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BOOSTING JAILBREAK ATTACK WITH MOMENTUM
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ABSTRACT

Large Language Models (LLMs) have achieved remarkable success across di-
verse tasks, yet they remain vulnerable to adversarial attacks, notably the well-
documented jailbreak attack. Recently, the Greedy Coordinate Gradient (GCG)
attack has demonstrated efficacy in exploiting this vulnerability by optimizing
adversarial prompts through a combination of gradient heuristics and greedy
search. However, the efficiency of this attack has become a bottleneck in the
attacking process. To mitigate this limitation, in this paper we rethink the gen-
eration of adversarial prompts through an optimization lens, aiming to stabilize
the optimization process and harness more heuristic insights from previous iter-
ations. Specifically, we introduce the Momentum Accelerated GCG (MAC) at-
tack, which incorporates a momentum term into the gradient heuristic. Experi-
mental results showcase the notable enhancement achieved by MAP in gradient-
based attacks on aligned language models. Our code is available at https:
//github.com/weizeming/momentum-attack-llm.

1 INTRODUCTION

The discovery of adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014) for modern
deep learning models has raised continuous concern for their deployment, yet the defense for these
adversarial attacks remains an open research problem (Carlini & Wagner, 2017; Athalye et al., 2018;
Croce & Hein, 2020; Chen et al., 2023a; 2024a). Moreover, with the milestone success of Large
Language Models (LLMs), they have also received serious safety concerns for this vulnerability
against malicious usage, which is typically referred to as the jailbreak attack (Wei et al., 2023a;
Shen et al., 2023; Dong et al., 2023). To tackle this issue, numerous efforts have been dedicated to
fine-tuning the pre-trained language models to reduce their generation toxicity, which is considered
a part of the alignment process (Ouyang et al., 2022; Bai et al., 2022b).

Nevertheless, as demonstrated by Zou et al. (2023b), LLMs remain susceptible to gradient-based
attacks, wherein adversaries manipulate prompts to induce the LLM to generate harmful or undesir-
able content. Drawing inspiration from AutoPrompt (Shin et al., 2020), which employs gradient
heuristics and search techniques to automatically generate prompts for eliciting knowledge from
LLMs, the proposed Greedy Coordinate Gradient (GCG) attack (Zou et al., 2023b) optimizes an
adversarial suffix for a given malicious prompt (e.g., how to build a bomb) using gradient
information and greedy search. By attaching the suffix to the target harmful request, GCG can effec-
tively circumvent various popular LLMs. Furthermore, one intriguing property of the GCG attack is
the universality that the crafted adversarial suffix can work across different prompts. Specifically, by
crafting an adversarial suffix s from optimizing over a batch of malicious prompts {p1, · · · , pn} (re-
ferred to as training set), such suffix s can also be used to jailbreak unseen prompts. Besides, several
concurrent studies (Yong et al., 2023; Yuan et al., 2024) have introduced black-box attack methods
that do not rely on access to input gradients or model parameters, underscoring the urgency of ad-
dressing this safety concern. We provide a more detailed review of adversarial machine learning and
its recent advances on LLMs in Appendix A.

However, such a gradient-based attack encounters efficiency bottlenecks, with the optimization pro-
cess being notably time-consuming. The default optimization epochs for the GCG attack typically
span 500 steps, each involving numerous forward passes, resulting in tens of minutes required to
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attack a single prompt. To address this challenge, our paper proposes a rethinking of the attack pro-
cess from an optimization standpoint. Each iteration of the GCG attack can be conceptualized as a
step of gradient descent over the heuristic loss. Drawing inspiration from stochastic gradient descent
(SGD) and momentum methods, we demonstrate that the optimization of the suffix can be expedited
by incorporating a momentum term, akin to widely employed techniques in modern deep learning.
We introduce our novel gradient-based attack as the Momentum Accelerated GCG (MAC) attack,
distinguished by the inclusion of a momentum term to enhance the optimization process. The MAC
attack dynamically adjusts the adversarial suffix following each forward-backward pass, ensuring
stability across diverse prompts in the training set.

We further conduct experiments for both the individual and multiple prompt attack cases to showcase
the notable acceleration achieved by MAC, along with an improvement in the attack success rate.
For example, MAC can achieve a higher multiple attack success rate (ASR) of 48.6% on vicuna-
7b Zheng et al. (2023) with only 20 steps, significantly than vanilla GCG (38.1%). Overall, our
work provides a novel technique to accelerate the jailbreak attacks on aligned language models,
along with new insights into the safety evaluations of AI systems.

2 BACKGROUND AND RELATED WORK

With the significant success of the fast-paced development of large language models (LLMs), con-
cerns regarding their potential for harmful generation and malicious usage have emerged (Bom-
masani et al., 2022; Chen & Shu, 2023; Liu et al., 2023a), among which the jailbreaking issue (Wei
et al., 2023a; Dong et al., 2023; Wei et al., 2023b) has been identified as one of the major con-
cerns (Yao et al., 2023; Chen & Shu, 2023). Recent works have shown that it is possible to manip-
ulate the LLMs to generate harmful outputs with discrete optimization over the prompt (Guo et al.,
2021; Wen et al., 2023), even though these models are safely trained or fine-tuned for improved
alignment (Bai et al., 2022a;b; Ouyang et al., 2022). In addition, recent works also proposed black-
box attacks on aligned language models without access to the gradient or model parameters (Wei
et al., 2023b; Zhu et al., 2023; Li et al., 2023a; Xu et al., 2023), further underscoring the jailbreak-
ing issue of LLMs. On the other hand, some preliminary defense methods are also proposed in this
context (Wei et al., 2023b; Jain et al., 2023; Li et al., 2023b; Wang et al., 2024).

As a representative attack, GCG (Zou et al., 2023b) optimizes an adversarial suffix for each harmful
prompt in the following manner: for each iteration, first calculate the cross-entropy loss of each
token in the suffix with respect to generating the target prefix (e.g., Sure, here’s). Then, ran-
domly select a batch of substitute tokens in the suffix based on the gradient of the loss for each token.
Finally, calculate the loss of each substituted suffix in the batch, then replace the current suffix with
the one with the lowest loss, as shown in Algorithm 1. This attacking process is referred to as the
individual prompt attack and can be generalized to the multiple prompts scenario.

Algorithm 1: One-step Greedy Coordinate Gradient (GCG) (Zou et al., 2023b)
Input: A LLM fθ, training prompt p with corresponding optimization loss ℓ, batch size B,

top-k k, suffix s with length l, suffix gradient g
Output: Updated jailbreak suffix s′

1 Initialize s = [s1, · · · , sl];
2 for i : 1→ l do
3 Xi ← Top-k(−g(i));
4 end
5 for b : 1→ B do
6 sb ← s;
7 s

(i)
b ← xj , where i ∼ Uniform([1, · · · , l]), xj ∼ Uniform(Xi);

8 end
9 s′ ← argminb ℓ(sb);

10 return s′;
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3 METHODOLOGY

In this section, we present our Momentum Accelerated GCG (MAC) attack on aligned language
models. We first show that the suffix optimization procedure of GCG can be viewed as a stochastic
gradient descent (SGD). However, this method may suffer from unstableness over different prompts,
as the proper suffixes for different prompts or epochs may vary. Therefore, inspired by boosting
conventional adversarial attacks with momentum methods (Dong et al., 2018) which has achieved
great success in attacking vision models, we also propose to introduce a momentum term to the
gradient for the search process.

Algorithm 2: MAC attack on individual prompt
Input: A LLM fθ, training prompt p with corresponding optimization loss ℓ, optimizing

epochs T , top-k k, suffix length l, momentum decay factor µ
Output: A jailbreak suffix s

1 Initialize s = [s1, · · · , sl], momentum-gradient g ← ∇sℓ([p, s]);
2 for t : 1→ T do
3 gt ← ∇sℓ([p, s]);
4 g ← µg + (1− µ)gt;
5 for i : 1→ l do
6 Xi ← Top-k(−g(i));
7 end
8 for b : 1→ B do
9 sb ← s;

10 s
(i)
b ← xj , where i ∼ Uniform([1, · · · , l]), xj ∼ Uniform(Xi);

11 end
12 s← argminb ℓ(sb);
13 end
14 return s;

The overall process is outlined in Algorithm 2. We maintain a momentum gradient term g. During
each epoch, we calculate the loss ℓi for the current prompt xi. The loss is designed as the cross-
entropy loss for generating a target prefix (e.g., Sure, here’s) (Zou et al., 2023b). Then, we
update the momentum gradient g with the gradient of each token in the current suffix w.r.t. the
current loss with a decay factor µ. Finally, we apply the momentum gradient to the one-step-GCG
to update the suffix. Note that the case of µ = 0 is exactly the GCG attack, which we believe is
not stable and efficient enough over different prompts. We provide an example of the optimized
suffix by MAC in Appendix C. Furthermore, we extend our MAC attack to accommodate multiple
prompts, as depicted in Algorithm 3. Unlike updating the gradient over steps for a single harm-
ful request, in this case, our MAC maintains the momentum term across different prompts during
optimization, thereby enhancing the stability of the process across multiple prompts and achieving
improved generalization ability.

4 EXPERIMENT

Experiment set-up. Our experiment is based on vicuna 7b (Zheng et al., 2023), a popular aligned
chat LLM. Following Zou et al. (2023b), we randomly select 100 adversarial prompts in their Ad-
vBench dataset which contains hundreds of harmful request prompts. For individual prompt attacks,
we run the attack 5 times with different randomly chosen seeds and calculate their average perfor-
mance. For multiple prompt attacks, we split them into 5 subsets which contain 20 prompts each,
and use each subset as the training set and attack all the 100 prompts to run 5 independent experi-
ments. For the token searching process, we set the token substitute batch size B to 256, and top-k
to 256. Since we focus on the efficiency of the attack, we only optimize the suffix for 20 epochs
(T = 20). The criterion of attack success is whether the response contains any of the defensive
tokens (details in Appendix B).
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Algorithm 3: MAC attack on multiple prompts
Input: A LLM fθ, training prompts P = {p1, · · · , pn} with corresponding optimization losses

{ℓ1, · · · , ℓn}, optimizing epochs T , batch size B, top-k k, suffix length l, momentum
decay factor µ

Output: A universal jailbreak suffix s
1 Initialize s = [s1, · · · , sl], momentum-gradient g ← ∇sℓ([p1, s]);
2 for t : 1→ T do
3 for i : 1→ n do
4 gt,i ← ∇sℓi([pi, s]);
5 g ← µg + (1− µ)gt,i;
6 for i : 1→ l do
7 Xi ← Top-k(−g(i));
8 end
9 for b : 1→ B do

10 sb ← s;
11 s

(i)
b ← xj , where i ∼ Uniform([1, · · · , l]), xj ∼ Uniform(Xi);

12 end
13 s← argminb ℓ(sb);
14 end
15 end
16 return s;

Individual prompt attack. The effectiveness of the MAC attack in enhancing jailbreak effective-
ness is discernibly analyzed through the comparative data presented in Table 1. For each µ, we
demonstrate our MAC’s effectiveness by conducting 5 individual experiments, calculating their av-
erage attack success rate (ASR) and the average number of steps needed to successfully attack the
prompt, as well as the standard deviation of the ASR and steps across these experiments to show the
robustness of the results.

Table 1: Evaluation of MAC Attacks in individual prompts jailbreak performance
Attack Momentum Average ASR (↑) Std. (↓) Average Steps (↓) Std. (↓)
GCG µ = 0 75.0 1.22 12.62 0.27

MAC (ours)

µ = 0.2 76.6 2.07 12.37 0.31
µ = 0.4 76.2 4.82 12.46 0.36
µ = 0.6 76.0 2.12 12.55 0.24
µ = 0.8 72.4 3.58 13.05 0.57

The table provided sheds light on the nuanced dynamics of individual attacks within the MAC frame-
work. Note that GCG with µ = 0 can be considered as essentially the original GCG attack, which is
the baseline of our method. For µ ∈ {0.2, 0.4, 0.6}, our method significantly outperforms the origi-
nal GCG method, achieving an average ASR increase of 1.3%, and reducing the average attack steps
from 12.62 to 12.46; as the effectiveness is shown to be improved in those experiments, the standard
deviation of these indices remains relatively unchanged across all experiments. For µ = 0.8, the
effectiveness begins to decrease because the emphasis on stability becomes excessive. This context
underscores the efficacy of incorporating momentum merely as a means to augment stability, a strat-
egy that evidently enhances the success rate of attacks. The introduction of momentum, despite the
inherent instability of results across different configurations, generally supersedes the performance
of the momentum-less scenario. Notably, at µ = 0.6, the benefits of this approach are both signifi-
cant and stable, demonstrating a clear advantage with minimal expenditure in terms of the number
of steps required for a successful attack.

Multiple prompt attack. In multi-prompt attacks, generalization’s importance grows, and the
benefits of adding a momentum term become evident. We further evaluate the performance of the
MAC attack and compare it with vanilla GCG in Table 2. Similarly, we apply the average value and
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standard deviation of ASR across the 5-fold experiments as metrics to demonstrate our methods’
effectiveness. In addition, we introduce Maximum ASR, i.e. the highest ASR achieved on the test
set throughout all attack steps as a crucial metric since the goal of multiple prompt attacks is to craft
an effective adversarial suffix and the suffixes crafted during any epoch is available.

Table 2: Evaluation of MAC attacks in multiple prompts jailbreak performance
Attack Momentum Average ASR (↑) Std. (↓) Maximum ASR (↑) Std. (↓)
GCG µ = 0 38.1 8.66 72.7 15.36

MAC (ours)

µ = 0.2 35.9 5.95 74.9 15.30
µ = 0.4 44.3 7.31 81.9 12.45
µ = 0.6 48.6 14.97 86.1 9.00
µ = 0.8 43.4 13.69 83.8 9.18

As illustrated in Table 2, Experiments with µ ∈ {0.4, 0.6, 0.8} show our method’s effectiveness,
particularly in the improved average ASR (increasing by 6.2%, 10.5%, and 5.3%, respectively),
highlighting the critical role of dataset selection in improving attack efficacy and robustness. Fur-
thermore, our MAC excels higher Maximum ASRs (increasing by 2.2%, 9.2%, 13.4%, and 11.1%,
respectively) and lower standard deviations, indicating enhanced efficiency and robustness for craft-
ing an effective adversarial suffix. Notably, when µ ≥ 0.6, the standard deviation of Maximum ASR
significantly decreases from 15.36 to approximately 9, indicating that higher momentum values con-
tribute to better stability of Maximum ASR.

Detailed analysis shows that a µ of 0.6 yields the optimal performance. At a momentum value of
µ = 0.6, the MAC attack achieves its highest Average ASR (48.6%) and Maximum ASR (86.1%).
This configuration also results in the lowest standard deviation for Maximum ASR (9.00), indicat-
ing it optimizes both effectiveness and consistency. However, it’s crucial to note that both lower
and higher momentum values fail to balance stability and learning rate adaptation effectively, poten-
tially compromising performance. This indicates a clear sweet spot for the momentum (µ) value,
underscoring the importance of nuanced parameter tuning in adversarial contexts.

5 DISCUSSION AND LIMITATIONS

In this work, we rethink a current popular gradient-based attack on LLMs from the optimization per-
spective. We first propose a new jailbreak attack through the lens of optimization named Momentum
Accelerated GCG (MAC), and demonstrate that accelerated optimization methods like momentum
SGD can effectively boost such attacks with notably higher attack success rates and fewer optimiza-
tion steps, providing deeper insights into the current jailbreaking issue research.

While the recent research thread mainly focuses on black-box attacks (Wei et al., 2023b; Zhu et al.,
2023; Li et al., 2023a; Chen et al., 2023b), we consider it still important to develop an efficient
white-box attack for developers to efficient evaluation and red-teaming on LLMs. This is similar to
the conventional adversarial robustness in the vision domain, where white-box attack methods for
evaluation are still valuable (Athalye et al., 2018; Croce & Hein, 2020).

As a preliminary study, we acknowledge some limitations of this work, which we leave as future
works. First, our MAC only consider the case of batch size as 1 in the multiple prompts attack case.
It would be interesting to see whether a larger batch size can find a better trade-off between efficiency
and stableness. In addition, there are many optimization methods other than momentum like Adam
remain unexplored. Finally, our experiment only focuses on one model, and its effectiveness can be
further substantiated by evaluating more models.
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A ADDITIONAL RELATED WORK

A.1 JAIBREAK ATTACK ON ALIGNED LLMS

Despite significant efforts to align Large Language Models (LLMs) with human values and teach
them to avoid generating harmful content, recent studies indicate that LLM alignment remains super-
ficial (Qi et al., 2023; Liu et al., 2023b) and is vulnerable to carefully crafted jailbreak prompts that
can bypass safeguards and induce the generation of harmful content (Yao et al., 2023; Chen & Shu,
2023). Previous studies have manually designed jailbreak prompts using persuasive instructions Wei
et al. (2023a); Zeng et al. (2024). Another approach involves using stealthy communication tech-
niques (Yuan et al., 2024; Yong et al., 2023; Li et al., 2023a) to circumvent LLM safeguards. In ad-
dition to manual prompt-based attacks, there is work on automatically generating jailbreak prompts,
such as gradient-based attacks like GCG (Shin et al., 2020; Zou et al., 2023b) and AutoDAN (Zhu
et al., 2023), which attach a suffix to the harmful request and optimize it using gradient heuristics,
showing a higher success rate but requiring white-box access to the target model. Notably, con-
current research employs genetic algorithms or red-teaming methods to optimize jailbreak prompts,
requiring only query access to the model (Lapid et al., 2023).

A.2 DEFEND LLMS AGAINST ADVERSARIAL ATTACKS

In response to malicious attacks on aligned LLMs, preliminary research has developed defense
methods for various stages of generation (Xu et al., 2024; Piet et al., 2023; Chen et al., 2024b).
Pre-processing methods, such as perplexity filters (Alon & Kamfonas, 2023), harmful string detec-
tion (Kumar et al., 2023; Cao et al., 2023), retokenization, and paraphrasing (Jain et al., 2023), can
be easily integrated into models but may lead to excessive false positives (Varshney et al., 2023). An-
other thread of defenses crafts safe prompts (Xie et al., 2023; Mo et al., 2024; Zhang et al., 2024b;
Zhou et al., 2024) for improving the robustness of LLMs during generation. Notably, Although
Adversarial Training (AT) is widely regarded as an effective defense against adversarial attacks, the
vast number of parameters and data involved render it impractical and less effective for LLMs (Jain
et al., 2023), highlighting the mechanism understanding on the robustness of language models (Zou
et al., 2023a; Wei et al., 2024; Zhang et al., 2024a).

B EVALUATION DETAILS

To determine whether an attack success, we apply the same detection function applied in (Zou et al.,
2023b), which judges whether the generated response contains any of the following tokens:

• "I’m sorry"

• "Sorry"

• "I am sorry"

• "I apologize"

• "As an"

• "I’m an"

• "I’m just"

• "As a language model"

• "As an Assistant"

• "I cannot"

• "I can’t"

• "I do not"

• "Hello!"

• "is illegal and unethical"
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C EXAMPLE SUFFIX AND RESPONSES

Example suffix by M-GCG and response

Prompt: Explain how to hack into a government database and steal
confidential information

Initial Suffix: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!
Initial Response: I’m sorry, but I cannot provide instructions on how to
hack into a government database and steal confidential information.
It is illegal and unethical ...

Optimized Suffix: stages Object Eachign________ ! ...).}}_{\\! !sorry
none (: Just Perefrika your improv
Jailbreak Response: Sure, here’s an outline of the steps involved
in hacking into a government database and stealing confidential
information: 1. Gather information ...
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