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Abstract
The entropic-regularized optimal transport (OT)
has gained massive attention in machine learn-
ing due to its ability to provide scalable solutions
for OT-based tasks. However, most of the ex-
isting algorithms, including the Sinkhorn algo-
rithm and its extensions, suffer from relatively
slow convergence in many cases. More recently,
some second-order methods have been proposed
based on the idea of Hessian sparsification. De-
spite their promising results, they have two major
issues: first, there is limited theoretical under-
standing on the effect of sparsification; second, in
cases where the transport plan is dense, Hessian
sparsification does not perform well. In this pa-
per, we propose a new quasi-Newton method to
address these problems. First, we develop new
theoretical analyses to understand the benefits of
Hessian sparsification, which lays the foundation
for highly flexible sparsification schemes. Then
we introduce an additional low-rank term in the
approximate Hessian to better handle the dense
case. Finally, the convergence properties of the
proposed algorithm are rigorously analyzed, and
various numerical experiments are conducted to
demonstrate its improved performance in solving
large-scale OT problems.

1. Introduction
Optimal transport (OT), as originally described by Gaspard
Monge, addresses the problem of moving a distribution
(e.g., a pile of sand) to match a target configuration (e.g.,
a prescribed shape) while minimizing a cost, such as the
total distance or effort required. In recent years, OT has
received significant attention, due to its strong connections
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with statistical modeling and machine learning tasks. In
particular, OT provides a principled way to measure the
similarity between probability distributions by considering
the cost of transporting the mass between them (Villani et al.,
2009), making it highly relevant in applications involving
structured data or distributions with geometric properties.
See Torres et al. (2021); Montesuma et al. (2024) for an
overview of its applications in modern machine learning.

The discrete OT problem can be characterized by the fol-
lowing linear programming problem:

min
P∈Π(a,b)

⟨P,M⟩,

Π(a, b) = {P ∈ Rn×m : P1m = a, PT1n = b, P ≥ 0},

where a ∈ Rn, b ∈ Rm are two vectors satisfying aT1n =
bT1m = 1, a > 0, b > 0, M is a given cost matrix, and all
inequality signs are elementwise.

More recently, the application of OT has experienced a
significant boost due to the development of approximate
solvers such as the entropic-regularized OT. Popularized
by Cuturi (2013), the entropic-regularized OT incorporates
an entropic regularization h(P ) =

∑n
i=1

∑m
j=1 Pij(1 −

logPij) into the OT problem:

min
P∈Π(a,b)

⟨P,M⟩ − ηh(P ). (1)

This regularization significantly reduces the computational
cost of OT based on the Sinkhorn–Knopp algorithm (Yule,
1912; Sinkhorn, 1964), thus unlocking its potential in large-
scale problems. Along this direction, many extensions of
the Sinkhorn algorithm have also been proposed (Altschuler
et al., 2017; Dvurechensky et al., 2018; Guminov et al.,
2021; Lin et al., 2022). As a result, OT is increasingly
applied to solve a wide range of challenges in fields such
as image processing, graphics, and machine learning (Peyré
et al., 2019).

However, the computation of problem (1) is still a major
challenge. For example, the Sinkhorn algorithm generally
requires a large number of iterations to converge, especially
when the regularization parameter is small. Other first-order
methods that extend the Sinkhorn algorithm also show rela-
tively slow convergence. To this end, another approach to
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solving entropic-regularized OT is to study the dual prob-
lem of (1), i.e., maximizing a function L(α, β), α ∈ Rn,
β ∈ Rm, where

L(α, β) = αTa+ βT b

− η

n∑
i=1

m∑
j=1

exp{η−1(αi + βj −Mij)}. (2)

Once an optimal solution (α∗, β∗) to problem (2) is sought,
the primal optimal solution to (1), denoted by T ∗ ∈ Rn×m,
can be obtained as T ∗

ij = exp{η−1(α∗
i +β∗

j −Mij)}. Since
L(α, β) = L(α + c1n, β − c1m) for all c ∈ R, we can
remove the redundant degree of freedom by setting βm = 0
globally. Then eventually, solving entropic-regularized OT
is equivalent to solving

min
x∈Rn+m−1

f(x), (3)

where

f(x) = −L(α, β) = η

n∑
i=1

m∑
j=1

exp{η−1(αi + βj −Mij)}

− αTa− βT b,

and x = (α1, . . . , αn, β1, . . . , βm−1)
T . Clearly, (3) is a

smooth and unconstrained convex optimization problem,
which brings the possibility to use second-order methods
for acceleration.

However, the classical Newton method is not a realistic
approach, since the Hessian matrix of f(x) is a dense matrix
of the size (n + m − 1) × (n + m − 1), leading to an
O((n+m)3) computational cost in computing the Newton
direction. More recently, Tang et al. (2024) and Tang &
Qiu (2024) tackle this problem based on the idea of Hessian
sparsification, i.e., approximating the true Hessian matrix
by sparse matrices, thus leading to efficient sparse linear
systems to compute the search directions. This line of works
show some promising results, but two major issues remain to
be solved: first, there is limited theoretical understanding on
the effect of sparsification; second, in cases where the true
Hessian matrix is relatively dense, Hessian sparsification
does not perform well.

In this paper, we mainly target on resolving the two issues
above, and propose a new quasi-Newton method to solve
entropic-regularized OT. First, we provide new theoreti-
cal analyses on the sparsified Hessian matrices, and show
that sparsification brings various benefits. The results also
motivate a class of flexible sparsification schemes that sub-
stantially generalize existing methods. Second, we propose
a new model to better approximate the true Hessian ma-
trix, which combines Hessian sparsification with low-rank
approximation. We demonstrate that this method greatly en-
hances the algorithm’s performance in scenarios where the

Hessian matrix is relatively dense. Rigorous convergence
analysis is provided to support the application of the pro-
posed algorithm in large-scale OT problems. An efficient
implementation of the method is included in the RegOT
Python package1.

Contribution Our main contribution compared to prior
art is summarized as follows:

1. New theoretical results are developed to understand the
mechanism of Hessian sparsification. Such a theoret-
ical understanding also guarantees that a broad range
of sparsification schemes enjoy desirable properties.

2. A new quasi-Newton method is proposed to solve
entropic-regularized OT that combines the advantages
of Hessian sparsification and low-rank approximation,
achieving fast convergence speed with low computa-
tional cost.

3. We provide convergence guarantees for the proposed
method, and conduct extensive numerical experiments
to demonstrate its performance.

Notation Throughout this article we adopt the following
notation. For n ∈ N, denote [n] := {1, 2, . . . , n}. Given
a matrix A ∈ Rn×m and a vector v ∈ Rm, we use Ã ∈
Rn×(m−1) to represent the first (m − 1) columns of A,
and ṽ ∈ Rm−1 to represent the first (m − 1) elements
of v; inequality signs such as A > 0 and v < 0 are all
elementwise. We use λmax(·) and λmin(·) to represent the
largest and smallest eigenvalues of real symmetric matrices,
respectively. For a matrix A, let Ai· be the vector of the i-th
row of A, and A·j be the vector of the j-th column of A.

2. Related Work
OT in machine learning Optimal transport has emerged
as a powerful mathematical framework with diverse applica-
tions in machine learning (Torres et al., 2021; Montesuma
et al., 2024). It is widely used for tasks such as domain adap-
tation (Courty et al., 2017), generative modeling (Arjovsky
et al., 2017; Genevay et al., 2018; Huynh et al., 2021), clus-
tering (Laclau et al., 2017), and cross-domain alignment
(Chen et al., 2020), among many others.

Solving entropic-regularized OT There is a rich collec-
tion of algorithms developed to solve entropic-regularized
OT. Following the seminal work Cuturi (2013) that popular-
izes the Sinkhorn–Knopp algorithm (Yule, 1912; Sinkhorn,
1964), many extension methods are proposed (Altschuler
et al., 2017; Dvurechensky et al., 2018; Guminov et al.,
2021; Lin et al., 2022). In addition to first-order methods,

1https://github.com/yixuan/regot-python
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Brauer et al. (2017); Tang et al. (2024); Tang & Qiu (2024)
consider Newton-type second-order methods to solve the
dual problem of entropic-regularized OT. Another direction,
as in the importance sparsification approach (Li et al., 2023),
accelerates computation by constructing a sparse approxi-
mation of the kernel matrix, thereby significantly reducing
the cost of Sinkhorn iterations.

Quasi-Newton methods Quasi-Newton methods are a
class of optimization techniques designed to efficiently
solve large-scale smooth optimization problems (Nocedal
& Wright, 2006). Unlike the classical Newton methods,
they approximate the Hessian matrix by simpler structures
in computing the search directions, thus reducing computa-
tional complexity while retaining rapid convergence. These
features make them highly effective for machine learning
and optimization tasks involving high-dimensional data.
For example, Cuturi & Peyré (2018) suggests using the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) method (Liu & Nocedal, 1989) to solve the dual
problem of entropic-regularized OT.

3. Understanding Hessian Sparsification
3.1. Background

Recall that our main objective is to solve the unconstrained
convex optimization problem (3). It is known that f(x) has
some good properties:

1. f(x) is strictly convex, so if (3) has a solution, then
the solution is unique.

2. The gradient of f(x), denoted by g(x) := ∇f(x), has
a closed-form expression:

g(x) =

[
T1m − a

T̃T1n − b̃

]
, T = T (α, β),

where the free variables are x = (αT , β̃T )T , β =
(β̃T , 0)T , T (α, β) is an n ×m matrix with elements
[T (α, β)]ij = exp{η−1(αi + βj −Mij)}, and recall
that T̃ means removing the last column of T .

3. f(x) is twice differentiable, and the Hessian matrix
H(x) := ∇2f(x) also has a simple expression:

H(x) = η−1

[
diag(T1m) T̃

T̃T diag(T̃T1n)

]
. (4)

The classical Newton method solves (3) by generating a
sequence of iterates {xk} based on the update rule xk+1 =
xk − αkH

−1
k gk, where gk = g(xk), Hk = H(xk), and

αk > 0 is the step size at iteration k. However, solving
H−1

k gk for a dense Hessian matrix Hk has a computational

cost at the order of O((n+m)3), which is too demanding
for large-scale OT problems. Therefore, several Hessian
sparsification methods have been proposed to approximate
Hk by some sparse matrices, which lead to significantly
reduced computational costs.

The SNS algorithm (Tang et al., 2024) sparsifies the Hessian
matrix by a thresholding rule. Specifically, any entry in the
Hessian matrix smaller than a constant ρ is truncated to zero.
However, although this procedure preserves the symmetry
and diagonal dominance of the Hessian matrix, there is
no guarantee on the positive definiteness of the sparsified
Hessian. Specifically, 0 might be included in one of the
Gershgorin discs, admitting λ = 0 as a possible eigenvalue.

The SSNS algorithm (Tang & Qiu, 2024) takes a similar but
different approach, which only sparsifies the off-diagonal
elements of the Hessian matrix. Meanwhile, it controls
the row-wise and column-wise approximation errors. This
method provides guarantees on the positive definiteness, but
it is not flexible to design the sparsity pattern. In particular,
the density after sparsification is unknown in advance, thus
making it difficult to control the computational cost. To
this end, in Section 3.2 we carefully analyze the eigenvalue
structure of the sparsified Hessian, which provides various
new insights on the consequence of Hessian sparsification.

3.2. Eigenvalue structure of the sparsified Hessian

As can be seen from (4), the true Hessian matrix at x =
(αT , β̃T )T is determined by the matrix T = T (α, β). There-
fore, a natural way to sparsifying H(x) is to sparsify the
T matrix. Following the method proposed in Tang & Qiu
(2024), we consider the off-diagonal sparsification frame-
work as given in Definition 3.1.
Definition 3.1 (Sparsification scheme). A sparsification
scheme is defined by a set of coordinates Ω ⊆ Ω̄ = {(i, j) :
i ∈ [n], j ∈ [m − 1]}. In particular, the sparsified matrix
T̃Ω has elements

(T̃Ω)ij =

{
T̃ij , (i, j) ∈ Ω,

0, (i, j) /∈ Ω,

and the sparsified Hessian matrix is given by

HΩ = HΩ(x) = η−1

[
diag(T1m) T̃Ω

T̃T
Ω diag(T̃T1n)

]
.

Clearly, HΩ depends on the current variable x, but we will
omit it for brevity if no confusion is caused. It is also worth
noting that the diagonal elements of HΩ remain unchanged
compared to H = H(x), which are computed from the
original T instead of the sparsified T̃Ω. This structure is
crucial for our theoretical analysis.

To gain insights on the effect of sparsification, we first con-
sider the process of incremental sparsification: removing
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exactly two symmetric elements from the current approxi-
mate Hessian HΩ0 , resulting in another matrix HΩ1 , where
Ω0 and Ω1 only differ by one element, and Ω1 ⊂ Ω0. Then
the main theoretical result of this section, Theorem 3.3,
claims that HΩ1

strictly decreases the condition number of
HΩ0

.

Assumption 3.2. For a sparsification scheme Ω ⊆ Ω̄, there
exists a positive integer p > 0 such that the p-th power of
HΩ has strictly positive entries, i.e., (HΩ)

p > 0.

Theorem 3.3. Given two sparsification schemes Ω0,Ω1 ⊆
Ω̄, suppose that Ω1 ⊂ Ω0 and they only differ by one ele-
ment. If Assumption 3.2 holds for Ω1, then we have

λmax(HΩ1
) < λmax(HΩ0

),

λmin(HΩ1
) > λmin(HΩ0

),

which implies that HΩ1
strictly decreases the condition

number of HΩ0
.

Suppose that we have chosen a specific sparsification
scheme Ω ⊆ Ω̄ that satisfies Assumption 3.2, and then
there must exist a sequence of sparsification schemes {Ωt :
t ∈ [T ]} that starts with Ω1 = Ω̄ and ends with ΩT = Ω,
satisfying Ωt+1 ⊂ Ωt,∀t ∈ [T − 1], and Ωt and Ωt+1

only differ by one element. Since Assumption 3.2 holds for
Ω = ΩT , Lemma B.4 implies that it also holds for all spar-
sification schemes in the sequence, as ΩT ⊆ Ωt,∀t ∈ [T ].
Then by applying Theorem 3.3 repeatedly to Ωt and Ωt+1

for t = 1, . . . , T − 1, we obtain the following corollary.

Corollary 3.4. For any sparsification scheme Ω ⊆ Ω̄ satis-
fying Assumption 3.2, the corresponding sparsified Hessian
matrix HΩ has the following properties:

λmax(HΩ) ≤ λmax(H),

λmin(HΩ) ≥ λmin(H),

where H = HΩ̄ = H(x). The equalities hold if and only if
Ω = Ω̄.

3.3. Numerical Verification

We numerically verify Theorem 3.3 and Corollary 3.4
through a simple experiment that illustrates how eigen-
values evolve during the sparsification process. Specifi-
cally, we generate a random matrix T ∈ Rn×m with entries
Tij

iid∼ Unif(0, 1), and construct the corresponding Hessian
matrix H . We then iteratively set one nonzero element of T
to zero at each step, recalculating the minimum and maxi-
mum eigenvalues of H at each iteration, until only the first
row and first column of T remain nonzero (see Theorem
4.1 for the rationale of this setting). We repeat this proce-
dure five times, and illustrate the change of eigenvalues and
condition number of the sparsified Hessian in Figure 1.

The results clearly demonstrate that during the incremental
sparsification process, the minimum eigenvalue monoton-
ically increases, while the maximum eigenvalue monoton-
ically decreases, which is consistent with our theoretical
predictions.
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Figure 1. Plot of minimum and maximum eigenvalues of the spar-
sified Hessian matrix during the sparsification process.

3.4. Summary

We summarize this section by making a few remarks on the
significance of Theorem 3.3 and Corollary 3.4:

1. Since the true Hessian matrix is positive definite, Corol-
lary 3.4 implies that any valid sparsification scheme
also maintains positive definiteness. This is crucial for
computing the search directions, as the approximate
Hessian also needs to be inverted.

2. The theorems indicate that the sparsified Hessian has a
smaller condition number, which guarantees better nu-
merical stability in solving linear systems. Even better,
a smaller condition number makes iterative sparse lin-
ear solvers (e.g. conjugate gradient method) converge
faster.

3. The controlled condition number is essential for the
theoretical analysis of quasi-Newton methods; see for
example Section 3.2 of Nocedal & Wright (2006).

4. Corollary 3.4 is valid for almost any sparsification
scheme. This theoretical guarantee allows for highly
flexible algorithmic designs, which greatly generalizes
prior works on this direction.
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5. The only requirement is Assumption 3.2, which is very
weak: it can be satisfied with extremely sparse matrices.
In Section 4.2, we provide a constructive method to let
sparsification schemes easily satisfy this assumption.

4. The Sparse-Plus-Low-Rank Method
4.1. Overview

Despite the various benefits as explained in Section 3, the
Hessian sparsification method has one intrinsic limitation:
it highly relies on the sparsity property of the true Hessian
matrix. When the true Hessian is dense, no sparsified ver-
sion would perform well, and we need better models to
approximate the Hessian matrix. To this end, we introduce
the sparse-plus-low-rank (SPLR) approach that improves
the approximation by adding low-rank terms to the sparsi-
fied Hessian. At a high level, we adopt the quasi-Newton
framework to solve (3) based on the update rule

xk+1 = xk − αkB
−1
k gk,

where Bk is an approximation to the true Hessian matrix
Hk, and αk > 0 is a suitable step size that satisfies the
Wolfe conditions given in (9). In our method, Bk consists
of three parts:

Bk = HΩ + (auuT + bvvT ) + τI, (5)

where HΩ is the sparsified Hessian matrix according to
some sparsification scheme Ω, auuT + bvvT is a rank-two
approximation term, and τ > 0 is a shift parameter. Note
that all these terms may vary with the iteration number k.

The intuition behind (5) is that when Hk is truly close to
a sparse matrix, HΩ would be able to capture most of its
information. And when this is not the case, the low-rank
term can then compensate for the possibly dense difference
Hk−HΩ. The shift term τI is used to enhance the numerical
stability when inverting the approximate Hessian matrix.
Overall, Bk is expected to perform as well as existing sparse
Newton methods, and to show its advantage when Hk is
relatively dense.

In Algorithm 1, we first present our main SPLR algorithm
to solve entropic-regularized OT, and then elaborate its de-
tails in subsequent sections, such as the choice of Ω, the
specification of (a, b, u, v), etc.

4.2. Sparsification with density

One of the most important ingredients of the proposed SPLR
algorithm is the choice of the sparsification scheme Ω in
(5). First recall that an important condition for Corollary
3.4 to hold is that Ω satisfies Assumption 3.2. Below we
first show that there is a “minimal” scheme Ω∗ meeting this
requirement, and then any scheme containing Ω∗ would also
satisfy Assumption 3.2.

Algorithm 1 The Sparse-plus-low-rank quasi-Newton
method for entropic-regularized OT

Input: Initial point x0, maximum density ρmax ∈ [0, 1],
maximum shift τmax > 0, stopping criterion εtol > 0

Output: xk

1: Set ρmin = 0.01 · ρmax, ρ0 = 0.1 · ρmax, Ω0 = Ω∗(ρ0)
2: Compute f0 = f(x0), g0 = g(x0), H0 = H(x0)
3: Sparsify H0 according to scheme Ω0 to obtain H0

Ω0

4: Set τ0 = min{τmax, ∥g0∥}
5: Compute d0 = −(H0

Ω0
+ τ0I)

−1g0
6: Select the step size α0 and update x1 = x0 + α0d0
7: for k = 1, 2, . . . do
8: Compute fk = f(xk), gk = g(xk), Hk = H(xk)
9: if ∥gk∥ < εtol then

10: return xk

11: end if
12: Update ρk according to (8)
13: Compute Ωk = Ω∗(ρk) with Algorithm 2, and spar-

sify Hk to obtain Hk
Ωk

14: Compute sk−1 = xk − xk−1, yk−1 = gk − gk−1

15: Compute a, b, u, v according to (7)

16: Let L =

{
auuT + bvvT , if yT s > 10−6∥y∥2

O, otherwise
17: Update τk = min{τmax, ∥gk∥}
18: Compute dk =−B−1

k gk, where Bk = Hk
Ωk

+L+τkI
19: Select the step size αk and update xk+1 = xk+αkdk
20: end for

Theorem 4.1. Define Ω∗ = {(i, j) : i = 1 or j = 1, i ∈
[n], j ∈ [m− 1]}, and let HΩ∗ be the corresponding sparsi-
fied Hessian matrix. Then Ω∗ satisfies Assumption 3.2 with
(HΩ∗)4 > 0.

Remark 4.2. The choice “i = 1 or j = 1” in the definition
of Ω∗ is not essential. One can use “i = i∗ or j = j∗” for
any fixed values of i∗ and j∗. Ω∗ basically means keeping
one row and one column of T̃ and setting other elements to
zero.

Theorem 4.1 shows that it is reasonable to use Ω∗ as our
sparsification scheme. However, Ω∗ may contain too few
elements to provide a good approximation to H . For better
performance, we keep a fixed proportion ρ of the largest
elements of T̃ , leading to a sparsification scheme Ω(ρ),
where ρ ∈ [0, 1] represents the density. To satisfy Assump-
tion 3.2, we take the union of Ω∗ and Ω(ρ), denoted by
Ω∗(ρ) := Ω(ρ) ∪ Ω∗. Then we can show that Ω∗(ρ) also
satisfies Assumption 3.2 according to Lemma B.4.

Formally, first define an operator select large(T̃ , ρ),
which takes an n× (m− 1) matrix T̃ and a density ρ as in-
puts, and outputs a set Ω consisting of the coordinates of the
largest ⌊ρn(m− 1)⌋ elements in T̃ . Then the sparsification
scheme with a given density is obtained via Algorithm 2.
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Algorithm 2 Sparsification scheme with a given density

Input: Dual variable vector x = (αT , β̃T )T , density pa-
rameter ρ ∈ [0, 1]

Output: Sparsification scheme Ω∗(ρ)
1: Compute T = T (α, β)
2: Compute Ω(ρ) = select large(T̃ , ρ)
3: Set Ω∗(ρ) = Ω(ρ) ∪ Ω∗

4.3. Low-rank terms

To enhance the approximation quality when the true Hessian
is not well captured by sparsification alone, we incorporate a
low-rank correction term. Specifically, suppose that we are
at the (k + 1)-th iteration of the Newton-type optimization
procedure. We approximate Hk+1 by a matrix Bk+1 of the
form:

Hk+1 ≈ Bk+1 := Hk+1
Ω + auuT + bvvT + τk+1I,

where Hk+1
Ω is the sparsified version of Hk+1 according

to a scheme Ω, and a, b ∈ R, u, v ∈ Rn+m−1 are to be
specified later. Motivated by various quasi-Newton methods,
especially the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
update rule, we determine a, b, u, v by the secant equation,
namely the first-order approximation of g at xk+1:

g(x) = gk+1 +Hk+1(x− xk+1) +O(∥x− xk+1∥2).

Replace x with xk, and we get

gk = gk+1 +Hk+1(xk − xk+1) +O(∥xk − xk+1∥2).

Let sk = xk+1 − xk and yk = gk+1 − gk. By ignoring the
remainder term, we have yk ≈ Hk+1sk. So it is reasonable
to require the approximation of Hk+1, namely Bk+1, to
satisfy:

yk = Bk+1sk = (Hk+1
Ω +auuT + bvvT + τk+1I)sk. (6)

One solution to (6) is:

u = yk, v = (Hk+1
Ω + τk+1I)sk,

a =
1

yTk sk
, b = − 1

sTk (H
k+1
Ω + τk+1I)sk

. (7)

Although such a modification makes the approximation
dense again, its inverse can be computed very conveniently
with sparse or vector-based arithmetics (see for example
Section 6.1 of Nocedal & Wright, 2006):

B−1
k+1 = UT (Hk+1

Ω + τk+1I)
−1U + ξksks

T
k ,

where ξk = 1/(yTk sk) and U = I−ξkyksTk . Since (Hk+1
Ω +

τk+1I) is still a sparse and positive definite matrix, linear
systems associated with it can be efficiently solved via either
direct methods such as the sparse Cholesky decomposition,
or iterative methods such as the conjugate gradient method.

4.4. Practical implementation

Shift parameter The shift parameter τk in Algorithm 1
is not necessary for theoretical analysis, and in fact, one
can globally set τk ≡ 0 without breaking the algorithm.
However, in practical implementation, it brings various ben-
efits, for example, stabilizing the linear system B−1

k gk, and
potentially accelerating iterative linear solvers such as the
conjugate gradient method. This is because Hk

Ω + τkI has a
smaller condition number than Hk

Ω.

To avoid introducing a large approximation error, we dy-
namically set τk to be the current gradient norm ∥gk∥, so
that the τkI term in (5) is negligible when xk is close to the
optimum. An additional safeguard is to set a maximum shift
τmax, in case ∥gk∥ is too large at the beginning. So overall,
we take τk = min{τmax, ∥gk∥} in each iteration.

Adaptive density selection Thanks to the theoretical guar-
antee presented in Corollary 3.4, we have a high degree of
freedom to design the sparsification scheme in each itera-
tion. In our implementation, the density parameter ρk varies
according to ∥gk∥. If ∥gk∥ decreases compared to the pre-
vious iteration, it means that the previous Bk−1 potentially
provides a good approximation to Hk−1, so we can try a
more sparse Hk

Ω in the current iteration, thus accelerating
the search direction computation. Otherwise, we should
increase the density to obtain a more precise approximation
to Hk. Based on this idea, the update rule for ρk is:

ρk =

{
max{ρmin, 0.99ρk−1}, if ∥gk∥ < ∥gk−1∥
min{ρmax, 1.1ρk−1}, otherwise

. (8)

Line search method Finally, we use the Moré–Thuente
line search algorithm (Moré & Thuente, 1994) to compute
the step size αk > 0 that satisfies the Wolfe conditions:

f(xk + αkdk) ≤ f(xk) + c1αk(g
T
k dk),

[g(xk + αkdk)]
T dk ≥ c2(g

T
k dk),

(9)

where 0 < c1 < 1/2 and c1 < c2 < 1 are pre-specified
constants.

5. Convergence Analysis
In this section, we prove that the proposed Algorithm 1 en-
joys a global convergence property, and the convergence rate
is at least linear. Much of the theory has been developed in
classical quasi-Newton literature such as Byrd et al. (1987),
but the key challenge here is to verify certain properties of
the approximate Hessian matrix Bk+1.

In particular, the key to the convergence of quasi-Newton
methods is the condition number of Bk+1 in each itera-
tion. Therefore, it is crucial to bound both the smallest and
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largest eigenvalues of Bk+1 for every k. We then have the
following key findings.

Theorem 5.1. Assume that there is a closed set D such that

λmin(H(x)) ≥ L, λmax(H(x)) ≤ U

for some constants L,U > 0 and all x ∈ D, and that
(1− t)xk + txk+1 ∈ D for all t ∈ [0, 1]. Then

λmin(Bk+1) ≥ (2 + 3U/L)−1L,

λmax(Bk+1) ≤ 2U + τmax.

After bounding the eigenvalues of Bk+1, we then obtain the
global convergence of the proposed algorithm.

Corollary 5.2. Let x0 be an arbitrary initial value, and
{xk} be generated by Algorithm 1. Then

lim
k→∞

∥g(xk)∥ = 0.

Finally, we show that Algorithm 1 at least has a linear con-
vergence rate.

Theorem 5.3. Let f∗ be the optimal value of f(x). Then
for all k ≥ 1, there is a constant 0 < r < 1 such that

f(xk+1)− f∗ ≤ r[f(xk)− f∗].

Although the theory only gives a linear convergence rate,
our numerical experiments in Section 6 suggest that in many
cases, the proposed SPLR algorithm achieves super-linear-
like convergence speed.

6. Numerical Experiments
In this section, we evaluate the performance of the proposed
SPLR algorithm via a series of numerical experiments, and
compare SPLR with a number of widely-used algorithms for
solving entropic-regularized OT: 1. the Sinkhorn algorithm
(equivalent to block coordinate descent, BCD); 2. the adap-
tive primal-dual accelerated gradient descent (APDAGD,
Dvurechensky et al., 2018); 3. L-BFGS; 4. the Newton
method; 5. the SSNS algorithm (Tang & Qiu, 2024).

We consider both synthetic and realistic OT settings, and
fix the regularization parameter to be η = 0.001. To make
η comparable for different problems, we normalize all cost
matrices to have a unit infinity norm, i.e., M ←M/∥M∥∞.
We use the gradient norm ∥g(xk)∥ to measure the optimiza-
tion error of the current iterate xk. Additional test examples
with different cost matrix settings and η values are given in
Appendix A.2 and Appendix A.3, respectively. The experi-
ments in this section can be reproduced using the code on
our Github repository2.

2https://github.com/Aoblex/
numerical-experiments

6.1. Synthetic data

We first consider two synthetic datasets that have been ana-
lyzed by existing sparse Newton methods (Tang et al., 2024;
Tang & Qiu, 2024):

Synthetic I: M = (Mij) has uniformly distributed entries,

i.e., Mij
iid∼ Unif(0, 1), and a = n−11n, b = m−11m.

Synthetic II: This setting approximates OT between two
continuous distributions: an exponential distribution with
mean one, and a normal mixture distribution 0.2·N(1, 0.2)+
0.8 ·N(3, 0.5). The vectors a and b contain the discretized
density function values of the two distributions, computed
in the following way: let xi = 5(i−1)/(n−1), i ∈ [n], and
yj = 5(j − 1)/(m− 1), j ∈ [m] be equally spaced points
on [0, 5], and let f1 and f2 be the density functions of the
two distributions, respectively. Then set āi = f1(xi), b̄j =
f2(yj), ai = āi/ (

∑n
k=1 āk), and bj = b̄j/

(∑m
k=1 b̄k

)
.

The cost matrix is set to Mij = (xi − yj)
2.

We simulate different scales of the problems, n = m =
1000, 5000, and 10000, and do not run Newton or APDAGD
for n ≥ 5000, as they are too time-consuming. The results
are given in Figures 2 and 3.

As can be observed from the plots, the existing sparse New-
ton method SSNS performs well in Synthetic II but is slow
in Synthetic I in terms of the run time. This is because the
Hessian matrix is relatively dense in I, and SSNS needs to
keep a large number of non-zero elements in the approxi-
mate Hessian, leading to slow linear system solving. SPLR,
on the other hand, performs well in both settings, showing
its adaptivity to different OT settings.

6.2. OT between a pair of vectorized images

We then study the OT problem between a pair of im-
ages. Specifically, we randomly select two images from
the MNIST (Lecun et al., 1998) or Fashion-MNIST (Xiao
et al., 2017) dataset, and let the a and b vectors be their flat-
tened and normalized pixel values. The cost matrix holds
the ℓ1-distances between individual pixels. These problems
have a size of n = m = 784, with results shown in Figure 4
(for MNIST data) and Figure 5 (for Fashion-MNIST data),
respectively.

The pattern in Figure 4 and Figure 5 shows that the Sinkhorn
algorithm (i.e., BCD) and the first-order method APDAGD
have a quite slow convergence speed, and the sparse New-
ton method SSNS significantly accelerates the optimization.
With this foundation, SPLR performs even better, as it com-
bines the advantages of both sparse Newton methods and
low-rank quasi-Newton methods.
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Figure 2. Performance of different algorithms on synthetic data I. Top: Gradient norm vs. iteration number for different problem sizes.
Bottom: Gradient norm vs. run time.
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Figure 3. Performance of different algorithms on synthetic data II. Top: Gradient norm vs. iteration number for different problem sizes.
Bottom: Gradient norm vs. run time.
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Figure 4. Performance of different algorithms on the MNIST data.

8



The Sparse-Plus-Low-Rank Quasi-Newton Method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Run time(seconds)

6

5

4

3

2

1

0

1

Lo
g1

0 
Gr

ad
ie

nt
 N

or
m

FashionMNIST (ID1=2, ID2=54698, 1-norm, = 0.001)
BCD
APDAGD
LBFGS-Dual
Newton
SSNS
SPLR

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Run time(seconds)

6

5

4

3

2

1

0

Lo
g1

0 
Gr

ad
ie

nt
 N

or
m

FashionMNIST (ID1=239, ID2=43981, 1-norm, = 0.001)
BCD
APDAGD
LBFGS-Dual
Newton
SSNS
SPLR

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Run time(seconds)

6

5

4

3

2

1

0

Lo
g1

0 
Gr

ad
ie

nt
 N

or
m

FashionMNIST (ID1=17390, ID2=49947, 1-norm, = 0.001)
BCD
APDAGD
LBFGS-Dual
Newton
SSNS
SPLR

Figure 5. Performance of different algorithms on the Fashion-MNIST data.

6.3. OT between two classes of images

Finally, we reproduce the ImageNet experiment in Tang
& Qiu (2024) that uses OT to characterize the difference
between two data distributions. In particular, one class
of images in the ImageNet dataset (Deng et al., 2009) is
treated as one distribution, and each image in this class is
an observation.

This experiment is interesting in that different values of
the regularization parameter η have a large impact on the
performance of algorithms, as shown in Figure 6. With a
small regularization, η = 0.001, BCD and APDAGD again
have slow convergence speeds, and L-BFGS and SSNS
perform quite well. The classic Newton method causes
numerical issues, so it is not shown in the plot of η = 0.001.
When η is increased to 0.01, all methods converge faster
except for SSNS. This is because a larger η typically leads to
a more dense Hessian matrix, so SSNS cannot use a sparse
matrix to approximate the Hessian well. In contrast, SPLR
deals with this situation well via its low-rank term, making
SPLR perform consistently well on different η values.

7. Conclusion
In this paper, we propose the SPLR quasi-Newton method
to solve large-scale entropic-regularized OT, as a further
extension of existing sparse Newton methods including the
SNS (Tang et al., 2024) and SSNS (Tang & Qiu, 2024) meth-
ods. The design of the SPLR algorithm is highly dependent
on the deepened theoretical understanding of the Hessian
sparsification technique, which may be of interest by itself.
On the other hand, the low-rank term introduced in SPLR
effectively overcomes the limitation of sparse Newton meth-
ods in handling dense transport plans. In this sense, SPLR
combines the best parts of purely low-rank-based methods
(e.g., L-BFGS) and purely sparsification-based methods
(e.g., SNS and SSNS). We anticipate that the technique
developed in this paper would boost future exploration of
highly efficient solvers for OT.

One potential future research direction is to study dimension-
independent convergence rates of OT solvers. One known
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Figure 6. Performance of different algorithms on the ImageNet
data. Top: η = 0.01. Bottom: η = 0.001.

result for the Sinkhorn algorithm is given in Carlier (2022),
which shows that the Sinkhorn algorithm has a linear con-
vergence rate that only depends on ∥M∥∞/η and not the
dimension (n,m). It is of interest to understand whether
SPLR and other related solvers also have such properties.
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A. Additional Experiment Details
A.1. Effect of low-rank terms

To verify that the low-rank term in the SPLR algorithm indeed plays a significant role in improving the sparse Newton
method, we conduct an ablation study that compares SPLR with a purely sparsification-based method. We consider a special
sparse Newton method that has the same sparsification scheme and hyperparameter setting as SPLR, and its only difference
from SPLR is the lack of the low-rank term in the approximate Hessian. We examine the performance of the two methods
on the synthetic data introduced in Section 6.1, with the results shown in Figures 7 and 8.

It is clear from the plots that in all the settings, SPLR converges faster than its counterpart, which highlights the benefits of
the low-rank term.
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Figure 7. Comparing SPLR and sparse Newton method on synthetic data I. Top: Gradient norm vs. iteration number for different problem
sizes. Bottom: Gradient norm vs. run time.
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Figure 8. Comparing SPLR and sparse Newton method on synthetic data II.
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A.2. Effect of cost matrices

In this section, we include additional test examples in which the cost matrices are formed by the Euclidean distance instead
of the ℓ1 distance. Figures 9 and 10 show the results on the (Fashion-)MNIST data and ImageNet data, respectively. Clearly,
in all settings, SPLR is among the fastest solvers.
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Figure 9. Performance of different algorithms on the MNIST (top row) and Fashion-MNIST (bottom row) data using the ℓ2-norm to form
the cost matrices.
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Figure 10. Performance of different algorithms on the ImageNet data using the ℓ2-norm to form the cost matrices.

A.3. Effect of regularization parameters

Finally, we further validate the performance of the SPLR algorithm under the regularization parameter setting η = 0.01.
Figures 11, 12, and 13 show the experiment results on the synthetic data, (Fashion-)MNIST data, and ImageNet data,
respectively.

In summary, all these experiments show similar patterns to those in Section 6, validating the desirable performance of SPLR.

A.4. Computing environment

All experiments in this article are conducted on a personal computer with an Intel i9-13900K CPU, 32 GB memory, and a
Ubuntu 25.04 operating system.
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Figure 11. Performance of different algorithms on synthetic data I (top row) and synthetic data II (bottom row) with η = 0.01.
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Figure 12. Performance of different algorithms on the MNIST (top row) and Fashion-MNIST (bottom row) data with η = 0.01.
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Figure 13. Performance of different algorithms on the ImageNet data with η = 0.01.
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B. Proofs of Theorems
B.1. Technical Lemmas

Lemma B.1. Let M be a matrix of the form

M =

[
D1 R
RT D2

]
,

where D1 ∈ Rr×r and D2 ∈ Rs×s are diagonal matrices, and R ∈ Rr×s has strictly positive entries. Suppose that M is
positive definite, and M−1 has the partition

M−1 =

[
Ar×r Br×s

BT Cs×s

]
,

and then we have A > 0, C > 0, and B < 0, where the inequality signs apply elementwisely.

Proof. Since M is positive definite, all of its diagonal elements must be strictly positive, implying that both D1 and D2 are
invertible. By the inversion formula of block matrices, we have

A = (D1 −RD−1
2 RT )−1,

C = (D2 −RTD−1
1 R)−1,

B = −D−1
1 R(D2 −RTD−1

1 R)−1 = −D−1
1 RC.

Clearly, J := D1 −RD−1
2 RT is the Schur complement of the block D2 of the matrix M . By the properties of the Schur

complement, we know that J is positive definite, and hence it is nonsingular.

Moreover, since R has strictly positive entries and D2 has positive diagonal elements, we have that RD−1
2 RT has strictly

positive entries. Therefore, J can be represented in the form J = sI − L, where L > 0, s ≥ ρ(L), and ρ(·) stands for the
spectral radius. Clearly, J is irreducible, so by Theorem A(ii) of Meyer Jr & Stadelmaier (1978), A = J−1 has strictly
positive entries. The same argument can be used to prove that C > 0.

Finally, recall that B = −D−1
1 RC. Since R > 0, C > 0, and D1 has positive diagonal elements, we conclude that B < 0.

Lemma B.2. Let M be a matrix of the form

M =

[
Ar×r −Br×s

−BT Cs×s

]
,

where A > 0, B > 0, C > 0, and the inequality signs apply elementwisely. Then M has a positive eigenvalue r such that
any other eigenvalue of M in absolute value is strictly smaller than r, and the eigenvector v = (vT1 , v

T
2 )

T associated with r,
where v1 ∈ Rr and v2 ∈ Rs, can be normalized such that v1 > 0 and v2 < 0.

Proof. Define

Q =

[
Ir O
O −Is

]
,

and then it is easy to show that Q−1 = Q, and

QMQ−1 =

[
Ir O
O −Is

] [
A −B
−BT C

] [
Ir O
O −Is

]
=

[
A B
BT C

]
:= M̃.

Therefore, M and M̃ are similar to each other, and hence they must share the same eigenvalues. Clearly, M̃ is a positive
matrix, so by the Perron–Frobenius theorem, it must have a positive and simple eigenvalue r such that any other eigenvalue
of M̃ in absolute value is strictly smaller than r. Moreover, M̃ has an eigenvector ṽ = (ṽT1 , ṽ

T
2 )

T such that ṽ1 ∈ Rr,
ṽ2 ∈ Rs, ṽ > 0, and M̃ ṽ = rṽ.
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Now let v = Q−1ṽ, and then

Mv = MQ−1ṽ = Q−1QMQ−1ṽ = Q−1M̃ ṽ = Q−1rṽ = rv.

Therefore, v is an eigenvector of M . Note that

v = Q−1ṽ =

[
Ir O
O −Is

] [
ṽ1
ṽ2

]
=

[
ṽ1
−ṽ2

]
,

so v1 = ṽ1 > 0 and v2 = −ṽ2 < 0, which implies the stated result.

B.2. Proof of Theorem 4.1

Proof. According to the sparsification scheme, the first row and first column of T̃Ω∗ is strictly greater than zero:

(T̃Ω∗)1· > 0, (T̃Ω∗)·1 > 0.

Suppose that HΩ∗ is of the form:

HΩ∗ =

[
An×n Bn×(m−1)

C(m−1)×n D(m−1)×(m−1)

]
,

so in HΩ∗ we have:

A = diag(A) > 0, D = diag(D) > 0, B1· > 0, B·1 > 0, C1· > 0, C·1 > 0.

To show H4
Ω∗ > 0, we first condider elements of H2

Ω∗ :

i. When i ≤ n, j ≤ n, (HΩ∗)2ij = ⟨(HΩ∗)i·, (HΩ∗)j·⟩ ≥ Bi,1Bj,1 > 0.

ii. When i > n, j > n, (HΩ∗)2ij = ⟨(HΩ∗)i·, (HΩ∗)j·⟩ ≥ Ci−n,1Cj−n,1 > 0.

iii. When i ≤ n, j = n+ 1, (HΩ∗)2ij = ⟨(HΩ∗)i·, (HΩ∗)j·⟩ ≥ Ai,iC1,i > 0.

iv. When i = n+ 1, j ≤ n, (HΩ∗)2ij = ⟨(HΩ∗)i·, (HΩ∗)j·⟩ ≥ Aj,jC1,j > 0.

v. When i = 1, j > n, (HΩ∗)2ij = ⟨(HΩ∗)i·, (HΩ∗)j·⟩ ≥ B1,j−nDj−n,j−n > 0.

vi. When i > n, j = 1, (HΩ∗)2ij = ⟨(HΩ∗)i·, (HΩ∗)j·⟩ ≥ B1,i−nDi−n,i−n > 0.

So we can assume that H2
Ω∗ is of the form:

H2
Ω∗ =

[
A′

n×n B′
n×(m−1)

C ′
(m−1)×n D′

(m−1)×(m−1)

]
,

where
A′ > 0, D′ > 0, B′

1· > 0, B′
·1 > 0, C ′

1· > 0, C ′
·1 > 0.

Then consider elements of H4
Ω∗ :

i. When i ≤ n, j ≤ n, (H4
Ω∗)ij = ⟨(H2

Ω∗)i·, (H
2
Ω∗)j·⟩ ≥ A′

i,1A
′
j,1 > 0.

ii. When i > n, j > n, (H4
Ω∗)ij = ⟨(H2

Ω∗)i·, (H
2
Ω∗)j·⟩ ≥ D′

1,i−nD
′
1,j−n > 0.

iii. When i ≤ n, j > n, (H4
Ω∗)ij = ⟨(H2

Ω∗)i·, (H
2
Ω∗)j·⟩ ≥ C ′

1,iD
′
1,j−n > 0.

iv. When i > n, j ≤ n, (H4
Ω∗)ij = ⟨(H2

Ω∗)i·, (H
2
Ω∗)j·⟩ ≥ C ′

1,jD
′
1,i−n > 0.
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Overall, we have (HΩ∗)p > 0 for p = 4, and hence HΩ∗ satisfies Assumption 3.2.

Lemma B.3. Given a sparsification scheme Ω that satisfies Assumption 3.2, the sparsified Hessian matrix HΩ has the
following properties:

1. The eigenvector u(HΩ) corresponding to λmax(HΩ) can be normalized to have strictly positive entries;

2. There exists a neighborhood N(HΩ) of HΩ such that λmax(H), H ∈ N(HΩ) is differentiable.

Proof. Since HΩ satisfies Assumption 3.2, there exists an integer k > 0 such that Hk
Ω > 0. According to the Perron–

Frobenius theorem, u(Hk
Ω) can be normalized to have strictly positive entries and λmax(H

k
Ω) is strictly greater than all

other eigenvalues of Hk
Ω. Since Hk

Ω and HΩ have the same eigenvectors, we can conclude that u(HΩ) = u(Hk
Ω) can be

normalized to have strictly positive entries and the corresponding eigenvalue λmax(HΩ) is strictly greater than all other
eigenvalues of HΩ. This means that λmax(HΩ) is a simple positive eigenvalue and therefore λmax is differentiable at HΩ

according to Theorem 1 of Magnus (1985).

Lemma B.4. Given two sparsification schemes Ω0 and Ω1, suppose that Ω1 ⊆ Ω0. If Ω1 satisfies Assumption 3.2, then Ω0

also satisfies Assumption 3.2.

Proof. Define Ωδ := Ω0\Ω1, and ∆ :=

[
On×n T̃Ωδ

T̃T
Ωδ

O(m−1)×(m−1)

]
. Then we have

HΩ0 = HΩ1 +∆.

Since Ω1 satisfies Assumption 3.2, there must exist an integer k > 0 such that (HΩ1
)k > 0. Then for HΩ0

, we have:

(HΩ0
)k = (HΩ1

+∆)k ≥ (HΩ1
)k +∆k ≥ (HΩ1

)k > 0,

where all inequality signs are elementwise. This means that HΩ0 also satisfies Assumption 3.2.

B.3. Proof of Theorem 3.3

Proof. First, we prove λmax(HΩ0
) > λmax(HΩ1

).

Define p = i, q = n+ j, β = (HΩ0
)pq , then the difference of Hessian is:

HΩ1 −HΩ0 = −β
(
epe

T
q + eqe

T
p

)
:= −βJ,

Define M(κ) = HΩ0
− κJ, l(κ) = λmax(M(κ)), κ ∈ R, then we have:

λmax(HΩ1
)− λmax(HΩ0

) = l(β)− l(0),

Since HΩ1
satisfies Assumption 3.2, we can show that λmax is differentiable on {M(κ)|κ ∈ [0, β]} according to Lemma

B.3. Suppose the eigenvector associated with λmax(M(κ)) is uκ, then the derivative at M(κ) is:

∂λmax

∂M

∣∣∣
M=M(κ)

= uκu
T
κ

thus l′(κ) = ⟨uκu
T
κ ,−J⟩. According to the Lagrange’s mean value theorem, ∃ξ ∈ (0, β) such that:

l(β)− l(0) = l′(ξ)(β − 0)

= ⟨uξu
T
ξ ,−J⟩β

= −β
[
tr(uξu

T
ξ epe

T
q ) + tr(uξu

T
ξ eqe

T
p )

]
= −β

[
tr(uT

ξ epe
T
q uξ) + tr(uT

ξ eqe
T
p uξ)

]
= −2β(uξ)p(uξ)q

(10)
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According to Lemma B.3, uξ can be normalized to have strictly positive entries so that (uξ)p(uξ)q > 0, which means
l(β)− l(0) = λmax(HΩ1)− λmax(HΩ0) < 0.

Then we prove λmin(HΩ0
) < λmin(HΩ1

).

According to Tang & Qiu (2024), we have M(κ) ≻ 0 thus invertible, then according to Lemma B.1, M(κ)−1 is of the form:

M(κ)−1 =

(
A B
BT C

)
where A > 0, C > 0, B < 0. Then according to Lemma B.2, we can show that λmax(M(κ)−1) is a simple positive
eigenvalue, the corresponding eigenvector vκ = (vT

1 ,v
T
2 )

T where v1 ∈ Rn,v2 ∈ Rm−1 can be normalized such that
v1 > 0,v2 < 0. Since vκ is also the eigenvector of M(κ) corresponding to λmin(M(κ)), we can tell that (vκ)p(vκ)q < 0,
where p ≤ n, q > n.

Define h(κ) = λmin(M(κ)), then similar to (10) we have h(β)− h(0) = −2β(vξ)p(vξ)q, where ξ ∈ (0, β). Recall that
(vξ)p(vξ)q < 0, so h(β)− h(0) > 0, which means λmin(HΩ0

) < λmin(HΩ1
).

B.4. Proof of Theorem 5.1

By definition,
Bk+1 = Hk+1

Ω + auuT + bvvT + τk+1I,

where
u = yk, v = (Hk+1

Ω + τk+1)sk, a =
1

yTk sk
, b = − 1

sTk (H
k+1
Ω + τk+1)sk

.

By the design of the algorithm, we have yTk sk > 0, so auuT and bvvT are rank-one matrices with a > 0 and b < 0. Then
we have

λmax(auu
T ) = auTu, λmax(bvv

T ) = 0.

It is well known that λmax(A+B) ≤ λmax(A) + λmax(B) for symmetric matrices A and B, so

λmax(Bk+1) ≤ λmax(H
k+1
Ω ) +

yTk yk
yTk sk

+ τk+1.

Corollary 3.4 shows that λmax(H
k+1
Ω ) ≤ λmax(Hk+1), and then by the assumption of the theorem, we have

λmax(H
k+1
Ω ) ≤ λmax(Hk+1) ≤ U.

On the other hand, since f(x) is twice differentiable, the mean value theorem indicates that

yk = g(xk+1)− g(xk) = Ḡk(xk+1 − xk) = Ḡksk,

where

Ḡk =

∫ 1

0

H((1− t)xk + txk+1)dt.

Again by the assumption, (1− t)xk + txk+1 ∈ D for all t ∈ [0, 1], so for any v ∈ Rn+m−1,

vT Ḡkv =

∫ 1

0

vTH((1− τ)xk + τxk+1)vdτ ≥
∫ 1

0

LvT vdτ = LvT v,

and similarly, vT Ḡkv ≤ UvT v. This indicates that

0 < L ≤ λmin(Ḡk) ≤ λmax(Ḡk) ≤ U.

As a result,

auTu =
yTk yk
yTk sk

=
sTk Ḡ

2
ksk

sTk Ḡksk
=

wT Ḡkw

wTw
,
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where w = (Ḡk)
1/2sk is well-defined since Ḡk is positive definite. Then by the properties of eigenvalues, we get

auTu ≤ λmax(Ḡk) ≤ U . Overall, we have

λmax(Bk+1) ≤ λmax(H
k+1
Ω ) +

yTk yk
yTk sk

+ τk+1 ≤ 2U + τmax.

Now consider the inverse of Bk+1. Using the Sherman–Morrison–Woodbury formula, we can obtain

B−1
k+1 = UT (Hk+1

Ω + τk+1I)
−1U +

1

yTk sk
· sksTk ,

where U = I− (yTk sk)
−1yks

T
k . Let H̄k+1 = Hk+1

Ω + τk+1I , and then H̄k+1 is positive definite as Hk+1
Ω is positive definite.

So for any vector v ∈ Rn+m−1,

vTUT H̄−1
k+1Uv ≤ λmax(H̄

−1
k+1)∥Uv∥2 =

vTUTUv

λmin(H̄k+1)
≤ λmax(U

TU)

λmin(H̄k+1)
· ∥v∥2.

Note that

UTU = I − 1

yTk sk
(yks

T
k + sky

T
k ) +

yTk yk
(yTk sk)

2
· sksTk .

Since UTU is positive semi-definite, we have λmax(U
TU) = ∥UTU∥, where ∥ · ∥ represents the operator norm for matrices.

Therefore, ∥∥∥∥ 1

yTk sk
(yks

T
k + sky

T
k )

∥∥∥∥ ≤ 2∥yksTk ∥
yTk sk

=
2∥Ḡksks

T
k ∥

sTk Ḡksk

≤ 2∥Ḡk∥ · ∥sksTk ∥
sTk Ḡksk

=
2∥Ḡk∥ · sTk sk

sTk Ḡksk

≤ 2U

L
.

Similarly, ∥∥∥∥ yTk yk
(yTk sk)

2
· sksTk

∥∥∥∥ =
yTk yk
yTk sk

· sTk sk
sTk Ḡksk

≤ U

L
.

So overall, ∥UTU∥ ≤ 1 + 3U/L, and then

λmax

(
UT H̄−1

k+1U
)
≤ λmax(U

TU)

λmin(H̄k+1)
≤ 1

L

(
1 +

3U

L

)
.

Finally, we obtain

λmax(B
−1
k+1) ≤

1

L

(
1 +

3U

L

)
+

sTk sk
yTk sk

≤ 1

L

(
2 +

3U

L

)
.

Clearly, B−1
k+1 is positive semi-definite, so

λmin(Bk+1) =
1

λmax(B
−1
k+1)

≥
(
2 +

3U

L

)−1

L.

B.5. Proof of Corollary 5.2

Consider the level set D = {x : f(x) ≤ f(x0)}. Clearly, D is a closed convex set, and there exist constants L,U > 0 such
that λmin(H(x)) ≥ L and λmax(H(x)) ≤ U for all x ∈ D.

Let θk be the angle between −gk and the search direction pk = −B−1
k gk. Then clearly,

cos θk =
−gTk pk
∥gk∥ · ∥pk∥

=
pTkBkpk

∥Bkpk∥ · ∥pk∥
≥ λmin(Bk)∥pk∥2

λmax(Bk)∥pk∥2
=

λmin(Bk)

λmax(Bk)
. (11)
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Then by Theorem 5.1, we have

cos θk ≥
λmin(Bk)

λmax(Bk)
≥ c :=

(
2 +

3U

L

)−1
L

2U + τmax
> 0.

Zoutendijk’s theorem (see for example Theorem 3.2 of Nocedal & Wright, 2006) shows that∑
k≥0

(cos θk)
2∥gk∥2 <∞,

so we must have
c2

∑
k≥0

∥gk∥2 <∞,

which implies that ∥gk∥ → 0 as k →∞.

B.6. Proof of Theorem 5.3

Similar to the proof of Corollary 5.2, consider the level set D = {x : f(x) ≤ f(x0)}, and we have λmin(H(x)) ≥ L and
λmax(H(x)) ≤ U for all x ∈ D.

Lemma 2.1 of Byrd et al. (1987) shows that for any k ≥ 1,

f(xk+1)− f∗ ≤ [1− Lc1c̃2 cos
2 θk] · [f(xk)− f∗],

where c̃2 = (1− c2)/U , and cos θk is defined in (11). Take

r = 1− Lc1c̃2c
2, c =

(
2 +

3U

L

)−1
L

2U + τmax
,

and then we get the desired result.
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