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ABSTRACT

The goal of general-purpose robotics is to create agents that can seamlessly adapt
to and operate in diverse, unstructured human environments. Imitation learning
has become a key paradigm for robotic manipulation, yet collecting large-scale
and diverse demonstrations is prohibitively expensive. Simulators provide a cost-
effective alternative, but the sim-to-real gap remains a major obstacle to scalability.
We present RoboTransfer, a diffusion-based video generation framework for syn-
thesizing robotic data. By leveraging cross-view feature interactions and globally
consistent 3D geometry, RoboTransfer achieves multi-view geometric consistency
while enabling fine-grained control over scene elements, including background
editing and object replacement. Experiments show that RoboTransfer generates
videos with improved geometric consistency and visual fidelity, and that policies
trained on this data generalize better to novel, unseen scenarios. The code and
datasets will be released upon acceptance.

1 INTRODUCTION

Imitation Learning (IL) has become a fundamental approach for visuomotor control in robotic
manipulation (Zhao et al., 2023). However, collecting large-scale real-world robot demonstrations is
prohibitively expensive (Brohan et al., 2022; 2023). Simulated environments offer a cost-effective
alternative (Xiang et al., 2020; Mu et al., 2025), but the scarcity of assets and sim-to-real gap(Sadeghi
et al., 2017; Mehta et al., 2020) make it extremely challenging to scale.

Controlled Synthetic Data

Real Sim

Robot Demonstration Data

Sim2RealReal2Real

Appearance ConditionsGeometry Conditions

RoboTransfer Generation

Real Robot Policy Trained with Generated Data

Towel Folding Spoon Pick&Place

Figure 1: RoboTransfer Overview: Collecting real-world data is expensive, while simulated data
often lacks realism. RoboTransfer generates realistic data with multi-view consistency. Experiments
demonstrate that the synthesized data enhances real robot policy performance.
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Table 1: Comparison of different methods for robotic data generation. RoboTransfer is the only one
that provides temporal and multi-view consistency while offering fine-grained control.

Method Model Type
Generation Consistency Control Level

Temporal Multi-View Background Object Environment

ROSIE (Yu et al., 2023) Image Diffusion ✗ ✗ ✗ ✔ ✔

RoboEngine (Yuan et al., 2025) Image Diffusion ✗ ✗ ✗ ✔ ✗

Cosmos-Transfer1 (Alhaija et al., 2025) Video Diffusion ✔ ✗ ✗ ✗ ✔

RoboTransfer (Ours) Video Diffusion ✔ ✔ ✔ ✔ ✔

Recently, diffusion models (Ho et al., 2020) have gained attention as a promising method to syntheti-
cally generate realistic and diverse data. To expand robotic datasets without the need for extensive
real-world data collection, ROSIE (Yu et al., 2023) employs text-guided image generation models
trained on real-world data. However, it performs image augmentation on a per-frame basis, which
leads to a loss of temporal and spatial consistency. In contrast, Cosmos-Transfer (Alhaija et al., 2025)
generates photorealistic data using a video diffusion model conditioned on segmentation and depth,
which helps preserve geometric consistency.

Despite rapid advancements, two key challenges persist. First, robotic systems often rely on single-
view observations, limiting their perception. Multi-view observation is commonly used to address
this, but generating consistent multi-view results remains a significant challenge for video generative
models. Second, robot manipulation tasks are complex and interactive, and precisely controlling
these tasks via textual input alone, as seen in text-to-video frameworks (Blattmann et al., 2023; Zheng
et al., 2024), remains a substantial challenge.

To address these challenges, we introduce RoboTransfer, a geometry-consistent video diffusion frame-
work tailored for robotic visual policy transfer (Figure 1). As summarized in Table 1, RoboTransfer is,
to the best of our knowledge, the first framework to guarantee multi-view generation consistency in
robotic data synthesis, while also offering fine-grained and disentangled control over both background
and object attributes.

The main contributions are as follows:

1. We propose RoboTransfer, a video data generation framework for robotic manipulation that
ensures multi-view consistency while enabling fine-grained, disentangled control.

2. We introduce a novel data construction pipeline that automatically decomposes real-world
robot demonstrations into the geometric and appearance conditions.

3. We demonstrate that RoboTransfer generates multi-view videos with substantially improved
generation consistency, and that policies trained on this data generalize more effectively to
novel, unseen environments.

2 RELATED WORK

2.1 VISUAL GENERALIZABLE IMITATION LEARNING

Imitation Learning (IL) has become a cornerstone for visuomotor control in robotic manipulation,
with deep networks mapping raw visual inputs to motor commands based on demonstrations (Chi
et al., 2023; Kim et al., 2024; Zhao et al., 2023; Brohan et al., 2023). However, collecting large-scale
task-specific data is prohibitively expensive, leading to the use of auxiliary sources such as human
demonstration videos (Grauman et al., 2022; Bi et al., 2025) and operational logs from other platforms
(O’Neill et al., 2024; Khazatsky et al., 2024; Bu et al., 2025). These sources introduce domain-specific
biases and distributional shifts, which can degrade IL policy performance when transferred to new
environments. While simulators can generate large quantities of labeled frames (Todorov et al., 2012;
Xiang et al., 2020; Geng et al., 2025; Mu et al., 2025), discrepancies in physics modeling, rendering
fidelity, and scene composition hinder sim-to-real transfer. Domain randomization attempts to close
this gap (Laskin et al., 2020; Hansen et al., 2020; Kostrikov et al., 2020; Akkaya et al., 2019), but
it typically only applies color perturbations across the entire image, without capturing localized
or structurally meaningful variations. In this work, we leverage a generative model to synthesize
photorealistic multi-view videos for manipulations, significantly enhancing policy robustness and
enabling seamless transfer to novel environments.
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2.2 GENERATION MODELS IN EMBODIED AI

With the rapid advancement of generative models (Kong et al., 2024; Wang et al., 2025a; Blattmann
et al., 2023; Alhaija et al., 2025; Yang et al., 2024; Zheng et al., 2024; Fu et al., 2024; Zhang et al.,
2025; Li et al., 2025; He et al., 2025), there is a growing trend toward leveraging generated data to
bridge the gap between synthetic environments and real-world physical applications (Zhu et al., 2024).
In particular, domains like autonomous driving have seen increasing adoption of generative techniques,
as demonstrated by (Wang et al., 2024a; Zhao et al., 2025b; Hu et al., 2023; Wang et al., 2024b;
Gao et al., 2023; 2024; Zhao et al., 2024a; Ni et al., 2024; Zhao et al., 2025a). Similarly, in robotic
scenarios, where real-world data collection is often prohibitively expensive and time-consuming,
generative data has proven to be highly beneficial. Models such as UniSim (Yang et al., 2023),
UniPi (Du et al., 2023), and RoboDreamer (Zhou et al., 2024) synthesize future robot behaviors
via text prompts, which are then translated into actionable commands using inverse dynamics
models. However, purely video-based generation methods often suffer from spatial and temporal
inconsistencies, leading to degraded performance in downstream action prediction and planning.
To address this, TesserAct (Zhen et al., 2025) proposes a multi-modal generation pipeline that
simultaneously synthesizes RGB, depth, and normal videos, enabling the reconstruction of coherent
4D scenes. This framework ensures both spatial and temporal consistency in robotic environments
and supports policy learning that significantly surpasses prior video-only world models. Moreover,
data generalization remains a critical challenge in robot learning. Techniques like ReBot (Fang et al.,
2025) and RoboEngine (Yuan et al., 2025) adopt background inpainting to diversify environmental
textures, while Cosmos-Transfer (Alhaija et al., 2025) utilizes video-to-video translation to enrich
overall scene appearance. Despite their success, these approaches lack fine-grained control over
foreground and background textures, often resulting in synthetic data distributions misaligned with
real-world tasks, especially when training policy models. Additionally, their inability to ensure
multi-view consistency limits their scalability and effectiveness in complex, robotic settings.

3 METHODS

We introduce RoboTransfer, a framework designed for the controllable generation of multi-view
videos to support the training of policy models. By providing explicit control over both scene
geometry and appearance, RoboTransfer enables the synthesis of video data with precisely defined
distributions. This fine-grained control allows for the generation of diverse training scenarios, which
are critical for improving the generalization of policy models. In the remainder of this section, we
first present the preliminaries of video diffusion models in Sec. 3.1. Then, we describe the framework
of RoboTransfer in Sec. 3.2. Finally, the dataset construction pipeline is elaborated in Sec. 3.3.

3.1 VIDEO DIFFUSION MODEL PRELIMINARIES

Diffusion-based methods for controllable video generation model the process as a gradual refinement
of a noise latent ϵ into a clean video latent x0, under the guidance of spatially aligned conditions ys
(e.g., depth map) and unstructured conditions yu (e.g., CLIP embedding). Popular approaches in this
paradigm include Flow Matching (Lipman et al., 2022), DDPM (Ho et al., 2020), and EDM (Karras
et al., 2022). In the case of EDM, the learning objective is formulated as:

L(Dθ, σ) = Ex0,ys,yu

[
∥x0 −Dθ (E(x0 + n), τu(yu), τs(ys), σ)∥22

]
. (1)

Here, x0 ∼ pdata denotes a clean sample drawn from the dataset, and n ∼ N (0, σ2I) represents
Gaussian noise. E denotes the encoder component of a VAE (Kingma et al., 2013), and the denoising
network Dθ is conditioned on the noise level σ and encoded conditions τu(yu), τs(ys). To encourage
stable learning across varying noise magnitudes, the total training objective aggregates the per-noise
loss via a weighted expectation:

L(Dθ) = Eσ

[
λ(σ)

exp(u(σ))
L(Dθ, σ) + u(σ)

]
, (2)

λ(σ) =
σ2 + σ2

data

(σ · σdata)2
, (3)

ln(σ) ∼ N (Pmean, P
2
std). (4)
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Multi-view Consistent Modeling Generated Video for Downstream Tasks

Figure 2: The RoboTransfer framework performs multi-view consistent modeling to jointly reason
across viewpoints. It represents geometry with metric depth and normal maps, and encodes appearance
using reference backgrounds and object-specific images for detailed control over appearance.

In this setup, σdata denotes the empirical standard deviation of the data, while the distribution of σ is
governed by the hyperparameters Pmean and Pstd. The weighting function λ(σ) ensures that all noise
levels contribute proportionally during the initial stages of training.

3.2 RoboTransfer FRAMEWORK

The overall framework of RoboTransfer is illustrated in Figure 2. To ensure multi-view consistency
during generation, we perform multi-view consistent modeling, enabling the generation process to
reason jointly over information from different viewpoints. On the conditions side, RoboTransfer in-
corporates fine-grained control by encoding both geometric and appearance information. Specifically,
we represent geometry using metric depth maps and surface normal maps, capturing the underlying
3D structure of the scene. Meanwhile, the appearance is encoded using reference background images
and object-specific images, providing detailed control over texture, color, and contextual appearance.
In the following sections, we first introduce the multi-view consistent modeling and then describe the
encoding mechanisms for geometric and appearance conditions, respectively.

Multi-view Consistent Modeling. Robotic manipulation often relies on multi-view camera setups
to capture a scene in parallel. To generate multi-view consistent videos for downstream tasks,
RoboTransfer leverages the multi-view in-context learning capabilities (Zhao et al., 2025b; Huang
et al., 2024) inherently present in pretrained diffusion models. Specifically, given N synchronized
videos {V1, V2, ..., VN} from different viewpoints, we concatenate them along the width dimension
and encode the joint information using a Variational Autoencoder(VAE) encoder E :

x0 = E([V1, V2, . . . , VN ]), (5)

where [V1, V2, . . . , VN ] represents the concatenated multi-view video sequence. This modeling
approach leverages the spatial reasoning capabilities of existing video diffusion backbones, requiring
no structural modifications, while enabling fast convergence and high-quality, view-consistent video
generation in robotic manipulation settings.

Geometry Conditions Injection. Recent video generation models primarily learn spatiotemporal
coherence through data-driven approaches such as temporal attention (Blattmann et al., 2023; Zheng
et al., 2024) or full attention (Wang et al., 2025a; Kong et al., 2024; Alhaija et al., 2025). While
effective at capturing pixel-level dynamics, these methods lack an explicit understanding of under-
lying 3D geometry, limiting their applicability in robotic environments. To address this limitation,
RoboTransfer explicitly incorporates geometry conditions to enhance the model’s awareness of scene
structure and depth continuity. Specifically, we utilize depth and surface normal videos as geometric
conditions. These two types of geometric cues are complementary; depth maps provide information
about spatial distances from the camera, while normal maps encode local surface orientations. When
combined, they offer a richer and more holistic description of scene geometry (see Sec. 3.3 for details
on data acquisition). Since the depth and surface normal sequences are spatially aligned with their
corresponding RGB views, we leverage the VAE encoder composed of stacked convolutional layers
that jointly downsample and encode geometric cues from depth and normal videos. The resulting
geometry-aware representation is concatenated with the noise latents along the channel dimension, en-
abling diffusion-based video generation to be precisely guided by consistent and physically plausible
3D cues throughout the generation process.
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Robot Demonstration Data Appearance Conditions
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Figure 3: RoboTransfer data construction pipeline generates image pairs with Geometry and Ap-
pearance conditions. Geometry conditions (left) with metric depth and normals from demonstration
videos and appearance conditions (right) from keyframes. A VLM-based descriptor generates object
descriptions, which are processed by Grounding-SAM to create per-object masks.

Appearance Conditions Injection. To enable fine-grained control over the generated textures,
RoboTransfer introduces texture conditions from two complementary perspectives: background
appearance and object appearance. Specifically, we use a background reference image and a set
of object reference images as condition signals to guide the generation process toward faithful
reproduction of scene textures and object-level details. A key challenge in appearance control is
ensuring compatibility with the geometry conditions. Naïvely combining appearance and geometry
inputs may introduce conflicts (e.g., mismatched depth and texture), thereby weakening both the
geometry consistency and the visual fidelity of generated results. To address this, we carefully curate
the appearance reference images, resulting in a background reference image Cb and object reference
images Co that do not contradict the geometric priors (see Sec. 3.3 for details). For background
appearance, we employ a VAE encoder to compress Cb into a latent representation that is spatially
aligned with the generation latents. This encoded background appearance is then concatenated with
the latent inputs to control the global texture and background style of the output video. In contrast,
object appearance presents additional challenges due to the variable number and spatial distribution
of objects in the scene. Therefore, object images are treated as unstructured conditions. We encode
each object’s appearance using CLIP (Radford et al., 2021), which produces a global embedding used
to guide the generation via cross attention. This design allows flexible and scalable conditioning on
diverse object appearances while preserving compatibility with the structured geometry inputs.

3.3 DATASET CONSTRUCTION FROM REAL ROBOTIC DEMONSTRATION DATA

Data construction is central to our framework, where real-world recording data is decomposed into
high-quality triplets for training Robotransfer, consisting of Geometry Conditions, Appearance
Conditions, and ground-truth images. The overall pipeline is illustrated in Figure 3.

Geometry Conditions Construction Starting from robotic demonstration data with two wrist
cameras and one head camera. To enforce spatial and temporal consistency, we incorporate geometric
cues such as depth and surface normals. Since some robots only have RGB sensors and raw depth
maps from RGB-D sensors are often noisy, we use a state-of-the-art depth estimator (Chen et al.,
2025; Wang et al., 2025b) to produce consistent depth maps. For unmetric depth outputs, we align
the estimated scale with the RGB-D sensor using robust least-squares fitting to ensure global spatial
accuracy. For surface normals, we compute per-frame estimates using state-of-the-art monocular
normal estimators (He et al., 2024; Wang et al., 2025b), offering conditions for detailed geometry.

Appearance Conditions Construction. To enable controllable data generation with the diffusion
model, we sample multiview RGB keyframes as appearance conditions. A VLM-based descriptor
generates scene and object descriptions, which guide the Grounding-SAM module (Ren et al., 2024)
to detect and segment per-object masks. To obtain clean background references, the segmented
objects are inpainted in the original images, producing plausible object-free scenes (e.g., an empty
tabletop). For object-level conditions, the segmented masks are further processed with the CLIP
model (Radford et al., 2021) to extract semantic embeddings.
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Table 2: Experiment comparison on different geometry conditions of RoboTransfer: It shows that
combining metric depth and normal maps yields the best consistency across all views and metrics.

Model Camera RMSE ↓ Abs.Rel. ↓ Sq.Rel. ↓ Mean Err. ↓ Med.Err. ↓ Pix.Mat. ↑ FVD ↓
RoboTransfer [D.S.] left 0.074 0.124 0.020 4.86 2.88 142.90 218.51
RoboTransfer [D.P.] left 0.054 0.090 0.010 3.91 2.28 149.68 123.31
RoboTransfer [Metric D.P.] left 0.049 0.081 0.008 3.48 1.99 183.26 112.43
RoboTransfer [Metric D.P. + N.] left 0.047 0.079 0.008 3.31 1.92 202.03 107.43
RoboTransfer [D.S.] head 0.182 0.074 0.031 3.51 1.58 – 153.76
RoboTransfer [D.P.] head 0.132 0.053 0.015 3.05 1.43 – 95.89
RoboTransfer [Metric D.P.] head 0.134 0.054 0.015 2.93 1.40 – 103.32
RoboTransfer [Metric D.P. + N.] head 0.133 0.054 0.015 2.86 1.39 – 101.17

RoboTransfer [D.S.] right 0.090 0.137 0.025 4.93 2.91 40.70 396.33
RoboTransfer [D.P.] right 0.072 0.103 0.016 4.14 2.36 56.02 262.96
RoboTransfer [Metric D.P.] right 0.064 0.090 0.011 3.74 2.11 65.45 226.76
RoboTransfer [Metric D.P. + N.] right 0.058 0.087 0.009 3.55 2.00 75.67 220.12

4 EXPERIMENTS FOR SYNTHESIS QUALITY

To evaluate the synthesis quality of RoboTransfer, including multi-view geometric consistency and
controllability, we perform both quantitative and qualitative analyses. In this section, we first present
the evaluation metrics and analysis of the synthesis quantity in Sec. 4.1. Then, the synthesis quality
results are presented in Sec. 4.2.

4.1 SYNTHESIS QUANTITATIVE ANALYSIS

Implementation Details. RoboTransfer is fine-tuned from the pre-trained SVD (Blattmann et al.,
2023) model. During inference, we use the EDM scheduler (Karras et al., 2022) to perform 30
denoising steps and apply classifier-free guidance. More details are provided in the appendix.

Evaluation Metrics. We evaluate the generated videos from multiple perspectives, including multi-
view consistency, geometric consistency, and semantic consistency. For multi-view consistency,
we follow (Bai et al., 2024) and utilize the state-of-the-art image matching method (Shen et al.,
2024) to compute the number of matched pixels (Mat.Pix.) between adjacent views (i.e., left-to-
center and right-to-center). For geometric consistency, we adopt the evaluation framework from
Cosmos-Transfer (Alhaija et al., 2025), which assesses depth and surface normal alignment. For
depth prediction, we compute scale-invariant metrics including Root Mean Squared Error (RMSE),
Absolute Relative Error (Abs.Rel.), and Squared Relative Error (Sq.Rel.). For normal estimation,
we report the Mean Angular Error (Mean Err.) and Median Angular Error (Med. Err.). In terms
of semantic consistency, we measure appearance controllability using CLIP (Radford et al., 2021)
similarity. For background-level similarity, we compute the CLIP cosine similarity between a
reference background image and each generated frame (BG. Sim.). For foreground object similarity,
we use GroundingDINO (Liu et al., 2024a) and SAM2 (Ravi et al., 2024) to segment objects in each
generated frame and compute their CLIP similarity with a reference image (Obj. Sim.). Due to
motion and occlusion in the wrist-mounted (left and right) views, object tracking becomes unreliable.
Therefore, we evaluate this metric only on the center view to ensure accuracy. All the above metrics
are computed on a per-frame basis, and we report the average value across all frames as the final
score. Additionally, we compute the FVD (Unterthiner et al., 2019) between the generated and real
videos to further assess the overall realism and temporal coherence of the generated data.

Geometry Consistency Analysis. We first validate the geometric consistency in RoboTransfer’s
generative capability. As shown in Table 2, directly using raw depth sensor data (D.S.) as a conditional
input introduces considerable noise, which adversely affects the generation quality. This degradation is
evident across all three views in terms of depth accuracy, surface normals, and multi-view consistency.
In contrast, employing model-predicted (Chen et al., 2025) depth (D.P.) results in smoother depth
maps, which serve as a more stable supervisory signal for training the generative model. Consequently,
the generated videos exhibit significantly better geometric consistency. Specifically, compared to
D.S.-based generation, D.P.-based conditions relatively improve the RMSE and Mean Err. of the
middle view by 27.4% and 14.2%, and increase Pix.Mat. of the middle and left/right views by 4.7%
and 37.6%, respectively. Further improvements are observed when we incorporate metric predicted
depths (Metric D.P.) to enforce a consistent depth scale across multiple views. This multi-view scale
alignment further enhances geometric consistency, leading to relative improvements of 22.4% and
16.8% in Pix.Mat. of left and right views. The Pix.Mat. is omitted for the head camera since it
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Table 3: Experiment comparison on different appearance conditions of RoboTransfer.

Bg. Inpaint Obj. Split Camera BG. Sim. ↑ Obj. Sim. ↑ RMSE ↓ Med.Err. ↓ Pix.Mat. ↑ FVD ↓
left 0.796 – 0.051 1.94 191.59 117.25

✓ left 0.802 – 0.049 1.92 198.32 119.65
✓ left 0.797 – 0.050 1.93 196.85 118.22

✓ ✓ left 0.805 – 0.047 1.92 202.03 107.43
head 0.712 0.847 0.137 1.46 – 108.65

✓ head 0.719 0.845 0.135 1.41 – 105.66
✓ head 0.712 0.855 0.136 1.42 – 105.54

✓ ✓ head 0.720 0.858 0.133 1.39 – 101.17
right 0.753 – 0.064 2.12 71.71 226.84

✓ right 0.762 – 0.060 2.04 72.44 223.91
✓ right 0.754 – 0.061 2.05 72.68 222.11

✓ ✓ right 0.764 – 0.059 2.00 75.67 220.12

remains static. Finally, combining normal and depth as joint conditions (Metric D.P.+N.) provides
complementary geometric cues, yielding the best overall performance across all geometric metrics.

Appearance Consistency Analysis. We then evaluate RoboTransfer’s capability in controlling visual
appearance. As shown in Table 3 (row-1 and row-2 of all three camera views), we observe that
directly conditioning on background images without inpainting can corrupt the geometric cues. In
contrast, inpainting the background before conditioning not only preserves the geometric structure
but also improves appearance consistency, leading to ∼ 1% relative improvements in RMSE, median
error, and background similarity. Comparing row-1 and row-3 of the head camera view, we examine
object-level appearance control. In row-1, the entire image with all the objects is encoded using a
global CLIP feature. In contrast, row-3 applies a finer-grained approach by masking and encoding
each object individually, followed by feature concatenation. These object-wise conditions lead
to a 1% improvement in object CLIP similarity, indicating better control over individual object
appearances. Finally, row-4 of all three camera views demonstrates that combining background
inpainting with object-wise CLIP encoding achieves the best performance in both foreground and
background appearance control. This setup yields the highest CLIP similarity scores for both regions,
confirming the effectiveness of jointly modeling structured and unstructured visual components.

4.2 SYNTHESIS QUALITATIVE RESULT

Real-to-Real Synthesis. We demonstrate that RoboTransfer enables controllable manipulation of
both foreground and background appearance while preserving geometric and multi-view consistency
across camera views. As shown in Figure 4, RoboTransfer successfully modifies the background
appearance while retaining the foreground object’s texture and scene geometry. Figure 5 illustrates
that the model can alter the foreground appearance without affecting the background or spatial layout.
Finally, Figure 6 demonstrates the model’s ability to jointly edit both foreground and background
elements. All visualizations confirm that RoboTransfer maintains multi-view consistency throughout
the generated scenes. More qualitative results are provided in the appendix.

Generation with Background 1

Generation with Background 2

Generation with Background 1

Generation with Background 2

Figure 4: Visualizations of RoboTransfer with different background reference images.
Original Video

Generated Video with New Objects

Original Video

Generated Video with New Objects

Figure 5: Visualizations of RoboTransfer with different object reference images.
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Original Video

Generated Video with New Background and Objects

Original Video

Generated Video with New Background and Objects

Figure 6: Visualizations of RoboTransfer with different background and object reference images.

Sim-to-Real Synthesis In simulation, per-view geometry conditions can be obtained at no additional
cost. As shown in Figure 7, RoboTransfer generates photorealistic videos from simulated geometry
inputs, including out-of-distribution cases. This Sim-to-Real paradigm reduces reliance on real-world
geometry data, thereby better supporting downstream robotic learning tasks.

Original Video

Generated Video

Original Video

Generated Video

Figure 7: Visualizations of RoboTransfer Sim-to-Real generation results.

5 REAL ROBOT EXPERIMENTS

To evaluate the effectiveness of RoboTransfer, we conducted experiments on a real-world robot to
assess how synthetic data impacts visual policy generalization across diverse environments. In the
remainder of this section, we first describe the robot experimental platform and implementation in
Sec. 5.1, followed by an analysis of synthetic data effectiveness and data proportions for enhancing
real robot policy robustness in Sec. 5.2.

5.1 EXPERIMENTAL PLATFORM AND IMPLEMENTATION

Experimental Platform and Setup Details. Our experiments were conducted on the Agilex Cobot
Magic platform, which is equipped with two PIPER robotic arms and three Intel RealSense D435i
cameras, two mounted on the wrists and one positioned overhead. Only RGB data was used for
policy learning, presenting a challenging visual understanding problem.

Implementation Details. We adopted ACT (Zhao et al., 2023) as our baseline architecture without
modifications. For each task, we collected 100 expert demonstrations via ALOHA (Zhao et al.,
2024b) teleoperation. To demonstrate generalizability, the scenes and tasks differ from those in the
RoboTransfer training data (see Sec. 4 for details). More details are provided in the appendix.

5.2 EFFECTIVENESS OF SYNTHETIC DATA

Benchmark Task and Evaluation Methodology. We evaluate synthetic data on two long-horizon
dual-arm manipulation tasks: spoon pick-and-place and towel folding. Spoon pick-and-place consists
of four phases: the left arm grasps a spoon, places it on a tray, the right arm grasps it, and places it in
a cup. Towel folding includes three stages: grasping the bottom corners, lifting and folding upward,
and folding the right side to the left. The towel task provides a rigorous test of physical plausibility
and temporal coherence in complex manipulations. We introduce a Stage Score to measure phase
completion, offering finer-grained insight than binary success metrics and enabling evaluation of
policy progression and generalization. Experiments were conducted under two conditions: novel
objects (Diff-Obj), and variations in both objects and environment (Diff-All). Testing protocols are
detailed in the supplementary material.
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Effect of Synthetic Data Proportions. To identify the optimal data mixture, we evaluated the
performance while varying the proportion of synthetic data from 0% to 100% on the spoon pick and
place task under Diff-All conditions. As shown in Figure 8, both metrics peak at a 50/50 ratio.

At this balance, the success rate rises from 13.3%
to 46.7%, and the stage score nearly doubles
from 1.6 to 3.0. Increasing the synthetic pro-
portion further yields diminishing returns, as
synthetic data—despite being geometrically con-
ditioned—can lack subtle physical plausibility
(e.g., contact dynamics or material properties),
which becomes detrimental at very high ratios.
A policy trained purely on synthetic data still
achieves a 40.0% success rate, outperforming
the real-only baseline. This highlights the com-
plementary roles of the two data sources: syn-
thetic data provides visual diversity, while real
data grounds the policy in real-world physics.
Accordingly, we adopt the 50/50 ratio in the Ef-
fectiveness of Synthetic Data Analysis.
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Figure 8: Performance across synthetic data mix-
ing ratios. Note that 0% represents our baseline
model trained only on real data.

Effectiveness of Synthetic Data Analysis. As shown in Table 4, our synthetic data augmentation
significantly enhances policy robustness where the baseline fails. For the Spoon Pick and Place task
under the most difficult Diff-All condition, our approach achieves a 251% relative improvement
in success rate (from 13.3% to 46.7%). The results also reveal a clear cumulative benefit of our
augmentation strategy. In the Towel Folding Diff-Obj setting, for instance, the Stage Score increases
from 1.81 (real only) to 2.0 with object augmentation, and further to 2.6 after adding background
augmentation. This confirms that augmenting both object and background appearance is key to
learning policies that can handle significant visual domain shifts.

Table 4: Effectiveness of Synthetic Data Augmentation. Performance comparison across different
data augmentation strategies. Success Rate (%) and Score are reported.

Data Composition

Spoon Pick&Place Towel Folding

Diff-Obj Diff-All Diff-Obj Diff-All

SR Score SR Score SR Score SR Score

Real only 33.3% 2.67 13.3% 1.56 16.7% 1.81 12% 1.08
Real + Obj Aug 44.4% 3.00 22.2% 2.04 16.7% 2.00 12% 1.24

Real + Obj&Bg Aug 66.7% 3.56 46.7% 2.98 50.0% 2.60 28% 1.92

6 CONCLUSION

In this work, we proposed RoboTransfer, a diffusion-based data synthesis framework for robotics
that integrates multi-view geometry while providing explicit control over background and object
attributes. We also introduced a dataset construction pipeline that generates high-quality triplets
incorporating both global geometry and appearance conditions. Experimental results demonstrate
that RoboTransfer produces multi-view consistent data, significantly improving the generalization of
visuomotor policies for robotic manipulation.

Limitations and Future Work. While general and flexible, our method currently focuses on
augmenting object and scene appearance rather than generating new motions. Future work will
explore integration with additional simulators to broaden applicability and optimize the generation
architecture for interactive, real-time data synthesis.
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A ROBOTRANSFER IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

Training Dataset. To construct our training dataset, we leverage the open-source Cobot Magic
platform to collect a large-scale video corpus of dual-arm robot executions(see Sec. B.1 for details).
The raw videos are segmented into 10Hz clips of 30 frames each, resulting in approximately 24k clips
for training. Additionally, we curate a set of 1.6k 10Hz 30-frame clips from the collected dataset for
video synthesis quality evaluation. All videos are annotated with conditions as described in Sec. 3.3,
to facilitate both training and evaluation.

Training Details. RoboTransfer is fine-tuned from the pre-trained Stable Video Diffusion (Blattmann
et al., 2023) model. During training, videos from each camera view are resized to a resolution of
640 × 384. We adopt the AdamW(Loshchilov & Hutter, 2017) optimizer with a learning rate of
3× 10−5 and a global batch size of 8, training for a total of 70K steps. During inference, we use the
EDM scheduler (Karras et al., 2022) to perform 30 denoising steps and apply classifier-free guidance.

A.2 MODELING AND CONDITIONS INJECTION DETAILS

Object Condition. We resize each object image to 224 × 224 and pass it through CLIP’s image
encoder to obtain a single global feature vector per object. These embeddings are then concatenated
and fed into the diffusion model. This design allows for finer-grained control, enabling individual
manipulation of each object.

Multi-View Consistency Modeling. Previous methods typically introduce a cross-view module
to enhance consistency between views. In contrast, RoboTransfer simply concatenates multi-view
images, integrating inter-view consistency into global spatial consistency, thereby improving multi-
view video modeling. Moreover, this design allows direct loading of pre-trained single-view video
generation model weights, without requiring significant modifications to the model architecture.

B ROBOTRANSFER DATASET CONSTRUCTION DETAILS

For training RoboTransfer, we collected a dedicated dataset and designed a construction pipeline
(Figure 3). Here, we provide additional implementation details.

B.1 DATA COLLECTION

Robot Platform. We built a large-scale robotic demonstration dataset using the Agilex Cobot Magic
platform, following standardized protocols (Mu et al., 2025; Liu et al., 2024b). Each demonstration
includes synchronized RGB-D streams from three Intel RealSense D435i cameras: two hand-eye
views and one overhead view (Figure 9).

Dataset Design. To capture diverse manipulation scenarios, we designed twelve distinct tasks
(Figure 10) with variations in objects, backgrounds, and interactions. For each task, 100 demonstration
segments were collected across 10 unique object configurations, totaling 1,000 samples per task.
Backgrounds range from textured tabletops to cluttered surfaces, and objects vary in shape, size, and
material. This ensures high diversity and realism for robust visual policy training. To further enhance
background diversity, we incorporate the AgiBot-World dataset (Bu et al., 2025), which is excluded
from ablation studies in Sec. 4.1.

B.2 GEOMETRY CONDITIONS CONSTRUCTION

Depth Conditions. For RGB-D data, raw sensor depth is often noisy or incomplete, particularly on
low-reflectivity surfaces, causing domain gaps across samples. Simulator-rendered depth is complete
and noise-free. Existing depth completion methods often lack temporal consistency. We adopt
Video Depth Anything (VAD) (Chen et al., 2025) to produce temporally coherent, spatially complete
depth maps. VAD predictions, however, lack global scale consistency. We align predicted depths to
RGB-D sensor measurements using a robust multi-frame least-squares fitting strategy (Figure 11) that
iteratively filters outliers to ensure accurate global scale recovery. For datasets without multi-view
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Right-Wrist Camera
Right-Gripper

Left-Wrist Camera

Right-Gripper

Head Camera

Figure 9: Robot platform visualizations. Figure 10: Dataset collected with the Agilex robot.

RGB-D sensors, such as AgiBot-World (Bu et al., 2025), we estimate metric depth using MoGe (Wang
et al., 2025b).

Algorithm 1 Dynamic Mask Alignment

Require: Dpred,Dsensor ∈ RB×H×W

Ensure: DMetric ∈ RB×H×W

1: Initialize mask:
M← (Dsensor > ϵ) ∧ (Dpred > ϵ)

2: for 2 iterations do
3: Scale Fitting:
4: s, b← Scale Fitting(Dpred,Dsensor,M)
5: DMetric ← sDpred + b
6: Mask Update:
7: E ← |Dpred −Dsensor| ⊙M
8: τ ← P80(E [M > 0])
9: M← (E < τ)⊙M

10: end for
11: return DMetric

Algorithm 2 Scale Fitting
Require: Dpred,Dsensor,M
Ensure: s, b ∈ R
1: Extract valid pixels:

p = Dpred[M], s = Dsensor[M]
2: Solve:

min
s,b
∥sp+ b1− s∥2

3: Solution:[
s
b

]
= 1

∆

[
N(p⊤s)− (1⊤p)(1⊤s)

(p⊤p)(1⊤s)− (p⊤s)(1⊤p)

]
▷ where ∆ = N(p⊤p)− (1⊤p)2

4: return s, b

Figure 11: Depth Scale Alignment

Normal Conditions Surface normals capture fine geometric details and are scale-invariant. We
compute per-frame normals using LOTUS (He et al., 2024). For datasets lacking multi-view RGB-D
sensors, MoGe (Wang et al., 2025b) simultaneously estimates depth and normals, streamlining
prelabeling.

B.3 APPEARANCE CONDITIONS CONSTRUCTION

Keyframe Selection. Keyframes capture object and background appearance conditions. For simple
tabletop tasks, the initial frame (all objects visible) serves as the object condition, and the final
frame (objects removed) serves as the background condition. For complex tasks, an automated
pipeline using VLM descriptors and Grounding DINO detects target objects, selecting the frame
with the largest object pixel area for object conditions and the frame with the fewest for background
conditions.

Object Mask Generation. Object descriptions, generated via structured prompts (Figure 12)
specifying color, material, shape, and spatial position, are fed into Grounding DINO (Liu et al.,
2024a) to generate bounding boxes, which SAM2 (Ravi et al., 2024) converts into object masks.

Objects and Background Conditions. Individual object patches are resized to 224×224 and passed
through CLIP (Radford et al., 2021) to obtain embeddings. Background conditions are generated by
masking out all detected objects and applying inpainting to reconstruct the object-free scene.
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System Prompt for Object Descriptor:

You are an industrial robotic vision system with 100% detection guarantee. Perform compre-
hensive scene analysis to identify ALL movable objects, including occluded items. Strictly
enforce size constraints and occlusion handling.
Your goal is to complete a list of all visible objects on the table and process the description.
The output Template Format:
A [color] [object], [shape], located [region](x,y)
Examples:

• A red ball, spherical, at the center (250,300);
• A brown chair, angular, in the top-left (100,50);
• A silver-blue arm, mechanical, on the right (600,200);

Figure 12: Visual Description Prompt Template Architecture.

C MORE QUALITATIVE RESULTS

C.1 REAL-TO-REAL TRANSFER

RoboTransfer enables controllable generation of both foreground and background elements. Given
the same structured input, the model allows flexible editing of background attributes such as texture
and color (Figure 13) and foreground object appearance, including color (Figure 14). This real-to-real
framework enriches training data diversity, improving policy generalization for downstream tasks.

Generation with Background 1

Generation with Background 2

Generation with Background 1

Generation with Background 2

Generation with Background 1

Generation with Background 2

Generation with Background 1

Generation with Background 2

Figure 13: Visualizations of RoboTransfer with different background reference images.

Original Video

Generated Video with New Objects

Original Video

Generated Video with New Objects

Original Video

Generated Video with New Objects

Original Video

Generated Video with New Objects

Figure 14: Visualizations of RoboTransfer with different object reference images.
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C.2 QUALITATIVE COMPARISON

Figure 15 compares robot data generation methods. Cosmos Transfer (Alhaija et al., 2025) performs
well under fixed camera views but degrades notably for dynamic viewpoints. In contrast, RoboTransfer
maintains strong multi-view consistency, producing realistic and coherent novel-view synthesis.
RoboEngine (Yuan et al., 2025), based on image inpainting, suffers from noise and jitter, lacks
temporal consistency, and cannot precisely control scene backgrounds or objects.

RoboEngine Generation

Cosmos Generation

Original Video

RoboTransfer Generation

RoboEngine Generation

Cosmos Generation

Original Video

RoboTransfer Generation

Figure 15: Comparison with Cosmos and RoboEngine generation results.

C.3 DIVERSE SCENE SYNTHESIS

For fixed-arm tabletop tasks, backgrounds are simple, while mobile manipulation involves complex
geometries. Figure 16 shows that RoboTransfer can generate richer, more diverse scenes in complex
settings, enhancing the variety and realism of synthetic data for robotic learning.

Original Video

Generated Video

Original Video

Generated Video

Original Video

Generated Video

Original Video

Generated Video

Original Video

Generated Video

Original Video

Generated Video

Figure 16: Visualizations of RoboTransfer for diversity scene generation results.

D ROBOT POLICY MODEL IMPLEMENTATION DETAILS

To validate the effectiveness of the data generated by RoboTransfer, we train a visual policy using the
procedures detailed below for both training and deployment.
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D.1 DATA COLLECTION AND PREPROCESSING

To ensure a fair evaluation, we excluded the RoboTransfer training dataset (Sec. B.1) from the
real-robot experiments. Data preparation was conducted as follows:

Real Expert Data We collected 100 expert demonstration sets per manipulation task using the
ALOHA teleoperation system. Observations included RGB images at 1280×720 resolution, down-
scaled to 640×360 for training efficiency, captured at 30Hz, and sampled at 10Hz. Auxiliary robot
state information, including joint positions and end-effector poses, was recorded at 200Hz and
downsampled to 50Hz for policy training.

Synthetic Data Generation for Policy Fine-tuning. To improve generalization, we generated
synthetic videos based on the real demonstrations, introducing variations in foreground objects
and background scenes. The pretrained diffusion model conditioned each synthetic video on: (1)
per-frame 3D geometry inputs (depth and normal maps) from real demonstrations, and (2) a reference
image containing novel objects and backgrounds from a held-out set independent of the policy
training data.

D.2 TRAINING PIPELINE AND CORE PARAMETERS

Our training pipeline uses the ACT (Action Chunking Transformer, Zhao et al. (2023)) architecture,
processing visual input from three cameras (two wrist-mounted, one overhead). At each timestep, the
model receives one RGB frame per view.

Training Objective and Two-Stage Training Strategy. The policy predicts the next 100 robot states
(2s horizon at 50Hz). We adopt a pretrain-then-finetune strategy: 1) Pretraining on Real Data: The
model was first pretrained for 100k steps using the collected real expert demonstration data. During
this phase, the batch size was set to 512, and the learning rate was 1× 10−4. 2) Finetuning with
Synthetic Data: After pretraining, the synthetic data was introduced to fine-tune the model for an
additional 50k steps. The learning rate for this phase was reduced to 1× 10−5.

All training was performed on a cluster equipped with 8 NVIDIA H20 GPUs. The pretraining phase
took approximately 24 hours, and the fine-tuning phase required about 12 hours.

D.3 REAL-ROBOT DEPLOYMENT AND EVALUATION

Deployment Platform. Policies were evaluated on the Agilex Cobot Magic platform (Figure 9),
the same system used for data collection to ensure consistency between training and evaluation
environments.

Inference Procedure During deployment, the policy operates synchronously: the robot executes the
full action sequence (100 actions) generated from the previous inference step before capturing new
observations. At each decision point, the model receives one RGB frame per camera view along with
the current robot state and outputs the next 100 actions. Inference latency is 10ms, and actions are
executed at 50Hz, matching the training robot state frequency.

D.4 COMPARISONS WITH EXTERNAL METHODS

To our knowledge, RoboTransfer is the first method for multi-view consistent data synthesis in robotic
manipulation. Prior approaches exhibit clear multi-view inconsistencies and limited background con-
trol, as illustrated in C.2. While domain randomization handles object color changes, it cannot model
localized or structurally meaningful variations. In contrast, RoboTransfer leverages a multi-view
diffusion model to generate geometry-consistent, high-fidelity variations in both object appearance
and background, supporting robust policy learning.
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Table 5: Performance comparison across different test conditions and models. Success Rate (%) and
Stage Score (0-4) are reported for each configuration.

Model Diff-Obj Diff-All
Success Score Success Score

Baseline (Real only) 33.3 2.7 13.3 1.6
+ Domain Random Aug 44.4 2.89 11.1 1.58
+ Obj Aug 44.4 3.0 22.2 2.0
+ Obj+Bg Aug – – 46.7 3.0

E QUESTION AND ANSWER

E.1 HOW TO DECOUPLE GEOMETRY AND APPEARANCE CONDITION?

In our framework, reference images serve primarily as appearance conditions, capturing visual
properties like texture and color, rather than imposing strict geometric constraints. Global 3D
geometry conditions ensure multi-view and temporal consistency across frames.

1. Geometry conditions. Multi-view depth and normal maps encode precise 3D structure and scene
layout, even under dynamic wrist-mounted camera motion, defining where and how content should
be rendered.

2. Appearance transfer. The reference image provides the target visual style (e.g., textures or
background appearance) that the diffusion model transfers onto the global geometry. The reference
does not need to be aligned with each frame; the model synthesizes a consistent appearance across
views and time by using geometry as an anchor.

Qualitative results show visually coherent, realistic videos in wrist-view settings. Real-to-Real
experiments confirm effective appearance transfer to dynamic robotic scenes, while Sim-to-Real
experiments demonstrate that geometry from simulation can be faithfully combined with real-world
appearance references. By decoupling geometry and appearance, our method improves robustness and
generalization, requiring only diverse reference images rather than per-scene 3D scans or carefully
aligned inputs, making it scalable for real-world deployment.

E.2 THE COST OF SCALING MULTI-VIEW 3D DATA

Globally consistent 3D conditions are essential for wrist-view camera motion. While acquiring dense,
high-quality 3D data can be resource-intensive, our framework leverages automated, cost-efficient
pipelines:

1. Real-robot data: RGB-D cameras capture metric depth alongside RGB images. For both RGB-D
and RGB-only images, depth and normal maps are robustly generated using automated pipelines
(Figure 3). The code will be released to ensure reproducibility.

2. Simulation data: Per-view 3D geometry conditions (depth and normals) are trivially available at
no extra cost, making simulation a scalable source of 3D-aware inputs.

By combining real and simulated pipelines, our framework reduces the effective cost of 3D data
acquisition, enabling high diversity and fine-grained controllability in synthetic video generation for
robotic policy learning.

E.3 WHY NOT USE CLEAN BACKGROUND FRAMES AS REFERENCES?

RoboTransfer is designed for scalable, fully automated training. Capturing a clean background for
every demonstration would be prohibitively expensive. Instead, background imagery is extracted from
existing videos, preserving fidelity without extra data collection. In inference, a clean background
frame can be captured if desired, keeping the process simple and efficient. This design balances
automation, scalability, and flexibility across training and deployment.
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F LLM USAGE STATEMENT

We used a large language model (LLM) to assist with the writing of this paper. Specifically, the LLM
was utilized as a tool for grammar and spelling correction, as well as for refining sentence structure
and improving overall readability.

G ETHICS STATEMENT

This work focuses on advancing data generation methods for robotic manipulation. The primary
intended use is to improve sample efficiency and generalization in imitation learning. While synthetic
data generation can reduce the need for large-scale real-world data collection, we acknowledge poten-
tial misuse of generative models, such as creating misleading or fabricated robotic demonstrations.
To mitigate risks, we release our models and datasets solely for research purposes, under a permissive
but non-commercial license. We further emphasize that this work does not involve human subjects,
personal data, or sensitive content.

H REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide comprehensive details in the main text and supplemen-
tary material. Specifically:

The data processing pipeline, including depth/normal generation and scale alignment, is fully de-
scribed (see Sec. B.1).

Training details, including architecture, hyperparameters, dataset splits, and compute requirements,
are explicitly provided (see Sec. A.1).

We will release the full codebase, pretrained models, and processed datasets upon acceptance,
enabling direct reproduction of our experiments.

Additional qualitative results, ablations, and instructions for dataset construction are included in the
supplementary materials.
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