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ABSTRACT:

We present a method for cloud-removal from satellite images using axial transformer networks. The method considers a set of

multitemporal images in a given region of interest together with the corresponding cloud masks, and delivers a cloud-free image

for a specific day of the year. We propose the combination of an encoder-decoder model employing axial attention layers for

the estimation of the low-resolution cloud-free image, together with a fully parallel upsampler that reconstructs the image at full

resolution. The method is compared with various baselines and state-of-the-art methods on two Sentinel-2 datasets, showing

significant improvements across multiple standard metrics used for image quality assessment.

1. INTRODUCTION

Cloud removal from satellite images is a crucial part of remote

sensing tasks, especially for the production of composite mosa-

ics covering a region of interest and the analysis of multitem-

poral data, including, among others, change detection (Liu et

al., 2019, Papadomanolaki et al., 2021) and detection of phen-

ological events (Karakizi et al., 2018, Franchetti et al., 2019).

Nowadays, earth observation data of high spatial and temporal

resolution are available thanks to the commissioning of a large

fleet of satellites continuously monitoring the earth. However, a

large proportion of the collected data cannot be used as they are

affected by clouds. This proportion depends on the geographic

location of the region, its climate characteristics, and the season

when acquisition takes place.

Cloud removal methods can be divided into two main categor-

ies, namely, those taking advantage of the temporal evolution

of the pixel values and those attempting inpainting/gap-filling

of parts affected by clouds in a single image, with the former

having the advantage of being conditioned on the history of

each pixel, reducing the prediction uncertainty for the miss-

ing values. Deep learning methods have been developed for

both these categories. For single image cloud removal, the pro-

posed methods typically employ generative adversarial neural

networks (Singh and Komodakis, 2018, Pan, 2020). Multi-

temporal cloud removal methods on the other hand typically

employ conditional generative models, as ResNet and U-Net,

enriched with (ConvLSTM) modules (e.g. (Ebel et al., 2022,

Sebastianelli et al., 2020)). As these methods capture both the

temporal and spatial relations of the pixels, although more chal-

lenging and computationally intensive, they typically lead to

significant improvements in the produced cloud-free images.

Transformer networks have pushed the state-of-the-art in nu-

merous natural language processing (Vaswani et al., 2017),

computer vision (Dosovitskiy et al., 2020), and remote sens-

ing tasks (Bazi et al., 2021). However, their application in

image generation and especially in the multitemporal case is

quite challenging due to their quadratic dependence on the in-

put size (i.e. number of pixels). We propose a novel method
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for cloud removal from multitemporal satellite images based on

transformer networks (Vaswani et al., 2017) that use the axial

attention mechanism. Axial attention (Ho et al., 2019) signific-

antly improves temporal and parameter efficiency by applying

attention independently on each tensor axis, without sacrificing

the model’s receptive field.

2. RELATED WORK

Cloud removal methods can be divided into two main categor-

ies, based on whether they use context from the temporal evol-

ution of the pixel values, like ours, or they attempt to replace

the cloudy part with meaningful content in a single image.

Single image cloud removal methods Cloud-GAN (Singh

and Komodakis, 2018) is a generative adversarial network

which uses two generator and two discriminator networks. By

employing a cycle consistency loss, the generator is restrained

to map the input domain to target and then back to the input

domain producing an output that is as close as possible to the

original input. This method does not require a paired dataset

with cloudy and cloud-free images of the same region nor any

extra sources such as SAR data.

SpA-GAN (Pan, 2020) utilizes a Generator called spatial attent-

ive network (SPANet) and a Discriminator which is a standard

convolutional neural network. The generator employs a spatial

attention mechanism with a local-to-global perspective to de-

tect cloudy regions and better capture the relative context as to

produce results with higher fidelity.

SACTNet (Liu and Hu, 2021) consists of two networks, first a

transformer-based network with a content extractor to get con-

text from the ground-truth and the cloudy image, a correlation

embedding and a soft attention module to synthesize texture

elements. Second, a backbone generative adversarial network

that utilizes a spatial attention mechanism in a recurrent style in

order to obtain spatial information for the regions affected by

clouds. This method gives state-of-the-art results in the RICE

dataset (Lin et al., 2012) for thin and thick cloud removal tasks.
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Figure 1. Proposed architecture.

Multi-temporal cloud removal methods The work introdu-

cing the SEN12MS-CR-TS multi-modal multi-temporal data-

set (Skakun et al., 2022), proposes also two multi-temporal

cloud removal methods. The first, is based on a 3D Convo-

lution Neural Network that considers time-series of Sentinel-1

(SAR) and Sentinel-2 (optical) data to produce a single cloud-

free image. The second is a sequence-to-sequence method, with

a 3D Encoder-Decoder architecture in a U-Net style, that takes

as input time-series of Sentinel-1 images and produces the cor-

responding time-series of Sentinel-2 images.

In (Sebastianelli et al., 2020) a conditional Generative Ad-

versarial Network (cGAN) and a Convolutional Long Short-

Term Memory (convLSTM) are employed to extract spatio-

temporal features from multitemporal Sentinel-1 (SAR) and

Sentinel-2 (optical) data respectively. Finally, the extracted fea-

tures are fused by a U-shaped convolutional neural network to

predict the final output.

In this work, instead, we propose a method employing trans-

former networks for reconstructing a cloud-free target image

considering only a small number of previously acquired optical

images of the same region.

Video inpainting Video inpainting is a closely related com-

puter vision task. (Chang et al., 2019) propose the Learnable

Gated Temporal Shift Module (LGTSM) which handles masked

videos with 2D convolutions. This method models the spatio-

temporal features, processing context from a variable number

of temporal neighbors.

In (Liu et al., 2021) transformer networks are employed for

video inpainting via fine-grained feature fusion. Two task-

specific modules are introduced which are used in tokeniza-

tion and de-tokenization before and after Transformer layers,

enabling sub-patch level information interaction for addressing

blurring in masked regions caused by patch splitting. In our

work, by using axial attention, we avoid the problems related to

patch splitting based vision transformer networks.

3. METHOD

We aim at producing a cloud-free version of a target image IT
given a stack of cloud-affected images I1:T for a certain tem-

poral horizon T . Our method is based on the use of trans-

former networks (Vaswani et al., 2017) which are powerful

learning based estimators. Transformer networks are autore-

gressive models, i.e. each sequence element they produce, apart

from the input, is also conditioned on all previously generated

outputs.

Considering that both the number of parameters and their com-

putational complexity depends quadratically on the number of

sequence elements, for images, where sequences of pixels are

considered, transformer networks can have prohibitively large

model sizes. To address this issue, several solutions have been

proposed ((Han et al., 2020) provides a survey). In this work,

we consider Axial Transformers whose basic building block is

axial attention (Ho et al., 2019). An axial attention block per-

forms self-attention over a single axis (here columns and rows

of an image), mixing information along that axis while keep-

ing it independent along the other axes. This helps to reduce

the model complexity to O(n
√
n), where n is the total number

of pixels, providing O(
√
n) savings. Models employing axial

attention can still capture global receptive field by combining

multiple axis attention blocks spanning different axes. The res-

ulting autoregressive network models a distribution p(xi,j) over

a pixel x at position (i, j) by processing all the past context

from xi,<j and x<i following the raster scan order. Each axial

attention block is composed of a self-attention block passing

through a feed forward block consisting of a layer normal-

ization and a two layers network.To prevent the model from

considering ”future” outputs during training, these outputs are

masked out, using a masked axial attention block variant.

A full axial-transformer architecture is composed of an encoder,

capturing context from individual channels or images, an outer

decoder capturing context of entire rows, and an inner decoder

considering context within a single row. Specifically, the en-

coder consists of unmasked row and column attention layers

and makes each pixel xi, j depend on all the previous channels

or images. The output of the encoder is used as context to con-

dition the decoder. In this work, we follow the conditioning

approach proposed in (Kumar et al., 2021).

Regarding the decoder, its outer part consists of unmasked row

and masked column attention layers and makes each pixel xi,j

depend on all the previous rows x<i. The output context is

then shifted down by a single row in order to ensure that it

contains information only from previous rows and not from its

own. This context is then summed with the encoder context and

used to condition the inner decoder. The inner decoder consists



of masked row attention layers, capturing information from the

previous pixels of the same row xi,<j . The inner decoder em-

beddings are shifted right by one pixel, ensuring that the current

pixel is excluded from the receptive field. The new output con-

text is then passed through a final dense layer to produce logits

of shape H×W×V , where V corresponds to the range of pixel

values at each location.

Outputs of autoregressive models are produced by sampling

a single pixel at a time, which is a particularly computation-

ally expensive process as the whole network needs to be re-

evaluated each time. Axial transformers support semi-parallel

autoregressive sampling where the encoder runs once per im-

age, the outer decoder once per-row and the inner decoder once

per-pixel. The context from the encoder and outer decoder con-

ditions the inner decoder, which generates a row, pixel-by-pixel.

After generating all pixels in a row, the outer decoder runs to

recompute context and condition the inner decoder, to generate

the next row. Finally, after all the pixels of an image are gen-

erated, the encoder recomputes context in order to generate the

next image.

3.1 Proposed architecture

The complete architecture of the proposed CloudTran method

is presented in Figure 1. While the efficiency gains achieved

by using axial attention blocks are substantial, it is still chal-

lenging to build encoder-decoder models for images of in-

creased resolution (e.g. 256×256) as, besides increased model

size, sampling becomes excessively slow for generating im-

ages with higher resolutions. To address this issue, following

similar ideas from (Menick and Kalchbrenner, 2019) and (Ku-

mar et al., 2021), we split the cloud removal problem into two

sub-problems, each addressed by a specialized network. The

first network (core) is an encoder-decoder model that performs

cloud removal to a downsampled version of the original inputs,

while the second one (upsampler) brings the output of the core

network to the original resolution.

Specifically, the core network takes as input a stack of down-

sampled T image patches I
↓
t and produces a cloud-free version

of the downsampled target image I
↓

T . The encoder, comprised

of four layers of row and column attention, processes the in-

put tensor H↓ ∈ R
H↓×W↓×B×T made of T image patches

corresponding to consecutive dates, with H↓ × W ↓ the size

of the downsampled images and B the number of bands con-

sidered. In each patch It, cloudy regions are masked out using

image masks M↓. The encoder produces separate contexts ct

for each date which are subsequently aggregated, producing a

single context c̄ for each band. The aggregated context c̄ is then

used for conditioning the layers of the decoder whose output

captures the per-pixel distribution over the admissible values of

the downsampled cloud-free target image, conditioned on the

input tensor H↓, namely:

pc(I
↓

T |H
↓) =

∏

i

∏

j

pc

(

I
↓

T (i, j)|I
↓

T (<i, ·), I↓T (i, <j),H↓
)

.

The context is considered independently for each band b ∈ B

of the input tensor. The model distinguishes between contexts

corresponding to different bands via positional encoding. This

increases the flexibility of the model with respect to the number

of bands of the input tensor.

As proposed in (Kumar et al., 2021), to increase stability of the

training process we also model the per-pixel distribution from

the encoder output p̃c(I
↓

T |H↓), by adding a dense and a softmax

layer after the encoder’s aggregation layer.

The upsampler network is a parallel model, i.e. all outputs are

produced at once, given the input context. It is composed of

three layers of row and column attention, and captures the per-

pixel distribution of the cloud-free target image given the input

tensor and the bilinearly upsampled cloud-free image, namely

ps(IT |Ĩ↑T ,H).

Each network is trained independently by minimizing the neg-

ative log-likelihood of the data, considering the cloud-free ver-

sion of the last image IGT
T , which in the case of the core net-

work, is also given as input to the decoder during training. Dur-

ing inference, to generate the low-resolution cloud-free image

Ĩ
↓

T , the context from the input data tensor is computed by the

encoder and each pixel is sampled from decoder in an autore-

gressive fashion. We make use of the semi-parallel sampling

property of axial transformers to speed up the process, which

avoids reevaluating the entire network for each pixel of the gen-

erated image. As the model considers the context correspond-

ing to each band separately, sampling of each band is performed

independently and the target image is obtained by stacking to-

gether the sampled bands. The image generated from the core

network is then passed to the upsampler to produce the target

cloud-free image ĨT .

4. EXPERIMENTAL EVALUATION

4.1 Datasets

In-house Multi-temporal Dataset We consider an in-house

dataset consisting of fifty-six (56) Level-2A (L2A) products

of Sentinel-2 satellite images, corresponding to different Days

of Year (DOYs) in the period 2018-2019. Level-2A products

provide Bottom of Atmosphere (BOA) reflectance images de-

rived from the associated Level-1C products. Each product is

a 100 × 100 km2 tile. We consider the bands B02, B03, B04

with 10m spatial resolution and create multiband RGB tiles for

each of the 56 different dates, from which we cut 512 × 512
patches producing 441 multi-temporal patches of dimensions

512 × 512 × 56 in total. We compute cloud masks by con-

sidering all pixels with non-zero value in the CLD band that

corresponds to each L2A product. We select a 5 × 5 window

of 512 × 512 patches from every corner of the tile for test-

ing/validation. This translates to a total of 100 regions (∼ 20%)

used for testing/validation, while the training set consists of the

remaining 341 regions (∼ 80%).

SEN12MS-CR-TS We also consider the public SEN12MS-

CR-TS dataset (Ebel et al., 2022) to further validate our

proposed architecture. This multi-modal and multi-temporal

dataset contains radar and optical observations collected via

Sentinel-1 and Sentinel-2 satellites for 53 ROIs (Regions Of

Interest) worldwide1, with 30 time samples provided for each

patch-wise 256×256 observation. In this work we consider the

bands B02, B03, B04 of Sentinel-2 images (Level 1C top-of-

atmosphere reflectance products) to create 12293 multitemporal

RGB patches in total. We follow the train/test splits indicated

in (Ebel et al., 2022), resulting in 1031 testing/validation and

11262 training patches.

1 although only 43 were available in the published dataset at the time we

accessed it



We produce cloud masks using the s2cloudless cloud detector

(Skakun et al., 2022), which takes as input the S2 image with

its original 13 bands and returns the binary raster cloud mask,

where 0 indicates pixels classified as clear-sky while 1 indic-

ates pixels classified as clouds. Before running the s2cloudless

detector, the raw reflectance values are divided with the quanti-

fication value 10000 for every band.

4.2 Implementation

We train the proposed CloudTran model on a Workstation

equipped with two NVIDIA Quadro RTX 6000 GPUs with

24GB of VRAM each. Unless explicitly stated otherwise,

each model of the core transformer network has been trained

for 15000 iterations with a batch size equal to one, using the

RMSProp algorithm with a learning rate equal to 3 · 10−4, and

by taking the exponential moving average of the parameters

during training with a decay value equal to 0.999. The same

optimization parameters were used also for training the spatial

upsampler. The relative weight between the encoder and the

decoder log-likelihood losses of the core network is taken equal

to 0.99.

The input tensor H is formed using patches corresponding to T

consecutive dates while considering the last one IT as the target

image. For training and validation, we consider T images cap-

tured during the summer period (DOY 55 for our dataset and

15 for SEN12MS-CR-TS), to maximize the number of patches

having a cloud-free target image, i.e. with a cloud coverage

below 5%. For our dataset, the input patches are randomly

cropped to 256 × 256 for training and centrally cropped to the

same dimension for evaluation. The SEN12MS-CR-TS data-

set contains patches of 256 × 256 and we define the input size

for training and evaluation as 224 × 224. For testing, we con-

sider from within the testing/validation split, dates in the spring

period, and require that the target image has a cloud coverage

above 5%.

Regarding the cloud masks, for each dataset we build a diction-

ary of masks with moderate coverage (typically 5 − 30% cov-

erage) M, from all the patches of the dataset split considered.

To increase the variety of masks that the models encounter dur-

ing training, after masking out the clouds in each patch, masks

from M are applied randomly to each patch of the input tensor

H, before these are fed to the network. For validation, each

patch is masked using the corresponding cloud masks, and a

random mask from the dictionary is applied to the target image.

The inputs of the core model are first downsampled to 64× 64.

During training, the clean target image IT is also provided as

input to the decoder. For training the spatial upsampler, the tar-

get image is first downsampled and then bilinearly upsampled

back to the original resolution, and provided to the model con-

catenated with the input tensor H. Supervision to both mod-

els is provided via the clean target image. During inference,

the input patches, masked with the corresponding cloud masks,

are provided to the core model. The low-resolution cloud-free

image is produced by sampling the model in an autoregressive

fashion. This image is then provided to the spatial upsampler

after bilinear upsampling, together with the input tensor H. The

pixel values of the cloud-free image are taken as the maximum

likelihood estimates of the output distribution.

4.3 Ablation

We perform several ablations on our dataset both for the core

and the upsampler models to assess the contribution of different
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Figure 2. Validation loss in relation to number of DOYs

provided as input and maximum cloud coverage considered

during training.

parameter choices on the quality of the reconstructed patches.

Ablation results are compared with respect to the validation

loss of the models, which is measured in bits per dimension

(bits/dim) (Papamakarios et al., 2017).

First, we study the effectiveness of the context aggregation

method. The results are presented in Table 1, where Sum cor-

responds to the depth-wise addition of the per-DOY contexts,

Attention corresponds to the use of an attention block operating

in the third axis of the context tensor, and Convolution corres-

ponds to the use of 1 × 1 convolution on the context tensor. It

is evident that simple tensor reduction is not able to produce a

single context summarizing sufficiently well the whole tensor.

Learnable blocks on the other hand perform much better, re-

ducing the validation loss almost by an order of magnitude.

Between attention and convolution, the latter performs slightly

better, while employing fewer parameters. Hence, unless oth-

erwise stated, for the experiments that follow we consider the

1× 1 convolution as the preferred context aggregation mechan-

ism.

Context Aggregation Validation Loss
Sum 1.273

Attention 0.239
Convolution 0.206

Table 1. Ablation on context aggregation method.

We also consider the impact of the model size on the final result.

In particular, Table 2 reports the validation loss for core mod-

els of size 64, 128, 256, and 512. The model size, defines the

common size used for the input embedding, as well as the size

of the attention block and the feed forward block. Although,

increasing the core model size from 64 to 128 improves the re-

construction quality, further increasing the model size to 256
and 512, leads to significant degradation. We justify this due to

the large number of model parameters and the relatively small

size of the dataset employed.

Model Size Params Validation Loss
64 0.9M 0.224

128 3.2M 0.206
256 12.0M 3.44
512 46.4M 5.54

Table 2. Ablation on core model size.

Table 3, reports the validation loss for spatial upsampler models
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Figure 3. Random samples from validation set of our dataset (top three rows) and SEN12MS-CR-TS (bottom three rows). (Best

viewed on screen zoomed-in)

of increasing size. We can see here that increasing the model

size leads to higher reconstruction quality. Nevertheless, as this

model also operates to much larger inputs, and considering that

the complexity is O(n
√
n), increasing the model size leads to

significant increase in memory footprint. Due to this, 512 is the

largest model size we could afford.

Model Size Params Validation Loss
64 0.5M 0.266

128 1.3M 0.251
256 3.9M 0.246
512 12.7M 0.241

Table 3. Ablation on upsampler model size.

We also consider the effect of the number of DOYs T form-

ing the input tensor and the percentage of cloud coverage con-

sidered of the masks employed during training. The respect-

ive results are shown in Figure 2. We observe that increasing

the number of DOYs from 3 to 5 leads to reduced validation

loss. As the temporal horizon increases, the validation loss be-

gins to be negatively affected. This can be attributed to changes

happening in the captured area. Regarding cloud coverage, we

observe that when masks with higher coverage are used dur-

ing training, the validation loss decreases. This is reasonable as

the model becomes more efficient in reconstructing larger areas

affected by clouds. In any case, the differences in validation

loss are small, showing that the proposed method is quite ro-

bust both with respect to the number of DOYs and the amount

of mask cloud coverage employed during training.

4.4 Quantitative and qualitative results

Based on the ablation study, we consider in this section a core

model of size 128 reconstructing the reduced resolution target

image (64× 64), followed by an upsampler model of size 512,

that together produce the cloud-less target image in full resolu-

tion. We perform quantitative evaluation considering the Mean

Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity (SSIM) metrics with respect to the valida-

tion set of each dataset (Wang et al., 2004).
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Figure 4. Random samples from test set of our dataset (top three rows) and SEN12MS-CR-TS (bottom three rows). (Best viewed on

screen zoomed-in)

Tables 4 and 5 compare the performance of the proposed

CloudTran method with different baselines for the low and

full resolution outputs, respectively. In particular, we con-

sider a suitably adapted version of the powerful video inpaint-

ing method of (Chang et al., 2019), as well as a standard gap-

filling method based on rolling median filtering. Table 4, con-

siders only the core model, while Table 5 report the results us-

ing the entire architecture. We also report the performance of

the method proposed by (Pan, 2020) based on SpA GAN, as an

indicative case of single-image cloud removal methods. SpA

GAN does not use multiple dates, this translates to high MSE

Method PSNR(↑) SSIM(↑) MSE(↓) # Params
SpA GAN (Pan, 2020) 33.03 0.9211 53.84 2.98M
Median 32.89 0.8540 55.720 NA
FFVI (Chang et al., 2019) 44.61 0.9796 2.977 35.9M
CloudTran Parallel (ours) 50.58 0.9891 3.098

3.2M
CloudTran (ours) 54.09 0.9943 0.970

Table 4. Comparison with cloud removal baselines for 64× 64
outputs.

values. Our models outperform the baselines with a significant

margin both for reduced and full resolution results, while using

fewer trainable parameters than the second best FFVI.

Both tables also report the results obtained using solely the en-

coder output as CloudTran Parallel. Being a parallel model, its

sampling is much more efficient, but the quality of the produced

is inferior as they are affected more by artifacts. Nevertheless,

they still perform better than other baselines.

We also report our results on the SEN12MS-CR-TS dataset.

Our models have been trained on the SEN12MS-CR-TS data-

Method PSNR(↑) SSIM(↑) MSE(↓) # Params
SpA GAN (Pan, 2020) 30.88 0.8916 78.98 2.98M
Median 32.46 0.8741 58.912 NA
FFVI (Chang et al., 2019) 48.31 0.9922 1.373 35.9M
CloudTran Parallel (ours) 50.26 0.9935 2.024

12.7M
CloudTran (ours) 51.34 0.9950 1.202

Table 5. Comparison with cloud removal baselines for

256× 256 outputs.



set for 100000 iterations. On the validation set, our full model

achieves a PSNR of 50.00 dB, an SSIM value of 0.9931 and

MSE equal to 6.426. These values are not directly compar-

able to the ones reported in (Ebel et al., 2022) for numerous

reasons. Just to mention some of them, (Ebel et al., 2022) con-

sider also data from Sentinel 1, processing is performed in a

sequence to sequence fashion, and also validation is defined dif-

ferently. Nevertheless, the values reported here on SEN12MS-

CR-TS dataset are significantly improved with respect to the

ones reported in (Ebel et al., 2022).

Figure 3 shows randomly chosen cloud removal results ob-

tained by our models on the validation set of the two datasets

considered. The first column shows the downsampled ground

truth target image, the second shows the target image after ap-

plying the cloud mask, and the third one shows the cloud-free

image produced by the core model. The next two columns show

the output of the upsampler and the ground truth image in the

original resolution. The last column shows for each pixel the

number of valid pixels (cloud-free) in the entire input tensor.

Figure 4 shows randomly chosen results from the test sets of

the two datasets considered. Here, the first two columns show

the results of Median filtering and FFVI, respectively. The third

and fourth columns show the results of the proposed CloudTran

model from the encoder and the decoder, respectively. The ori-

ginal unmasked image and the cloud coverage are shown in the

last two columns. We observe that the results of the proposed

method contain fewer artifacts and are more faithful to the cor-

responding inputs.

Figure 5. Failure cases (top row) and corresponidng cloud

coverage (bottom row).

Finally, Figure 5 presents some failure cases. Our analysis

suggests that these correspond to patches affected by severe

(> 50%) cloud coverage in all but 1 or 2 patches forming the in-

put tensor. Increasing the cloud coverage percentage used dur-

ing training, on the one hand, and the number of DOYs, on the

other, can alleviate these effects.

5. CONCLUSIONS

Our work introduces a cloud-removal architecture based on two

transformer-based models using axial-attention blocks for in-

creased efficiency. An encoder-decoder model is proposed for

producing low-resolution cloud-free images in an autoregress-

ive fashion, given a number of input patches where the cloudy

regions have been masked-out. An encoder-only parallel model

is proposed for upsampling the cloud-free image to the original

resolution. The proposed model is shown to perform signific-

antly better with respect to a number of strong baselines, across

an in-house and a large multitemporal sentinel-2 dataset.
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