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Abstract

Transformer based large-language models (LLMs) display extreme proficiency with
language yet a precise understanding of how they work remains elusive. One way
of demystifying transformer predictions would be to describe how they depend on
their context in terms of simple template functions. This paper takes a first step in
this direction by considering families of functions (i.e. rules) formed out of simple
N -gram based statistics of the training data. By studying how well these rulesets
approximate transformer predictions, we obtain a variety of novel discoveries: a
simple method to detect overfitting during training without using a holdout set, a
quantitative measure of how transformers progress from learning simple to more
complex statistical rules over the course of training, a model-variance criterion
governing when transformer predictions tend to be described by N -gram rules, and
insights into how well transformers can be approximated by N -gram rulesets in
the limit where these rulesets become increasingly complex. In this latter direction,
we find that for 79% and 68% of LLM next-token distributions on TinyStories and
Wikipedia, respectively, their top-1 predictions agree with those provided by our
N -gram rulesets.

1 Introduction

This paper is an attempt to answer the following

Question: How does a transformer-based large language model (LLM) make use of its context when
predicting the next token?

Our approach proceeds via studying the statistical properties of training data. This is perhaps the
most natural place to start even though it is not exhaustive (e.g. it does not include in-context learning
[5]). The reasons to understand LLM behavior in terms of the statistics of their training data are
plenty. First, the functional form of how LLMs use their training data is not well-understood (though
there has been progress on understanding memorization [22, 6]). Second, the over-reliance of LLMs
on training data statistics leads to brittleness (e.g. the “reversal curse" [3]) and the perpetuation of
dataset biases [12]. Understanding the nature of this statistical dependence can lead to improved and
more informed dataset curation and training methods. Finally, in various scenarios, the performance
of LLMs on downstream tasks are found to be correlated with frequency of relevant training data
[26, 10, 16, 17]. A better understanding of this phenomenon would allow better steering of models
towards desired performance levels.

We can think of the complexity of an LLM next token prediction (regarded as a probability distribution
over tokens) along two axes: form and selection. Form refers to the functional form of the prediction
as a function of the context, e.g. whether the prediction is some explicit function of associated
training data statistics (see Figure 1). Selection refers to which functional form, chosen from a set
of functional templates, suitably describes the transformer prediction (supposing the choice set is
sufficiently rich). As a first nontrivial step, one might hope that an approximate model for an LLM
is that each of its next token predictions can be roughly described by simple statistical rules from
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Figure 1: Illustration of rule approximation. Given a context, differentN -gram based rules formed
out of the context will yield different next-token predictive distributions. In the above example, the
context consists of three tokens. The first rule uses all three tokens of the context and makes a
prediction based on the corresponding 4-gram rule derived from the training data; the second rule
uses only the first and last tokens to form a corresponding 3-gram rule (and so the next token “slept"
will be assigned less weight than the first rule since the “tired" token is ignored); and the third rule
makes a prediction using the N -gram statistics obtained from aggregating over three token contexts
from the training data where the second token is arbitrary (i.e. the second token is marginalized).
Given a list of such rules, one can ask which rule’s predictive distribution best matches that of the
transformer.

the context (simple form) even if the mechanism for its rule selection remains hidden (complex
selection)1. This paper is an attempt to see how far this perspective can be pushed, and fortuitously
we obtain additional insights for understanding LLM behavior along the way. The statistical rules
we consider, which are based on N -grams, are defined in Section 4, with Figure 1 showing some
examples.

We perform our main investigations on the TinyStories [11] dataset, with supporting experiments on
Wikipedia to confirm our results remain robust at larger scales. The use of TinyStories is for practical
reasons: its small size makes training models and aggregating N -gram statistics computationally
efficient, yet it is complex enough to capture basic natural language statistics (those occurring in
simple children’s stories).

Below is a summary of our observations and contributions:

1. (Approximation Criterion) We observe that next token LLM predictions tend to be well-
approximated by N -gram rules when the predictions have low variance across different
training runs2. In particular, this includes predictions conditioned on contexts with suffi-
ciently high count in the training data. (Section 5)

2. (Curriculum Learning Dynamics) By grouping our N -gram rulesets in terms of complexity
(as measured by the amount of context they use), we discover the various ways in which the
learning dynamics of LLMs implement a statistical type of curriculum learning, in which
easier rules are eventually supplanted by more complex ones. (Section 6.1)

3. (Overfitting Criterion) Based on our analysis of approximating LLM predictions by N -gram
rules, we propose a simple and novel procedure for detecting overfitting of LLMs during
training. The procedure makes no use of holdout data and it makes quantatively precise the
intuition that overfitting corresponds to a model memorizing long context at the expense
being able to generalize through making use of subcontext. (Section 6.2)

4. (Approximation Strength) We study how well LLM predictions can be approximated by our
N -gram rulesets, noting that significant gains in top1-accuracy occur as we increase ruleset

1It is important to emphasize that we seek a descriptive approximation of a transformer, rather than an
explanatory one. A description merely requires that we can provide a post-hoc, per-instance approximation of
transformer predictions in terms of an available rule; an explanation means we provide reasons for and thus can
predict in advance why and when a particular rule approximates transformer predictions. Hence, we make the
distinction between form (description) and selection (explanation).

2Different runs have different dataset shuffles.
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complexity and diversity, whereby we achieve up to 79% top1-accuracy on TinyStories (Ta-
bles 2 and 5). We also visually ground these approximations with concrete examples (Figure
5), which may form the basis for dataset attribution methods in future work. Corresponding
experiments on Wikipedia are shown in the Appendix. (Section 7)

We also open source our training datasets and related N -gram statistics so that others can verify and
build upon our work.3

2 Related Work

Rule extraction methods for neural networks have been studied in quite different settings, e.g. [15, 21].
Some recent works have performed N -gram analyses for large-language models in the setting of
in-context learning [1, 23] and associative recall [2]. The “infini-gram" model [19] compares LLM
predictions with the singleN -gram rule given by retrieving the largest possible matching context from
the training data. Our work uses shorter but more sophisticated N -gram rules. In [28], an approach
to understanding how LLMs process N -grams is carried out at the level of individual neurons. This
complements our dataset-based work, which treat models as a black box. See also [27] which studies
how transformers can represent N -gram models. In [9], the evolution of the type of N -gram statistics
that transformers learn during training is analyzed in the setting of synthetic Markov chain data, in
contrast to our natural language setting. Other works studying the learning trajectory of language
models include [7, 8]. There is a large literature on building more sophisticated N -gram models,
e.g. [18, 13]. Such models could have been incorporated into our set of rules, but for simplicity we
choose not to include them.

3 Experimental Setup

We train standard decoder-only transformer models on the TinyStories [11] dataset (480M tokens)
consisting of children’s stories synthetically generated from GPT-4 using templated prompts. The
value of this dataset lies in its linguistic simplicity, whereby it is possible to model language well on
the dataset using very small models. Unless stated otherwise, our experiments use a 160M parameter
model trained for 4 epochs, which achieves a loss of around 1.11 nats on the validation set. We
train for 4 epochs since we use learning rate warmup and cosine learning rate decay and we want to
ensure all datapoints receive updates with a high learning rate (this way all N -gram statistics have a
fair chance of being learned during training). For overfitting experiments in Section 6.2, we train
a 1.4B model for 10 epochs. In the Appendix, we include additional corresponding experiments
on Wikipedia (from MassiveText [25]) with a single epoch of training in order to validate that our
results are of a general nature and extend to more complex datasets. For a fixed dataset, the only
source of randomness among different runs are different dataset shuffles. Full experimental details
are described in the Appendix.

4 N -Gram Rules

The attention layer within a transformer is in essence a soft context-selection mechanism. The
N -gram rules we consider will be loosely modeled on this mechanism. Namely, given a context
we will form a derived context in which each token will either be kept, discarded, or marginalized,
which is meant to mimic positive attention, no attention, and semantic invariance4, respectively. More
formally, we proceed as follows:

Given a regular expression5 α, all contexts from the training data can be retrieved which match the
regular expression. This allows us to define a corresponding rule that defines for us a distribution

3https://github.com/google-deepmind/transformer_ngrams
4For instance, the next token distribution for the context “... the tired dog" may be insensitive to replacing

“tired" with “brown" or “furry". Statistics which thus marginalize over all extant substitutions for “tired" yield a
crude but generally applicable way of capturing semantic invariance. One can imagine an attention mechanism
for which there is a many-to-one mapping of keys to a particular value that might implement semantic invariance.

5Our regular expressions operate on tokens not string characters, since our contexts are formed out of
sequences of tokens.
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over tokens t:

Rα(t) =
#{αt}
#{α∗}

(1)

where the numerator and denominator are the counts for the N -grams from the training data matching
the concatenated regular expressions αt and α∗, respectively, where ∗ is wildcard (single) character
match6. (Thus the N -grams in the numerator end with t while those in the denominator can end
with any token.) Observe that the next-token predictions of a vanilla N -gram model are obtained by
letting Rα(t) vary over all ordinary token sequences α of length N − 1.

Given σ, a symbol from the the alphabet {∗,−,+}, consider the following operation which maps a
token t to a regular expression:

Sσ(t) =


t σ = +

∗ σ = ∗
ε σ = −

(2)

where ε is the empty regular expression. Given now a sequence σ = σ−N · · ·σ−2σ−1, define Sσ on
a sequence of tokens C = C−N · · ·C−2C−1 by tokenwise application of (2) and concatenation7:

Sσ(C) = Sσ−N (C−N ) · · ·Sσ−2
(C−2)Sσ−1

(C−1). (3)

Thus (3) defines a regular expression which we can think of as fuzzy matching for a subset of a
context C (the fuzziness arising from the presence of wildcard matches). For notational convenience,
we assume σ is left padded with − symbols, so that we can define Sσ(C) for len(σ) < len(C).
Finally, define

Rσ(t|C) = RSσ(C)(t) (4)

for C with len(C) ≥ len(σ). The collection of (4) for various σ defines our N -gram rules under
consideration8. Each such rule is a function which maps a context C to a next token distribution. We
refer to Sσ(C) as the rule context for Rσ(t|C).

As concrete examples, let σ = +− ∗+. If C = C−5C−4C−3C−2C−1, then Sσ(C) = C−4 ∗ C−1
and

R+−∗+(t|C) =
#{C−4 ∗ C−1t}
#{C−4 ∗ C−1∗}

(5)

is a rule which yields a next token distribution based on a particular combination of 4-gram model
statistics: it retrieves all three token contexts in the training data whose first token is C−4 and last
token is C−1 and marginalizes over the second token. Likewise, the rules

R++−−(t|C) =
#{C−4C−3t}
#{C−4C−3∗}

R++∗∗ =
#{C−4C−3 ∗ ∗t}
#{C−4C−3 ∗ ∗∗}

(6)

are respectively a trigram model with context C−4C−3 (all other tokens receiving a − are dropped)
and a model which uses four tokens of context but marginalizes over the two most recent ones.

When σ consists of all + symbols, we get vanilla N -gram rules derived from the suffix of C. When
σ consists of ± symbols, we get vanilla N -gram rules derived from subsets of C. Varying the length
and the entries of σ yields the following rulesets9:

Rsuffix
M = {Rσ(t|·) : |σ| ≤M,σi = + for all i} (7)

Rsubgram
M = {Rσ(t|·) : |σ| ≤M,σi = ± for all i} (8)

Rall
M = {Rσ(t|·) : |σ| ≤M}. (9)

The parameter M controls how much of the context is being used for the rules.
6We use ∗ (i.e. glob notation) instead of the standard . symbol for readability purposes.
7The empty regular expression does nothing under concatenation and does not contribute to the length of the

resulting sequence.
8For σ = ∅, we define Rσ to be the unigram distribution.
9There is some redundancy among the σ’s in terms of the rules they determine: for instance, in between any

two + consecutive symbols, permuting the order of − and * will determine the same rule. Also in practice,
we can assume the first entry of σ is a + since marginalizing the first token is equivalent to reducing the
context length. From this, it follows that the number of distinct rules in RallM is 2, 5, 13, 34, 89, 233, 378, for
M = 1, . . . , 7, respectively.
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Table 1: Terminology associated to a context C. HereR is some reference ruleset under considera-
tion. The superscript on p(i)(t|C) is meant to denote the predictions of the ith model. In Section 5,
we consider rules that are fixed across model runs (where we have five models) whereas elsewhere
we will only have a single model (and thus optimal rules will be model specific).

optimal rule distance: the minimum (possibly aver-
aged over runs) distance between LLM predictions
and rule predictions

min
r∈R

avgid(p(i)(t|C), pr(t|C))

optimal rule: a rule achieving the optimal distance argmin
r∈R

avgid(p(i)(t|C), pr(t|C))

model variance: the average of the pairwise dis-
tance between LLM predictive distributions over
different runs

avg
i,j

distinct runs

d(p(i)(t|C), p(j)(t|C))

5 Approximating Transformer Predictions with Rules

Let p(t|C) denote the next-token distribution of an LLM conditioned on the context C and for
notational similarly, write pr(t|C) for r(t|C), where r is one of the rules defined in Section 4. We
wish to measure how similar these distributions are (higher similarity corresponds to a better rule
description). To that end, we use the variational distance to measure the difference of two distributions
(we discuss our choice and others in the Appendix):

d(p, q) =
1

2

∑
α

|pα − qα|, (10)

where the summation is over the vocabulary index (i.e. the components of the probability vectors).
Since variational distance may be lacking in concrete interpretability, we will sometimes use top1-
accuracy to measure similarity, defined by

top-1-acc(p, q) =
|argmax(p) ∩ argmax(q)|
|argmax(p) ∪ argmax(q)|

(11)

(in general, the argmax of a probability distribution is a set due to potential ties among maximal
probabilities). When the argmaxes in (11) are singletons, top1-accuracy just measures agreement
between greedy predictions.

Given a context C, we want to understand how d(p(t|C), pr(t|C)) varies with different rules r and
in particular if it can be made small. To that end, we introduce some terminology:

We are interested in determining the optimal rule pr(t|C) (as defined in Table 1) and if it has small
optimal rule distance then we regard the rule as being a good description of the corresponding
transformer predictions.10 As a first step, note there is a distinguished rule

pfull(t|C) =
#{Ct}
#{C∗}

(12)

whose rule context is the full unmodified context C.11 This is because (roughly) the language-
modeling objective aims to make p(t|C) similar to pfull(t|C).12 All other rules in our rulesets are
“subleading" in that they drop or marginalize over tokens in the context C. Our goal is to quantify
which rules, either (12) or subleading ones, are optimal rules and what their optimal rule distances
are.

One of our main findings is an approximation criterion: contexts that have low model-variance tend
to have low optimal rule distance. In particular, this includes contexts with sufficiently high frequency
in the training data. The latter situation is to be expected: the more often a context C occurs in the

10In practice, we will only have one model available and our optimal rules are computed per-context and
per-model. In this section, we have available five models from five runs for use in computing optimal quantities.

11That is, pfull(t|C) is the invokation of the rule corresponding to σ = + · · ·+ ∈ Rsuffix
|C| applied to C.

12See Section C for additional discussion.
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training data, the more the minimization of the cross entropy loss objective encourages the network
to make predictions close to pfull(t|C).

The novel aspect of our approximation criterion is the sufficiency of low model-variance situation even
in cases when the context is rare.13 We present the case of 7-gram contexts in Figure 2 to corroborate
the approximation criterion, with additional examples relegated to the Appendix. We sample around
six-thousand 7-grams from the training data, sampling from logarithmically spaced buckets based on
counts, and plot various relations between counts, model variances, and rule distances. For simplicitly,
we consider the rulesetR = Rsuffix

7 to limit the number of rules under consideration. Our analysis of
Figure 2 can be summarized as follows:

Plot (a) shows how with increasing count of the number occurrences of the context C in the training
data, LLM predictions become nearer to pfull(t|C), which in this case, is the vanilla 8-gram rule.
Nevertheless, for all but the highest of counts, we have a large spread of distances: even for unique
7-gram contexts, some predictions are well-approximated by pfull(t|C) while others are close to
having disjoint-support (distance equal to 1). Plot (c) also shows that while model variance decreases
with count of the context (as expected) we have a large spread of model variances for contexts with
intermediate or low counts. Since the contexts whose predictions have high model variance can
be regarded as “noise", one can ask whether those contexts with low model variance have some
structure. Plots (b) and (c) address this question. While for (b), we see that the 8gram-rule has a large
spread when plotted against model variance, there is a significant reduction in outliers in (d) when
the y-axis is the optimal distance to rules in Rsuffix

7 . Concretely, the transition from (b) to (d) is a
way of visualizing LLMs performing back-off, whereby LLMs rely on statistics from subsets of the
context. Moreover, the lower left portion of (d) is a manifestation of our approximation criterion:
contexts that yield consistent predictions across model runs (i.e. sufficiently low model variance) are
indicative of rule-like behavior (in this case, good approximation with a suffix N -gram rule formed
out of the context).

We believe our approximation criterion and its corresponding analyses have significance beyond
the experiments carried out here since they (i) highlight that naive count-based statistics do not
provide the strongest signal in terms of how LLMs leverage dataset statistics (since as Figure 2(a)
shows, high count can still have high model variance) (ii) suggest that LLM predictions that have
low-variance are likely the ones that are amenable to description (or even explanation) by some
underlying dataset statistic (with high-variance predictions being regarded as noise). We leave a more
systematic exploration of (ii) to future work.

6 Learning Dynamics

6.1 Curriculum Learning

We can track how well LLM predictions are described by ourN -gram rules over the course of training
by tracking optimal rule distance as a function of train step. Here optimal rule distance is defined as
in Table 1 withR any of the rulesets (7)-(9), and we will measure how optimal rule distances vary
with maximum context length M (the resulting analyses are similar for “all", “subgram", and “suffix"
rules so we show our analysis for “all").

Figure 3 summarizes our results. Early in training, LLM predictions acquire structure and thus
become approximable by rule predictors. However, with further training, LLM predictions eventually
diverge from simpler rules (small context length) while continuing to increase in similarity with
more complex rules (larger context length). Moreover, the rightmost plot of Figure 3 shows that
top1-acc(pgt(t|C), pr(t|C)) increases over the course of training for optimal r ∈ Rall

M (for M > 1),
where pgt is the ground-truth distribution regarded as a one-hot distribution, showing that the rule
selection improves with time. Altogether, this shows that LLMs undergo a curriculum style learning,
in which their predictions gradually move away from simpler rules to more complex and effective
rules.

13Necessity is a given. Predictions which have high variance cannot be well approximated by a single
model-independent rule. We use five runs in our analysis here since approximation by a rule that remains fixed
across models yields a fortiori approximation by a per-model rule.
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Figure 2: TinyStories 7-grams. Every point in the above plots represents a 7-gram context. Shaded
regions are obtained by bucketing along the x-axis and computing one standard deviation within
the mean along the y-axis. Slope and R2 values of plots are with respect to the linear fit of the
data. Optimal rule distances and model variances are computed with respect to five model runs. (a):
d(p(t|C), pfull(t|C)) vs count of C. (b): d(p(t|C), pfull(t|C)) vs model variance. (c): model variance
vs count of C. (d): similar to (b) but now the y-axis is optimal rule distance of the optimal rule from
Rsuffix

7 . Model size: 160M.

6.2 Early Stopping Criterion

Our investigations of approximating LLMs with rules given by limited contexts naturally lead us to
consider LLMs with limited context. The latter have predictive distributions given by

pn(t|C) = p(t|C−n · · ·C−1) (13)

where n is the maximum context length. In Figure 4, we plot the loss of an LLM trained to overfit
(train loss decreases while validation loss increases) along with its limited context versions for
1 ≤ n ≤ 7. For the limited context models with n > 1, we see that on both the train and validation
set, the two respective loss curves track each other closely and both eventually go up. This suggests
the following picture: an overfitting LLM is spending capacity to minimize train loss by memorizing
the full context at the expense of using capacity to learn statistics of subcontext, i.e. the reduced
context in (13). This manifests itself both during training (where subcontext arises from a subset of a
larger memorized context) and during validation (where subcontext arises from the partial overlap
between novel context and the train set).

Our discovery suggests a simple and computationally inexpensive early stopping criterion: during
training, evaluate the transformer on train data consisting of short contexts and when this quantity
begins increasing, stop training. Significantly, this method involves no holdout set and is a training
dataset intrinsic criterion.
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Figure 3: Training Dynamics. Left: Models reach their lowest distance to more complex rules later
in training. For rules with four tokens of context or less, the variational distance eventually starts
increasing later in training. For six and seven tokens of context, the variational distance continues
to decrease. Center & Right: The optimal rule selected always has nonincreasing distance and
nondecreasing top1-accuracy relative to the ground truth (interpreted as a one-hot distribution pgt),
despite distances to model predictions eventually increasing or plateauing for rules with less than six
tokens of context. This shows that the optimal rule selection is improving with additional training
even if the optimal rule distance with respect to model predictions is not improving. (One can imagine
the rule predictions as a mesh in probability space, with LLM predictions navigating this space
through training. The distance to the mesh may plateau but which rule is closest can continue to
change.) Model size: 160M.
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Figure 4: Overfitting Detection. We plot both train loss (solid lines) and validation loss (dashed
lines) for the full transformer and limited context length transformers (the latter are marked with
an “x" for emphasis) on TinyStories. Unlike the full transformer which overfits, those with limited
context length have train and validation loss curves closely following each other. Model size: 1.4B.

7 Rule Peformance

Finally, addressing our main question from the introduction, we track how well our rulesets describe
LLM predictions (in the sense of Section 5) as a whole at inference time. Here, the utility of our
N -gram rules defined in Section 4 becomes apparent, since on a holdout set, there will be novel
contexts and being able to drop or marginalize context tokens aid in being able to retrieve or aggregate
corresponding training dataset statistics. In Table 2, we show the average top1-accuracy between
the optimal rule from our various rulesets and LLM predictions on 100 random stories from the
validation set. Here, we include as baseline backoffM , the single rule given by the predictive model
which performs “stupid backoff" [4] using M tokens of context.14

We see significant gains in accuracy at large M when adding additional types of rules. In the end,
we are able to obtain 78% top1-accuracy between the per-prediction optimal rule and the LLM
predictions, averaged over all tokens. This is perhaps a remarkably high figure, considering that
the top1 accuracy of the model with respect to the ground truth on the validation set is 69.6%. At
minimum, we have provided a precise quantification of structure in LLM next-token predictions: they
are often matched (as measured by top token prediction) by some simple N -gram rule derived from

14That is, pbackoffM (t|C) = pfull(t|C−k · · ·C−1) where k ≤ M is the largest value for which C−k · · ·C−1

occurs in the training data.
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<BOS> ('<BOS>',) 2118438
Once ('<BOS>', 'Once') 1426581
 upon ('<BOS>', 'Once', ' upon') 1258475

 a ('<BOS>', 'Once', ' upon', ' a') 1257566
 time (' upon', '*', ' time') 1258929

, ('Once', ' upon', '*', ' time', ',') 976071
 there  in (' upon', '*', ' time', ',', ' in') 30487

 a (' a', ' time', '*', ' in', ' a') 29850
 small  big (' a', '*', ',', ' in', '*', ' big') 7036

 forest (' time', '*', ' in', ' a', ' big', ' forest') 2623
, (' time', '*', ' in', ' a', ' big', '*', ',') 5240

 there (',', '*', ' a', '*', '*', ',', ' there') 22610
 was  lived (' a', '*', ' forest', ',', ' there', '*') 3419

 a (' big', ' forest', '*', '*', ' lived', ' a') 907
 little  rh (',', ' there', '*', ' a', ' rh') 256

in (' rh', 'in') 9748
oc (' a', '*', 'in', 'oc') 1036

eros (' lived', '*', '*', '*', '*', 'eros') 41
 named , .  named (' rh', '*', '*', '*', ' named') 236

 R ('eros', ' named', ' R') 93
emy oxy ('in', '*', ' named', '*') 34

. ('eros', '*', ' R', '*', '.') 73
 R ('oxy', '.', ' R') 8

oxy ('eros', '*', '*', '*', '.', ' R', '*') 72
 was  loved ('oxy', '*', ' loved') 1

 to ('.', '*', ' loved', ' to') 279605
 play  climb ('.', '*', '*', ' loved', '*', ' climb') 576

 trees . ('.', '*', ' loved', ' to', '*', '.') 4586
 One ,  Every  She (' loved', '*', ' climb', '*', ' She') 114

 would ,  climbed  climbed (' loved', '*', ' climb', '*', ' She', ' climbed') 32
 trees (' loved', '*', '*', '*', '*', ' climbed', ' trees') 31

, (' to', '*', '.', ' She', '*', ' trees', ',') 29
 rocks (' climb', '*', '*', ',', ' rocks') 2

, (' She', ' climbed', ' rocks') 1
 and (' climbed', ' trees', '*', '*', ',', ' and') 22

 even  hills (' trees', ',', '*', ' and', '*') 1739
. (' trees', '*', ' and', ' hills', '.') 4

 One ,  Still  One (',', '*', '.', ' One') 3284
 day (',', '*', ' hills', '*', '*', ' day') 2

, (',', ' and', '*', ' day') 3250
 R ,  she  R (' day', ' R') 63

oxy , over oxy ('.', ' One', '*', ',', ' R', '*') 390
 saw  found (' day', '*', ' R', '*', ' found') 87

 a  an (' One', ' day', ',', '*', ' found', ' an') 2500
 unusual ,  old  icy (' day', ',', '*', '*', ' an', ' icy') 33

 pond  hill (' found', '*', ' icy', ' hill') 3
. (' R', '*', ' an', '*', '*') 2

 She (' found', ' an', ' icy', '*', '*', ' She') 5
 thought  had (' an', ' icy', '*', '*', ' She', ' had') 1

 never (' hill', '*', '*', ' had', ' never') 66
 seen (' hill', '.', '*', ' had', ' never', ' seen') 24

 it  anything (' She', '*', ' seen', ' anything') 1
 like (' had', '*', ' anything', ' like') 13
 it (' had', ' never', '*', ' like', '*') 27

 before (' anything', ' like', ' before') 2
. (' anything', ' like', ' before', '*') 2

Predictions
(transformer / rule) Ground truth + Rule distance Rule context count

0.25 0.50 0.75

Figure 5: Rule selection for a TinyStories validation sequence. The above is a sequence from a
heldout story. In the second and third columns are the ground truth, token by token, along with the
rule context (as defined in Section 4) associated to the optimal rule fromRall

7 . The heatmap indicates
the variational distance between optimal rule and LLM next token distributions at the given token.
The first column shows at most two tokens, which are chosen as follows: If the LLM top-1 prediction
disagrees with the ground truth, the LLM prediction is shown. If in addition, the rule selected makes
a different top-1 prediction from the transformer, that token is shown as the second token and the
corresponding ground truth token is colored red. Thus red tokens are precisely the locations of
disagreement between LLM and optimal rule greedy predictions. The last column shows the number
of contexts supporting the optimal rule. Model size: 160M.

the training data. See Section D.1 for some supplementary analysis. Using the L∞ distance instead
of the variational distance gives us a slightly higher result of 79%, see Table 5.

To ground our rule optimization procedure, we provide Figure 5 which shows side-by-side how LLM
predictions compare with ground truth and optimal rule predictions in an example heldout story.
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Table 2: Top-1 accuracy of optimal rule. We look at the average top1-accuracy of the optimal rule
versus LLM predictions for rules of varying strength and maximum rule context length M . We
compute this average over each token prediction from 100 random validation stories (around 22K
tokens total). Model size: 160M.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 30.0 44.8 54.3 62.4 68.8 74.0 78.0
Rsubgram
M 30.0 44.5 53.1 60.0 64.8 68.5 71.1
Rsuffix
M 30.0 44.4 52.2 57.9 61.5 63.8 65.6

backoffM 30.0 42.5 48.7 52.7 54.6 55.9 56.7

For instance, for the target token “climb” in “... Roxy loved to climb”, both the LLM and
optimal rule Rα predict “play”, where α = “. * loved to”. For target token “climb” in “...
She climbed”, the LLM predicts “would" whereas the ground truth and Rα predict “climb”,
where α = “loved to climb * She”. In general, optimal rules provide the closest statistical
match from the training data to the given LLM predictive distributions (from amongst our rulesets),
and their top1-predictions can agree or disagree agree (as indicated by target token color). Additional
examples, including those from Wikipedia, are shown in Section D. For interpretability purposes, we
re-emphasize that our optimal rules currently only provide descriptions, not explanations. We leave
the possibility of the latter for future work.

8 Conclusions and Limitations

Our work provides quantitative measures of how well the predictions of transformer-based LLMs are
described (i.e. approximated) by simple N -gram rules. Such rules were motivated by the simplest
token-level operations applied to the context (keep, ignore, or marginalize). The results we obtained
in Section 7 imply that, at least on simple datasets like TinyStories and Wikipedia, LLM predictions
contain much quantifiable structure insofar that they often can be described in terms of our simple
statistical rules. Along the way, we also obtained novel discoveries into the statistical nature of
overfitting, the occurrence of curriculum learning, and the relation between model-variance and
approximability by N -gram rules. Altogether then, our work provides various avenues of progress in
understanding how simple dataset statistics are reflected in LLM behavior.

On the other hand, it is intuitively clear that current state-of-the-art LLMs go well beyond invoking
N -gram rules. A typical request to perform a nontrivial task (e.g. “Write a thirty line poem about
mathematics that rhymes") requires a high-level conceptual understanding of language that goes
beyond simple literal token-level associations between the context and the training data that we
consider here. Nevertheless, one can speculate that an analogue of our work could still apply: in
general, an LLM might be performing some high-level rule application, whereby statistics formed
out of distributional categories [24] instead of individual tokens are leveraged from the context.
Formulating a correct and parsimonious set of rules, if it is at all possible, would be a nontrivial
challenge to overcome and one which we leave to future work. Addressing such a challenge and being
able to promote the descriptive approximations provided here to explanatory ones would provide a
next step towards understanding how LLMs work.
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A Choice of Distance Measure

We choose variational distance since it is a symmetric and bounded distance function (unlike the KL
divergence). Symmetry means we do not have to make a choice between computing the distance
between model predictions and rule predictions or vice versa. Boundedness ensures that when we
measure average distance across tokens, large outliers do not dominate the average. In fact, for
the KL divergence, since KL(p||q) is infinite when p > 0 whenever q = 0, were we to use KL
divergence, we would have to set p equal to rule predictions and q equal to model predictions (since
rule predictions are typically sparse). To avoid such constraints and potential pathologies, we choose
the variational distance. Another possible choice is the Jensen-Shannon distance, but we found it
gives similar results to variational distance.

It is worth noting that while the L∞ metric

dL∞(p, q) = max
α
|pα − qα| (14)

often gives slightly better results for the rule-approximation analysis of Section 7, it has a failure
mode when comparing two very high entropy distributions. If p and q are two distributions such that
pα and qα are all small, then their L∞ distance will be small even though their variational distance
can be large. Thus, the L∞ distance is not suitable for the curriculum learning analysis analysis in
Section 6.1, since at initialization when the model makes uniform predictions on tokens, it will have
low L∞ distance with many bad N -gram rules that are high entropy. Hence, for the sake of using
a consistent metric in the main body of the paper, we use the variational distance when comparing
probability distributions, although as the numbers of Section D show, for well-trained models the L∞
distance often yields better rule approximation.

B Additional Experimental Details

Our transformer architecture and training procedure is based on that of Chinchilla [14]. The architec-
ture hyperparameters are as follows:

Table 3: Model specifications.

Model Layers Number Heads dkey/dvalue dmodel

160M 12 16 64 896
420M 12 16 128 1536
1.4B 24 16 128 2048

We use a linear learning rate warmup of 1000 steps up to a maximum value of 2× 10−4 and then use
a cosine learning rate decay. We use weighted Adam optimizer [20] with weight decay 10−4. Our
models are trained using TPU accelerators. The 160M and 420M models use 16 TPU accelerators
while the 1.4B models use 64 TPU accelerators per run. We use a batch size of 128 sequences with
each sequence consisting of 2048 tokens.

Our training datasets (TinyStories and MassiveText Wikipedia) are prepared as follows. After tok-
enizing the individual documents (stories for TinyStories and articles for Wikipedia), we concatenate
them all into one long sequence, with each document separated by the 〈BOS〉 token15. The full
sequence is then subdivided into contiguous sequences of length 2048 (with padding as needed) and
then shuffled to form a static dataset of shuffled sequences. We refer to the previous procedure as
“chunking". Crucially, observe that chunking results in most sequences not starting with the 〈BOS〉
token (hence a model will be trained to predict the next token conditioned on incomplete contexts, as
desired).

For TinyStories experiments, we train 160M models for 4 epochs except for the overfitting experiments
in Section 6.2 where we train 1.4B models for 10 epochs. We use the train and validation splits
provided by HuggingFace16. For Wikipedia experiments, we train a 1.4B model for a single epoch.

15Attention masks are used so that tokens only attend to those from the same document
16Available at https://huggingface.co/datasets/roneneldan/TinyStories
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We have train and validation splits based on using choosing random sets of disjoint documents. Our
Wikipedia train set has 4.4B tokens. In places where we perform several training runs (Section 5),
the only source of variance (randomness) among the runs are different dataset shuffles. The only
exception to the above is in Section D.3, where all model sizes are trained for 1 epoch (for TinyStories,
we observed overfitting of the 1.4B model around 4 epochs so we switch to 1 epoch for all model
sizes for a fair comparison).

Our tokenizer17 uses byte-pair encoding trained on MassiveText with a vocabulary size of 32,678.

B.1 N -gram statistics

The computation of N -gram statistics of the training data is formed after chunking (as described
above), so that they correspond to the N -gram statistics seen by models during training. In particular,
tokens which are contiguous in a story but separated by the chunking will not contribute to the
N -gram statistics. We used a distributed map-reduce system to tabulate N -gram counts in the most
naive manner. Using sliding windows of size N and aggregating across train documents, we are able
to compute N -gram counts for all occurring N -grams and store them in SQL databases. (We ignore
those invalid N -grams where 〈BOS〉 occurs not as the first token). Note that the number of rows of
such N -gram databases is bounded by at most the size of the training corpus times N .

As an aside, we note that for the analysis in Section 6.1, we used our static N -gram rules computed
from the entire training data. We do not compute statistics based on the training dataset seen up to
the point in training. However, for the purposes of our analysis, this distinction is immaterial (and in
practice, the distinction between two sets of statistics will, for the dominant N -grams, be small with
sufficiently large batch size).

C Additional Approximation Criterion Analyses

We provide additional commentary and experimental settings for our analysis in Section 5.

C.1 Full-context vs Subcontext

As noted in footnote 12, there is usually a mismatch between the contexts that N -gram rules and
LLMs receive during training: the latter can receive very long contexts (up to one less than the
number of tokens in a document) while the former typically receives very short contexts (in our case,
up to 7 tokens). Concretely, while a bigram model is trained on consecutive pairs of tokens (c, t), an
LLM is rarely trained so as to optimize p(t|c). Indeed, given a training sequence x, only the target for
the first token of x has context consisting of a single token; the other targets will have more tokens
of context accordingly. Thus, it is unclear how well LLM predictions p(t|c) should match bigram
rule predictions as c varies over the vocabulary set, since LLMs almost always receive c within a
much larger context. More generally, it is unclear how well p(t|C) matches pfull(t|C). Nevertheless,
because in practice LLMs learn how to use context effectively, LLMs manage to learn p(t|C) despite
being optimized for p(t|C̃) with C̃ a context containing C as a suffix.

As a measure of how much training context “dilutes" the LLM ability to learn the bigram distribution,
in Figure 6 we plot the distance between LLM predictions and the bigram rule for two LLMs:
one trained in the usual fashion with full context and one trained with only one token of context
(concretely, a token can only attend to itself in attention layers). In both cases, we have the same
pattern of increased count leads to lower rule distance. However, the transformer trained with context
length equal to one has much lower distances since it cannot learn anything else other than the bigram
rule. The difference between the variational differences of the two models is thus a measure of the
dilution an LLM has in learning a bigram rule owing to receiving surrounding context.

As an aside, we note how for both models, a context with low count has difficulty being learned. In
this way, one can regard the inability to learn rules for low count contexts as being due to a failure of
optimization, something that could be addressed in the future by improved optimization methods.

17Trained using https://github.com/google/sentencepiece
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Figure 6: Comparison with TinyStories bigram model. We evaluate transformer models (trained
with either full context or context length equal to one) on all 22.8K distinct unigrams of TinyStories
and record the corresponding variational distance with the bigram rule. Grouping unigrams based on
count and averaging the variational distances result in the above scatterplots. Model size: 160M.

C.2 TinyStories Unigram Context

We repeat Figure 2 for the simplest case of unigram context. In this case, there is only one rule (the
bigram rule) and so there are only three plots to consider.
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Figure 7: TinyStories 1-grams. Every point in the above plots represents a 1-gram context (all 22.8K
from TinyStories). Shaded regions are plots obtained by bucketing along the x-axis and computing
one standard deviation within the mean along the y-axis. Slope and R2 values of plots are with
respect to the linear fit of the data given by their axes. Optimal rule distances and model variances are
computed with respect to five model runs. (a): model variance vs count of C (b): d(p(t|C), pfull(t|C))
vs model variance (c): d(p(t|C), pfull(t|C)) vs count. Model size: 160M.
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C.3 Tinystories Bigram Context

Next, consider the case when there are two tokens of context. To get a more fine-grained analysis, we
consider the case of full-context bigrams, i.e. those starting with the 〈BOS〉 token. This is because
such bigrams do not appear within a larger context and so a transformer’s corresponding predictions
are more fair to compare with those of N -gram models (both are trained using equal contexts).
Conveniently, there are only 691 full-context bigrams in this case and so we do not have to randomly
sample a subset.

We will consider the ruleset Rall
2 for which there are three relevant N -gram rules of interest: one

which uses the entire bigram of context (a trigram model), one which uses only the last token (a
bigram model), and one which uses only the first token (the next token distribution of 〈BOS〉).18 We
will refer to these as the trigram, bigram, and 〈BOS〉 rule respectively.

We plot an analog of Figure 2 for full-context bigrams in Figure 8. As with the analysis for Figure
2(a), a large count leads to good approximation with pfull(t|C), which is the vanilla trigram rule
at present. However lower counts lead to a spread in approximability (some low counts have high
error while others have low ones). In (c), we plot a variation in which the x-axis is the maximum of
the count of C and the unigram C−1. What the poor fit in (c) indicates is that whether a prediction
is well-described by a rule is not a simply determined by whether a subcontext of C occurs often.
Given the small number of rules, we now color code the optimal rule of each full-context bigram (as
indicated by the legend in (b)). In passing from (b) to (d), we see how the outliers in the upper left
of (b) move towards the bottom once the large distance from the trigram model is replaced with the
optimal rule distance. These are bigrams whose rules are well approximated by bigram or 〈BOS〉
rules and are misspecified when trying to be approximated by the trigram rule. In accord with our
Approximation Criterion, contexts with low model variance are well approximated by N -gram rules
(the lower left of (d)).

C.4 Wikipedia 6-gram contexts

We plot the analog of Figure 2 in Figure 9 but for contexts consisting of 6-grams from Wikipedia.
We also subsample as before, from logarithmically spaced buckets, for a total of around 6.8K total
contexts. We get nearly identical behavior as with TinyStories. Our Approximation Criterion is thus
not specific to small datasets like TinyStories.

18It turns out that the 〈BOS〉∗ rule (given by R+∗) in Rall
2 never occurs as an optimal rule for full-context

bigrams and so can be ignored in this example.
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Figure 8: TinyStories full-context bigrams. Every point in the above plots represents a full-context
bigram C from among the 691 distinct ones in TinyStories. Points are colored by which N -gram rule
is the optimal rule, among those inRall

2 , for transformer prediction given C. Shaded regions are plots
obtained by bucketing along the x-axis and computing one standard deviation within the mean along
the y-axis. (a): d(p(·|C), ptrigram(·|C)) vs count of C. (b): d(p(·|C), ptrigram(·|C)) vs model variance.
(c): Optimal rule distance vs the greater of the bigram count of C and the unigram count of C−1.
(d): Similar to upper right but now the y-axis is optimal rule distance. Five model runs are used to
compute optimal rule distance and model variance. Model size: 160M.

D Rule Performance: Additional Analysis and Examples

D.1 TinyStories

We supplement Table 2 with Table 4 to show how optimal rule distances decrease with increasing
rule strength. This is to preclude a trivial situation in which by having sufficiently many rules (say a
one-hot distribution for every vocabulary token), one can have a ruleset that for any model prediction
always returns an optimal rule with 100% top-1 accuracy! Such coarse rules will not in general yield
small optimal distances however19 and our variational distances decreasing in Table 4 shows that our
rulesets are truly better approximating the predictions with increasing strength.

We also include the analog of Tables 2 and (4 but with the variational distance replaced with the L∞
distance in Tables 5 and 6. We see that in fact the top-1 accuracy numbers are slightly better in this
case.

D.2 Wikipedia

We present analogous results for Section 7 using a 1.4B model trained on Wikipedia. In Table 7 we
present the analogue of Table 2 on ten holdout Wikipedia chunks (a total of 10× 2048 tokens). The

19Both the variational and L∞ distances between a one-hot distribution and a distribution which is uniform on
n tokens are at least n−1

n
. Thus, whenever an LLM has at least two roughly valid options, we expect a one-hot

distribution to be at least of distance 0.5 from the LLM prediction.
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Figure 9: Wikipedia 6-grams. Every point in the above plots represents a 6-gram context. Shaded
regions are plots obtained by bucketing along the x-axis and computing one standard deviation within
the mean along the y-axis. Slope and R2 values of plots are with respect to the linear fit of the data
given by their axes. Optimal rule distances and model variances are computed with respect to five
model runs. (a): d(p(t|C), pfull(t|C)) vs count of C. (b): d(p(t|C), pfull(t|C)) vs model variance.
(c): model variance vs count of C. (d): similar to (b) but now the y-axis is optimal rule distance of
the optimal rule fromRsuffix

6 . Model size: 160M.

Table 4: Optimal rule distance (TinyStories, variational distance). We look at the average optimal
rule distance with LLM predictions for rules of varying strength and maximum context length M .
We compute this average over each token prediction from 100 random TinyStories validation stories
(around 22K tokens total). Model size: 160M.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 0.738 0.597 0.507 0.434 0.37 0.316 0.274

Rsubgram
M 0.738 0.598 0.513 0.449 0.399 0.362 0.335
Rsuffix
M 0.738 0.598 0.519 0.465 0.425 0.399 0.381

backoffM 0.738 0.606 0.539 0.503 0.482 0.472 0.466

top-1 accuracy when using optimal rules fromRall
7 and the L∞ distance for rule selection is 67.7%.

As with TinyStories, we see significant gains in accuracy when we increase rule strength. Achieving
the number 67.7% (versus the corresponding 78.9% number for TinyStories from Table 5), perhaps
a surprisingly a high score, is the result of two competing factors: on the one-hand, Wikipedia is a
more complex dataset (which makes prediction harder), while on the other hand, the training data has
more N -grams and thus more rules. Our model achieves 54.9% top-1 accuracy on the 10 holdout
Wikipedia chunks (Table 12) which is substantially lower than the top-1 accuracy of the optimal rule.
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Table 5: Top-1 accuracy of optimal rule (TinyStories, L∞ distance). The analogue of Table 2 but
with L∞ distance instead of variational distance for selecting the optimal rule. Model size: 160M.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 30.0 45.1 55.0 63.2 69.6 75.0 78.9
Rsubgram
M 30.0 44.7 53.5 60.4 65.1 68.5 71.2
Rsuffix
M 30.0 44.5 52.6 58.0 61.4 63.6 65.2

backoffM 30.0 42.5 48.7 52.7 54.6 55.9 56.7

Table 6: Optimal rule distance (TinyStories, L∞ distance). The analogue of Table 4 but with L∞
distance instead of variational distance. Model size: 160M.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 0.557 0.443 0.371 0.309 0.253 0.207 0.170
Rsubgram
M 0.557 0.444 0.376 0.322 0.28 0.248 0.225
Rsuffix
M 0.557 0.446 0.383 0.338 0.305 0.282 0.267

backoffM 0.557 0.456 0.407 0.385 0.378 0.379 0.382

D.3 Model Scaling

In this section, we present results about how our rule approximation changes with model size. For
both TinyStories and Wikipedia, we train models of size 160M, 420M, and 1.4B for one epoch20.

In Tables 11 and 12, there is a clear trend towards improved model performance with scale: we
obtain lower cross entropy loss, higher top-1 accuracy, and lower model distance to the ground
truth distribution regarded as a one-hot distribution21. Note that for the latter, distance from model
predictions to the ground truth distribution is the same with respect to the variational or L∞ distance
and is given by 1− p where p is the probability assigned by the model to the ground truth.

On the other hand, entries in Tables 13-20 measuring the changes in rule approximation with scale
are much more modest (i.e. are more stable) by comparison. They also show mixed results, with L∞
results worsening but some variational distance results slightly improving with scale (for large context
length rules). We leave a more thorough investigation of how model scale affects approximability by
N -gram rules to future work.

20Since the 1.4B starts showing signs of overfitting around 4 epochs on TinyStories, we train models for 1
epoch in this section unlike 4 epochs elsewhere.

21It would be more proper to aggregate statistics over the holdout set to compute a ground truth distribution
that takes into the account the relative frequencies of the next token given the context. However, since most
contexts will be unique, this more refined computation will not affect the corresponding result much.
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Table 7: Top-1 accuracy of optimal rule (Wikipedia, L∞ distance). We look at the average top-1
accuracy between optimal rule and LLM predictions for rules of varying strength and maximum
context length. We compute this average over each token prediction from 10 holdout Wikipedia
sequences each consisting of 2048 tokens. Model size: 1.4B.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 24.3 39.7 49.8 55.5 60.3 64.3 67.7
Rsubgram
M 24.3 39.2 48.3 52.7 55.5 57.6 59.0
Rsuffix
M 24.3 38.8 47.1 50.3 51.5 52.3 52.7

backoffM 24.3 36.8 42.9 43.9 43.7 43.8 43.9

Table 8: Optimal rule distance (Wikipedia, L∞ distance). We look at the average L∞ distance
between optimal rule and LLM predictions for rules of varying strength and maximum context length.
We compute this average over each token prediction from 10 holdout Wikipedia sequences each
consisting of 2048 tokens. Model size: 1.4B.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 0.48 0.369 0.29 0.237 0.202 0.173 0.150
Rsubgram
M 0.48 0.371 0.295 0.249 0.226 0.209 0.198
Rsuffix
M 0.48 0.375 0.303 0.265 0.250 0.242 0.238

backoffM 0.48 0.394 0.359 0.368 0.387 0.398 0.405

Table 9: Top-1 accuracy of optimal rule (Wikipedia, variational distance). We look at the average
top-1 accuracy between optimal rule and LLM predictions for rules of varying strength and maximum
context length. We compute this average over each token prediction from 10 holdout Wikipedia
sequences each consisting of 2048 tokens. Model size: 1.4B.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 24.3 39.2 48.8 54.4 58.5 61.9 65.0
Rsubgram
M 24.3 39.0 47.9 52.3 54.9 56.8 58.3
Rsuffix
M 24.3 38.7 46.9 50.3 51.5 52.4 52.8

backoffM 24.3 36.8 42.9 43.9 43.7 43.8 43.9

Table 10: Optimal rule distance (Wikipedia, variational distance). We look at the average varia-
tional distance between optimal rule and LLM predictions for rules of varying strength and maximum
context length. We compute this average over each token prediction from 10 holdout Wikipedia
sequences each consisting of 2048 tokens. Model size: 1.4B.

ruleset / context length 1 2 3 4 5 6 7
Rall
M 0.768 0.635 0.543 0.484 0.446 0.413 0.388
Rsubgram
M 0.768 0.636 0.549 0.498 0.472 0.453 0.440
Rsuffix
M 0.768 0.638 0.556 0.513 0.497 0.488 0.483

backoffM 0.768 0.656 0.609 0.597 0.598 0.599 0.600

Table 11: TinyStories metrics. How average cross entropy loss, top-1 accuracy, and model distance
to the ground truth scale with model size on a holdout set of 100 stories.

model size eval loss eval acc eval distance
160M 1.43 63.2 0.485
420M 1.28 65.9 0.452
1.4B 1.22 66.9 0.439
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Table 12: Wikipedia metrics. How average cross entropy loss, top-1 accuracy, and model distance
to the ground truth scale with model size on a holdout set of 10 Wikipedia chunks.

model size eval loss eval acc eval distance
160M 2.63 50.0 0.617
420M 2.43 52.3 0.590
1.4B 2.26 54.9 0.562

Table 13: Top-1 accuracy of optimal rule with model scale (TinyStories, variational distance).
How top-1 accuracy of the optimal rule varies with model size and rule context length. Optimal rule
from is selected fromRall

7 using variational distance.

model size / context length 1 2 3 4 5 6 7
160M 31.4 47.1 56.7 64.3 69.8 74.5 77.9
420M 30.7 45.9 55.5 63.3 69.2 74.1 77.9
1.4B 30.5 45.9 55.3 63.4 69.6 74.3 78.2

Table 14: Optimal rule distance with model scale (TinyStories, variational distance). How
optimal rule distance varies with model size and rule context length. Optimal rule is selected from
Rall

7 using variational distance.

model size / context length 1 2 3 4 5 6 7
160M 0.692 0.545 0.46 0.398 0.347 0.306 0.275
420M 0.711 0.566 0.479 0.411 0.355 0.310 0.274
1.4B 0.718 0.574 0.486 0.417 0.359 0.311 0.274

Table 15: Top-1 accuracy of optimal rule with model scale (TinyStories, L∞ distance). How
top-1 accuracy of the optimal rule varies with model size and rule context length. Optimal rule is
selected fromRall

7 using L∞ distance.

model size / context length 1 2 3 4 5 6 7
160M 31.4 47.5 57.5 65.2 71.4 76.1 79.6
420M 30.7 46.3 56.3 64.2 70.5 75.3 79.2
1.4B 30.5 46.2 56.0 64.1 70.5 75.3 79.3

Table 16: Optimal rule distance with model scale (TinyStories, L∞ distance). How optimal rule
distance varies with model size and rule context length. Optimal rule is selected fromRall

7 using L∞
distance.

model size / context length 1 2 3 4 5 6 7
160M 0.482 0.368 0.301 0.248 0.204 0.169 0.141
420M 0.511 0.398 0.329 0.272 0.223 0.184 0.153
1.4B 0.522 0.408 0.338 0.280 0.230 0.189 0.157

Table 17: Top-1 accuracy of optimal rule with model scale (Wikipedia, variational distance).
How top-1 accuracy of the optimal rule varies with model size and rule context length. Optimal rule
is selected fromRall

7 using variational distance.

model size / context length 1 2 3 4 5 6 7
160M 25.9 40.8 49.5 54.2 57.7 61.0 63.8
420M 24.7 39.8 49.0 54.2 58.1 61.6 64.3
1.4B 24.3 39.2 48.8 54.4 58.5 61.9 65.0
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Table 18: Optimal rule distance with model scale (Wikipedia, variational distance). How opti-
mal rule distance varies with model size and rule context length. Optimal rule is selected fromRall

7
using variational distance.

model size / context length 1 2 3 4 5 6 7
160M 0.737 0.606 0.527 0.477 0.445 0.418 0.397
420M 0.753 0.621 0.534 0.480 0.445 0.414 0.391
1.4B 0.768 0.635 0.543 0.484 0.446 0.413 0.388

Table 19: Top-1 accuracy of optimal rule with model scale (Wikipedia, L∞ distance). How top-1
accuracy of the optimal rule varies with model size and rule context length. Optimal rule is selected
fromRall

7 using L∞ distance.

model size / context length 1 2 3 4 5 6 7
160M 25.9 41.2 50.4 55.9 60.4 64.4 67.8
420M 24.7 40.3 50.0 55.7 60.4 64.3 67.7
1.4B 24.3 39.7 49.8 55.5 60.3 64.3 67.7

Table 20: Optimal rule distance with model scale (Wikipedia, L∞ distance). How optimal rule
distance varies with model size and rule context length. Optimal rule is selected fromRall

7 using L∞
distance.

model size context length 1 2 3 4 5 6 7
160M 0.429 0.321 0.253 0.208 0.179 0.154 0.135
420M 0.455 0.346 0.271 0.222 0.190 0.163 0.143
1.4B 0.480 0.369 0.290 0.237 0.202 0.173 0.150
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<BOS> ('<BOS>',) 2118438
Once ('<BOS>', 'Once') 1426581
 upon ('<BOS>', 'Once', ' upon') 1258475

 a ('<BOS>', 'Once', ' upon', ' a') 1257566
 time (' upon', ' a', ' time') 1258881

, ('Once', ' upon', ' a', ' time', ',') 976049
 there  in (' upon', ' a', ' time', ',', ' in') 30487

 a (' a', ' time', ',', ' in', ' a') 29850
 small  big (' a', ' time', ',', ' in', ' a', ' big') 7021

 forest (' time', ',', ' in', ' a', ' big', ' forest') 2623
, (' time', ',', ' in', ' a', ' big', ' forest', ',') 2617

 there (' big', ' forest', ',', ' there') 2725
 was  lived (' big', ' forest', ',', ' there', ' lived') 966

 a (' big', ' forest', ',', ' there', ' lived', ' a') 907
 little  rh (' big', ' rh') 351

in (' rh', 'in') 9748
oc (' a', ' rh', 'in', 'oc') 1034

eros (' lived', ' a', ' rh', 'in', 'oc', 'eros') 41
 named , .  named (' rh', 'in', 'oc', 'eros', ' named') 236

 R ('eros', ' named', ' R') 93
emy oxy (' named', ' R', 'oxy') 18

. ('eros', ' named') 237
 R ('oxy', '.', ' R') 8

oxy ('oxy', '.', ' R', 'oxy') 8
 was  loved ('oxy', ' loved') 4

 to (' loved', ' to') 546806
 play  climb (' loved', ' to', ' climb') 2524

 trees . (' loved', ' to', ' climb', '.') 485
 One ,  He  She (' loved', ' to', ' climb', '.', ' She') 111

 would ,  climbed  climbed (' loved', ' to', ' climb', '.', ' She', ' climbed') 32
 trees (' climb', '.', ' She', ' climbed', ' trees') 21

, (' climb', '.', ' She', ' climbed', ' trees', ',') 19
 rocks (' climb', '.', ' She', ' climbed', ' trees') 21

, (' She', ' climbed', ' rocks') 1
 and (' trees', ',', ' rocks', ',', ' and') 117

 even  hills (',', ' and', ' hills') 29
. (' trees', ',', ' and', ' hills', '.') 4

 One ,  Still  One ('.', ' One') 846242
 day (',', ' and', ' hills', '.', ' One', ' day') 1

, ('.', ' One', ' day', ',') 717085
 R ,  she  R (' day', ' R') 63

oxy , over oxy (' day', ',', ' R', 'oxy') 17
 saw ,  was  found ('oxy', ' found') 2

 a  an (' found', ' an') 14301
 unusual ,  old  icy (' found', ' an', ' icy') 59

 pond ,  lake  hill (' found', ' an', ' icy', ' hill') 2
. (' R', '.') 6

 She ,  He  She (' hill', '.', ' She') 3214
 thought ,  was  had (' icy', '.', ' She', ' had') 6

 never ,  to  never (' had', ' never') 71696
 seen (' hill', '.', ' She', ' had', ' never', ' seen') 11

 it  anything (' She', ' never', ' seen', ' anything') 1
 like (' had', ' seen', ' anything', ' like') 11
 it (' She', ' had', ' never', ' seen', ' it') 567

 before (' anything', ' like', ' before') 2
. (' anything', ' like', ' before', '.') 2

Predictions
(transformer / rule) Ground truth + Rule distance Rule context count

0.25 0.50 0.75

Figure 10: Rule selection for a TinyStories heldout sequence usingRsubgram
7 . Analogous to Figure

5 but with optimal rule chosen fromRsubgram
7 instead ofRall

7 . Model size: 160M.

D.4 Rule Selection

Here we supplement our example in Figure 5 by showing how the smaller rulesetsRsubgram
7 andRsuffix

7
compare in Figures 10 and 11. As expected, the top1 accuracy between transformer predictions and
optimal rule predictions decrease with smaller rulesets.
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<BOS> ('<BOS>',) 2118438
Once ('<BOS>', 'Once') 1426581
 upon ('<BOS>', 'Once', ' upon') 1258475

 a ('<BOS>', 'Once', ' upon', ' a') 1257566
 time (' upon', ' a', ' time') 1258881

, ('Once', ' upon', ' a', ' time', ',') 976049
 there  in (' upon', ' a', ' time', ',', ' in') 30487

 a (' a', ' time', ',', ' in', ' a') 29850
 small  big (' a', ' time', ',', ' in', ' a', ' big') 7021

 forest (' time', ',', ' in', ' a', ' big', ' forest') 2623
, (' time', ',', ' in', ' a', ' big', ' forest', ',') 2617

 there (' big', ' forest', ',', ' there') 2725
 was  lived (' big', ' forest', ',', ' there', ' lived') 966

 a (' big', ' forest', ',', ' there', ' lived', ' a') 907
 little  rh (' lived', ' a', ' rh') 41

in (' rh', 'in') 9748
oc (' a', ' rh', 'in', 'oc') 1034

eros (' lived', ' a', ' rh', 'in', 'oc', 'eros') 41
 named , .  named (' rh', 'in', 'oc', 'eros', ' named') 236

 R ('eros', ' named', ' R') 93
emy oxy (' named', ' R', 'oxy') 18

. (' named', ' R', 'oxy', '.') 11
 R ,  She  R ('oxy', '.', ' R') 8

oxy ('oxy', '.', ' R', 'oxy') 8
 was  loved ('oxy', ' loved') 4

 to (' loved', ' to') 546806
 play  climb (' loved', ' to', ' climb') 2524

 trees . (' loved', ' to', ' climb', '.') 485
 One ,  He  She (' loved', ' to', ' climb', '.', ' She') 111

 would ,  climbed  climbed (' loved', ' to', ' climb', '.', ' She', ' climbed') 32
 trees (' climb', '.', ' She', ' climbed', ' trees') 21

, (' climb', '.', ' She', ' climbed', ' trees', ',') 19
 rocks (' climbed', ' trees', ',', ' rocks') 37

, (' trees', ',', ' rocks', ',') 148
 and (' trees', ',', ' rocks', ',', ' and') 117

 even  hills (',', ' and', ' hills') 29
. (' hills', '.') 2155

 One , \n  One ('.', ' One') 846242
 day (',', ' and', ' hills', '.', ' One', ' day') 1

, ('.', ' One', ' day', ',') 717085
 R ,  she  R (',', ' R') 3223

oxy , emy oxy (' day', ',', ' R', 'oxy') 17
 saw ,  was  found ('oxy', ' found') 2

 a  an (' found', ' an') 14301
 unusual ,  old  icy (' found', ' an', ' icy') 59

 pond ,  lake  hill (' found', ' an', ' icy', ' hill') 2
. ('.',) 32885210

 She , \n  She (' hill', '.', ' She') 3214
 thought ,  was  had (' hill', '.', ' She', ' had') 97

 never ,  a  never (' had', ' never') 71696
 seen (' hill', '.', ' She', ' had', ' never', ' seen') 11

 it  anything (' hill', '.', ' She', ' had', ' never', ' seen', ' anything') 2
 like (' She', ' had', ' never', ' seen', ' anything', ' like') 1621
 it (' She', ' had', ' never', ' seen', ' anything', ' like', ' it') 1453

 before (' had', ' never', ' seen', ' anything', ' like', ' it', ' before') 4529
. (' anything', ' like', ' it', ' before', '.') 3577

Predictions
(transformer / rule) Ground truth + Rule distance Rule context count

0.25 0.50 0.75

Figure 11: Rule selection for a TinyStories heldout sequence using Rsuffix
7 . Analogous to Figure

5 but with optimal rule chosen fromRsuffix
7 instead ofRall

7 . Model size: 160M.

We also ground our rule approximation on Wikipedia by providing two concrete examples in Figures
12 and 13.
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, (',',) 153786312
 and (',', ' and') 13109555
 the (',', '*', ' the') 6464695

  front (',', ' the', '*') 9208196
 of  toes (',', ' and', ' the', ' front', '*') 900

 are (' and', '*', ' toes', ' are') 90
 long ,   partially (',', ' and', '*', ' toes', ' are', '*') 16

 web  joined (' and', '*', '*', '*', '*', ' partially', '*') 1516
 at (' the', '*', '*', ' are', '*', ' joined', '*') 384

 the (' are', '*', ' joined', '*', ' the') 470
 base (' are', '*', '*', ' at', '*', ' base') 706

. (' base', '.') 32190
 The , \n  F (' partially', '*', '*', '*', '*', '*', ' F') 29

oss , a if ('.', ' F', 'if') 3007
teen (' base', '*', '*', 'teen') 10

 species (' base', '*', '*', 'teen', ' species') 3
 have ('teen', ' species', ' have') 151
 been ('teen', ' species', ' have', '*') 151

 recorded ('teen', '*', '*', '*', ' recorded') 158
 in (' species', '*', '*', ' recorded', '*') 3796

 South ,   Guyana (' species', '*', '*', '*', '*', ' Guyana') 74
. (' species', '*', ' been', '*', '*', '*', '.') 1915

\n \n (' have', ' been', '*', ' in', '*', '.', '\n') 2229
\n \n (' Guyana', '.', '\n', '\n') 810

The Blue (' recorded', '*', '*', '*', '*', '*', 'Blue') 50
- ('Blue', '-') 2562

headed , w and ('Blue', '-', 'and') 128
- ('\n', 'Blue', '-', '*', '-') 105

white ('white',) 71413
 col , "  swallow ('-', '*', '*', '*', ' swallow') 143

, (' swallow', ',') 2449
 T ,   Py ('white', ' swallow', '*', '*') 36

g ('white', ' swallow', '*', '*', '*') 36
oc (' swallow', '*', '*', '*', 'oc') 48
hel (' swallow', '*', '*', '*', 'oc', '*') 48
id (' Py', 'g', 'oc', '*', '*') 32
on (',', '*', 'g', '*', '*', 'id', 'on') 27

 cyan (' Py', 'g', '*', '*', 'id', '*', '*') 35
ole ('on', ' cyan', 'ole') 22
uc ('on', ' cyan', '*', 'uc') 22
a (' cyan', '*', 'a') 346

 ( \n ('ole', 'uc', '*', '*') 3662
\n Black (' cyan', '*', '*', '*', '*', 'Black') 17

- (' cyan', '*', '*', '\n', '*', '-') 96
and coll ('Black', '*', 'coll') 95

ared ('uc', 'a', '*', '*', '*', '*', 'ared') 8
 swallow ('a', '*', '*', '*', 'ared', ' swallow') 2

, ('Black', '*', '*', 'ared', ' swallow', '*') 10
 Py (' swallow', '*', ' Py') 27
g (' swallow', '*', '*', 'g') 31
oc (',', ' Py', 'g', 'oc') 27

Predictions
(transformer / rule) Ground truth + Rule distance Rule context count

0.1 0.2

Figure 12: Rule selection for a Wikipedia heldout sequence. Analogous to Figure 5 but with
optimal rule chosen fromRall

7 and with variational distance replaced with theL∞ metric for measuring
distances between probability distributions. Model size: 1.4B.
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 video (' video',) 525296
 game  was (' video', ' was') 35709

 released  directed (' video', ' directed') 1837
 by (' was', ' directed', ' by') 37813

 the  Michael (' was', '*', '*', ' Michael') 5779
 H ,   Sal (' Michael', ' Sal') 240

omon (' was', '*', ' by', '*', ' Sal', 'omon') 66
. ,   and (' was', ' directed', '*', '*', '*', '*', ' and') 4339

 produced ,   prem ('omon', ' prem') 2
iered (' Michael', '*', '*', ' prem', '*') 18
 on (' and', ' prem', '*', '*') 7480

  C (' and', '*', ' on', ' C') 334
BC MT (' on', ' C', 'MT') 720

 on ('iered', '*', ' C', '*', ' on') 150
 October ,   February (' prem', '*', '*', '*', '*', ' on', ' February') 226

 ('iered', ' on', ' February', '*') 1429
1 (' on', ' February', ' ', '1') 51089

, 5 ('MT', '*', ' February', '*', '5') 1
, (' February', '1', ',') 3
 (' on', ' February', '*', '1', ' ') 8
2 (' February', '5', '*', '*', '2') 2
0 ('1', '5', '*', '*', '2', '0') 193674

1 0 ('1', '5', '*', '*', '2', '*', '0') 55855
9 6 (',', ' ', '0') 143834

. (',', '2', '*', '0', '*', '.') 4435
\n  G (' ', '2', '0', '*', '*', '.', ' G') 2584

aga , r AC ('0', '*', '.', '*', 'AC') 86
V ,   cut ('AC', ' cut') 6

 the (' G', 'AC', '*', ' the') 61
 video ,   ending ('6', '*', '*', 'AC', '*', ' the', '*') 19

 of ('.', 'AC', '*', '*', '*', ' of') 2
 the (' G', 'AC', '*', ' the') 61

 video ,   video (' the', ' ending', '*', ' the', '*') 2003
,  out (' cut', ' the', '*', '*', ' out') 25

 of  because (' video', '*', ' because') 93
 it  of (' out', ' because', ' of') 689

 the  its (' of', '*', ' video', '*', ' its') 19
 sexual  suggestive (' because', ' of', '*', ' suggestive') 18

 nature ,   language (' because', '*', ' its', ' language') 9
.  Keith (' of', ' Keith') 1262
'  tells (' because', '*') 842884

 his ,   the (' of', ' suggestive', '*', '*', '*', '*') 61
 audience , .  audience (' Keith', ' tells', '*', '*') 24

 to ,  , (' tells', ' the', ' audience', ',') 16
 "  referring (' the', '*', ',', ' referring') 661

 to (' tells', '*', '*', ',', '*', ' to') 29
 the  him (' referring', '*', ' him') 924
 as  shooting (' referring', ' him', '*') 23
 a  the (' shooting', ' the') 2570

 video ,   video (' to', ' him') 114486
.  as (' to', ' him', ' as') 6703

Predictions
(transformer / rule) Ground truth + Rule distance Rule context count

0.2 0.4

Figure 13: Rule selection for a Wikipedia heldout sequence. Analogous to Figure 5 but with
optimal rule chosen fromRall

7 and with variational distance replaced with theL∞ metric for measuring
distances between probability distributions. Model size: 1.4B.
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E Broader Impacts

Large language-models are having significant impacts on society, due to their use as question-answer
tools and natural language generators. A better understanding of such language models will only
serve to improve their capabilities. Our work here presents steps towards a fundamental understanding
of language models, albeit in a small-scale regime far removed from those relevant for production
systems. Given how far removed our work is from realistic datasets and use cases, we do not anticipate
any direct negative broader impacts of our work.
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For example, if the contribution is a novel architecture, describing the architecture fully
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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7. Experiment Statistical Significance
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• The method for calculating the error bars should be explained (closed form formula,
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Explained in Appendix.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our experiments use small, public datasets and involve no sensitive material or
topics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?

Answer: [Yes]
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direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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that a generic algorithm for optimizing neural networks could enable people to train
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, datasets used are referenced.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
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• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
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