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ABSTRACT

Variational Autoencoders (VAEs) have become increasingly popular and deployed
in safety-critical applications. In such applications, we want to give certified prob-
abilistic guarantees on performance under adversarial attacks. We propose a novel
method, CIVET, for certified training of VAEs. CIVET depends on the key insight
that we can bound worst-case VAE error by bounding the error on carefully cho-
sen support sets at the latent layer. We show this point mathematically and present
a novel training algorithm utilizing this insight. We show in an extensive evalu-
ation across different datasets (in both the wireless and vision application areas),
architectures, and perturbation magnitudes that our method outperforms SOTA
methods achieving good standard performance with strong robustness guarantees.

1 INTRODUCTION

Deep neural networks (DNNs) achieve state-of-the-art performance in a wide range of fields, includ-
ing wireless communications Cho et al. (2023); Yang et al. (2018), autonomous driving Bojarski
et al. (2016); Shafaei et al. (2018), and medical diagnosis Amato et al. (2013); Kononenko (2001).
Despite their success, DNNs are vulnerable to adversarial perturbations added to the input, mak-
ing their use in safety-critical systems, such as autonomous driving and wireless communication,
risky and potentially life-threatening. To address this issue, numerous robust learning Mirman et al.
(2018); Mao et al. (2023); Wong & Kolter (2018) and verification approaches Singh et al. (2019);
Xu et al. (2021); Wang et al. (2018); Ehlers (2017) have been developed for deterministic DNNs.
However, robust learning approaches for stochastic DNNs, including popular generative deep neu-
ral networks, are scarce. With the recent surge in the use of stochastic networks like variational
autoencoders (VAEs) in security-critical systems, such as wireless networks Liu et al. (2021), it is
increasingly vital to develop training methods for stochastic DNNs which are accurate and have
provable guarantees of robustness.

A VAE is a generative deep neural network architecture. VAEs are used in various domains such
as computer vision Duan et al. (2023), language processing Qian & Cheung (2019), wireless Liu
et al. (2021), and representation learning van den Oord et al. (2017). However, as with other neural
network architectures, existing research has shown that VAE’s performance can be unreliable when
exposed to adversarial attacks Kos et al. (2018); Gondim-Ribeiro et al. (2018). The few existing
works on training VAEs with formal guarantees impose strict architectural constraints like fixed
latent layer variance Barrett et al. (2022). We lift these restrictions and propose a general framework
for training VAEs with certified robustness.

Key Challenges. Unlike deterministic DNN classifiers commonly used in certifiably robust training
methods Gowal et al. (2018); Yang et al. (2023); Mueller et al. (2022), VAE’s outputs are stochastic.
This requires training methods that can compute the worst-case loss over a potentially infinite set
of output distributions. Even for a single output distribution, calculating the worst-case error is
challenging, as its probability density function may not have a tractable closed form. Additionally,
to apply these methods to practical networks, the worst-case error computation must be both fast
and compatible with gradient descent based optimization methods, which are typically used in DNN
training. Therefore, the worst-case error must be expressed as a differentiable program involving
network parameters to enable efficient parameter refinement.

This work. We propose Certified Interval Variational Autoencoder Training (CIVET), which ef-
ficiently bounds the worst-case performance of VAEs over an input region while ensuring that the
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error bound remains differentiable and useful for optimizing network parameters. To the best of our
knowledge, CIVET is the first certified training algorithm for VAEs that imposes no Lipschitz or
fixed variance constraints on the architecture. Our method is based on a key insight: by carefully
selecting a subset (support set) of the latent space and bounding the worst-case error of the deter-
ministic decoder within this set, we can effectively bound the worst-case error across all reachable
output distributions. Here, the support set selection is driven by the distributions computed at the
latent layer by the encoder.

Main Contributions. We list our main contributions below:

• We mathematically show that for VAEs, the worst-case error over all reachable output distributions
from an input region can be bounded in two steps: (a) identifying an appropriate subset S of the
latent space (the support set), and (b) bounding the worst-case error of the decoder over S. This
reduction simplifies the problem of bounding the worst-case error for stochastic VAEs to a more
tractable problem of bounding the error for deterministic decoder networks. However, both steps -
support set selection and decoder error bounding must be differentiable to enable efficient learning.

• By restricting the support sets to specific geometric shapes, such as multidimensional boxes, we
ensure that both the support selection and bounding steps are differentiable. Here, the support
selection step relies on the encoder parameters, while the error bounding step involves the decoder
parameters. CIVET efficiently combines these two steps, enabling the simultaneous optimization
of the encoder and decoder parameters to minimize the worst-case error w.r.t. the input region.

• We perform extensive experiments across the wireless and vision domains on popular datasets
with different DNN architectures, showing that our method significantly improves robust worst-
case errors while causing only a small degradation in standard non-adversarial settings1.

2 BACKGROUND

This section provides the necessary notations, definitions, and background on deterministic and
stochastic DNN certification, and certified robust training methods for deterministic DNNs.

Notation. Throughout the rest of the paper we use small case letters (x, y) for constants, bold
small case letters (x,y) for vectors, capital letters X,Y for functions and random variables, and
calligraphed capital letters X ,Y for sets including sets of probability distributions.

2.1 VARIATIONAL AUTOENCODERS

Given a set of inputs, X ⊆ Rdin , generated via an unknown process with latent variables, Z ⊆ Rdl ,
we want to learn a latent variable model with joint density pθ(x, z) = pθ(x|z)p(z) which describes
this process. Learning the parameterization, θ, is often intractable via maximum likelihood; instead,
we can use variational inference to address this intractability by learning a conditional likelihood
model pθd(x|z) and an approximated posterior distribution pθe(z|x) Kingma et al. (2019). A Varia-
tional Autoencoder (VAE) is a combination of these two models where θe represents the parameters
of an encoder network,Ne : Rdin → P(Rdl), and θd represents the parameters of a decoder network,
Nd : P(Rdl)→ P(Rdout). Here P(Rn) denotes the set of probability distributions defined over Rn.
Generally, for VAEs, given a single input z ∈ Rdl , the decoder’s output Nd(z) is deterministic.

VAEs in Wireless. The effectiveness of VAEs has resulted in their use in several security-critical
systems, including wireless applications Liu et al. (2021); Cho et al. (2023); Yang et al. (2018). Liu
et al. (2021) present FIRE, an end-to-end machine learning approach that utilizes VAEs for precise
channel estimation, a critical operation for wireless communications such as cellular and Wi-Fi
networks. In a real-world testbed environment, FIRE achieves an SNR (Signal to Noise Ratio)
improvement of over 10 dB in Multiple Input Multiple Output (MIMO) transmissions compared
to SOTA non-machine learning methods. However, despite their strong performance in wireless
systems, Liu et al. (2023) exposes the vulnerabilities of VAEs to practical adversarial attacks.

1Code will be provided at https://anonymous.4open.science/r/civet-F70B
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2.2 NEURAL NETWORK CERTIFICATION

Given a deterministic DNN N : Rdin → Rdout , DNN certification Singh et al. (2019) proves that the
network outputs y = N(x) corresponding to all possible inputs x specified by input specification
ϕ : Rdin → {True, False}, satisfy output specification ψ : Rdout → {True, False}. Formally,
we show that ∀x ∈ Rdin .ϕ(x) =⇒ ψ(N(x)) holds. Safety properties like local DNN robustness
encode the output specification (ψ) as a linear inequality (or conjunction of linear inequalities) over
DNN output y ∈ Rdout . e.g. ψ(y) = (cTy ≥ 0) where c ∈ Rdout . However, this formulation
assumes N is deterministic and does not work when the network’s output is stochastic like VAEs.

Certification for Stochastic Networks. (Berrada et al., 2021) generalizes DNN certification for
stochastic networks including VAEs w.r.t. the input region ϕt ⊆ Rdin . At a high level, in this case,
we want to prove that the worst-case error ϵ is bounded over all possible output distributions with
high probability say (1− δ) ∈ (0.5, 1]. For a set of inputs (possibly infinite) ϕt ⊆ Rdin , let Y denote
the set of distributions computed by a stochastic DNN N : Rdin → P(Rdout) on ϕt. Then Y =
{Y |Y = N(x),x ∈ Rdin} where Y is a random variable representing the output distribution N(x)
at a single input x. Given an error threshold ϵ0 ∈ R, target probability threshold (1− δ) ∈ (0.5, 1],
and a error function M : Rdout → [0,∞) the output specification ψ : P(Rdout)→ {True, False} is
defined as Pmin(Y, ϵ0) ≥ (1− δ) with Pmin(Y, ϵ0) = minY ∈Y P (M(Y ) ≤ ϵ0).

2.3 CERTIFIED TRAINING FOR DETERMINISTIC DNNS

Certified training allows to learn network parameters that make the DNN provably robust against
adversarial perturbations. During training for any input x0 ∈ Rdin from the training set, certified
training methods first bound the worst-case loss Lw(Nθ(x0)) = maxx∈ϕt(x0) L(Nθ(x)) w.r.t. a
local input region ϕt(x0) around x0. The method then refines the network parameters θ based on
the worst-case loss Lw(Nθ(x0) instead of the point-wise loss L(Nθ(x0)) used in standard training.
The local input region ϕt(x0) typically contains all possible inputs x satisfying ∥x − x0∥∞ ≤ ϵ
for some perturbation budget ϵ ∈ R+. However, even for ReLU networks and L∞ norm bounded
local input regions, exactly computing Lw(Nθ(x0)) is NP-Hard Katz et al. (2017b). Hence, SOTA
certified training methods for scalability replace the worst-case loss Lw(Nθ(x0)) with an efficiently
computable upper bound Lw(Nθ(x0)) ≤ Lub(Nθ(x0)). Note that minimizing the upper bound
Lub(Nθ(x0)) provably reduces the worst-case loss during optimization. Moreover, training meth-
ods ensure that Lub(Nθ(x0)) computation can be expressed as a differentiable program allowing
to refine network parameters θ with gradient descent based algorithms. For example, one popu-
lar certified training method Mirman et al. (2018) uses interval bound propagation (IBP) or BOX
propagation to compute Lub(Nθ(x0)). IBP first over-approximates the input region, ϕt(x0), with
a multidimensional box where each dimension i ∈ [din] is an interval with bounds [li, ui]. Then
IBP training propagates the input box through each layer of the network using interval arithmetic
Mirman et al. (2018) to find the bounding interval [Llb(Nθ(x0)),Lub(Nθ(x0))] of the worst-case
error Lw(Nθ(x0)).

Although significant progress has been made in certifiable robust training for deterministic networks,
to the best of our knowledge, there is currently no general framework for certifiably robust training
of VAEs that does not impose architectural constraints. The key challenge is to bound the worst-
case training loss over a potentially infinite set of output probability distributions while ensuring
that the bounding method is both scalable and differentiable (suitable for gradient-based parameter
learning). Next, we discuss our approach for training certifiably robust VAEs.

3 CERTIFIABLY ROBUST TRAINING FOR VAES

In this section, we describe the key steps of CIVET with the formal problem formulation in Sec. 3.1,
the reduction of worst-case error computation for stochastic VAEs to worst-case error bounding
for deterministic decoders in Sec. 3.2 and efficient support selection and bounding algorithm in
Sec. 3.3. Fig 1 illustrates the workings of CIVET highlighting its key steps. In Appendix C we
provide a concrete example of the steps outlined in this section.
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Figure 1: (CIVET Overview) The blue dashed box ( ) shows a standard pass over a VAE, where the
encoder (Ne) generates a parameterization of a distribution which is sampled in the latent layer and
passed to the deterministic decoder (Nd). The green dotted box ( ) shows CIVET training over
the same VAE. Here an input region is passed through Ne using a deterministic DNN bounding
algorithm like IBP which gives a range of distribution parameterizations. CIVET then computes a
support set with a given probability threshold (1− δ) which can then be passed through Nd using a
deterministic DNN bounding algorithm to obtain an overapproximation of the loss.

3.1 PROBLEM FORMULATION

We define the worst-case loss of a VAE with an encoder network Ne and decoder network Nd

w.r.t. an input region ϕt(x0) around a training data point x0 ∈ Rdin . Let, Z denote the set of
distributions at the latent layer computed byNe on ϕt(x0) i.e. Z = {Z | Z = Ne(x),x ∈ ϕt(x0)}
and Y be the set of output distributions Y = {Y | Y = Nd(Z), Z ∈ Z}. Note that each Y
and Z are random variables corresponding to a specific probability distribution over Rdl and Rdout

respectively. Then given a target probability threshold (1− δ) and error function M , the worst case
error Lw(N

e, Nd,x0) = maxY ∈Y T (Y ) where T (Y ) is defined as follows

T (Y ) = min
ϵ∈R

ϵ s.t P (M(Y ) ≤ ϵ) ≥ (1− δ) (1)

At a high level, for any given output distribution Y , T (Y ) determines the tightest possible error
threshold, ensuring that for any sample y ∼ Y , the corresponding error M(y) is no more than
T (Y ) with a probability of at least (1 − δ). Lw(N

e, Nd,x0) maximizes the error threshold T (Y )
over all possible output distributions. Assuming x sampled from input distribution X the expected
worst case loss is Ex∼XLw(N

e, Nd,x). Now, with fixed architectures of Ne and Nd learning the
parameters θe, θd corresponding to the smallest expected worst case loss can be reduced to the fol-
lowing optimization problem: (θ∗e , θ

∗
d) = argminθe,θd Ex∼X .Lw(θe, θd,x). While this optimiza-

tion problem precisely defines the optimal parameters (θ∗e , θ
∗
d), solving it exactly is computationally

prohibitive for networks of practical size. Even determining T (Y ) for a single continuous random
variable Y can be costly, making worst-case loss computation for a single local input region ϕt(x0)
practically intractable. Therefore, similar to certifiably robust training methods for deterministic
networks, we focus on computing a mathematically sound upper bound Lub(θe, θd,x0).

However, unlike deterministic DNNs that existing works handle, VAEs require bounding methods
capable of handling a potentially infinite set of probability distributions. To tackle this, we first show
it is possible to compute a non-trivial upper bound Lub(θe, θd,x0) by: a) finding an appropriate
subset S ⊆ Rdl (referred as the support set in the rest of the paper) based on the set of reachable
distributions in the latent layer, and b) bounding the worst case error of the decoder Nd over S i.e.
bounding maxz∈S M(Nd(z)) (Section 3.2). Additionally, in Section 3.3, we show that both finding
and bounding S can be efficiently expressed as a differentiable program involving the encoder and
decoder parameters θe, θd. This enables learning the parameters with gradient descent.

3.2 BOUNDING WORST-CASE LOSS

First, we formally define support sets for the set of distributions Z at the latent layer.
Definition 1 (Support Sets). For a set of distributionsZ over Rdl and a probability threshold (1−δ),
a subset S ⊆ Rdl is a support for Z provided

(
minZ∈Z P (Z ∈ S)

)
≥ (1− δ).
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For fixed (1 − δ), we show that for any support set S the error upper bound Tub(S) =
maxz∈S M(Nd(z)) serves as valid upper bound of the worst-case error Lw(θe, θd,x0) ≤ Tub(S)
(Thm 1). Since decoder’s output Nd(z) is deterministic for all z ∈ S, computing Tub(S) is same
as bounding the error of a deterministic (Nd) network on input region (S). This shows that with ap-
propriate S we can reduce the worst-case error bounding for VAEs to the worst-case error bounding
of deterministic networks as handled in existing works Katz et al. (2017b).
Theorem 1. For a VAE with encoder Ne, decoder Nd, local input region ϕt(x0), error function M
and probability threshold (1 − δ), if Z = {Z | Z = Ne(x),x ∈ ϕt(x0)} then for any support set
S for Z the worst case error Lw(N

e, Nd,x0) ≤ Tub(S) where Tub(S) = maxz∈S M(Nd(z)).

Proof Sketch. Let, It0(y) = (M(y) ≤ t0) be an indicator where t0 = Tub(S). The key observa-
tions are that - a) the indicator It0(N

d(z)) = 1 for all z ∈ S and b) given S ⊆ Rdl is a support
hence for any Z ∈ Z ,

∫
S fZ(z)dz ≥ (1 − δ) where fZ is the probability density function of Z.

Now, with Eq. 1, it is enough to show P (M(Y ) ≤ t0) ≥ (1−δ) for any Y = Nd(Z) where Z ∈ Z .
Since S ⊆ Rdl , P (M(Y ) ≤ t0) ≥

∫
S It0(N

d(z))× fZ(z)dz and from observations (a) and (b) we
get

∫
S It0(N

d(z))× fZ(z)dz ≥ (1− δ). The detailed proof is in Appendix A.

Ideally from the set of all possible supports S, we should pick the support S∗ that minimizes Tub(S)
over all S ∈ S. Although S∗ provides the tightest upper bound on Lw(N

e, Nd,x0) from S, finding
and subsequently bounding the optimal S∗ can be expensive. In contrast, picking an arbitrary sup-
port S from S can make the upper bound on Lw(N

e, Nd,x0) too loose hurting parameter (θe, θd)
refinement. For example, the entire latent space Rdl is always a valid support but it fails to provide a
non-trivial upper bound on Lw(N

e, Nd,x0). To strike a balance between computational efficiency
and tightness of the computed bounds we first restrict S to a subset of supports S′ ⊆ S where com-
puting Tub(S) is cheap and then find the optimal support S∗ from this restricted set (Section 3.3).

Before moving into the support selection algorithm, we want to emphasize a couple of key points.
First, Theorem 1 can be extended to subsets of any hidden decoder layer. This means that supports
can be chosen from any hidden decoder layer, not just the latent layer. However, we focus on the
latent layer because the distributions Z ∈ Z typically have well-defined closed forms for their
probability density functions, such as Gaussian distributions, which simplifies the support selection
process. Second, similar to stochastic DNN verifiers Berrada et al. (2021); Wicker et al. (2020), we
assume that for a given (1 − δ), there exists at least one bounded support S. Without this, Tub(S)
for an arbitrary unbounded S may not be bounded.

3.3 SUPPORT SET COMPUTATION AND BOUNDING

Figure 2: Support Set Visualization. Given
a set of distributions {N (µ, σ)|µ ∈
[µlb, µub], σ ∈ [σlb, σub]}we define a sym-
metric support set Sδ = [µlb − ζ, µub + ζ]

As mentioned above, it is computationally expensive
to minimize over all possible supports S. By picking a
restricted set of supports S′ we balance computational
efficiency and tightness. In S′, we only consider multi-
dimensional boxes where for any dimension i ∈ [dl]
we include all values within the range [li, ui]. Hence,
finding a support set from S′ only requires computing
the bounds li, ui for each dimension. Moreover, IBP
techniques commonly used in deterministic certified
training can bound the worst-case error of the decoder
over any support set from S′. So only picking a support
set is sufficient to reduce the problem into an instance
of deterministic certified training.

Given a set of distributions Z ∈ Z with probability
density functions fZ(z) and a fixed (1 − δ), let S =
[l,u]. Our bounding problem can now be expressed as
finding l,u s.t. ∀Z ∈ Z.

∫ u

l
fZ(z)dz ≥ (1− δ).

For the scope of this paper, we assume that Z is derived from the latent layer of a VAE where Ne

is a deterministic network that outputs µ,σ for each latent dimension parameterizing a gaussian
distribution (the most common setting for VAEs). Thus, given ϕt(x0) and Ne we can use existing
deterministic network bounding techniques (i.e. Mirman et al. (2018)) to overapproximate reachable
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intervals [µlb,µub], [σlb,σub]. Let’s first consider the 1d case. We now have Z = {N (µ, σ) | µ ∈
[µlb, µub], σ ∈ [σlb, σub]}. Therefore, our bounding problem can be expressed as finding l, u s.t.

∀µ ∈ [µlb, µub], σ ∈ [σlb, σub].Φµ,σ(u)− Φµ,σ(l) ≥ (1− δ) (2)

Here, Φµ,σ is the normal cumulative distribution function (CDF) with mean µ and variance σ2,
and for ease of notation let Φ := Φ0,1. There are many ways to pick [l, u] satisfying Equation 2.
Since this set of normal distributions is symmetric around its midpoint 1/2(µlb + µub), we choose
a symmetric support, i.e. [l, u] = [µlb − ζ, µub + ζ] with ζ > 0. Note that the interval [l, u] always
includes the interval [µlb, µub] as required by the condition (1 − δ) > 0.5 (see Sec. 2.2). Figure
2 gives a pictorial representation of our support selection. In Theorem 2, given (1 − δ) we give a
support set satisfying Equation 2.

Lemma 1. Given bounds µlb, µub, σlb, σub ∈ R, probability threshold (1 − δ), and ζ ∈ R+ . Let
C(µ, σ, u, l) = Φµ,σ(u)− Φµ,σ(l). Then ∀µ ∈ [µlb, µub], σ ∈ [σlb, σub],

C(µ, σ, µub + ζ, µlb − ζ) ≥ C(µub, σub, µub + ζ, µlb − ζ)

Furthermore,

C(µlb, σub, µub + ζ, µlb − ζ) = C(µub, σub, µub + ζ, µlb − ζ)

Proof Sketch. The proof relies on two key facts: a) for a fixed mean µ ∈ [µlb, µub] and bounds
l ≤ µlb, µub ≤ u, σ < σub =⇒ C(µ, σ, u, l) > C(µ, σub, u, l) b) for any standard deviation
σ ∈ [σlb, σub] C(µ, σ, µub + ζ, µlb − ζ) is maximized at µ = µlb+µub

2 and is strictly decreasing on
each side as µ increases (or, decreases). Formal proof is provided in Appendix A.

Lemma 1 implies that when a support set is symmetric around [µlb, µub] then the distributions at the
endpoints N (µlb, σub),N (µlb, σub) minimize C.

Theorem 2. Given Z = {N (µ, σ) | µ ∈ [µlb, µub], σ ∈ [σlb, σub]}, probability threshold (1 − δ),
then [l, u] = [µlb − σubΦ−1(p0), µub + σubΦ

−1(p0)] satisfies Equation 2. Where

p0 = min
p∈[(1−δ),1]

[
Φ−1(p) + Φ−1(p− (1− δ)) ≥ µlb − µub

σub

]
.

Proof Sketch. Using Lemma 1, we can prove that this formulation satisfies Equation 2 if
N (µub, σub) does. We can then plug this distribution into C to show that Φµub,σub

(u) −
Φµub,σub

(l) ≥ (1− δ). Formal proof can be found in Appendix A.

Although Φ−1 has no closed form solution Vedder (1993), given µlb,µub,σub we can compute
p0 using binary search since Φ−1 is strictly monotonic. For higher dimensional latent spaces, the
distribution for each dimension in the latent layer is independent for individual inputs. Based on this,
given a probability threshold (1− δ) over dl dimensions, we can compute the probability threshold
for each dimension as (1− δ)1/dl . Therefore, given (1− δ), each dimension i ∈ [dl] of the selected
support Sδ is an interval Siδ = [µi

lb − σi
ubΦ

−1(pi0), µ
i
ub + σi

ubΦ
−1(pi0)] where pi0 is independently

computed in each dimension as defined in Theorem 2. This shows the Sδ is a function of the
encoder’s output (µlb,µub,σub) and subsequently depends on the encoder parameters θe.

3.4 CIVET LOSS

Theorem 2 gives us a way to find a support set, Sδ given µlb,µub,σub for a specific (1 − δ).
However, we may not know the target probability at training time. We would like to cover the
target probability without selecting an overly large (1 − δ) which may result in a loose bound.
Inspired by numerical integration Gibb (1915), CIVET computes the loss over multiple support sets
weighting them based on their covered probability. We provide additional analysis on this selection
in Appendix D.
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Given a single δ, we can obtain an overapproximation of Tub(Sδ) by passing Sδ through the deter-
ministic (Nd) network using existing worst-case network bounding techniques Mirman et al. (2018).
We call this loss Ldec(N

d,x,Sδ). For CIVET we combine multiple support sets to compute our loss
so we let Sδi be the support for Z with probability threshold (1− δi) for each i. For the remainder
of the paper, assume that lists of δ are sorted in reverse order, formally, δi < δj if i > j. For the
largest δ, δ1, corresponding to the smallest Sδ1 we assign weight (1− δ1). For the remainder of the
δi’s, we weigh them based on the additional probability they cover compared to the previous δ, in
other words, ∀i ∈ [2, . . . , n].Sδi gets weight δi−1 − δi. This leads to CIVET loss.
Definition 2. (CIVET Loss) Given a deterministic decoder network Nd, input x ∈ Rin,
µlb,µub,σub ∈ l, and a set of δs {δ1, . . . , δn}. We define,

LCIV ET = (1− δ1)Ldec(N
d,x,Sδ1) +

n∑
i=2

(δi−1 − δi)Ldec(N
d,x,Sδi)

3.5 CIVET ALGORITHM

Algorithm 1 shows CIVET’s training algorithm based on the LCIV ET from the Section 3.4. We
specify IBP as the deterministic bounding method; however, CIVET is general for any differentiable
deterministic bounding method. For each Epoch, we iterate over inputs x in dataset X . We first
compute the upper and lower bounds on the latent space distribution parameters (line 3). We then
compute the weighted loss LCIV ET by first computing a support set Sδi for each delta, δi with
the FINDSUPPORT (FS) algorithm (line 4, 7). We can now use an existing deterministic bounding
algorithm to compute the worst-case loss over θd on each Sδi (line 5,8). Algorithm 2 shows a binary
search algorithm for finding support sets. Note that if we reach the maximum depth we return the
upper bound as it is a sound overapproximation. CIVET is the first algorithm specialized for certified
training of VAEs which does not impose lipschitz restrictions on the encoder and decoder networks.

Algorithm 1 CIVET Algorithm

1: for x ⊂ X do
2: µlb,µub,σlb,σub ← IBP(θe, ϕt(x))
3: Sδ1 ← FS(µlb,µub,σub, δ1, 1− δ1, 1, 0)
4: LCIV ET ← (1− δ1)Ldec(θd,x,Sδ1)
5: for i ∈ [2, . . . , n] do
6: Sδi ← FS(µlb,µub,σub, δi, 1− δi, 1, 0)
7: LCIV ET ← LCIV ET

8: +(δi−1 − δi)Ldec(θd,x,Sδi)
9: Update θe, θd using LCIV ET

Algorithm 2 FS(µlb, µub, σub, δ, l, u, d)

1: m = (l + u)/2
2: s = Φ−1(m) + Φ−1(m− (1− δ)1/d1)
3: if d = dmax|s = (µlb − µub)/σub then
4: return [µlb − σubΦ−1(u),
5: µub + σubΦ

−1(u)]
6: if s < (µlb − µub)/σub then
7: return FS(µlb, µub, σub, δ,m, u, d+1)
8: else
9: return FS(µlb, µub, σub, δ, l,m, d+ 1)

4 EVALUATION

We compare CIVET to adversarial training and existing certifiably robust VAE training methods.

Experimental Setup. All experiments were performed on a desktop PC with a GeForce RTX(TM)
3090. We use the functional Lagrangian inspired probabilistic verifier proposed in Berrada et al.
(2021) to perform certification. We additionally compare CIVET to baselines on empirical robust-
ness obtained with adversarial attack methods: RAFA Liu et al. (2023) for wireless and Latent Space
Attack (LSA) Kos et al. (2018)/Maximum Damage Attack (MDA) Camuto et al. (2021) for vision
(see Section 4.4). We use IBP Mirman et al. (2018) for our deterministic bounding algorithm for
both verification and training. We perform our experiments in two target application areas: vision
and wireless. Unless otherwise specified we train CIVET with D = [0.35, 0.2, 0.05] as our set of
δs. In Section 4.3, we experiment with different sets of δs. Results are averaged over the entire test
set2 for each dataset and computed with δ = 0.05. Certification/Attack radius is set to training ϵ.
Additional training parameters can be found in Appendix B.

2 Results in blue are currently computed for 500 random points and will be extended to full test set for final
version. Aside from runtime analysis new results are computed with a server with 4 A100s
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Table 1: Comparison of different training methods: standard training, adversarial training (PGD)
and CIVET on FIRE, results reported in SNR.

Dataset ϵ Training Method Baseline Certified RAFA

FIRE

15%
Standard 17.79 dB 4.12 dB 15.35 dB
PGD 17.81 dB 6.89 dB 6.18 dB
CIVET 16.58 dB 15.02 dB 16.27 dB

20%
Standard 17.79 dB 1.28 dB 14.32 dB
PGD 17.40 dB 4.69 dB 15.24 dB
CIVET 16.34 dB 14.61 dB 15.98 dB

25%
Standard 17.79 dB -2.35 dB 10.16 dB
PGD 17.40 dB 3.17 dB 14.09 dB
CIVET 15.82 dB 13.88 dB 15.43 dB

Table 2: Comparison of different training methods: standard training, adversarial training (PGD)
and CIVET on MNIST and CIFAR-10, results reported as MSE.2

Dataset ϵ Training Method Baseline Certified LSA MDA

MNIST
0.1

Standard 0.0023 0.1426 0.0652 0.0873
PGD 0.0025 0.0648 0.0093 0.0102
CIVET 0.0027 0.0089 0.0065 0.0078

0.3
Standard 0.0023 0.1884 0.0764 0.0922
PGD 0.0027 0.0972 0.0154 0.0386
CIVET 0.0031 0.0274 0.0163 0.0261

CIFAR-10

2
255

Standard 0.0041 0.0340 0.0216 0.0188
PGD 0.0041 0.0167 0.0068 0.0049
CIVET 0.0049 0.0055 0.0053 0.0054

8
255

Standard 0.0041 0.2098 0.0562 0.0801
PGD 0.0043 0.0760 0.0173 0.0093
CIVET 0.0062 0.0153 0.0087 0.0124

Wireless. In order to achieve MIMO capabilities in 5G, base stations need to know the downlink
wireless channel from their antennas to every client device. In FDD (Frequency Domain Duplex-
ing) systems, dominant in the United States, the client devices measure the wireless channel using
extra preamble symbols transmitted by the base station and send it as feedback to the base station.
However, this feedback is unsustainable and causes huge spectrum waste. Recent work Liu et al.
(2021) proposed FIRE which uses an end-to-end ML based approach to predict the downlink chan-
nels. For this paper, we choose to evaluate against FIRE because it shows SOTA performance, uses
a VAE architecture, and Liu et al. (2023) shows that FIRE is vulnerable to real-world adversarial at-
tacks. Errors in downlink channel estimates reduce the communication efficiency of multi-antenna
systems (e.g., MIMO). Robustly training FIRE will allow it to be safely deployed in real-world
systems. Additional details on FIRE and the choice of VAEs can be found in Appendix E.

For our wireless experiments, we do a best-effort re-implementation of FIRE Liu et al. (2021). We
borrow the data and neural networks used by Liu et al. (2023). The VAE has 7 linear layers in both
the encoder and decoder networks with a 50 dimensional latent space. Liu et al. (2023) collected
10,000 data points by moving the antenna randomly in a 10m by 7m space, and is composed of many
reflectors (like metal cupboards, white-boards, etc.) and obstacles. We use the same 8:2 train/test
split. We also adopt the same adversarial budget used by Liu et al. (2023): the perturbation is allowed
a percentage of the average amplitude of the benign channel estimates. We use Signal-Noise Ratio
(SNR) to report performance for wireless, similar to (Liu et al. (2021; 2023)).

Vision. We consider two popular image recognition datasets: MNIST Deng (2012) and CIFAR10
Krizhevsky et al. (2009). We use a variety of challenging l∞ perturbation bounds common in ver-
ification/robust training literature Xu et al. (2021); Wang et al. (2021); Singh et al. (2019; 2018a);
Shi et al. (2021); Mueller et al. (2022); Mao et al. (2023). We use a VAE with 3 convolutional and 1
linear layer for both the encoder and decoder. For MNIST we use a 32 dimensional latent space and
for CIFAR-10 we use a 64 dimensional latent space. Both MNIST and CIFAR10 have a test set of
10,000 images. We compare the performance for both datasets using Mean Squared Error (MSE).
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Table 3: Comparison of CIVET and Lipschitz VAEs Barrett et al. (2022) on MNIST and CIFAR-10,
MSE is reported.2

Dataset Architecture ϵ Training Method Baseline Certified LSA MDA

MNIST FC
0.1

Lipschitz 0.0049 0.0253 0.0168 0.0211
CIVET 0.0038 0.0230 0.0114 0.0197

0.3
Lipschitz 0.0064 0.0486 0.0366 0.0409
CIVET 0.0043 0.0507 0.0412 0.0359

CIFAR-10 Conv
2

255

Lipschitz 0.0083 0.0105 0.0089 0.0096
CIVET 0.0049 0.0055 0.0053 0.0054

8
255

Lipschitz 0.0112 0.0267 0.0178 0.0252
CIVET 0.0062 0.0153 0.0087 0.0124

4.1 MAIN RESULTS

We compare CIVET to standard training and adversarial training on FIRE in Table 1 and vision
in Table 2. Across all datasets and ϵs we observe that CIVET obtains significantly better certified
performance (e.g. 13.88 dB vs -2.35 dB for FIRE with ϵ = 25% and 0.0089 vs 0.01426 for MNIST
with ϵ = 0.1). CIVET obtains comparable performance on baseline metrics. Notably, CIVET still
outperforms traditional non-ML baselines Liu et al. (2021). Our results indicate that CIVET obtains
significantly better certified performance without sacrificing much baseline performance.

4.2 COMPARISON TO LIPSCHITZ VAES

In this section, we compare CIVET to Lipschitz VAEs proposed by Barrett et al. (2022). A network
f : Rdin → Rdout is Lipschitz continuous if for all x1,x2 ∈ Rdin , ||f(x1)−f(x2)|| ≤M ||x1−x2||
for constant M ∈ R+. The least M for which this holds is the Lipschitz constant of f . Barrett et al.
(2022) trains Lipschitz-constrained VAEs with fixed variances in the latent space. Barrett et al.
(2022) only reports results for fully connected MNIST VAEs. For MNIST, we follow their network
architecture with a latent space of 10 and 3 fully connected layers. For CIFAR-10, we use our con-
volutional network architecture with a latent space of 64. Barrett et al. (2022) only trains networks
with a GroupSort activation. Anil et al. (2019) shows that Lipschitz constrained networks are lim-
ited in expressivity when using non-gradient norm preserving activations such as sigmoid or ReLU
introducing GroupSort as an alternative (it can be shown that GroupSort is equivalent to ReLU when
the group has size 2 Anil et al. (2019)). Following Barrett et al. (2022) we compare their networks
with GroupSort to our networks with ReLU. Table 3 provides detailed results on the comparison of
Lipschitz VAEs and CIVET. In some cases (CIFAR-10) CIVET almost doubles the performance of
Lipschitz VAEs (0.0062 vs 0.0112 8/255 baseline, 0.0055 vs 0.0105 2/255 certified). For MNIST
with ϵ − 0.3 Lipschitz VAE outperforms CIVET for certified performance and LSA performance;
however, CIVET still greatly outperforms in baseline performance (0.0043 vs 0.0064). Therefore,
CIVET is better on almost all benchmarks while generalizing to more network architectures.

4.3 ABLATION STUDIES

For our experiments we choose D = [0.35, 0.2, 0.05] or |D| = 3 and η = 0.15. In this ablation
study, we compare results on FIRE at 25% perturbation budget while varying D. In Appendix G,
Figure 3 shows the average standard and certified SNR for networks trained using CIVET with
varying Ds. In both graphs we see increasing standard SNR as either the size of D increases or the
difference between each of the δs increases, but observe that certified SNR decreases past a certain
point. Note that on the left side when |D| = 5 the largest δ = 0.65 and on the right side when
η = 0.25 the largest δ = 0.55. We hypothesize that adding such a large δ decreases regularization
leading to improved accuracy, but no longer captures a significant portion of the distribution leading
to decreased certified SNR. We leave further study of D selection to future work.

4.4 PERFORMANCE AGAINST ATTACKS

Liu et al. (2023) proposes RAFA (RAdio Frequency Attack), the first hardware-implemented adver-
sarial attack against ML-based wireless systems. Specifically, Liu et al. (2023) shows that RAFA
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can severely degrade the performance of FIRE in the real-world. For our vision datasets we compare
our results against SOTA VAE attacks. LSA Kos et al. (2018) tries to maximize the KL divergence
in the latent space, while MDA Camuto et al. (2021) maximizes the reconstruction distance. We
compare CIVET against the baselines on these attack methods in Tables 1,2,3. CIVET outperforms
baselines on most benchmarks, we note that when CIVET underperforms it is usually tied to its
decrease in baseline accuracy.

4.5 RUNTIME ANALYSIS

For CIFAR10 and ϵ = 8/255, standard training took 45 minutes, adversarial training took 68 min-
utes, Lipschitz VAE took 73 minutes, and CIVET training took 296 minutes (runtimes for FIRE and
MNIST can be found in Appendix B). The main difference in time comes from taking 3 passes of
the decoder network. A network trained with CIVET using D = [0.05] on CIFAR-10 takes only
86 minutes significantly closer to baseline timings. This network obtains a baseline performance of
0.0075 and certified performance of 0.0219 still outperforming Lipschitz VAE on both metrics and
outperforming all baselines in certified performance.

5 RELATED WORK

Deterministic DNN Verification. Neural network verification is generally NP-complete Katz et al.
(2017a) so most existing methods trade precision for scalability. Existing work on DNN verification
primarily focuses on single-input robustness verification. Single-input robustness can be determin-
istically analyzed via abstract interpretation Gowal et al. (2018); Singh et al. (2019; 2018a) or via
optimization using linear programming (LP) De Palma et al. (2021); Müller et al. (2022), mixed
integer linear programming (MILP) Singh et al. (2018b); Tjeng et al. (2018), or semidefinite pro-
gramming (SDP) Dathathri et al. (2020); Raghunathan et al. (2018).

Probablistic DNN Verification. Cardelli et al. (2019); Michelmore et al. (2019) give statistical
confidence bounds on the robustness of Bayesian Neural Networks (BNNs). Wicker et al. (2020)
gives certified guarantees on the probabilistic safety of BNNs. Berrada et al. (2021) introduces the
functional Lagrangian to give a general framework for giving certified guarantees on probabilistic
specifications, their formulation is general and can handle stochastic inputs, BNNs, and VAEs.

Certified Training of Deterministic DNNs. Shi et al. (2021); Mirman et al. (2018); Balunović
& Vechev (2020); Zhang et al. (2019) are well-known approaches for certified training of standard
DNNs. More recent works Mueller et al. (2022); Xiao et al. (2019); Fan & Li (2021); Palma et al.
(2024) integrate adversarial and certified training techniques to achieve state-of-the-art performance
in both robustness and clean accuracy. CIVET is a novel certified training algorithm for VAEs
specifically focusing on bounding the stochastic latent layer.

Certified Training for Stochastic DNNs. Wicker et al. (2021) proposes using IBP to obtain certfied
robustness on BNNs. CIVET exploits the structure of VAEs where we have a deterministic encoder
which generates a class of distributions in the stochastic latent layer. CIVET is also general for
arbitrary differentiable deterministic bounding methods. Barrett et al. (2022) trains certifiably robust
VAEs by imposing lipschitz conditions on the encoder and decoder and a fixed variance. CIVET
removes these restrictions handling a more general class of VAEs.

6 LIMITATIONS/CONCLUSION

We discuss the limitations of CIVET in Appendix F. In this paper, we introduce a novel certified
training method for VAEs called CIVET. CIVET is based on our theoretical analysis of the VAE
robustness problem and based on the key insight that it is possible to find support sets which over-
approximate this loss, and that these support sets can then be analyzed using existing deterministic
neural network bounding algorithms. CIVET lays the groundwork for a new set of certified training
methods for VAEs and other stochastic neural network architectures.
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REPRODUCIBILITY STATEMENT

To assist with reproducibility and further research we will be releasing the code used for our results
publicly. Section 4 gives details on our evaluation which is supplemented by Appendix B. Appendix
A contains full proofs of all Theorems and Lemmas stated in the paper, and all assumptions made
have been stated in the main body of the paper. Section F also gives an overview of some additional
assumptions made.
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Mislav Balunović and Martin Vechev. Adversarial training and provable defenses: Bridging the gap.
In 8th International Conference on Learning Representations (ICLR 2020)(virtual). International
Conference on Learning Representations, 2020.

Debangshu Banerjee and Gagandeep Singh. Relational dnn verification with cross executional
bound refinement. In ICML, 2024. URL https://openreview.net/forum?id=
HOG80Yk4Gw.

Debangshu Banerjee, Changming Xu, and Gagandeep Singh. Input-relational verification of deep
neural networks. Proc. ACM Program. Lang., 8(PLDI), June 2024. doi: 10.1145/3656377. URL
https://doi.org/10.1145/3656377.

Ben Barrett, Alexander Camuto, Matthew Willetts, and Tom Rainforth. Certifiably robust variational
autoencoders. In International Conference on Artificial Intelligence and Statistics, pp. 3663–
3683. PMLR, 2022.

Leonard Berrada, Sumanth Dathathri, Krishnamurthy Dvijotham, Robert Stanforth, Rudy R Bunel,
Jonathan Uesato, Sven Gowal, and M Pawan Kumar. Make sure you’re unsure: A framework for
verifying probabilistic specifications. Advances in Neural Information Processing Systems, 34:
11136–11147, 2021.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Alexander Camuto, Matthew Willetts, Stephen Roberts, Chris Holmes, and Tom Rainforth. To-
wards a theoretical understanding of the robustness of variational autoencoders. In International
Conference on Artificial Intelligence and Statistics, pp. 3565–3573. PMLR, 2021.

L Cardelli, M Kwiatkowska, L Laurenti, N Paoletti, A Patane, and M Wicker. Statistical guarantees
for the robustness of bayesian neural networks. IJCAI-19, 2019.

Kun Woo Cho, Marco Cominelli, Francesco Gringoli, Joerg Widmer, and Kyle Jamieson. Scalable
multi-modal learning for cross-link channel prediction in massive iot networks. In Proceedings of
the Twenty-Fourth International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, MobiHoc ’23, pp. 221–229, New York,
NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399265. doi: 10.1145/
3565287.3610280. URL https://doi.org/10.1145/3565287.3610280.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Ue-
sato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, et al.
Enabling certification of verification-agnostic networks via memory-efficient semidefinite pro-
gramming. Advances in Neural Information Processing Systems, 33:5318–5331, 2020.

11

https://openreview.net/forum?id=HOG80Yk4Gw
https://openreview.net/forum?id=HOG80Yk4Gw
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3565287.3610280


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
Scaling the convex barrier with active sets. International Conference on Learning Representa-
tions, 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Zhihao Duan, Ming Lu, Zhan Ma, and Fengqing Zhu. Lossy image compression with quantized hi-
erarchical vaes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 198–207, 2023.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional Symposium on Automated Technology for Verification and Analysis, pp. 269–286. Springer,
2017.

Jiameng Fan and Wenchao Li. Adversarial training and provable robustness: A tale of two objec-
tives. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7367–
7376, 2021.

David Gibb. A course in interpolation and numerical integration for the mathematical laboratory.
G. Bell & Sons, Limited, 1915.

George Gondim-Ribeiro, Pedro Tabacof, and Eduardo Valle. Adversarial attacks on variational
autoencoders. arXiv preprint arXiv:1806.04646, 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv e-prints, pp. arXiv–1810, 2018.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I 30, pp. 97–117. Springer, 2017a.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I 30, pp. 97–117. Springer, 2017b.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307–392, 2019.

Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective.
Artificial Intelligence in medicine, 23(1):89–109, 2001.

Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative models. In 2018 ieee
security and privacy workshops (spw), pp. 36–42. IEEE, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

Zikun Liu, Gagandeep Singh, Chenren Xu, and Deepak Vasisht. Fire: enabling reciprocity for fdd
mimo systems. In Proceedings of the 27th Annual International Conference on Mobile Computing
and Networking, pp. 628–641, 2021.

Zikun Liu, Changming Xu, Yuqing Xie, Emerson Sie, Fan Yang, Kevin Karwaski, Gagandeep Singh,
Zhao Lucis Li, Yu Zhou, Deepak Vasisht, et al. Exploring practical vulnerabilities of machine
learning-based wireless systems. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pp. 1801–1817, 2023.

Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin Vechev. Taps: Connecting certified and
adversarial training. arXiv e-prints, pp. arXiv–2305, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

R Michelmore, M Wicker, L Laurenti, L Cardelli, Y Gal, and M Kwiatkowska. Uncertainty quan-
tification with statistical guarantees in end-to-end autonomous driving control. arxiv, 2019.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for prov-
ably robust neural networks. In International Conference on Machine Learning, pp. 3578–3586.
PMLR, 2018.

Mark Niklas Mueller, Franziska Eckert, Marc Fischer, and Martin Vechev. Certified training: Small
boxes are all you need. In The Eleventh International Conference on Learning Representations,
2022.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev.
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A ADDITIONAL PROOFS

Theorem 1. For a VAE with encoder Ne, decoder Nd, local input region ϕt(x0), error function M
and probability threshold (1 − δ), if Z = {Z | Z = Ne(x),x ∈ ϕt(x0)} then for any support set
S for Z the worst case error Lw(N

e, Nd,x0) ≤ Tub(S) where Tub(S) = maxz∈S M(Nd(z)).

Proof. Let, It0(y) = (M(y) ≤ t0) be an indicator where t0 = Tub(S). Then for any output
distribution Y = Nd(Z), P (M(Y ) ≤ t0) can be written as

∫
Rdl It0(N

d(z)) × fZ(z)dz where
Z ∈ Z and fZ is the probability density function of Z. Note here z ∈ Rdl are vectors and dz =
dz1 . . . dzdl . Now since the support set S ⊆ Rdl and It0(N

d(z))× fZ(z) ≥ 0 for all z ∈ Rdl

P (M(Y ) ≤ t0) =
∫
Rdl

It0(N
d(z))× fZ(z)dz

≥
∫
S
It0(N

d(z))× fZ(z)dz given S ⊆ Rdl and It0(N
d(z))× fZ(z) ≥ 0

≥
∫
S
fZ(z)dz t0 = Tub(S) implies It0(N

d(z)) = 1∀z ∈ S

≥ (1− δ) S is support so P (Z ∈ S) ≥ (1− δ) (3)

From Eq. 1 and 3, for any output distribution Y = Nd(Z), T (Y ) ≤ t0. Now, given for all
possible output distributions Y ∈ Y as T (Y ) ≤ t0, the worst-case loss Lw(N

e, Nd,x0) =
maxY ∈Y T (Y ) ≤ t0 = Tub(S). Note in all cases we assume the indicator function It0(y) is
well behaved and both the integrals

∫
S It0(N

d(z)) × fZ(z)dz and
∫
Rdl It0(N

d(z)) × fZ(z)dz is
well defined.

Let C(µ, σ, u, l) = Φµ,σ(u)− Φµ,σ(l) where Φµ,σ : R→ [0, 1] is the cdf of the following gaussian
distribution N (µ, σ).

Lemma 2. For a fixed mean µ ∈ [µlb, µub] and bounds l ≤ µlb, µub ≤ u, σ < σub =⇒
C(µ, σ, u, l) > C(µ, σub, u, l).

Proof.

C(µ, σ, u, l) = Φµ,σ(u)− Φµ,σ(l)

= Φ0,1

(
u− µ
σ

)
− Φ0,1

(
l − µ
σ

)
= Φ0,1

(
u− µ
σ

)
+Φ0,1

(
µ− l
σ

)
− 1 using Φ0,1(x) = 1− Φ0,1(−x) (4)

Now, since for any µ ∈ [µlb, µub] and l ≤ µlb, (µ − l) ≥ 0, σ < σub =⇒ µ−l
σub

< µ−l
σ .

Φ is monotonically increasing. Hence, Φ0,1

(
µ−l
σub

)
< Φ0,1

(
µ−l
σ

)
. Similarly, we show that

Φ0,1

(
u−µ
σub

)
< Φ0,1

(
u−µ
σ

)
. This gives us

Φ0,1

(
µ− l
σub

)
+Φ0,1

(
u− µ
σub

)
− 1 < Φ0,1

(
µ− l
σ

)
+Φ0,1

(
u− µ
σ

)
− 1

C(µ, σub, u, l) < C(µ, σ, u, l) Using Eq. 4

Lemma 3. For a fixed σ ∈ [σlb, σub] and bounds l = µlb − ζ, u = µub + ζ with ζ ≥ 0, for any
µ ∈ [µlb, µub]

C(µ, σ, u, l) ≥ C(µlb, σ, u, l) = C(µub, σ, u, l)
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Proof. First, we show C(µ, σ, u, l) is symmetric around µ0 = µlb+µub

2 i.e. C(µ0 + d, σ, u, l) =
C(µ0 − d, σ, u, l) for all d ∈ [0, w/2] where w = (µub − µlb) is the width of the interval [µlb, µub].

C(µ0 + d, σ, u, l) = Φµ0+d,σ(u)− Φµ0+d,σ(l)

= Φ0,1

(
u− µ0 − d

σ

)
− Φ0,1

(
l − µ0 − d

σ

)
(5)

Now, u − µ0 − d = µub + ζ − µub+µlb

2 − d = µub+µlb

2 − µlb + ζ − d = −(l − µ0 + d).
l − µ0 − d = µlb − ζ − µub+µlb

2 − d = µub+µlb

2 − µub − ζ − d = −(u− µ0 + d)

Using Eq. 5

C(µ0 + d, σ, u, l) = Φ0,1

(
u− µ0 − d

σ

)
− Φ0,1

(
l − µ0 − d

σ

)
= Φ0,1

(
− l − µ0 + d

σ

)
− Φ0,1

(
−u− µ0 + d

σ

)
= Φ0,1

(
u− µ0 + d

σ

)
− Φ0,1

(
l − µ0 + d

σ

)
using Φ0,1(x) = 1− Φ0,1(−x)

= C(µ0 − d, σ, u, l) (6)

Eq. 6 proves C(µlb, σ, u, l) = C(µub, σ, u, l) for d = µub−µlb

2 . Now we show that for d1, d2 ∈
[0, µub−µlb

2 ] if d1 ≤ d2 then C(µ0 + d1, σ, u, l) ≥ C(µ0 + d2, σ, u, l).

Φ0,1

(
u− µ0 − d1

σ

)
− Φ0,1

(
u− µ0 − d2

σ

)
= Φ0,1

(
d2 − (u− µ0)

σ

)
− Φ0,1

(
d1 − (u− µ0)

σ

)
=

1√
2πσ

∫ d2

d1

exp

(
− (x− (u− µ0))

2

2σ2

)
dx (7)

Similarly

Φ0,1

(
l − µ0 − d1

σ

)
− Φ0,1

(
l − µ0 − d2

σ

)
=

1√
2πσ

∫ d2

d1

exp

(
− (x− (l − µ0))

2

2σ2

)
dx (8)

Eq 7 - Eq 8 gives us

C(µ0 + d1, σ, u, l)− C(µ0 + d2, σ, u, l) =
1√
2πσ

∫ d2

d1

f(x)dx (9)

where f(x) =
(
exp

(
− (x− (u− µ0))

2

2σ2

)
− exp

(
− (x− (l − µ0))

2

2σ2

))
Next, we show that f(x) ≥ 0 for all x ∈ [d1, d2]

(x− (u− µ0))
2 = (w + ζ − x)2 ≤ (w + ζ + x)2 = (x− (l − µ0))

2 since 0 ≤ d1 ≤ x ≤ d2 ≤ w + ζ

=⇒
(
exp

(
− (x− (u− µ0))

2

2σ2

)
≥ exp

(
− (x− (l − µ0))

2

2σ2

))
=⇒ f(x) ≥ 0 where x ∈ [d1, d2]

=⇒ C(µ0 + d1, σ, u, l)− C(µ0 + d2, σ, u, l) =

∫ d2

d1

f(x) ≥ 0 from Eq. 9

=⇒ C(µ0 + d1, σ, u, l) ≥ C(µ0 + d2, σ, u, l)

This completes the proof because for any d ∈ [0, µub−µlb

2 ], C(µ0 + d, σ, u, l) ≥ C(µub, σ, u, l) and
subsequently C(µ0 − d, σ, u, l) ≥ C(µub, σ, u, l).

Lemma 1. Given bounds µlb, µub, σlb, σub ∈ R, probability threshold (1 − δ), and ζ ∈ R+ . Let
C(µ, σ, u, l) = Φµ,σ(u)− Φµ,σ(l). Then ∀µ ∈ [µlb, µub], σ ∈ [σlb, σub],

C(µ, σ, µub + ζ, µlb − ζ) ≥ C(µub, σub, µub + ζ, µlb − ζ)
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Furthermore,

C(µlb, σub, µub + ζ, µlb − ζ) = C(µub, σub, µub + ζ, µlb − ζ)

Proof.
C(µ, σ, µub + ζ, µlb − ζ) ≥ C(µ, σub, µub + ζ, µlb − ζ) Using lemma 2

≥ C(µub, σub, µub + ζ, µlb − ζ) Using lemma 3
The proof of C(µlb, σub, µub + ζ, µlb − ζ) = C(µub, σub, µub + ζ, µlb − ζ) comes from Eq. 6.

Theorem 2. Given Z = {N (µ, σ) | µ ∈ [µlb, µub], σ ∈ [σlb, σub]}, probability threshold (1 − δ),
then [l, u] = [µlb − σubΦ−1(p0), µub + σubΦ

−1(p0)] satisfies Equation 2. Where

p0 = min
p∈[(1−δ),1]

[
Φ−1(p) + Φ−1(p− (1− δ)) ≥ µlb − µub

σub

]
.

Proof. We would like to show that ∀µ ∈ [µlb, µub], σ ∈ [σlb, σub].C(µ, σ, µub + σubΦ
−1(p0), µlb −

σubΦ
−1(p0)) ≥ (1− δ). By Lemma 1 we have ∀µ ∈ [µlb, µub], σ ∈ [σlb, σub]

C(µ, σ, µub+σubΦ
−1(p0), µlb−σubΦ−1(p0)) ≥ C(µub, σub, µub+σubΦ

−1(p0), µlb−σubΦ−1(p0))

Therefore, it is sufficient to prove that

C(µub, σub, µub + σubΦ
−1(p0), µlb − σubΦ−1(p0)) ≥ (1− δ)

We can start by expanding C(µub, σub, µub + σubΦ
−1(p), µlb − σubΦ−1(p))

C(µub, σub,µub + σubΦ
−1(p), µlb − σubΦ−1(p))

= Φµub,σub
(µub + σubΦ

−1(p))− Φµub,σub
(µlb − σubΦ−1(p))

= Φ

(
σubΦ

−1(p))

σub

)
− Φ

(
µlb − σubΦ−1(p)− µub

σub

)
= Φ

(
Φ−1(p)

)
− Φ

(
µlb − µub

σub
− Φ−1(p)

)
= p− Φ

(
µlb − µub

σub
− Φ−1(p)

)

Now, we want p s.t.

p− Φ

(
µlb − µub

σub
− Φ−1(p)

)
≥ (1− δ)

p− (1− δ) ≥ Φ

(
µlb − µub

σub
− Φ−1(p)

)
Φ−1(p− (1− δ)) ≥ µlb − µub

σub
− Φ−1(p)

Φ−1(p− (1− δ)) + Φ−1(p) ≥ µlb − µub

σub

Note that the Φ−1 is a strictly increasing function. Since p0 is defined as the min p that satisfies this
condition, we have proved the Theorem.
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B EVALUATION DETAILS

We implemented CIVET in PyTorch Paszke et al. (2019). For additional details see our codebase.
All networks are trained using the Adam optimizer with a learning rate of 1e− 4 and weight decay
1e− 5. All networks are trained with 100 epochs. We use a batch size of 16 for MNIST and 32 for
FIRE and CIFAR-10.

B.1 TRAINING METHODS

Standard. Standard training is done using a combination of KL divergence loss on the
mean/standard deviation and reconstruction loss on the output.

PGD. PGD training is done by mixing standard loss with an adversarial loss. The adversarial loss
is computed by first computing an adversarial perturbation using PGD. PGD is instantiated with the
same KL divergence/reconstruction loss combination as standard training, we use a step size equal
to 0.1 · ϵ and perform 10 iterations. This adversary is added to the input and then fed through the
network to compute the loss.

CIVET. Sticking with standard IBP protocols, we start by warming up with standard loss for the
first 250 iterations (250 batches). For the next 250 batches we linearly scale ϵ from 0 and add the
CIVET loss to the standard loss. After these warmup stages we compute CIVET loss and add it to
standard loss.

CIVET-SABR. We perform the same steps as CIVET training but first compute a maximum damage
attack (MDA) on the input using a radius of (1− τ) · ϵ setting τ = 0.1. We then compute a smaller
ball around this adversarial example with radius tau · ϵ and perform normal CIVET training.

B.2 DATASETS

Wireless. We use the same VAE architecture as Liu et al. (2021). The VAE encoder has 7 linear
layers: starting with a hidden size of 1024 going down by a factor of 2 each time, the VAE decoder
as the same sizes in the opposite direction. We use a latent dimension of 50. All layers use a
LeakyReLU activations with a tanh activation at the end. With ϵ = 25%, standard training took 18
minutes, adversarial training took 25 minutes, and CIVET training took 118 minutes.

Vision. We use convolutional layers with a kernel size of 5, stride of 2, and a padding of 1. We use
three convolutional layers starting with 16 (64 for CIFAR) channels and doubling each time. For
MNIST we use a latent dimension of 32 and for CIFAR10 we use a latent dimension of 64. All
layers use ReLU activations with a sigmoid activation at the end. With ϵ = 0.3 for MNIST, standard
training took 16 minutes, adversarial training took 18 minutes, and CIVET training took 93 minutes.
For the fully connected MNIST network, there are 2 hidden layers with size 512 and 1 with size 10
for both the encoder and decoder. Lipschitz VAE with GroupSort activations took 24 minutes to
train and /method with ReLU activations took 41 minutes to train.

C EXAMPLE FOR SAMPLE SELECTION

This section elaborates on the key steps of the support selection algorithm with an example. We
consider the one-dimensional case for simplicity. Let the ranges of the mean and variance be the
intervals [µlb, µub] and [σlb, σub], where µlb = 0.0, µub = 1.0, σlb = 1.0, and σub = 2.0. For a fixed
δ = 0.05 (i.e., a 95% confidence level), the algorithm computes an interval [l, u] that captures at least
95% of the probability for all possible Gaussian distributions with µ ∈ [µlb, µub] and σ ∈ [σlb, σub].

From Lemma 1, for any l ≤ µlb and µlb ≤ u, we know that the distributions specified by µlb, σub and
µub, σub capture the least probability among all possible distributions. Additionally, since (1− δ) >
0.5, both l and u automatically satisfy the constraints l ≤ µlb and µlb ≤ u. Therefore, finding the
support set [l, u] only requires ensuring that both the distributions specified by µlb, σub and µub, σub
capture at least (1− δ) probability. Finally, the bounds l and u are obtained by applying Theorem 2,
where l = 0.0− 3.54 = −3.54 and u = 1.0 + 3.54 = 4.54.
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D JUSTIFICATION OF THE WEIGHTING SCHEME

In this section, we explain the rationale for using the weighing scheme to define the CIVET loss
(Definition. 2). For a Gaussian distribution, most of the probability mass is concentrated around
the mean. This means that the support set [l, u] (or its length in the 1D case) grows significantly
faster than the additional probability it captures. For instance, for any Gaussian distribution with
parameters (µ, σ), the interval [µ − 3σ, µ + 3σ] captures 99.73% of the probability mass, while
extending it to [µ − 4σ, µ + 4σ] increases the coverage to only 99.99%. Thus, the support length
must increase by 33% to capture just an additional 0.26% of the probability. Moreover, IBP with
larger intervals accumulates greater approximation error. Using the suggested weighting scheme,∑

i(1 − δi)Li, would unnecessarily assign very high weights to larger intervals, which generally
capture negligible additional probability mass compared to the smaller intervals (i.e., [li−1, ui−1]
corresponding to (1− δi−1).

E ADDITIONAL DISCUSSION ON FIRE

FIRE Liu et al. (2021) uses a VAE architecture to predict downlink channels inspired by a physics-
level intuition that both uplink and downlink channels are generated by the same process from the
underlying physical environment. A VAE can first infer a latent low-dimensional representation of
the underlying process of channel generation by observing samples of the uplink channel, and then
generate the downlink channel by sampling in this low-dimensional space. This allows the VAE
to embed real-world effects in the latent space and therefore capture the generative process more
accurately.

For FIRE we compare performance using SNR. The SNR of the predicted channel H can be com-
puted by comparing to the ground truth channel Hgt by using the following:

SNR(H,Hgt) = −10log10
(
||H −Hgt||2

||Hgt||2

)
(10)

F LIMITATIONS

CIVET currently restricts support set selection to the interval domain; however, more precise sup-
port set selection may be possible with the zonotope domain (as commonly used in DNN verifica-
tion Singh et al. (2018a)) or the octogon domain (as commonly used in probabalistic programming
Sankaranarayanan et al. (2013)), we leave this for future work to explore. CIVET focuses on the
gaussian distribution as commonly used in VAEs; however, it is possible to generalize our method to
families of distributions as in Berrada et al. (2021). CIVET assumes an adversary is attacking with
single-input adversarial examples; however, the RAFA attack used by Liu et al. (2023) to attack
FIRE is a universal adversarial perturbation which is a weaker attack model. It may be possible to
obtain better performance by adjusting CIVET to handle universal attacks instead. Recent work in
UAP certification Banerjee et al. (2024); Banerjee & Singh (2024) and certified training for UAPs Xu
& Singh (2024) suggest that improved accuracy with similar robustness is possible when defending
against these weaker attack models; however, we leave this for future work.

G ABLATION FIGURE
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Figure 3: Standard and Certified SNR while varying D. We consider sets with δn = 0.05 and
δi = δi+1 + η (let n = |D|). On the left, we vary the size of D between 1 and 5 while fixing
η = 0.15. On the right, we fix |D| = 3 and vary η between 0.05 and 0.25.
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