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Abstract

Rotary Positional Encodings (RoPE) have emerged as a highly effective technique
for one-dimensional sequences in Natural Language Processing spurring recent
progress towards generalizing RoPE to higher-dimensional data such as images
and videos. The success of RoPE has been thought to be due to its positional
equivariance, i.e. its status as a relative positional encoding. In this paper, we
mathematically show RoPE to be one of the most general solutions for equivariant
positional embedding in one-dimensional data. Moreover, we show Mixed RoPE
to be the analogously general solution for M-dimensional data, if we require
commutative generators — a property necessary for RoPE’s equivariance. However,
we question whether strict equivariance plays a large role in RoPE’s performance.
We propose Spherical RoPE, a method analogous to Mixed RoPE, but assumes
non-commutative generators. Empirically, we find Spherical RoPE to have the
equivalent or better learning behavior compared to its equivariant analogues. This
suggests that relative positional embeddings are not as important as is commonly
believed, at least within computer vision. We expect this discovery to facilitate
future work in positional encodings for vision that can be faster and generalize
better by removing the preconception that they must be relative.

1 Introduction

Deep learning is in the age of transformers [[73]]. At their core, transformers are built on attention [4}
61]], which is a permutation-invariant operation [74], making them agnostic to word or token position
within a corpus. To break this symmetry, tokens must be modified with position embeddings [25 [83]].
Recently, Rotational Positional Encodings (RoPE) [69] have gained popularity, touting an emphasis
on the relative position between two tokens rather than their absolute positions [22} 26, 43| 46].
However, some of the original claims of RoPE have been called into question leading to confusion as
to why it works: Su et al. [69] claimed the attention scores to decay with distance between tokens.
This was found to be true only for attention with the same query and key [S]. Moreover, transformers
with causal masking have been shown to require no positional encodings to be capable of recovering
absolute position [24], making RoPE’s relative (shift-equivariant) claim questionable. However, many
new methods continue to be motivated by RoPE’s benefit from shift-equivariance [27} 60, 85]] . To
guide future research in positional encodings, it is important to discover whether shift-equivariance
truly makes RoPE successful and needs to be preserved when extending it.

Both transformer and RoPE were originally designed for one-dimensional sequences such as language.
ROPE encodes position by pairing dimensions within the query and key vectors within a transformer
and rotating the paired dimensions. Transformers have become the current staple across all Al
fields [[L7, 29} 46} 147, 163]. Naturally, RoPE’s recent popularity in NLP has also spread to Vision
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Transformers (ViT), where the data is two- or three-dimensional, corresponding to images and
videos. How to extend RoPE to other modalities is nontrivial and assumptions must be made to
maintain equivariance [44}|60]. The most commonly used approach for extending RoPE to ViTs is
through Axial RoPE [15} 26} [77]], partitioning the embedding dimensions into dimensions rotated
independently either by the horizontal or the vertical position of the tokens. However, this approach
does not allow for diagonal attention patterns where horizontal and vertical information “mix", which
have been hypothesized to enhance generalization; consequently, learned Mixed RoPE was proposed
[26]. Even more recently, LieRE [52] generalized Mixed RoPE from pair-wise rotations to higher
dimensional rotations using learned skew-symmetric Lie algebras. If one defines rotations to be
special orthogonal transformation, LieRE is the most general form of rotation encoding. However,
while general, LieRE does not guarantee equivariance.

In this paper, we investigate the relationships across these different forms of positional encoding. In
Section [3] we mathematically show RoPE with parameterized rotation speeds to be equivalent to
LieRE for one-dimensional data. When the number of positional dimensions is higher dimensional,
LieRE is not guaranteed to be equivariant unless constraints are placed on the Lie algebras. Using
this insight, we derive Axial RoPE by imposing a “mutual exclusivity" constraint on the eigenvalues
of LieRE’s generators. Further, we will show that if one loosens this constraint — requiring the Lie
algebra to be commutative between the generator — then one arrives at Mixed RoPE. To be a relative
encoding, this commutativity property is necessary [44, [60], thus making Mixed RoPE the most
general form of LieRE which maintains equivariance. However, it has been noted that requiring the
positional embedding to be relative is an inductive bias whose necessity to RoPE’s success is unclear
(1L 15, 124].

The perceived necessity of equivariance has led to a circular argument where positional embeddings
are assumed to perform well because they are relative, and all new embeddings must be relative
because relative embeddings perform well. To break this cycle, we believe that it is imperative to
establish the importance of equivariance embeddings for multi-dimensional RoPE. In Section ] we
propose alternative methods to establish a cause-effect experiment to evaluate whether equivariances
is a predominant contributor to RoPE’s faster training dynamics and generalization. To this end, we
propose Spherical RoPE which takes a non-commutative assumption, thus breaking equivariance,
and Uniform RoPE, which maintains equivariance, but has only a single shared rotation speed.

In Section[5] we find that Spherical ROPE has the same training behaviors as its equivariant analogues
and we find that Uniform RoPE outperforms the standard learned encodings, while performing worse
than other RoPE methods. We conclude that our evidence suggests that the performance of RoPE
over traditional embeddings is not explained by equivariance.

2 Background

In this section, we review concepts and notation from previous work on rotary positional embeddings.
We introduce the methods in both historical and progressively general order which we will use to
prove in Section [3|that Mixed RoPE is the most general M-D rotary embedding with equivariance.
For a broader literature review on positional embeddings see Appendix [C] For a compact overview of
symbols, see Appendix D}

2.1 Attention

We use the standard attention mechanism from Vaswani et al. [[73]], given by

Z = Attention(Q, K, V) = softmax <QKT> A\ (D
) b \/@ .

We consider only single-headed attention to simplify notation, so here Q, K, and V are elements of
RT>*N where T is the number of tokens and NV is the network’s latent dimension. We will primarily

use index notation, where the above equation is expressed as, z; = Z;1 a(q;, k;)v;. We define the
attention mechanism, a(q;, k;), as
ea (q'i akj )

a(qi, kj) = W’ @
=



where what we refer to as the attention score is given by

a(q,k) =q k. 3

This formulation of attention is equivariant to permutations of the token order. To break this
symmetry, the position of the tokens must be “encoded" into the attention scores. Thus, we re-express
the attention score as a function of the content of the query token x; € R and key token x; € RV,
and their positions p;, p; € R,

aij = ala, ky) = a((xi,pi), (X5,05)) == a(xi, X5, i, ) “)
Throughout this paper, we will abuse the notation of « and use these expressions interchangeably for

ease of notation. If the position affects the query and key directly, as in RoPE, we will introduce the
notation o (¢ (2, p;), ¢(x;,p;)) for positional encoding function .

2.2 Absolute and Relative Positional Encoding

Absolute Positional Encoding (APE) is a common way of embedding token positions in transformers
by adding position-dependent vectors, i.e. ¢(x,p) := x + PE(p), where x is a token embedding,
p is its position, and PE : Z — RY. Previous work has suggested learning a per-position token
as PE [17,120]. However, this restricts the network to fixed context length, removing the ability to
extrapolate to different sequence lengths. The alternative is to add a deterministic function to the
embedding. Vaswani et al. [73]] proposed to add Fourier modes,

sin (pw%), ifnmod2=0
PE,(p) = (%)

cos (pwiz|), ifnmod2=1,

where n is a dimension within the positional embedding vector and w,, is a frequency term which
increases with dimension. Note that this pairs elements in the embedding vector with each pair being
transformed by the same frequency.

For ease in future notation, we will use D := N/2 as the number of pairs and interpret the embedded
token as a D x 2 tensor. One can also interpret this tensor as representing the coefficients of a
complex number, the first representing the real and second representing the complex part. Then we
can succinctly write this form of positional encoding as

P(X,p) =X + e“P, ©6)

where we use - to indicate complex-valued vectors, X € CP. For this notation, we should also adjust
the attention score for complex numbers,

a(q,k) =Re [q k], (7

where @ = W (X, p) and k = Wi (X, p), with W,, W, € CP*P and T is assumed to be the
Hermitian transpose. With Eq. [7]implied, we will continue with the notation in Eq. [3]

Relative Positional Encodings Positional embeddings rely on being able to assign position values
to each token. However, how one assigns positions can often be arbitrary. One could just as correctly
assign the first token the value zero and consider natural numbers, or assign the middle token of
a corpus zero and consider integers. We can relax the assumption of a canonical way of labeling
positions in APE by relying on relative distances between tokens, resulting in a;; = (X3, X;, pi —p;)-
This is called relative positional encoding. We refer to this property as embeddings having a relative
positional bias, or equivalently, having shift-equivariance (see Appendix [E.T]for discussion of the
equivalence). In this manuscript, we will simply use the term equivariance with the implication that
the attention score is invariant to shifts in the query and key.

2.3 Rotary Positional Encodings (RoPE)

There are four common properties that are often preferred for positional embeddings: equivariance,
key-query separability, linearity, and locality. For further details and why one may want these
properties see Appendix [E}

From the properties, Rotary Positional Embeddings (RoPE) were derived by Su et al. [69]. Rather
than adding a positional embedding to the patch embedding, RoPE proposed to modify the queries



and keys by rotating them in pairs. By interpreting queries and keys as complex vectors, we can
express this rotation as

@(qa,p) = € qq p(ka,p) = P kq. ®)
Since we assume the same operation is applied to the queries and keys, from now on, we will use z to

refer to operations which act on both. In matrix form, this is given by e*<P can be represented as

iwap — |cos(wap) —sin(wap)| _
er = sin(wgp)  cos(wap) = Rup, ©)

where R,,,;, is a rotation matrix. While the rotation matrix is more intuitive, the complex exponential
form will be useful for the mathematics in Section[3] so we will alternate between the two. Recall,
we use the convention that real valued queries and keys will have dimension N and the complex
interpretation will have dimension D.

One can represent the effect of RoPE as the application of a block diagonal of rotation matrices,

Rpwl 0 - Z1 eipwl 0
ROPE(Z,p) = sz = 0 Rpw2 0 etwz .| _

Z, (10)

Zp

where z,4 is a query pair. We introduce this block-diagonal form as it was the notation used in Su
et al. [69]]. However, we will primarily stick to the index notation in Eq.

2.4 2D RoPE Embeddings

ROPE is constrained to operate on (1D) sequences. Motivated by the success of RoPE in language
modeling, there have been growing efforts to extend it to multi-dimensional positions [[10, [15], which
we outline below. We will use M to refer to the dimensionality of the position, but will primarily
focus on images, where M = 2 and p;,p; € R2.

Trivial 2D RoPE. One could trivially encode p = (px, p,) using rotation matrices Ry,,p,, Ruw,p, :

@(Zd, p) = Rwdpz Rwdpy qa = Rwd(pm+py)zd' (11)

However, in this case all positions with p,, 4+ p, = ¢ would get the same positional encoding R, .

Axial RoPE. More practically, RoPE is extended to multiple dimensions by letting « and y act on
different dimensions,

— R;me 0
©(z4,pP) = { 0 4 prwd] Z, (12)

(@) (@) ()
1 5%2 5%

The block-diagonal matrix can once again be viewed as a tensor of shape N/2M x M x 2, where M
is once again the dimensionality of position — in this case M = 2 for horizontal and vertical position.

This gives the index notation

7Z£y) .

where queries and keys are now split into four-dimensional vectors, z;lr = [z

@(Zd,wupm) = Rwdvmpmzd,m; (]3)

for m € {«,y}. From a programming perspective, one can interpret this as a form of batched matrix
multiplication.

While this method eliminates the symmetry, it treats « and y as independent. The result is a separable
attention score of the form

aij = o) +al?), (14)

() ) : :
where ;" and «;;" are components of the attention score which depend only on p, and py,

respectively. The frequencies are restricted to the axes, hence it is called Axial RoPE. This over-
emphasizes horizontal and vertical relationships at the expense of oblique directions creating gridded
patterns shown in Figure|ll To represent oblique patterns, the rotations would have to be performed
along directions that contain both an x and a y component, i. e. frequencies that are not aligned on
the axis in FigurdI] These frequencies have been referred to as “mixed frequencies” [26]].
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Figure 1: The attention patterns of Axial and Mixed RoPE. A. Each dimension pair in the query
and key vectors is rotated based on the position creating an attention pattern. The pixel value
of the attention pattern is (x4, Xk, p,0), where p = (4, j) — the pixel location. On the left, the
attention pattern of individual component-pairs in the embedding vector is shown and, on the right,
the components are combined into the overall attention pattern for a randomly sampled query and
key vector. B. Location of the rotations frequencies in 2D frequency space. Axial RoPE can only
represent frequencies that lie on an axis resulting in the grid-like attention patterns. Unlike Axial
RoPE, Mixed RoPE can assign different directions to each component-pair (A Bottom). When
Axial RoPE uses fixed frequencies, the frequencies are spread exponentially. However, they can be
implemented as learnable parameters. For Uniform RoPE, all frequencies are fixed to a single value
for each axis.

Mixed RoPE: Learned mixed frequencies. The inclusion of mixed frequencies has empirically
been shown to positively impact learning and generalization [26]. The naive approach in Eq. [T1]is
only a problem when x and y rotate by the same frequency in every dimension. One could instead
parameterize the frequencies with two separate frequencies in each dimension,

‘P(zd) = Rwdmewdyyqd = Rwdmerwdyyqd' (15)
By making the w, and w, parameters learnable, the attention pattern can learn mixed-frequency
patterns by constructing a superposition of different diagonal patterns, as shown in Figure[T}

LieRE. Recently, RoPE has been interpreted through the lens of Lie algebras [44] (52} 60]. For an
intuitive introduction to how Lie algebras appear, see Appendix[E.3] Lie Rotary Position Encodings
(LieRE) [52] extend Mixed RoPE by applying N-dimensional rotation matrices, rather than 2 x 2
matrices applied to pairs, using a linear combination of learned skew-symmetric Lie algebras,

o(2,p) = exp(Aepz + Aypy)2, (16)
where exp is the matrix exponential, and the A terms are N x N skew-symmetric matrices — which
are Lie group generators of a subgroup of SO(N). Mathematically, LieRE is the most general
rotary-based embedding method as skew-symmetric matrices are the generators of any /N-D rotation.
However, unlike the other two methods, LieRE is not guaranteed to be equivariant.

3 The Generality of Learned RoPE and Mixed RoPE

While LieRE is motivated as generalizing RoPE to M -D rotations, in this section we will show that
LieRE in one dimension can be learned by implementing RoPE with parameterized frequencies.
For M-D positions, LieRE is not equivariant unless the generators commute. If the generators are
required to commute, we show that LieRE can be re-expressed as Mixed RoPE. Thus, we conclude
Mixed RoPE to be a general solution for M-D equivariant rotary embeddings. In this section, we
will give informal proofs focused on high-level insights.

3.1 1D-LieRE is equivalent to 1D RoPE with learned frequencies

In this section, we prove that any one-dimensional LieRE can be expressed as RoPE with param-
eterized rotation frequencies. Thus, we conclude RoPE to be a computationally efficient way of
expressing a D-dimensional rotation, i. e., 1D-LieRE.



Proposition 1. Any ID-LieRE can be parameterized by RoPE with learned frequencies.

To see why Proposition [ holds, suppose we have a 1D-LieRE embedding with a learned generator

A. By formulation, A is skew-symmetric, A" = —.A. The positionally encoded attention between
query q = Wgx and k = Wix is
(i, x5, pip;) = (exp(Apg)a) T exp(Apy)k. (17)

Any skew-symmetric matrix has an eigenvalue decomposition A = UA7UT where A7 is a diagonal

matrix of purely imaginary (or zero) eigenvalues and U is a unitary matrix, U U = I. Moreover, the

matrix-exponential of an eigenvalue decomposition simplifies to exp(UA7U ") = Uexp(A7)UT.
This allows us to express attention as

(i, x5, pipj) = 4" Uexp(—pgAz)U " Uexp(prAz)U 'k (18)

=q'" exp(—pyAz) exp(prAr)K’ (19)

where q' = W;x with W; =UW, and k' = W) x with W/, = U TW,.. Because the eigenvalue
matrix is diagonal, the exponential is given by

gihop 0 0
0 iXip .
exp(pAr) = | = € : (20)
: o 0
0 0 eAnN-1p

Notice that this is the same as the complex formulation of RoPE defined in Eq. [T0} where the
eigenvalues of the generator correspond to the rotation frequencies of the rotation matrices. Thus,
any 1D-LieRE can be expressed as RoPE with learnable frequencies by absorbing the matrix of
eigenvectors of 4 into the weight matrices W4 and Wy. Since 1D-LieRE learns a rotation in
SO(D), RoPE can be seen as an efficient way to represent a rotation in RP.

3.2 Extending RoPE to more than one dimension

While this proof works for 1D positions, it does not generalize to M -D without introducing extra
inductive biases or giving up equivariance. By imposing constraints on A, and .A,, we can categorize
the other RoPE methods based on the assumptions made.

Generators rotate independent subspaces. For example, one can impose the assumption that p,
and p,, rotate independent subspaces in RY. Mathematically, this assumption would imply that

vde[1,D]: A =0or A =0, Q1)

where )\gx) and )\gy) are the eigenvalues of A, and A, respectively. This is equivalent to rotating
independent components of the query/key as done by Axial-RoPE.

Commutative generators. For LieRE to be equivariant, we only need to ensure that the generators
commute. If we make this assumption, then we arrive at Mixed RoPE.

Proposition 2. Any M -dimensional LieRE with commutative generators can be parameterized
by Mixed RoPE.

To see why Propositionholds, suppose we can diagonalize A, = U,A, U] and Ay = UyAyU;r .
If we take the assumption that A, and A, commute,

Az, Ay = Ay Ay — Ay A, is the Lie bracket. This implies that A, and A, are simultaneously
diagonalizable (Lemma . Thus, commutativity implies that U, = U,, := U. We can write

A= eXp(-Aacpac + Aypy) =U eXp(Axpx + Aypy)UT7 (23)
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Figure 2: Diagram of each rotary embedding’s effect on the subvector, z4. While Mixed RoPE
affects 2D vector pairs, Spherical RoPE affects 3D vector triplets. Axial RoPE rotates independent
dimensions for p,, thus containing pairs of pairs, or effectively quadruples. Each z contains D
sub-vectors rotating at different frequencies. While the order in which the rotations are applied does
not matter for Axial or Mixed RoPE, order matters for Spherical RoPE. Explicitly, the triplet is first
rotated around the axis associated with p,. and then rotated around the axis associated with p,.

which leads to Eq. [T5] Thus, Mixed RoPE forms a general solution for assumptions of commutativity,
which is necessary for LieRE to be relative. This also mathematically shows Mixed RoPE to be the
strict generalization of Axial RoPE.

In summary, learned frequency RoPE embeddings represent an efficient way of learning a much
more general set of SO(D) than is commonly believed. However, in order to generalize to higher
dimensions while retaining their status as relative positional encodings, assumptions must be made.
Mixed RoPE generalizes this to M -D positions, spanning the entire solution class for relative LieRE.
Thus, LieRE-like methods with commutative 4, and A, — such as in Schenck et al. [60] — are not
more expressive than Mixed RoPE and any empirical differences in performance must be attributed
to the learning dynamics due to different parameterizations. However, it remains unclear whether
equivariance is the real reason for RoPE’s success.

4 Experiments

When extending RoPE to more than one dimension, we must either constrain ourselves to commuting
Lie algebras or give up relativity. We therefore ask the question: Why does RoPE work? Which
properties should be preserved for generalizing RoPE to vision? To explore this question, we propose
two new RoPE variants: Spherical RoPE, which takes a non-commutative assumption, and Uniform-
Frequency RoPE, which uses a single fixed rotation frequency across all dimensions. Below we
provide a high level outline the different embeddings. We compare the existing positional embedding
methods APE [17]], Axial RoPE [15]], Mixed RoPE [10]], and LieRE [52] to these two new variants to
understand whether equivariance, oblique directions or a variety of spatial frequencies are important
features of PEs for vision.

Spherical RoPE. We propose Spherical RoPE as a method between Mixed RoPE and LieRE that
minimally changes 2D RoPE to break equivariance. Spherical RoPE embeds position as

QD(Zd, P) == ywdszwdyyqd7 (24)

where qg € R? is now a triplet instead of a pair, and ) is a block diagonal of 3 x 3 yaw matrices and
‘R is a block diagonal of roll matrices.

cos(wgzx) —sin(wgzx) 0 1 0 0
Voo = |sin(wazz)  cos(wiz) O] Reayy = lO cos(wayy) —sin(wayy)|. (25)
0 0 1 0 sin(wgyy)  cos(wayy)

Intuitively, rather than RoPE rotating around a circle, Spherical RoPE rotates around a sphere using
Euler angles.



Table 1: Table listing the properties of each of the rotary-based

Importantly, spherical rotations like ~methods.

LieRE are non-commutative mak-
ing them not equivariant. In fact, Positional Encoding Vision Strictly = Oblique Requires

Equivariant Directions Learning

their generators are strictly non-

commutative, Ay A, # AyAs. Rotary (RoPE) [69] X v/ N/A X

While non-commutativity does not Axial RoPE [68] % % X X

mean Spherical RoPE is incapable 1.4 RoPE [26) v v / v

of learning or approximating equiv- 1 ;cRE [52] v/ X v/ v/

ariance throughout the network, -

it is the component of LieRE re- Spherical RoPE v X v X
Uniform RoPE v 4 X X

moved by Mixed RoPE and works
which enforce commutativity such
as Yu et al. [85] and Schenck et al. [[60].

We hypothesized Spherical RoPE to have a number of advantages. While Axial RoPE is unable
to express oblique directions, Spherical RoPE can. Like Axial RoPE, Spherical RoPE can use
fixed frequencies making it computationally cheaper than LieRE and Mixed RoPE since sines and
cosines of the frequencies can be precomputed. However, our main interest is that Spherical RoPE is
comparable in terms of expressivity to Mixed and Axial RoPE while being non-equivariant.

Uniform-Frequency RoPE. For an initial evaluation on the impact of relative position, we propose
Uniform-Frequency RoPE. For this method, we perform Axial RoPE with a single frequency shared
across all rotation matrices. While still being relative, this serves as a more restricted version of
RoPE. If this method performs significantly worse than other methods, it indicates the importance of
having a range of frequencies. We implement uniform frequencies for Axial RoPE to gauge against
relative importance of equivariance.

In one extreme, the rotation frequency could be zero resulting in no changes to the queries and keys.
In the other extreme, the frequency could be set very high resulting in large changes to the queries
and keys. As a note, it is the frequency relative to the resolution of the image that is important.
Frequencies higher than the sampling rate are equivalent to low frequencies. To ensure every position
has a unique encoding, we fix the frequency to perform one rotation cycle across the entire image.

Datasets and architecture. We test the different PEs on CIFAR100 [39] and ImageNet [58] using
a standard Vision Transformer — the ViT-S implementation from the timm [79] library. For Learned
APE, we use the baseline ViT-S which uses learned positional encodings rather than sinusoidal.
We follow much of the DeiT-III training procedure proposed in Touvron et al. [72]. However, for
ImageNet, we do not use dropout, MixUp, or CutMix as we observed that they significantly increase
the number of epochs necessary for convergence. For ImageNet, we evaluate models trained after 200
epochs and 400 epochs for CIFAR100. We evaluate without any hyperparameter tuning directly on
the validation sets. For further details on hyperparameters and experimental setup, see Appendix [H]
Error bars were created using three models with different random seeds.

Generalization to larger image sizes. We also perform an experiment to test how well different
PEs generalize across image sizes. Our approach to this experiment follows prior research [26} 152].
The learned embeddings in Learned APE cannot be extrapolated, so we interpolate new embeddings
when changing the number of patches. For RoPE embeddings, we take square dimensions and
parameterize position such that the top-left corner of the image corresponds to p, = p, = —m and the
bottom-right corner correspond to p,, = p, = 7 with all other positions are evenly spread between
the two for training. When increasing the image size, we extrapolate by scaling the range by the ratio
of the new image size to the training image size while keeping the patch size constant.

Additional Evaluations Additional evaluations can be found in Appendix [I] including method
speeds, experiments with smaller data splits, a segmentation task, and evaluation of the learned
weights.



Table 2: Performance comparison (top-1 accuracy) 80~ ‘
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Figure 3: Dependence of accuracy on image
resolution for ViT-S with various positional
embedding methods on ImageNet-1k. Error
bars reflect the standard deviation across three
models trained with different seeds.
5 Results

To evaluate the importance of different properties of positional embeddings in vision transformers,
we trained the same ViT with different positional embeddings on CIFAR100 and ImageNet-1K. We
start by evaluating the models on images of the same resolution as during training. If equivariance
is important, we would see Axial and Mixed RoPE to perform better than Spherical RoPE, which
lacks strict equivariance. On the other hand, if oblique frequencies are important, then we would
observe Mixed and Spherical RoPE to do better than Axial RoPE, which does not capture oblique
directions. We find that the lack of equivariance does not hinder Spherical RoPE. It outperforms Axial
RoPE and performs comparably to Mixed RoPE. Moreover, we would expect equivariant methods
to be especially effective in the low data regime. However, in Appendix [] we observe Learned
Spherical RoPE performs the best despite its lack of inductive bias. This suggests that the benefits to
performance and generalization on ImageNet for Mixed RoPE may be due to its extra parameters.
However, Axial RoPE and Uniform RoPE perform significantly worse suggesting oblique directions
to be more important than equivariance.

When comparing with absolute positional encodings, we observe that all forms of RoPE perform
better than learned APE (Table[2)). This includes Uniform RoPE, the variant that uses only a single
frequency. Moreover, all forms of RoPE using diverse frequencies outperform Uniform RoPE and
have similar performance (whether they are learned or not), suggesting that diversity of frequencies
is important. Spherical RoPE adheres much closer to the vectorized implementation of other ROPE
methods than LieRE. As our goal was primarily to identify the most impactful properties of M-D
RoPE and not maximize accuracy, none of our conclusions depend on precise performance numbers
for LieRE.

Last, we asked how well different PEs generalize across image sizes. Equivariance is often thought
to aid model generalization. However, when evaluating each model using higher resolutions images,
i.e. increasing the number of patches, we found Spherical RoPE to be the most effective method
(Figure[3), suggesting equivariance may not be the reason for RoPE’s generalization.

6 Discussion

Because we see very little variation between Spherical RoPE and Mixed RoPE, we conclude that
equivariance is only a minor contributor to the increased performance seen by RoPE for vision. In
fact, Spherical RoPE appeared to extrapolate to higher resolutions better than Axial RoPE. This could
suggest that oblique frequencies are important for extrapolation. However, extrapolation is only done
on short length scales, so this may not hold in language.

There are two important differences between vision and language transformers: context length and
patch variation. Where LLMs have on the order of 128K context windows [22], vision transformers



only have 16 x 16 patches. Moreover, patches have more variation as tokens than language tokens,
thus allowing the content embeddings to store information about the relevance of oblique directions.
Because the context size is small, we hypothesize that there could be methods that perform better
than Mixed RoPE and are more general than LieRE for vision. While LieRE was proposed with
skew-symmetric generators to generalize RoPE to N-D rotations, Lie algebras do not have to be
skew-symmetric. The skew-symmetry is important for maintaining numerical stability over long
contexts [69]. However, skew-symmetry also results in Proposition 3.1 of Barbero et al. [5]], which
proves RoPE to be non-local. Since the context size is small for images, numerical stability is likely
not an issue, thus freeing the space of Lie algebras available to us — including Lie algebras that
encourage locality.

We observe a decrease in generalization when using uniform frequencies. This finding qualifies
Barbero et al. [3]]’s hypothesis that the various semantic lengths contribute to RoPE’s performance.
However, Uniform RoPE outperformed learned APE, suggesting the reason why RoPE performs
well is not among the properties we tested. We speculate this could be a flaw in additive positional
embeddings themselves; additive methods create a trade-off between the magnitude of position and
content — forcing tokens that vary significantly with position to have lower magnitude to be closer to
the origin.

7 Conclusion

We conclude that Mixed RoPE is a very general solution for M-D data if equivariance is a necessity.
However, we see little evidence that strict relative positional bias is impactful for vision transformers.
However, RoPE methods have still been found to greatly improve performance in ViTs. Thus, we
conclude that evidence suggests that RoOPE does not need strict equivariance constraints to boost
performance over APE methods.
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A Broader Impact

This work is fundamental research. While this work could lead to the discovery of better positional
encodings and higher performing visual foundation models, the positivity or negativity of this impact
is determined by the downstream task and not this work.

B Limitations

While our results do not show relative embeddings to be detrimental, we believe them to be evidence
that equivariance is not the reason for ROPE’s success. However, our experiments were performed in
Vision where the number of tokens is limited compared to the long context lengths of NLP. Moreover,
the datasets are not what many believe to be “at scale". While Spherical RoPE and LieRE would
intuitively be favored at scale over Axial RoPE, as they have less inductive bias, it is unclear whether
inductive bias and equivariance is favored at scale [9].

It has also been shown that vision is not a purely equivariant task and benefits from relaxed equiv-
ariance [18]]. Our results do not show that equivariance is not useful in tasks that are grounded in
physics and obey strict symmetries.

C Literature Review

C.1 Natural Language Processing

In natural language, positional encoding has been used to break the permutation, “bag of words",
symmetry [73]]. Although this could be done by learning a vector per position, this is both memory-
expensive for large context sizes making it practical to apply to only the first layer. Moreover, it
does not allow for extrapolation at test time to context sizes beyond training. Thus, it is favorable
to perform positional embeddings with a predictable deterministic function. One way of doing this
is to make the attention relative with local receptive fields, as is done implicitly in convolutional
neural networks [[12]. Sinusoidal positional embeddings were proposed due to approximate local
and shift-invariant properties of Random Fourier Features [57]. Since sinusoidal, other methods
have been proposed to get guaranteed shift invariance by explicitly parameterizing based on distance
[64, 54, 55]. However, these methods require a positional embedding for every pair of positions
which is not supported by many of the efficient attention optimizations such as Flash attention [16]

[3].

Rotary Positional Embeddings (RoPE) have become the staple in NLP having recently been adopted
by many of the large language models [[76} 22| [71},43] 128]]. However, these methods also use causal
masking, which has been shown to allow models with no positional embedding to recover absolute
position [24} 18275/ [33]]. This has led to questions on the importance of relative position [5].

In language, there has also been extensions to RoPE proposed through NTKs and kernel methods
[L1]. However, these methods have not, to our knowledge, seen use in vision.

C.2 Vision and Video

Vision transformers were introduced in Dosovitskiy et al. [17] and, though they tried sinusoidal
position encodings, found learnable position encodings to perform best. For convolution-esque
models such as SWin transformers, relative positional encodings have been popular [47,[14]. More
recently, RoPE has been shown to be an efficient and simple way to have relative embeddings and has
been extended to 2D using Axial and Mixed RoPE. Going beyond 2D to Video data, Axial RoPE has
become increasingly popular. The extension was first attributed to Wang et al. [/6] as 3D-RoPE or
M-RoPE, leading to two separate Video-RoPE papers from Wei et al. [77] and Liu et al. [48]. Both
of these focus on the order of the position enumeration and interleaving positions. However, this
should not be a problem if frequencies are not deterministic, or if frequencies are indexed by both d
and modality m as done in Eq[I3] We highly recommend using either Mixed RoPE or LieRE which
extend naturally for videos.

LieRE embeddings have thus far been the most general form of RoPE to N-D. However, Schenck
et al. [60] has claimed the method to have a large memory footprint and proposed STRING. This
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paper, a preprint released concurrently with the writing of this manuscript, follows much of the
same math as this paper. However, they did not recognize that an orthogonal matrix is implicitly
learned by the query and key matrix. Moreover, their method relies on commuting Lie algebras.
From our insights in Section[3] their method can likely be viewed as a slower implementation of N-D
Mixed-RoPE.

It is also worth noting that positional encodings have also been explored within vision through
the area of Neural Fields [80]. Traditional coordinate MLPs have been found to be biased toward
low-frequency functions [70] leading to more advanced positional encodings such as Random Fourier
Features [57] or sinusoidal activation functions [65]. These implicit functions have been used to
encode attention and message passing in graph neural networks with recent work being put in to
make these functions equivariant to symmetry transformations [59) 18| 36]].

C.3 Graphs and Al in Science

Positional encodings are well studied within graph neural networks [42| [53]]. Graphs are limited
in their expressivity up to the Weisfeiler-Lehman (WL) graph isomorphism test [81]], so positional
encodings can break the isomorphism symmetry [25} [83]]. Within this community, they propose
spectral attention and graph Laplacians for positional encoding [38]]. These methods seem extremely
close to our analysis of RoPE, but from a very different perspective. We show that the frequencies of
ROPE can be interpreted as the eigenvalues of an orthogonal transformation by taking the spectral
decomposition.

In an overlapping vein, relative position encodings have been studied in terms of equivariant graph
neural networks, often for scientific disciplines such as molecular physics [8}62] or drug discovery
[29]. One method to achieve equivariance is through defining relative coordinate frames [37]. This
corresponds to the learned relative positional method described in Shaw et al. [64], but can be
generalized to higher dimensions and different transformation using bi-invariant distance functions
[6 136, [78]. The message-passing functions of these works correspond to a generalization of attention
scores [21]].

However, even in these tasks with physics-grounded symmetries, the need for equivariance is hotly
debated. While AlphaFold [29] was originally touted as the example of the success of equivariant
inductive biases in science, AlphaFold 3 [1]] explicitly stated that they benefited from removing this
inductive bias at scale. However, while the harm of inductive bias at scale is the prevalent zeitgeist, it
is not an established fact [9].

C.4 Computational Neuroscience

Coupled oscillators have become a growing area of interest within computational neuroscience
[341 135 167]]. By observing the projection of the RoPE circles onto the real axis, one can interpret
ROPE as time progression in D uncoupled, undamped harmonic oscillators. This perspective naturally
connects RoPE to Lowe et al. [49]’s series of papers on complex autoencoders and their extensions
(50, 51].

In another, vein of research, there has been some work in hyper-dimensional computing[30} 31] in
Phasor and Residue VSAs [40] which represent concepts as rotations around unit circles in high-
dimensional spaces. These representations have strong connections with RoPE. Additionally, progress
has been made in hypothesizing how biological neural networks encode positional knowledge with
hexagonal grid cells, which can be represented as a discrete sum of three periodic functions oriented
at the cubic roots of unity[66].

C.5 Generality of RoPE

The generality of RoPE has been found by others. Schenck et al. [60], Su [68], and Liu and
Zhou [44] all propose proofs similar to Proposition [T} However, Schenck et al. [60] miss that the
orthogonal transformation can be incorporated into key matrix. Liu and Zhou [44] and Su [[68]] take
the assumption of reversibility, which leads to the independent eigenvalue assumptions of Axial RoPE.
All three works take the assumption of an abelian subgroup — i. e. commutative generators, — but miss
the generality of Mixed RoPE. While Su [68]] propose quaternions — i. e. spherical rotations — as a
direction, they immediately dismiss it as a no-go because they lack equivariance. This exemplifies the
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“circular argument," where equivariance is assumed to be necessary because work will not investigate
non-equivariant positional encodings because equivariance is necessary.

Because our derivation was found independently of these works and the previous works are, to our

knowledge, not published, we have left in Proposition[I] We would like to acknowledge their work,
but retain the flow of this paper.

D Notation

Symbol / Term Dimension Meaning Notes
X; RP Patch/token/content vector of token ¢ Raw input embedding
T X Abstract content of token ¢ Raw input embedding
i RM or P Position of token 4, can be M-D or abstract P | Scalar (1D) or vector (2D)
m 7 Modality index e.g., x,y, time
M 7 Number, or space, of Modalities
D Z Hidden dimension Number of pairs/triples/quadruples
T 7 Number of Tokens
W, W, W, RYXD Query, Key, Value Matrices
q RN qi = W,z; Query vector
k RY k; = Wiz, Key vector
v RN v, =W,x; Value vector
Q. K,V RTXN Query, Key, Values T tokens, D latent dimensions
o(x,p) X x P —RP Positional Encoding function
Z RTX Output of Attention Z = Attention(Q, K, V)
a(i, ) R Attention weight Softmax of attention scores
a(q, k) R Attention score Inner product q ' k
wal\a R Rotation frequency for dimension d Equivalent to eigenvalue of generator
qa R2/374 Query pair/triple/quadruple at dimension d | After RoPE or LieRE applied
Rop R?XZ 2 x 2 rotation matrix Rotation based on frequency and position

Table 3: Summary of Notations and Key Concepts
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Positional Encoding Vision Learned Extrapolation QK Separable Relative Linear Flow Used In

Absolute (Sinusoidal) X vIX v v v X Transformer|73'

Absolute (Learned) v 4 X 4 v X BERT, GPT, ViT[17

Absolute (Random-Fourier) X X v v X v FNet[41], Performer [13

Relative (Learned) X v X X X X Transformer-XL, T5 [56

ALiBi X JIX v v v v LLaMA 2 [22], ALiBi (53]

NoPE X* X v v v v LLaMA 4 [2

Rotary (RoPE) X X v v v v Contemporary LLMs [76]22]/711128
Axial RoPE 4 vIX v v v v VisionLLaMA[15], Qwen2[76], VideoRoPE[77
Mixed RoPE v v 4 v v v Heo et al. [26

LieRE v v v v X 4 152!

Spherical RoPE v 3 v 4 X 4 Ours

Uniform RoPE v viX v v v v Ours

Table 4: Comparison of positional encoding methods in transformer models. *NoPE makes some
properties trivially true.

E Positional Encoding Properties

Rotary positional embeddings were derived in Su et al. [69] by drawing equations from assumed
properties. While these appear as arithmetic assumptions and equations in their work, we formalize
what properties these assumptions imply and why we may choose these assumptions in this section.
In their paper, to derive their equations, they use equivariance (relativity), query-key separability of
the positional encoding, linearity and incompressability, locality, and query-key symmetry.

1. Equivariance/Relativity: Attention score should be affected only by the relative position of
two tokens, i. e. have the form

a(zi, x4, pipj) = &(xi, x5, pi — pj)- (26)

2. Key-query seperability: The positional encoding, ¢, of the query should not depend on the
position of the key

o(zi, 5, pirpj) = ale(zi,pi), o(z5,pj)) 27
3. Linearity: The positional encoding should be a linear flow, see Appendix [E.3] Namely,
oz, pi), pj) = oz, pi + p;)- (28)
4. Locality: The attention score between two tokens should decay with distance
lim  a(x;,xj,pi,pj) =0 (29)
|pi—p;|—o0

E.1 Relativity and Equivariant

We use the term equivariant interchangably with relative. Strictly speaking, one should specify the
transformation or group you would like to be relative to, e. g. shift/rotation or SO(2). As previous
literature always refers to relative positional bias in terms of shifts/translations, in the main text, this
is what we mean. We use the term equivariance to be the generalization of relativity beyond language
because we would like to refrain from using the term “relativity" to describe the property of being a
relative PE too often due to its connotation within theoretical physics. First, we define relative in the
case of positional encodings in language as

oz, g, pispj) = &(xi, 5, pi — pj)- (30)
In the rest of this section, we mathematically explore where this equation comes from.

The behavior we are trying to capture is that if we renumber the words in the sentence, it should not
affect the attentions score. Intuitively, if a text is padded with spaces at the beginning, that will not
have a significant effect on the meaning of the sentences. We can ensure this by colloquially saying
that the attention between two words should depend on the distance between them. Notice, that
strictly speaking this is not a proper distance, since it can be negative; it is, instead, a signed distance
function. Though this may seem pedantic in one dimension, in two dimensions defining a distance
function is less unique. For example, one may choose LL; or L, distance metrics. Because distance
functions are more nebulous, it makes more sense to define relative in terms of the transformations
that we would like our attention score to be independent of.

a(xi, x5, pi,05) = oz, 25, T(pi), T (p;))- (€29)

19



These transformations can be combined to generate a set of transformations which leave the attention
score unchanged, or symmetric. This set has the mathematical properties of a group and is known as
a symmetry group. We can index transformations by elements in the symmetry group, g € G, and let
the elements act on

a(xzaxj7p’mpj) :a(mhwjvgphgpj) (32)
As an example, g could represent an angle, 6, and it may act on a vector p as a rotation g.p = Ryp.

Connecting everything back to Eq. 30} Noether’s theorem states that any continuous symmetry can
be expressed as a conservation law. This allows us to introduce bi-invariant function [36l [78]], or
“Noether charge", 5(p;, p;), that is invariant under the group action,

B(pi, ;) = B(g-pi, 9-p;) = B(pi,p;) — B(g-pi, g-p;) = 0. (33)
Thus, we can express our symmetry group through isodistances of 3,
a(zi, zpi, ;) == &lxs, xj, B(pispj))- (34)
For example, we can pick the function
B(pispj) = pi —pj = (Pi — o) — (p; — o) = B(pi — 0,pj — Po) (35)

If we were to define 5(p;, p;j) = |pi—p;|, then we we would additionally be equivariant to reflection of
the order of tokens in a sentence. If we trivially define 3(p;,p;) = C, then we arrive at bag of words,
or no positional encoding (NoPE). For a list of common transformations and their corresponding
bi-invariants see Theorem 1 of Bekkers et al. [6].

E.2 Query-Key Separability

Query and key separability is important for efficiency reasons. If we can decompose our positional
encoded attention score as,

O‘(x“x]aplap]) :&(QO(IZ,pZ)7§0($],pJ)) (36)

then we can pre-compute the positional encoding for the queries and keys on time making the
computation O(T'). If the positional encoding is not separable, then it will need to be computed for
every pair, (i, 7)[47,156,164]. Although there are many symmetries that can be exploited to make this
not a quadratic computation, it removes the symmetries exploited by efficient attention mechanisms
(7, 113,132].

E.3 Linear Flow Property

The property of being a “flow" was first proposed in Liu et al. [45]], however it is not often discussed.
It is a property inherently present in ROPE[69], LieRE[52]] and ALiBi [S5]] embeddings, specifically
as a linear flow.

We use the term linear flow for this property because the embedding can be found by repeated
application of a linear function. However, the term “linear" this is a small misnomer because it is
only locally linear. We define a flow as function

0:RY xR - RY (37)
such that for all z € X and p;, p2 € R, the following conditions hold:
1. Initial condition (identity at time zero):
0(0,2) = (38)
2. Group property (flow property):
e(p(x,p1),p2)) = @z, p1 + p2) (39

3. Continuity (or differentiability): ¢ is continuous with respect to its variables, depending on
the context
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Strictly speaking, continuity is not necessary for positional encodings as positions tend to be integer
values. What we really wish to capture with this property is for the positional encoding to be
recursively defined. It may be strange to wish to apply the positional encoding multiple times;
however, by having the positional encoding as an endomorphism it can allow for more predictable
behavior when extrapolating to larger contexts, which we suspect helps the model train.

We define a position embedding to be a linear flow if the flow has the form:

p(x, Ap) = Ax, (40)
for A € RV*N and x € RY, where Ap is the increment rate for position. By Eq. any position
p := poAp can then be attained by,

p(x,p) = AP°x. (41)
This can be seen as a geometric series if A is a scalar as seen in Press et al. [55]]. If we let At become
infinitesimal, then we can express the recurrence relationship as the ODE,

dp
- 42
ot Ap (42)
which we can integrate to get,
o(x,p) = exp(Ap)x 43)

This A is our generator of the flow, which is also a generator for a matrix Lie algebra, which we
focus on in the main text. The matrix exponential, exp : RV XN — RV>*N can be unstable for long
contexts; similar to the scalar exponential function e*?, the function can quickly become large for
high values of x. However, this can be stable value x = 0, since it always results in one. Similarly,
the matrix exponential can be stable if the divergence of the flow — trace of the generator — is zero.
We call flow “incompressible" or “divergence-free" if the trace of A is zero, making the determinant
of A unit. If fluid dynamics, this is called incompressibility. For fluids, this implies that the flow
conserves mass.

If there are more than one generator of the Lie group, A; and As, then Eq. 39| must be modified to,

P(p(x,P1),P2)) = ¢(X, P10 P2), (44)
where o is the group product. By the Baker—Campbell-Hausdorff formula, exp A1 p; exp Asps =
exp A1 p1 + Asps iff the commutator of A;p; and Asps is zero, i. e. the matrices commute. If they
do commute, then

P(p(x,P1),P2)) = ¢(p(x,P2), P1)) = @(X,P1°P2) = ¢(X,p2°P1) (45)
thus making o commutative and having the same properties as addition, o := “+", and Eq.[39 will
hold. In this case, the group/flow is known as an abelian Lie group, or abelian flow. However, if they
do not commute, then o will not commute and they are known as non-abelian. This also makes the
flow non-integrable.

E.4 Locality

Locality is often conflated with relativity. The general idea is that tokens far from each other should
be independent of one another — i. e. attention should decay as distance grows. This often motivates
the definition
lim oz, 2, pi,p;) =0 (46)
|pi—pj|—o0
for p;,p; € Rand x;,x; € RP. However, this definition is both relative and local. We instead define
local as,

|pi —po|—ro0
The difference being that pg is the origin position. If an embedding is relative, then the origin is
arbitrary and can be defined as p; or p;. In Press et al. [55]], they define the origin vector as the next
word. However, they can only do this because of the causal mask.

In general, the most natural way to measure locality is through the concept of the quantum mechanical
concept of the variance of an operator. We will simply use exponential decay, but we point interested
readers to Chapter 3 of Griffiths [23]]. This formalism works for RoPE as it is a linear transformation
and the attention mechanism defines a Hilbert space.

To be clear, RoPE and LieRE are not local embeddings. This was shown for RoPE in Barbero et al.
[S)]. Because they are orthogonal matrices, they have unit determinant, which naturally precludes
locality.
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E.5 Other properties

For completeness, there are two additional assumptions that are common.

Adjoint symmetry of the Positional Encoding We implicitly assume that the positional encoding
is symmetric for the query and key. That is, we assume that the query and key are from the same
domain, so the positional encoding has the same representation. More generally, the positional
encoding can act differently on the query and key,

a(@(wi, pi), p(x5,p5)) = ale(xi, pi), (T4, p5)), (48)

where ¢ is the positional encoding function for queries. More generally, we can have a relative
embedding by letting ¢ act on queries differently from the keys. For example, if we let

¢(r,p) = exp(Ap) @(w,p) = exp(—Ap), (49)

where A is a diagonal matrix. We end up with,

a(@(zi, i), p(x;,p5)) = q; exp(Alp; — pi))k;, (50)

where RoPE can be interpreted as a simple harmonic oscillator, by weakening the symmetry require-
ment, one could incorporate damping. This can also be used to incorporate graph Laplacian positional
encodings into the framework.

Reversibility Reversibility means that the positional encoding is an injective map — that is, every
coordinate is mapped to a unique rotation, thus position can be recovered. This property is important
in Liu and Zhou [44] and Su [68]] to derive Axial RoPE. While it prevents Eq. it is necessary only
for the D = 1 case. More generally, Mixed RoPE can learn an injective map for large D. Moreover,
while having a “lossless" positional encoding is nice mathematically, its practical utility has yet to be
soundly justified, especially if the positional encoding is learnable.
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F Fast Implementation

We follow a vectorized implementation for Spherical RoPE similar to the “fast implementation”
proposed in Su et al. [69].

First, apply the rotation directly on after the other:

zq[1] = cos(wypy) z4[1] — sin(wypy) za[3] (351)

z4[3] = sin(wyy) z4[1] + cos(wy) za[3], (52)
then

za[2] = cos(wyps) za[2] — sin(wepa) (3] (53)

Zd [3] = Sin(wmp.r) Zd [2] + Cos(wzpz) Zd[3]7 (54)

where steps [51]and [52] happen simultaneously, and steps [53] and [54] occur at the same time.

G Experimental Setup

Models We use the ViT-S backbone from the timm library [79]. The network always has a depth
of 12. We keep N as close to constant across models as we can. For CIFAR100, the embedding
dimensions are changed from 64 X Npeags t0 60 X Npeads to be compatible with pairs, triplets and
quadruples. For ImageNet, we make the embedding dimension 63 X Npeaqs for Spherical RoPE and
64 X Npeags for other methods. For classification, we use a class token to pool the tokens and predict.
Unlike the patch tokens, the class token is not affected by any positional encoding.

CIFAR100 All experiments on CIFAR100 were performed on one A100 GPUs with a batch size
256. We use a patch size of 4 x 4 on the original image size 32 x 32. The training uses heavy
regularization and augmentations including dropout, MixUp [87] and CutMix [86]. The models are
trained for 400 epochs, taking ~ 40 seconds per training loop.

ImageNet All experiments on ImageNet-1k were performed on four A100 GPUs with a batch size
256. We used cosine learning rate with a learning rate of 3e — 3 for 200 epochs with 5 epochs of
linear warm-up. We used a patch size of 16 x 16 on the cropped and resized 224 x 224 image after
applying 3-Augment [[72]. We use the LAMB [84] optimizer. All experiments took ~20 hrs with ~ 5
to 8 minutes to complete a training loop depending on method.

Positional Encodings For testing with different resolutions, the images from ImageNet’s validation
set were normalized, resized and cropped. On training, the patches were assigned position [—, 7]
and for evaluation, the patch positions were extrapolated to the range [—P%w, P%w]. For Learned
APE, the positional embeddings are instead interpolated. The fixed frequencies were given by
wg =1/ 100%4/P  where d is the index of the pair/tuple/quadruple. One frequency is shared between

both = and y in our implementation of Axial RoPE .
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H Hyperparameters

Table 5: Hyperparameters for ImageNet-1K Training

Category Setting
Model Architecture

Patch Size 16x16

Heads 6

Latent Dimension 64 (63 for Spherical) x Heads
Depth 12

Pooling [CLS]
Stochastic Depth No

Dropout No
LayerScale 1
Optimization

Optimizer LAMB [84]]
Base Learning Rate 4e-3

Weight Decay 0.05

Learning Rate Schedule Cosine Decay
Warmup Schedule Linear
Warmup Epochs 5

Epochs 200

Batch Size 512

Gradient Clipping v

Precision and Backend

Precision Mixed (bfloat16)

Backend

torch.autocast

Data Augmentation - Train

Crop

Flip
3-Augment
Color Jitter
Mixup [87]]
Cutmix [86]]
Normalization

RandomResizedCrop (192—224)
v

v

(0.3,0.3,0.3,0.0)

X

X

ImageNet-1K Statistics

Data Augmentation - Test

Resize
Crop
Normalize

Resize — Resolution
CenterCrop
ImageNet-1K Statistics
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Table 6: Hyperparameters for CIFAR100 Training

Category Setting

Model Architecture

Patch Size 16x16

Heads 12

Latent Dimension 60 x Heads
Depth 12

Pooling [CLS]
Stochastic Depth 0.1

Dropout 0.1

LayerScale v

Optimization

Optimizer LAMB [84]
Base Learning Rate 4e-3

Weight Decay 0.05

Learning Rate Schedule Cosine Decay
Warmup Schedule Linear

Warmup Epochs 5

Epochs 400

Batch Size 1024

Gradient Clipping v

Precision and Backend

Precision Mixed (bfloat16)
Backend torch.autocast
Data Augmentation - Train

Crop RandomResizedCrop (32)
Flip v

3-Augment v

Color Jitter (0.3,0.3,0.3,0.0)
Mixup [87]] 0.8

Cutmix [86] 1.0
Normalization CIFAR Statistics

Data Augmentation - Test

Normalize

CIFAR Statistics
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I Additional Evaluations

In this section, we include extra evaluations including, basic data scaling, segmentation and speed.
We also include additional experiments on the effect of rotation frequencies on Uniform RoPE.

I.1 Data Scaling

Below we evaluate the data scaling of each method. We partition the CIFAR100 dataset into smaller
subsets. The number of epochs is scaled, so that the number of training steps is matched on the
data subsets. Each model is trained only once on each data split. This experiment tests whether a
commutative constraint is beneficial in smaller data regimes as an inductive bias.

Table 7: Performance on different portions of CIFAR100.

Dataset Size Spherical (Learned) Axial (Learned) Mixed Uniform APE

0.2 56.04 (57.2) 55.3 (56.6) 56.9 52.82 45.9
0.4 63.6 (65.34) 63.3 (62.5) 64.4 59.7 53.4
0.6 67.6 (69.8) 66.0 (66.78) 70.0 64.1 57.7
0.8 69.8 (72.6) 69.9 (69.1) 71.6 65.8 59.0

Equivariance, in theory, should provide better performance at small scales due to its inductive bias.
However, we observe that learned Spherical RoPE performs on-par or better than Mixed RoPE with
less parameters. The small gap

L2 Segmentation

Below we include rudimentary experiments on segmentation to show that the equivalent performance
of Spherical RoPE is not caused by the simplicity of classification as a task. For these experiments,
we use the models trained on ImageNet-1k as pretrained backbones and fine-tune for Pascal VOC
Segmentation [19]. The heads of the models are replaced with a single MLP which is used to get
patch logits for each of . Bilinear interpolation is used to create individual pixel logits.

Table 8: Segmentation results (IoU) on VOC with and without augmentation.

Spherical Axial (Learned) Mixed Uniform

VOC (No Aug.) 0.45(0.46) 0.42 (0.43) 0.44 0.41
VOC (Simple Aug.) 0.498+.007 (0.502+.012) 0.474+.011 (0.468+.010) 0.502+.008 0.461+.012

1.3  Wall Clock Time

Below we include the wall clock time for each method. Beyond vectorization as described in Appendix
[Fl no optimizations were made for speed. LieRE was implemented following the pseudo-code in
Ostmeier et al. [52].

Table 9: Time comparison across different positional encodings

Time comparison Spherical (Learned) Axial (Learned) Mixed LieRE APE Uniform
Without torch.autocast 16.6s (16.6s) 16.5s (16.7s) 15.7s 27.4s 13.1s 16.5s
With torch.autocast 6.7s (5.8s) 6.5s (5.7s) 5.2s 13.6s 3.9s 6.6s

The experiment was performed by running a dummy input of dimension (B=256, C=3, H=224,
W=224) 100 times with a ViT backbone on one A100 gpu. This is simulated training time, so the
rotation matrices were recalculated with every pass for learnable methods.

Note, Mixed RoPE is faster due to naive the use of naive vector partitioning operations and broad-
casting. The main conclusion is that learning parameters and Spherical RoPE cause negligible
computational overhead.

L4 Learned Frequencies

When the frequencies of Spherical RoPE are learned, it is possible for the model to learn equivariance
in a particular layer. Like Mixed RoPE, if the rotation frequencies in a layer is set to zero, then the
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Learned Spherical RoPE Learned Axial RoPE Mixed RoPE
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Figure 4: The distribution of learned frequencies in each layer of the ViT. Every method tends to
learn low frequency positional encodings in the later layers of the network, meaning representations
in the later layers are more invariant to position.
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Figure 5: The scatterplot of learned w, and w,. Note, though Axial RoPE is plotting w, and w,
together, the rotations will always be axial, so there is no importance to the pairing.

attention score is position invariant. If one of the rotation frequencies is set to zero, then Spherical
RoPE will become trivially equivariant in the remaining direction. This makes it interesting to observe
what weights the model learns. Below we show the learned frequencies in each layer of the network
after being trained on ImageNet- 1k.

Because frequencies progressively trend toward the axis in deeper layers of the network which makes
the positional encodings equivariant in that direction, one could argue that Spherical RoPE learns an
equivariant representation in its later layers. However, this same trend can be seen in Mixed RoPE
and more notably in Axial RoPE. Because Axial RoPE assumes mutual exclusivity, the frequency
pairing is arbitrary. Since we still see the trend toward the axes, the observation that later layers use
lower frequencies could be an artifact of backpropagation rather than a necessity for the model to
learn an equivariant representation.

Interestingly, every method has notable clusters at zero frequencies. This suggests that much of the
information in the images may be position agnostic. This further explains why setting low frequencies
to zero in traditional RoPE improves performance as observed in Barbero et al. [S)]. An additional
cluster can be observed most notably in the later layers of Spherical and Axial RoPE. We hypothesize
this frequency corresponds to some information about the resolution of the image, i. e. the spacing of
the grid. Some insight on how to generalize to higher resolutions may come from how this frequency
corresponds to training data.
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J Proofs and Lemmas

Axial RoPE Separability

Proposition 3. Axial RoPE is separable in x and vy, that is, the attention score can be decom-
posed into,

Proof. Suppose we define the dot-product attention score as
a(a. k) =q'k
We incorporate Axial Rotary Positional Embeddings by rotating each 2-dimensional subvector of the
query (and likewise the key). Concretely, if the hidden dimension is 2n, we partition
T T
q= I:qz,la qy,la <o 9z on, Qy,n] ) k= I:kz,la ky,17 ey k:v}na ky,n] ) (55)

where each qg 4, Qy,d4; Ke,a, Ky,a € R2. At spatial location p = (p,, Py ), We apply rotations

q.'/zc,d = R(wdpm) Az.ds q;,d = R(“dPy) Qy.d»
and similarly for k. Here R(6) € R?*? is the planar rotation by angle 6.
For tokens at positions p; = (p; ., Pi,y) and p; = (pj.z, Pj,y). their rotated queries and keys yield

n

Qi = [(qac,d)T R (W (pjo = pie)) Ko + ()T R(wa (pjy — i) ky,d} :
d=1

Define the horizontal and vertical components by

n n

O@(f) = (Ae.a)' R(wa (pj.e = Pia)) Kaa, Oél(»;’) = (ay.a) R(wa (pj.y — piy)) Ky.a-
d=1 d=1

Hence the total attention decomposes additively:

) @)

+ a7,

demonstrating that axial rotary embeddings factorize the positional dependence along each axis. [

N €
Qi = oy

Matrix Exponentiation Computing the matrix exponential by exponentiating the eigenvalues is a
common result in linear algebra and numerics, however we provide it here for those unfamiliar.

Lemma 1. Let A be a diagonalizable matrix A = UAU ™Y, then the matrix exponential of A
is given by
exp(A) = Uexp(A) U™!

Proof.
Recall the power-series definition of the matrix exponential:
exp(A) = Z o A*. (56)
k=0
Since A is diagonalizable,
AF = (AU ) —UuArUL (57)
Substituting into the series gives
_ o 1 Epr-1Y) — N RV T
exp(A)—kz:H(UA U )_U(ka!A)U . (58)
—0 =0



Because A is diagonal, the series >~ % AF is itself the diagonal matrix of scalar exponentials,

exp(A) = diag(e™, ..., eM). (59)

Hence is well defined, and
exp(A) = U exp(A) UL (60)
O

Simultaneous-Diagonalizability The proof that two (diagonalizable) matrixes are simultaneous-
diagonalizability if and only if they are commutative is also a standard result. However, we once
again provide it here:

Lemma 2. Let A, and A, be skew-symmetric. Then A, and A, are simultaneously diagonal-
izable if and only if A, A, = Ay A, .

Proof.
Suppose A, and A, are simultaneously diagonalizable. Then, because they are skew-symmetric,
there exists a unitary matrix U such that

UA,U" = A, and UAUT = A4, (61)

where A, and A, are diagonal matrices.
Then,

A, A, =UAU'UA U =UAAUT =UA AU = AA, (62)
Hence, A, and A, commute.
Now suppose A, and A, commute, A, A, = A,A,. Since A, and A, are skew-symmetric, they
are diagonalizable in CPP, thus there exists a basis of eigenvectors of .A,. Because A, commutes
with A, the eigenspaces of A, are invariant under .4,.. That is, for any eigenvalue A of A,, the
corresponding eigenspace

By ={veCP: A=} (63)

is Ay -invariant: if v € Ej, then

Ay (Ayv) = Ay(Azv) = Ay(Av) = A v = Ayv € Ey. (64)

Now, restrict A, to each eigenspace Ey. Since C is algebraically closed and A, |z, is a linear
operator on a finite-dimensional space, .4, is diagonalizable on Ey. Thus, we can choose a basis of
eigenvectors for A, in each E}.
Putting these together, we get a basis for CV consisting of vectors that are eigenvectors for both A,
and A,. Therefore, A, and A, are simultaneously diagonalizable.

O

1-D LieRE is equivalent to RoOPE In this section, we will more formally prove that the traditional
RoPE with learned rotation frequencies is equivalent to 1-D RoPE as proposed in Section 3]

Proposition 1. Any D-dimensional rotation can be parameterized by RoPE with learned
frequencies.

Proof.
We define a rotation to be an orthogonal matrix with positive determinant; that is, it is an element
of R € SO(N). We can write any element of SO(N) via the exponential map R = e“* where
A € s0(N), i.e. Ais askew-symmetric matrix. It is well-known that the eigenvalues of a real, skew-
symmetric matrix are purely imaginary (or zero), and such a matrix is unitarily (i.e. orthogonally)
diagonalizable over C, resulting in a spectral decomposition with a purely imaginary eigenvalue
matrix. Thus,
A=TUAiUf (65)

and, by Lemmal[l]

exp (A) = Uexp (Ad) UT. (66)
where, because A is diagonal, exp(A) is simply the scalar-exponential of each element. The positional
encoding of a token to a query can be written as,

¢(x,p) = exp(Ap)Wyx = Uexp(Ai p)Wx (67)
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where W; = W, U. We assume the same encoding for the key with a different matrix, Wy and
the same generator, .A. This equation can be rewritten as ¢(x,p) = URoPE(x, p) by Eq[I0] If

the attention score is given by a(q, k) = q'k, where 1 denotes the Hermitian transpose, then the
attention score can be expanded into,

a(xi,Xj,pi,p5) = RoPE(xi,pi)TUTURoPE(xj,pj) (68)
= RoPE(x;,pi)  RoPE(x;,pj). (69)
Hence, any LieRE of one generator can be expressed as RoPE with learned rotation frequencies. [

Any commutative LieRE is equivalent to Mixed RoOPE We now prove that multi-dimensional
LieRE with commutative generators generalizes directly to Mixed RoPE.

Proposition 2. Any M -dimensional LieRE with commutative generators can be parameterized
by Mixed RoPE.

Proof.
Let Ay,..., Ay C s0(N) be skew-symmetric generators such that [A,,, A,] = 0 for all m, n. By
Lemma[2] commuting normal matrices are simultaneously unitarily diagonalizable. Thus, there exists

a unitary U and diagonal matrices A1, ..., Ay such that
A = UA,, iU forallm=1,..., M. (70)
For a position vector p = (p1, ..., pan) € RM, the LieRE positional encoding is
M
LieRE(X, p) = exp <Z Aum) Wix, (71)
m=1
which, using Lemmas T|and 2} can be written as
M
LieRE(x, p) = Uexp (Z Ani, pm) U'W, x. (72)
m=1
Let W/ = U'W,. Then
LieRE(x, p) = UMixedRoPE(x, p), (73)

where MixedRoPE applies elementwise complex rotations
O Pt A par) (74)
to each channel k, with frequencies )\gf ) Jearned from A,,.
If the attention score is given by a(q, k) = q'k, then
a(x;, X, pi, Pj) = MixedRoPE(x;, p,»)TUTUMixedROF‘E(><:j7 P;) (75)
= MixedRoPE(x;, p;) 'MixedRoPE(x;p;). (76)

Hence, any M -dimensional LieRE with commutative generators is equivalent to a Mixed RoPE
parameterization with learned rotation frequencies. O
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We provide proofs and theoretical evidence on benchmarks.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We emphasize that our conclusions are limited to vision and have a limitations
section in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: While we do not formally list the assumptions, we implicitly make assumptions
on positional encoding through assuming N-D LieRE.
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We do our best to provide hyper-parameters for reproducing our results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We intend to make the code public.
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* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide them to the best of our ability.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We trained models from several random seeds.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide basic information about the GPUs used.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We do not believe there is any violations.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a section in the appendix, however, it is mostly not applicable for
our paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper is more theoretical.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We cite libraries used and datasets, however they are standard libraries and
benchmarks. There are no other specialized assets used.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Guidelines:
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involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
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