξj

.

The gradient of L is then given by

∇WL̂(W) =
1

m

m∑
i=1

[
N+1∑
k=1

∂l

∂ξk
(yi,WUWxi)∇W(WU (k)

⊤Wxi)

]

=
1

m

m∑
i=1

[
N+1∑
k=1

(p̂W(k|xi)− 1{yi = k})WU (k)x
⊤
i

]
.

When m → ∞, the above equation becomes

∇WL(W) =

N+1∑
k=1

WU (k)E[p̂W(k|x)x⊤]−
N+1∑
k=1

E[1{y = k}WU (k)E[x|y]⊤]

=

N+1∑
k=1

WU (k)E[p̂W(k|x)x⊤]−
∑
j,k

p(y = k)1{j = k}WU (k)E[x|y = j]⊤

=

N+1∑
k=1

p(y = k)WU (k)(µ̂k − µk)
⊤.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Lemma H.2. Consider a sequence {St}t≥1 with St = at · t where a ̸= 1. Then
∑

1≤t≤T St =
a(1−aT)
(a−1)2 + aT+1·T

a−1 .

Proof. Denote Xt ≜
∑

1≤t≤T St. Then we have a ·Xt =
∑

2≤t≤T+1 a
t · (t− 1). Hence, it holds

(a− 1)Xt = −
∑

2≤t≤T at − a+ aT+1 · T = −a(1−aT)
1−a + aT+1 · T. Therefore, we have

Xt =
a(1− aT)

(a− 1)2
+

aT+1 · T
a− 1

.

Lemma H.3. Consider the following ODE with with a(0) = b(0) = 0 and α ∈ (0.2, 0.4),

ȧ =
2− 2 exp(a)

exp(a) + exp(b) + 1
− 2 + 2α,

ḃ =
2− 8 exp(b)

exp(a) + exp(b) + 1
− 2 + 10α.

Then, when t → ∞, we have

a → − log(t)− log(1− α)(4− 2α), b → log
α

1− α
.

Proof. The ODE can be re-written as

ȧ = 2 · (α− 2) exp(a) + (α− 1) exp(b) + α

exp(a) + exp(b) + 1
≜

2D

exp(a) + exp(b) + 1
,

ḃ = 10 ·
(α− 1

5) exp(a) + (α− 1) exp(b) + α

exp(a) + exp(b) + 1
≜

10E

exp(a) + exp(b) + 1
.

At t = 0, it holds ȧ(0) < 0, ḃ(0) < 0 since D = 3α− 3 < 0, E = 3α− 6
5 < 0. Hence, a and b start

to decrease from t = 0. The ending of the decreasing happens when one of D and E gets positive.
Let’s show D and E will never be positive when α ∈ (0.2, 0.4) by contradiction.

Assume time T1 is when one of E and E equals to 0 for the first time. This means E = 0, because,
for any time t, it always holds D < E since exp(a) > 0 for any a ∈ R. Then at T1, we have
ȧ < 0, ḃ = 0, which means exp(a) will decrease for any small time window ∆t > 0 and exp(b)
stays unchanged. Together with α > 0.2, this means it has E < 0 again at time T1 +∆t. Therefore,
it is possible for E to be 0, but E will never be positive. Meanwhile, this also guarantees D will
always be negative because D < E.

Then, we make an observation that when D is always negative and E is always non-positive, the
decreasing nature of a will have D ≈ E when t → ∞ by exp(a) ≈ 0. This implies b = log α

1−α .
Then, by taking exp(a) = β · t−γ , the ODE gives

−γ
1

t
=

(2α− 4)β · t−γ

β · t−γ + 1
1−α

,

which gives γ = 1, β = 1
(1−α)(4−2α) .

Therefore, when t → ∞, we have

a → log

(
1

(1− α)(4− 2α)
t−1

)
, b → log

α

1− α
.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

I INPUT EXAMPLES FOR LLMS

I.1 EXAMPLES FOR PREPOSITIONS

For experiments in Appendix C.1, we use two synthetic datasets: inputs are 30 prepositions, and
inputs are 40 incomplete sentences ending with a preposition.

The 30 prepositions are:

"about", "above", "across", "after", "against", "along", "around", "at", "before", "behind", "below",
"beneath", "beside", "between", "by", "during", "for", "from", "in", "inside", "into", "near", "of",
"on", "over", "through", "to", "under", "with", "without".

Generated by Claude 3 (Anthropic, 2024), the 40 incomplete sentences are:

["Inspired painter gazed at pristine canvas, envisioning next creation about", "Children’s delighted
squeals filled yard as they frolicked, stumbling across", "Singer inhaled deeply, calming nerves before
gracing stage before", "Ominous storm clouds amassed, promising downpour that would soon roll
in", "Awestruck trekker admired breathtaking summit vista, looking over", "Rich aroma of freshly
roasted beans permeated cozy cafe, enticing during", "With deft sleight of hand, illusionist made
coin vanish, leaving spectators in awe without", "Majestic oak stood tall, branches reaching skyward
above", "Gentle waves caressed shoreline, soothing rhythm lulling along", "Meticulous investigator
scoured crime scene, searching for any evidence left behind", "Radiant sunbeams filtered through
sheer curtains, warming hardwood floor beneath", "Concert pianist’s nimble fingers glided across
ivory keys, room resonating with melody around", "Crickets’ evening chorus filled silent field from
nearby meadow during", "Jubilant laughter resounded down corridor as jovial group headed towards
celebration without", "Struggling poet tapped pen restlessly, seeking words to capture elusive emotion
beneath", "Soothing patter of raindrops danced on windowpane, inviting serene relaxation with",
"Mouthwatering scent of fresh bread beckoned passersby into cozy bakery without", "Mighty waves
thundered against jagged cliffs, echoing roar along rugged shoreline around", "Seasoned trekker
carefully navigated winding trail, cautiously avoiding exposed roots and rocks beneath", "Graceful
ballerina flowed across stage, movements blending seamlessly with melody during", "Crackling
campfire cast dancing shadows across gathered faces around", "Vibrant brush strokes danced across
canvas, bold hues bursting into life before", "Photographer framed breathtaking sunset, capturing
fleeting beauty over glistening ocean without", "Stern librarian hushed raucous group, reminding
them to stay quiet inside", "Ink flowed from author’s pen, words brimming with raw passion as page
filled during", "Earthy aroma of freshly steeped tea perfumed air, inviting moment of serenity along",
"Masterful guitarist’s fingers danced nimbly across strings, room alive with haunting melody around",
"Meticulous chef artfully garnished plate, adding delicate finishing touches over", "Indomitable
marathoner pushed through punishing final stretch, fortitude driving every stride before", "Engrossed
scientist examined specimen’s intricate structures through microscope beneath", "Nervous thespian
steadied breathing, striding into dazzling spotlight, delivering flawless performance with", "Skilled
artist’s pencil glided gracefully, deftly capturing subject’s essence without", "Weary hiker paused
to catch breath, marveling at sweeping panorama from lofty peak above", "Deep in thought, writer
drummed fingers, seeking perfect phrasing to convey profound emotion without", "Lost in reverie,
violinist swayed gently, fingers dancing across delicate strings during", "Painter’s brushstrokes burst
into radiant life, canvas ablaze with vivid sunset hues over", "Adept photographer framed picturesque
scene, preserving landscape’s beauty without", "World-renowned chef meticulously garnished plate,
each component strategically placed around", "Dedicated researcher scrutinized specimen under
microscope, documenting minute details beneath", "Seasoned actor inhaled deeply, embodying
character as bright lights engulfed stage with",].

I.2 MORE EXAMPLES OF FACTUAL RECALL

We consider more examples of factual recall with pairs of input and output shown in Table 5.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Table 5: Inputs and Outputs of Factual Knowledge
Input Target output
The Great Wall is located in China
Mount Kilimanjaro is located in Tanzania
The Nobel Prize is awarded in Sweden
The Statue of Liberty stands in New York Harbor
Vatican City is enclosed within Rome
The Acropolis is situated in Athens
The Sydney Opera House is located on Bennelong Point
The Galápagos Islands belong to Ecuador
The Aurora Borealis can be seen in Norway
The Amazon River flows through Brazil
The Andes Mountains extend through Chile
Machu Picchu is found in Peru
The Kremlin is located in Moscow
Uluru is a landmark found in Australia
Petra is an archaeological city in Jordan
Angkor Wat is located in Cambodia
The city of Toronto is in Canada
The city of Barcelona is in Spain
The city of Mumbai is in India
The Eiffel Tower is located in Paris

J SYNTHETIC IOI TASK

Data and task. Here we consider a synthetic data model similar to the IOI task Wang et al. (2022),
with additional noise. Consider a vocabulary V = {1, 2, . . . , N,N +1}. The token τ ≜ N +1 is the
generic noise token. We fix a trigger token q ∈ [N], which governs in-context recall, and a context
length T . Each sequence of tokens z1:T = [z1, z2, . . . , zT] is generated as follows:

i. Sample a correct output token ȳ and a different distractor token yD uniformly in [N].

ii. Sample three indices i1, i2, i3 ∈ [T − 2] such that their distances are no smaller than 2. (This is
for non-overlapping.)

iii. Set zi1 = zi2 = zi3 = q. Among the three indices i1 + 1, i2 + 1, i3 + 1, random select one of
them with zik+1 = ȳ with the other two as zik+1 = yD.

iv. Set zT = q and sample zT+1 ∼ pα,ȳ(·) with

pα,ȳ(x) =

1− α, if x = ȳ,

α, if x = τ,

0, otherwise.

v. Random fill with tokens from V \{q} into the remaining positions in [T +1]\{i1, i1+1, i2, i2+
1, i3, i3 + 1, T, T + 1}.

The key difference between the above data and noisy in-context recall in Section 3 is that, in additional
to detecting the tokens ȳ and yD after the trigger q, this task also requires counting to decide which
of ȳ and yD appear more. This mechanism is exactly the definition of the correct IO token in Wang
et al. (2022).

Most of the other settings are the same as that in Section 3, including the training procedure, the
architecture of a transformer layer, dimensionality and the vocabulary size.

Results. Figure 19 shows the test performance for models with layers L = 3, 4, 5, 6, 7, where
the models are trained with SGD. Dropping the last-layer MLP consistently improves the test
performance across all models. Figure 20 shows the test performance for L = 3, 4, 5 trained with
Adam (Kingma, 2014). Truncating the last MLP’s input weights with ρ = 0.01 significantly

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

3 4 5 6 7
L-layer model

0.5

1.0

1.5

2.0

Te
st

 L
os

s

Test Loss vs Model Layers

3 4 5 6 7
L-layer model

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Test Accuracy vs Model Layers

Full Drop L-th MLP Drop (L 1)-th MLP

Figure 19: Synthetic IOI trained with SGD: test loss and accuracy for transformers with different
layers. Dropping the last-layer MLP consistently improves the test accuracies across all models.

improves the performance for L = 3, 4. We also note that the model fails to converge for L = 5,
possibly because we do not use any normalization technique in the architecture, so the Adam training
is less stable for deep transformers.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000
Training steps

100

101

Te
st

 L
os

s
3 layers: Test Loss along Training

0 5000 10000 15000 20000
Training steps

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

3 layers: Test Accuracy along Training

Full Last MLP: = 0.01 Last MLP: = 0

0 5000 10000 15000 20000
Training steps

101

Te
st

 L
os

s

4 layers: Test Loss along Training

0 5000 10000 15000 20000
Training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y
4 layers: Test Accuracy along Training

Full Last MLP: = 0.01 Last MLP: = 0

0 5000 10000 15000 20000
Training steps

101

Te
st

 L
os

s

5 layers: Test Loss along Training

0 5000 10000 15000 20000
Training steps

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

5 layers: Test Accuracy along Training

Full Last MLP: = 0.01 Last MLP: = 0

Figure 20: Synthetic IOI trained with Adam: test loss and accuracy for transformers with layers
L = 3, 4, 5. Truncating the last-layer MLP’s input weights with ρ = 0.01 improves the test
performances for L = 3, 4, while the model fails to converge for L = 5.

64

	Introduction
	Preliminaries
	Reasoning from Context
	Truncating Weights with LASER sharma2023truth

	Two-layer Transformer on Noisy In-context Recall
	Feed-forward layers store the generic noise
	Attention attends to in-context targets and avoids noise
	No feed-forward Layers: value matrix stores generic noise association

	Experiments
	An Investigation on GPT-2 Small and Pythia Models
	The effect of truncating feed-forward layers on GSM8K

	Discussion and Limitations
	Contributions and Implications
	How Does the Two-layer Model Solve Noisy In-context Recall?
	Training settings
	Summarizing: roles of key components in the two-layer transformer
	How does attention attend less towards the noise token?
	Multiple Triggers
	Architectural Choices
	Training Details about Experiments

	More Experiments on Pythia
	Learning Association with Prepositions
	LASER Parameters for Evaluated LLMs
	Other Pythia models on IOI and More Examples of Factual Recall

	Proof of Theorem 1
	Gradient for the Feed-forward Matrix WF
	Gradient for the Value Matrix WV
	Completing the Proof of Theorem 1

	Proof for First and Second moments in Lemma D.2
	When =q
	When =q

	Proof of Theorem 2: Training Dynamics of the Attention Layer
	Linear Associative Memory
	Experiments and Discussions
	Proof of Theorem 3

	Useful Lemmas
	Input Examples for LLMs
	Examples for Prepositions
	More Examples of Factual Recall

	Synthetic IOI Task

