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Abstract
We study interactive imitation learning, where a
learner interactively queries a demonstrating ex-
pert for action annotations, aiming to learn a pol-
icy that has performance competitive with the ex-
pert, using as few annotations as possible. We fo-
cus on the general agnostic setting where the ex-
pert demonstration policy may not be contained
in the policy class used by the learner. We pro-
pose a new oracle-efficient algorithm MFTPL-P
(abbreviation for Mixed Follow the Perturbed
Leader with Poisson perturbations) with prov-
able finite-sample guarantees, under the assump-
tion that the learner is given access to samples
from some “explorative” distribution over states.
Our guarantees hold for any policy class, which
is considerably broader than prior state of the
art. We further propose BOOTSTRAP-DAGGER,
a more practical variant that does not require ad-
ditional sample access. Empirically, MFTPL-P
and BOOTSTRAP-DAGGER notably surpass on-
line and offline imitation learning baselines in
continuous control tasks.

1. Introduction
Imitation learning (IL) is a learning paradigm for training
sequential decision making agents using expert demonstra-
tions (Bagnell, 2015). It seeks to learn a policy whose
performance is on par with the expert, with as few expert
demonstrations as possible. Compared to reinforcement
learning which potentially requires intricate reward engi-
neering, imitation learning sidesteps this challenge, making
it apt for complex decision making problems (Osa et al.,
2018).

The format of expert demonstrations often comprises of
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(state, action) pairs, each representing the expert’s action
taken under respective state. At first sight, imitation learn-
ing seems similar to supervised learning, where one would
like to train a policy that maps states to actions recom-
mended by the expert. However, it is now well-known
that these two problems are different in nature (Pomerleau,
1988): compared to supervised learning, imitation learning
agents are faced with a new fundamental challenge of co-
variate shift: the state distribution the learner sees at the
test stage can be very different from that at the training
stage. To elaborate, upon deploying the trained policy, its
imperfection in mimicking the expert can result in com-
pounding error: the learner may make an initial mistake
and enter a state not covered by the distribution of expert
demonstrations, and takes another incorrect action due to
lack of training data coverage in this state. This may lead
to sequences of consecutive states that were unseen in the
expert demonstrations, ultimately resulting in poor perfor-
mance. Addressing such problem calls for better data col-
lection methods beyond naively collecting expert trajecto-
ries; as summarized by (Bojarski et al., 2016) in the con-
text of imitation learning for autonomous driving, “Train-
ing with data from only the human driver is not sufficient.
The network must learn how to recover from mistakes”.

To cope with the covariate shift challenge, the interactive
imitation learning paradigm has been proposed and used
in practice (Ross and Bagnell, 2010; Ross et al., 2011;
Ross and Bagnell, 2014; Sun et al., 2017; Pan et al., 2020;
Celemin et al., 2022). Instead of having only access to of-
fline expert trajectories, in interactive imitation learning,
the learner has the freedom to select states to ask for expert
annotations. This allows more targeted feedback and gives
the learning agent opportunities to learn to “recover from
mistakes”, and thus achieve better performance.

Recent years have seen many exciting developments on de-
signing provably efficient interactive imitation learning al-
gorithms, using new algorithmic approaches such as distri-
bution / moment matching (Ke et al., 2020; Swamy et al.,
2021) and online classification / regression (Rajaraman
et al., 2021; Sekhari et al., 2023). Most of these works
rely on some realizability assumption: they either assume
that the learner is given a policy class that contains the ex-
pert policy (Rajaraman et al., 2021; Sekhari et al., 2023;
Sun et al., 2017), or that the learner is given some function
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class that contains reward or value functions of the under-
lying environment MDP (Swamy et al., 2021; 2022; Sun
et al., 2019).

Although realizability assumptions are useful in driving the
development of theory and practical algorithms, misspeci-
fied model settings are common in practice (e.g. in au-
tonomous driving (Pan et al., 2020)). Thus, it is impor-
tant to design policy search-based imitation learning algo-
rithms that can work in general agnostic (i.e., nonrealiz-
able) settings. However, the fundamental computational
and statistical limits of imitation learning in the general ag-
nostic setting are not well-understood. An important line
of work (Ross et al., 2011; Ross and Bagnell, 2014; Sun
et al., 2017) tackles this question by establishing a gen-
eral reduction from agnostic interactive imitation learning
to no-regret online learning (Shalev-Shwartz et al., 2011)
(see Section 3 below for a recap). Its key intuition is that,
with access to a learner that can perform online prediction
by swiftly adapting to nonstationary data, one can use it
to find a policy that mostly agrees with the expert on its
own state visitation distribution. In other words, online
learning can be utilized to learn a policy that recovers from
its own mistakes. Utilizing this general reduction frame-
work, agnostic imitation learning algorithms with provable
computational and finite-sample statistical efficiency guar-
antees have been proposed (Cheng et al., 2019b;a; Li and
Zhang, 2022). In the discrete-action setting, the develop-
ment so far has been limited: state-of-the-art efficient al-
gorithms (Li and Zhang, 2022) rely on a strong technical
“small separator” assumption on the policy class, which is
only known to hold for a few policy classes (such as dis-
junctions and linear classes) (Syrgkanis et al., 2016; Dudı́k
et al., 2020). This motivates our main question: can we
design computationally and statistically efficient imitation
learning algorithms in the general agnostic setting for gen-
eral policy classes?

Our contributions are twofold:

• Theoretically, we design a provably efficient online
imitation learning algorithm that enjoys no-regret
guarantees for discrete action spaces for general pol-
icy classes. The no-regret property guarantees the
learning agent’s swift adaptation to data distributions
it encounters, ensuring competitiveness to the expert
policy (Ross et al., 2011). Specifically, our algorithm,
Mixed Follow the Perturbed Leader with Poisson Per-
turbations (abbrev. MFTPL-P), assumes sample ac-
cess to a distribution d0 that “covers” the state visita-
tion distributions of all policies in the policy class of
interest. Algorithmically, MFTPL-P can be viewed
as maintaining an ensemble of policies, each member
of which is trained using historical expert demonstra-
tion data combined with noisy perturbation examples

drawn from d0.

Inspired by recent analysis of efficient smoothed on-
line learning algorithms (Haghtalab et al., 2022a;
Block et al., 2022), we prove that MFTPL-P: (1)
has a sublinear regret guarantee, which can be eas-
ily converted into a guarantee of its output policy’s
suboptimality; (2) is computationally efficient, assum-
ing access to an offline learning oracle. Our com-
putational efficiency result relies on arguably much
weaker assumptions than previous state-of-the-art ef-
ficient learning algorithms, whose guarantees require
strong assumptions on the policy class (Li and Zhang,
2022) or convexity of loss function (Cheng and Boots,
2018; Cheng et al., 2019b;a; Sun et al., 2017).

• Empirically, we verify the utility of using sample-
based perturbations in MFTPL-P. Furthermore, we
evaluate MFTPL-P and show that it outperforms the
popular DAGGER and Behavior Cloning baselines
across several continuous control benchmarks. In-
spired by the ensemble nature of MFTPL-P, we also
propose and evaluate a practical approximation of it,
namely BOOTSTRAP-DAGGER, that avoids sample
access to d0 and achieves competitive performance.
We also investigate the expert demonstration data col-
lected by BOOTSTRAP-DAGGER and show that it
gathers pertinent expert demonstration data more ef-
ficiently than DAGGER.

2. Related Work
Imitation Learning with Interactive Expert. Existing
works in interactive imitation learning established a solid
foundation to tackle covariate shift, with the help of an in-
teractive demonstration expert. Early works reduced inter-
active imitation learning to offline learning (Ross and Bag-
nell, 2010; Daumé et al., 2009) and (Ross et al., 2011) pro-
posed a general reduction from interactive imitation learn-
ing to online learning. This major line of research (Ross
et al., 2011; Ross and Bagnell, 2014; Sun et al., 2017;
Cheng and Boots, 2018; Cheng et al., 2019a;b; Rajara-
man et al., 2021; Li and Zhang, 2022) provided provably
efficient online regret guarantees, which can be translated
to guarantees of learned policy’s competitiveness with ex-
pert policy. It has been shown in (Rajaraman et al., 2021)
that interactive imitation learning can be significantly more
sample efficient in favorable environments than its offline
counterpart. Recently, (Sekhari et al., 2023) reduced in-
teractive imitation learning to online regression, which as-
sumes that the expected value of expert annotation as a
function of state lies in a real-valued regressor class.

As discussed in the introduction section, most of these
works make some realizability assumptions. In the ab-
sence of such realizability assumption (i.e., the agnostic
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setting), existing guarantees require convexity of the loss
functions with respect to policy’s pre-specified parameters
(which may not hold for general policy classes) (Cheng
and Boots, 2018; Cheng et al., 2019b;a; Sun et al., 2017) or
are only applicable to a few special policy classes (Li and
Zhang, 2022).

Another line of work studies interactive imitation learning
with online expert intervention feedback (Zhang and Cho,
2016; Menda et al., 2017; 2019; Cui et al., 2019; Kelly
et al., 2019; Hoque et al., 2021; Spencer et al., 2022); here
it is assumed that the learner has access to an expert in
real time; the learner may cede control to the expert to re-
quest for demonstrations (machine-gated setting) or the ex-
pert can actively intervene (human-gated setting). Differ-
ent from our learning objective, these works have a focus
on ensuring training-time safety.

Imitation Learning without Interactive Expert. Given
only offline expert demonstrations, Behavior Cloning (BC)
naively reduced imitation learning to offline classifica-
tion (Ross and Bagnell, 2010; Syed and Schapire, 2010).
By further assuming the ability to interact with the environ-
ment, generative adversarial imitation learning (GAIL) (Ho
and Ermon, 2016) and following line of works (Sun et al.,
2019; Spencer et al., 2021) applied moment matching to
tackle covariate shift. (Chang et al., 2021) replaced the re-
quirement of environment access by combining model es-
timation and pessimism. DART (Laskey et al., 2017) ac-
cessed neighborhood states of the expert trajectories by in-
jecting noise during the expert’s demonstrations, achiev-
ing performance comparable to DAGGER. DRIL (Brantley
et al., 2019) trained an ensemble of policies using expert
demonstrations, then leveraged the variance among ensem-
ble predictions as a cost, which was optimized through re-
inforcement learning together with the classification loss
on expert set. These works are different from ours, in that
they do not assume access to an expert that can provide
interactive demonstrations in the training process. (Ke
et al., 2020; Swamy et al., 2021; 2022) formulates imita-
tion learning as a distribution matching problem, and fur-
ther reduce it to solving two-player zero-sum games, which
can be solved either interactively or offline, however their
guarantees only hold under realizability assumptions.

Concentrability and Smoothness. One key assumption
we make is that the learning agent has sample access of
some covering distribution, so that all policy’s visitation
distributions are “smooth” with respect to it (Assump-
tion 2). This allows us to design provably-efficient imi-
tation learning algorithms using techniques for smoothed
online learning (Haghtalab et al., 2022a; Block et al.,
2022). Our assumption is related to the boundedness of the
concentrability coefficient commonly used in offline rein-
forcement learning (Munos, 2007; Munos and Szepesvári,

2008; Chen and Jiang, 2019; Xie and Jiang, 2020; 2021),
which was first introduced by Munos (Munos, 2003). Con-
centrability in general holds for MDPs with “noisy” transi-
tions (i.e. nontrivial probability of transitioning to all po-
tential next states) but can also hold for deterministic tran-
sitions (Szepesvári and Munos, 2005). The concentrabil-
ity assumptions most related to ours are in (Xie and Jiang,
2020; Xie et al., 2022). However, note that our Assump-
tion 2 is solely with respect to distributions over states in-
stead of (state, action) pairs. After all, unlike standard of-
fline reinforcement learning, in IL, we neither seek to learn
the optimal value function nor assume access to a candidate
value function class.

3. Preliminaries
Basic notations. Denote by [N ] = {1, . . . , N}.
Given a set E , denote by ∆(E) the set of all proba-
bility distributions over it; when E is finite, elements
in ∆(E) can be represented by probability vectors in
R|E|:

{
(we)e∈E :

∑
e∈E we = 1, we ≥ 0,∀e ∈ E

}
. Given

a function f : E → R, denote by ‖f‖∞ := maxe∈E |f(e)|.

Markov decision process. We study imitation learning for
sequential decision making, where we model the environ-
ment as a Markov decision process (MDP). An episodic
MDPM is a tuple (S,A, ρ, P, C,H), where S is the state
space, A is the action space, ρ is the initial state distribu-
tion, P : S × A → ∆(S) is the transition probability dis-
tribution, C : S × A → ∆([0, 1]) is the cost distribution,
H ∈ N is the length of the time horizon. Without loss of
generality, we assume thatM is layered, in that S can be
partitioned to {St}Ht=1, where for every step t, s ∈ St and
action a ∈ A, P (· | s, a) is supported on St+1.

Agent-environment interaction and policy. An agent in-
teracts with MDP in one episode by first observing initial
state s1 ∼ ρ, and for every step t = 1, . . . ,H , takes an
action at, receives cost ct ∼ C(· | s, a), and transitions
to next state st+1 ∼ P(· | st, at). A stationary (history-
independent) policy π : S → ∆(A) maps a state to a dis-
tribution over actions, which can be used by the agent to
take actions, i.e. at ∼ π(· | st) for all t.

Value Functions. Given policy π, for every t ∈ [H] and
s ∈ St, denote by V tπ(s) = E

[∑H
t′=t ct′ | st = s, π

]
and

Qtπ(s, a) = E
[∑H

t′=t ct′ | (st, at) = (s, a), π
]

the state-
value function and action-value function of π, respectively.
When it is clear from context, we will abbreviate V tπ(s)
and Qtπ(s, a) as Vπ(s) and Qπ(s, a), respectively. Denote
by J(π) = Es1∼ρ

[
Vπ(s1)

]
the expected cost of policy π.

Given policy π, denote by dMπ (·) = 1
H

∑H
t=1 P(st = ·) the

state visitation distribution of π underM; when it is clear
from context, we will abbreviate dMπ as dπ .
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To help the learner make decisions, the learner is given
a policy class B, which is a structured set of deter-
ministic policies π : S → A. Denote by ΠB ={
πw(a | s) :=

∑
h∈B whI(a = h(s)) : w ∈ ∆(B)

}
the

mixed policy class induced by B. Denote by πexp the
expert’s policy. The learning setting is said to be realizable
if it is known apriori that πexp ∈ B; otherwise, the learning
setting is said to be agnostic. We will use S, A, B to
denote |S|, |A|, and |B| respectively.∗

Definition 1. A (MDP, expert policy) pair (M, πexp) is
said to be µ-recoverable with respect to loss `, if for all s ∈
S and a ∈ A, Qπexp(s, a)− Vπexp(s) ≤ µ · `(a, πexp(s)).

Two notable examples are:

• `(a, a′) = I(a 6= a′) is the 0-1 loss. Then µ-
recoverability implies that for all a 6= πexp(s),
Qπexp(s, a) − Vπexp(s) ≤ µ, which is suitable for
discrete-action settings (Ross et al., 2011).

• `(a, a′) = ‖a− a′‖ is the absolute loss. Then a suffi-
cient condition for µ-recoverability is thatQπexp(s, a)
is µ-Lipschitz in awith respect to ‖·‖. This is suitable
for continuous-action settings (Pan et al., 2020).

In prior works (Ross and Bagnell, 2010; Rajaraman et al.,
2021), it has been demonstrated that for cases where
(M,πexp) is µ-recoverable with µ � H , i.e., the expert
can recover from mistakes with little extra cost, interactive
imitation learning can achieve a much lower sample com-
plexity than offline imitation learning.

Reduction from Interactive Imitation Learning to On-
line Learning. Ross et al. (2011) proposes a general reduc-
tion from interactive imitation learning to no-regret online
learning, which we will frequently refer to as the online
imitation learning framework throughout the paper. As our
algorithm design and performance guarantees will be under
this framework, we briefly recap it below. Its key insight
is to simulate an N -round online learning game between
the learner and the environment: at round n, the learner
chooses a policy πn, and the environment responds with
loss function Fn. The learner then incurs a loss of Fn(πn),
and observes as feedback a sample-based approximation
of Fn(·). Here, Fn(π) := Es∼dπn ,a∼π(·|s)`(a, π

exp(s)) is
carefully chosen as the expected loss of policy π with re-
spect to the expert policy πexp under the state visitation
distribution of πn. Fn(·) are naturally approximated by the
average loss on supervised learning examples (s, πE(s)),
whose feature and label parts are sampled from dπn and
queried from expert πE , respectively. Ross et al. (2011)
shows that, if {πn}Nn=1 has a low online regret, a policy re-
∗Although we assume S and B to be finite, as we will see, our

sample complexity results only scale with lnS and lnB.

turned uniformly at random from {πn}Nn=1 has an expected
cost competitive with the expert. Formally:

Theorem 2 (Ross et al. (2011)). Suppose (M, πexp) is µ-
recoverable with respect to `. Define the regret of the se-
quence of policies {πn}Nn=1 w.r.t. policy class B as:

Reg(N) :=
N∑
n=1

Fn(πn)−min
π∈B

N∑
n=1

Fn(π). (1)

Then π̂, which is by choosing a policy uniformly at random
from {πn}Nn=1 and adhering to it satisfies:

J(π̂)−J(πexp) ≤ µH

min
π∈B

1

N

N∑
n=1

Fn(π) +
Reg(N)

N

 .

We will denote EstGap := µH Reg(N)
N , which can be

viewed as the “estimation gap” that bounds the perfor-
mance gap between π̂ and the best policy in hindsight.
Meanwhile, minπ∈B

1
N

∑N
n=1 Fn(π) measures the expres-

siveness of policy class B with respect to the expert policy
πexp: it is smaller with a larger B. In the special case that
πexp ∈ B (the realizable setting) and πexp is deterministic,
minπ∈B

1
N

∑N
n=1 Fn(π) = 0. For completeness, we pro-

vide Theorem 2’s proof in Appendix A and incorporate dis-
cussions on limitations of the reduction-based framework.

4. Oracle-efficient Imitation Learning:
Algorithm and Analysis for General Policy
Classes

In this section, we present an interactive imitation learning
algorithm for discrete action space settings with provable
computational and statistical efficiency guarantees for gen-
eral policy classes. It is based on the aforementioned online
IL framework and aims to guarantee sublinear regret under
the 0-1 loss (`(a, a′) = I(a 6= a′)) in the general agnostic
setting.

A line of works design practical interactive learning al-
gorithms by assuming access to offline learning ora-
cles (Beygelzimer et al., 2010; Dann et al., 2018; Simchi-
Levi and Xu, 2022; Dudı́k et al., 2020; Syrgkanis et al.,
2016; Rakhlin and Sridharan, 2016). Following this, in
designing computationally efficient IL algorithms, we also
assume that our learner has access to an offline learning
oracle that can output a policy that minimizes 0-1 classifi-
cation loss given a input dataset of (state, action) pairs.

Assumption 1 (Offline learning oracle). There is an of-
fline classification oracle O for policy class B; specif-
ically, i.e. given any input multiset of classifica-
tion examples D =

{
(s, a)

}
, O returns O(D) =

argminh∈B
∑

(s,a)∈D I(h(s) 6= a).
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We argue that this is a reasonable assumption – without a
offline learning oracle, one may not even efficiently solve
supervised learning, a special case of imitation learning.

Note that without further assumptions, oracle efficient on-
line algorithms are impossible (Hazan and Koren, 2016).
To allow the design of efficient online algorithms, we also
make an assumption that the learner has sampling access to
an explorative state distribution that can “cover” the state
visitation distribution of any policy in the policy class to
learn from:

Assumption 2 (Sampling access to covering distribution).
The learner has sampling access to a covering distribution
d0 ∈ ∆(S), such that there exists σ ≤ 1, for any π ∈ ΠB,

dπ is σ-smooth with respect to d0; formally,
∥∥∥dπd0 ∥∥∥∞ ≤ 1

σ .

Assumption 2 is closely related to the smoothed online
learning problem setup (Haghtalab et al., 2022a; Block
et al., 2022): under this assumption, in the N -round on-
line learning game induced in the online imitation learning
framework, dπn , the distribution that induces the loss func-
tion Fn at round n, is σ-smooth with respect to covering
distribution d0 for all n ∈ [N ]. The larger σ is, the less
variability dπn ’s can have, indicating that the underlying
online learning problem may be more stationary and easier
to learn. The special case d0 = dπE has also been stud-
ied in Spencer et al. (2021), although they do not provide a
finite-sample analysis.

Challenges in applying existing approaches. Based on
the connection between imitation learning and no-regret
online learning mentioned in Section 3, it may be tempting
to directly apply existing oracle-efficient smoothed online
learning algorithms (Haghtalab et al., 2022a; Block et al.,
2022) and establish regret guarantees. However, several
fundamental challenges still remain. First and most funda-
mentally, existing smoothed online learning formulations
assume that the sampling distribution at round n is cho-
sen before the learner commits to its decision πn (Haghta-
lab et al., 2022b;a; Block et al., 2022). Unfortunately, this
assumption does not hold in the online imitation laerning
framework – specifically, dπn can depend on πn. Second,
at each round of online imitation learning, the learner may
collect and learn from a batch of examples, while (Hagh-
talab et al., 2022a; Block et al., 2022) only addresses the
setting when the batch size is 1. Lastly, we consider gen-
eral action set sizeA, meaning the learner needs to perform
online multiclass classification, while (Haghtalab et al.,
2022a; Block et al., 2022) only address binary classifica-
tion and regression settings.

We address these challenges by proposing the Mixed Fol-
low the Perturbed Leader with Poission perturbations algo-
rithm (MFTPL-P, Algorithm 1). Specifically, we address
the first challenge by making the following key observa-

tion: even though in the online IL framework, the sam-
pling distribution at round n can now directly depend on
πn, as long as the sequence of policies {πn} has a de-
terministic regret guarantee in the original smoothed on-
line learning problem, the same regret guarantee will carry
over to the new online imitation learning problem. Such
deterministic regret guarantee property, to the best of our
knowledge, is not known to hold for randomized online
learning algorithms such as Follow the Perturbed Leader
(FTPL) (Kalai and Vempala, 2005), but holds for determin-
istic online learning algorithms such as an in-expectation
version of FTPL (Abernethy et al., 2014) or Follow the
Regularized Leader (FTRL) (Shalev-Shwartz et al., 2011).

Using this observation, MFTPL-P aims to approximate an
in-expectation of FTPL to guarantee a sublinear regret. It
follows the online IL framework: at round n, in the data
collection step (line 8) , MFTPL-P rolls out the currently
learned policy πn in the MDP multiple times to sample K
states from dπn . It then requests expert’s demonstrations
on them, obtaining a dataset Dn of (state, action) pairs. In
the policy update step (line 4 to line 7), MFTPL-P calls the
TRAIN-BASE function E times on the accumulated dataset
D, to train a new policy πn+1, which is an average of E
base policies

{
πn+1,e

}E
e=1

. Each πn+1,e can be seen as a
freshly-at-random output of the FTPL algorithm with Pois-
son sample-based perturbations (Haghtalab et al., 2022a):
first drawing a Poisson random variable X representing
perturbation sample size, then drawing Q, a set of X iid
examples from covering distribution d0 with uniform-at-
random labels from A; finally calling the offline oracle O
on the perturbed dataset D ∪ Q. It can now be seen that
πn+1 approximates the output of an in-expectation ver-
sion of FTPL: a larger E yields a better approximation,
which ensures high-probability regret guarantees. Finally,
MFTPL-P returns a policy π̂ uniformly at random from
the historical policies {πn}.

Algorithmically, MFTPL-P can be viewed as maintaining
an ensemble of E policies in an online fashion and use it to
perform strategic collection of expert demonstration data.
For this reason, we will refer to E as the ensemble size
parameter. Similar algorithmic approaches have been pro-
posed in imitation learning with expert intervention feed-
back (Menda et al., 2019); however, as discussed in Sec-
tion 2, these works focus on ensuring safety in training and
do not provide finite-sample analysis.

We show the following theorem regarding the regret guar-
antee of MFTPL-P; we defer its full version (Theorem 22),
along with proofs to Appendix B.

Theorem 3. For any δ ∈ (0, 1], for large enough N ,
MFTPL-P with appropriate setting of its parameters E, λ
outputs {πn}Nn=1 that satisfies that with probability at least
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Algorithm 1 MFTPL-P

1: Input: MDP M, expert πexp, policy class B, oracle
O, covering distribution d0, sample size per round K,
ensemble size E, perturbation budget λ.

2: Initialize D = ∅.
3: for n = 1, 2, . . . , N do
4: for e = 1, 2, . . . , E do
5: πn,e ← TRAIN-BASE(D, d0, λ)
6: end for
7: Set πn(a | s) := 1

E

∑E
e=1 I(πn,e(s) = a).

8: Dn =
{

(sn,k, π
exp(sn,k))

}K
k=1
← sample K states

i.i.d. from dπn by rolling out πn in M, and query
expert πexp on these states.

9: Aggregate datasets D ← D ∪Dn.
10: end for
11: Return π̂ ← AGGREGATE-POLICIES(

{
πn,e

}N+1,E

n=1,e=1
)

12: function TRAIN-BASE (D, d0, λ):
13: Sample X ∼ Poi(λ)
14: Sample Q ← draw i.i.d. perturbation samples
{(s̃n,x, ãn,x)}Xx=1 from D0 = d0 ⊗Unif(A).

15: Return h← O(D ∪Q).
16: function AGGREGATE-POLICIES (

{
πn,e

}N+1,E

n=1,e=1
):

17: Sample n̂ ∼ Unif([N ])

18: Return πn̂(a | s) := 1
E

∑E
e=1 I(πn̂,e(s) = a).

1− δ, Reg(N) is at most

Õ

(
√
N

(
A(lnB)2

σK2

) 1
4

+
√
N

(
A lnB

σ

) 1
4

+

√
N ln

1

δ

)
,

where we recall that B denotes the size of the base policy
class B.

Specialized to A = 2 and K = 1, this result is consistent
with Haghtalab et al. (2022a) in the regret bound is dom-

inated by
√
N
(

(lnB)2

σ

) 1
4

; we remark again though, that
our regret analysis needs to get around the three additional
challenges mentioned above.

In view of Theorem 2, Theorem 3 translates to the follow-
ing result on the sample complexity of expert demonstra-
tions and the number of calls to the classification oracle,
for EstGap = µHReg(N)

N to be at most ε:

Corollary 4. For any small enough ε > 0, MFTPL-P,
by setting its parameters as in Theorem 3 and number of

rounds N = Õ

(
µ2H2
√
A ln(B)

ε2
√
σ

)
and batch size K =

√
lnB, guarantees that µHReg(N)

N ≤ ε with high proba-

bility, using Õ
(
µ2H2

√
A lnB

ε2
√
σ

)
expert demonstrations, and

Õ
(
µ4H4A2(lnB)2

ε4σ

)
calls to O.

In practice, the batch size K may be considered as part of
problem specification and chosen ahead of time; motivated
by this, we provide a version of this corollary with general
K, Corollary 23, in Appendix B.

Table 1 compares MFTPL-P with (Li and Zhang, 2022)
and Behavior Cloning in terms of the number of expert
demonstrations for EstGap ≤ ε, with a focus on compar-
ing their dependences on µ, H and ε. Both MFTPL-P
and (Li and Zhang, 2022) have a coefficient of µ2H2,
much smaller than H4 for Behavior Cloning, while (Li and
Zhang, 2022) requires that the policy class B has a small
separator set (Syrgkanis et al., 2016; Dudı́k et al., 2020; Li
and Zhang, 2022), which is only known to hold for a few
B’s.

Table 1: Number of expert demonstrations C(ε) for
EstGap ≤ ε.

Algorithms C(ε) Remarks

MFTPL-P (this work) µ2H2

ε2 General B, Access d0

Li and Zhang (2022) µ2H2

ε2 B small separator set
Behavior Cloning H4

ε2 General B

5. Experiments
In this section, we evaluate MFTPL-P and its variant, com-
paring them with online and offline IL baselines in 4 con-
tinuous control tasks from OpenAI Gym (Brockman et al.,
2016). Our experiments are designed to answer the fol-
lowing questions: Q1: Does sample-based perturbation
provide any benefit in MFTPL-P? Q2: How does the
choice of covering distribution d0 affect the performance
of MFTPL-P? Q3: Does MFTPL-P outperform online
and offline IL baselines? Q4: Can we find a practical
variant of MFTPL-P that achieves similar performance to
MFTPL-P without additional sample access to some cov-
ering distribution? Q5: If Q3 and Q4 are true, which com-
ponent of our algorithms confers this advantage?

Our experiment sections are organized as follows: Sec-
tion 5.1 provides an introduction to our experimental set-
tings. Section 5.2 presents positive results for Q1 and
Q2, evaluating MFTPL-P on two continuous control tasks
using a linear policy class B with nonrealizable experts.
Subsequently, Section 5.3 affirmatively answers Q3 and
Q4 and introduces BOOTSTRAP-DAGGER (abbreviated as
BD), a practical variant of MFTPL-P, and demonstrates
the efficacy of our algorithms through neural network-
based experiments. Across 4 continuous control tasks that
encompass realizable and nonrealizable settings, BD and
MFTPL-P outperform both online and offline IL baselines.
Finally, for Q5, Section 5.4 investigates the underlying rea-
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sons for BD’s improvement over the DAGGER baseline.

5.1. Experiment Settings

Environment: Following Brantley et al. (2019), we use
normalized states. The name and {state dimension, ac-
tion dimension} for each continuous control task are:
Ant {28, 8}, Half-Cheetah {18, 6}, Hopper {11, 3}, and
Walker2D {18, 6}.

Expert: For each task, the expert policy πexp is a mul-
tilayer perceptron (MLP) with 2 hidden layers of size
64 and corresponding state, action dimension, pretrained
by TRPO (Schulman et al., 2015). We employ TRPO’s
stochastic policy, sampling expert actions from MLP out-
put with Gaussian noise.

Offline Learning Oracle: Our MFTPL-P relies on offline
learning oracle O; we describe their implementations be-
low. In continuous control tasks, the training loss ˜̀(a, a′)
is calculated by clipping input actions to the range [−1, 1]
and computing the MSE loss (Brantley et al., 2019). In
Section 5.2, we first work on linear models and implement
a deterministic offline learning oracle by outputting the
Ordinary Least Squares (OLS) solution using the Moore-
Penrose pseudoinverse (Moore, 1920). Later, in Section 5.3
and 5.4, we use MLP for base policies and implementO by
conducting 2000 SGD iterations over its input dataset with
batch size 200. See Appendix C.2 for results of 500 and
10000 iterations.

Sampling Oracle: We define the covering distribution d0

as the uniform distribution over states obtained from 10 in-
dependent runs collected by DAGGER. Note that this gives
MFTPL-P some unfair advantage over the baselines; we
will subsequently propose practical variants of our algo-
rithms that do not require knowledge of d0. Additionally,
in Section 5.2, we consider an alternative d0, defined as the
uniform distribution over state space.

Algorithms: Due to the sample-efficient nature of IL, we
make the tasks more challenging by setting the sample size
per roundK = 50 for all algorithms (Ho and Ermon, 2016;
Laskey et al., 2017). All policies in the first round π1 are
initialized at 0 for linear policy and at random for MLPs.
We choose DAGGER and Behavior Cloning (BC) as online
and offline IL baselines. At round n, BC receives K addi-
tional (state, action) pairs sampled from expert’s trajecto-
ries and calls the offline learning oracle on the accumulated
dataset. In contrast, all other algorithms sample K states
from their current policy πn’s trajectories and query the ex-
pert’s action on them, while following dataset aggregation
and calling the offline learning oracle to compute policies
πn+1 for the next round. As a practical implementation of
MFTPL-P, we choose ensemble size E = 25; in addi-
tion, to facilitate parallel training of the ensembles (Brant-

ley et al., 2019), instead of drawing sample sizes X from a
Poisson distribution, we choose X as fixed numbers† – we
abbreviate this algorithm as MP-25(X).

Evaluation: We run each algorithm 10 times with differ-
ent seeds, treating each round n as the final one and only
returning the last trained policy πn+1 for evaluation (Cheng
et al., 2019a;b). As in common practice (Menda et al.,
2019; Hoque et al., 2021; Menda et al., 2017), we return
the ensemble mean π̄n(s) := 1

E

∑E
e=1 πn+1,e(s), which

is also known as Bagging (Breiman, 1996). Given a re-
turned policy π, we roll out T = 25 trajectories (denote by{
τπi
}T
i=1

) and compute their average reward as an estimate
of π’s expected reward.

5.2. Utility of Sample-based Perturbation

We use linear policy classes along with OLS offline learn-
ing oracle for our first experiment. We study the impact
of perturbation size X and the choice of d0 on the perfor-
mance of MP-25(X). Here, we choose DAGGER as the
baseline; note that this is equivalent to MP-25(0) given
that the offline learning oracle returns OLS solutions deter-
ministically. We consider two settings of d0 in Section 5.1.

The average reward of the trained policies as a function
of the number of expert annotations for Ant and Hop-
per are shown in Figure 1 with 80% bootstrap confidence
bands (DiCiccio and Efron, 1996). Surprisingly, though
the expert (an MLP policy) is not contained in the pol-
icy class, MFTPL-P still learns policies with nontrivial
performance. The overall performance of MP-25(X) ini-
tially increases with the perturbation size and then de-
creases, matching our intuition. For Q1, since MP-25(7)
and MP-25(15) outperform DAGGER (MP-25(0)) in most
cases, we have strong evidence that sample-based perturba-
tion benefits performance with proper choices of perturba-
tion sample size. For Q2, by comparing the performance
of the same MP-25(X) on the left and right, it is evident
that using states collected by DAGGER for perturbation re-
sults in better performance than uniform samples over state
spaces. Based on our observations, we focus on evaluat-
ing MP-25(15) for the following sections. Please see Ap-
pendix C.3 for performance of other algorithms under this
setting.

5.3. Performance Evaluation of MFTPL-P and Its
Practical Variant BOOTSTRAP-DAGGER

Though MFTPL-P is provably efficient, it requires addi-
tional sample access to d0 and proper choice of the per-
turbation sample size. We propose BOOTSTRAP-DAGGER

†It is well-known that Poission distribution has good concen-
tration properties (e.g. Canonne, 2017). so we do not expect this
to deviate too much from the original algorithm.
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Figure 1: Comparative performance of MFTPL-P using
linear models with nonrealizable MLP experts: variation
across different perturbation state sources and set sizes in
Ant and Hopper. Shaded region represents range between
10th and 90th quantiles of bootstrap confidence interval (Di-
Ciccio and Efron, 1996), computed over 10 runs. On the
left, the perturbation example sources are states collected
by DAGGER on each task, while the right side uses uni-
form distribution over [−2, 2]28 (Ant) and [−2, 2]11 (Hop-
per). Overall, MP-25s on the left exceed their counterparts
on the right. Meanwhile, MP-25(15) leads in performance,
except in the Ant with uniform d0 (upper right).

(abbrev. BD), a variant of MFTPL-P without sample ac-
cess to d0, and evaluate our algorithms in the 4 continu-
ous control tasks in Section 5.1. BD shares the same data
collection scheme as MFTPL-P and only differs on the
TRAIN-BASE function.

As can be seen in the BD’s TRAIN-BASE function in Algo-
rithm 2 (see Appendix C.1 for the full BD algorithm), BD
trains on different bootstrap subsamples of the accumulated
dataset D to obtain a diverse ensemble of policies, instead
of training on the accumulated dataset union with different
sample-based perturbations. BD is fundamentally different
from (Menda et al., 2019), where the diversity of ensembles
are attributed solely to the stochasticity of SGD. In the fol-
lowing, we study the performance of BD with increasing
size of ensembles, choosing E = 1, 5, 25 (abbreviated as
BD-1,BD-5,BD-25).

We perform evaluations in realizable and non-realizable
settings using MLPs as base policy classes. In the re-
alizable setting, the base policy class contains the condi-
tional mean function of the expert policy. Meanwhile, the
non-realizable setting considers the base policy class to be

Algorithm 2 BOOTSTRAP-DAGGER

1: function TRAIN-BASE (D):
2: D̃ ← Sample |D| i.i.d. samples ∼ Unif(D) with

replacement.
3: Return h← O(D̃).

MLPs with one hidden layer and limited numbers of nodes
(see Appendix C.2 and C.4 for details).

As shown in Figure 2, MP-25(15) consistently outper-
forms others in most cases. Overall, BD shows a no-
table improvement in performance as the ensemble size
grows, with BD-25 achieving performance on par with
MP-25(15). Perhaps unsurprisingly, the naive BD-1 falls
short of matching DAGGER’s performance. This is at-
tributed to the inherent limitations of bootstrapping, which
omits a significant portion of the original sample. How-
ever, it is important to highlight the consistent and signifi-
cant improvements from BD-1 to BD-5 across 4 tasks, as
they demonstrate the effectiveness of using model ensem-
bles to mitigate the sample underutilization from bootstrap-
ping. Notice that the increase in performance from BD-5
to BD-25 is marginal, with BD-5 outperforming the base-
lines in all cases except in the realizable Hopper, where
DAGGER achieves a similar level of performance. Interest-
ingly, as shown in the lower part of Figure 2, MP-25(15),
BD-25 and BD-5 not only learn faster than the baselines,
but also converge to policies with higher performance.

For running time and space requirements, under realizable
settings, all algorithms consume similar memory (1400
MB) on GPU, while BD-25 and MP-25(15) run 5 times
longer than BD-5, BC, and DAGGER (see Appendix C.2
for details). Notably, BD-5 maintains strong performance
without imposing significant computational overhead, tak-
ing just twice the running time of DAGGER. Therefore, we
recommend using BD-5 for practical applications.

5.4. Explaining the benefit of BOOTSTRAP-DAGGER

Though BD-5 outperforms DAGGER, the underlying rea-
son of this improvement demands further investigation.
We hypothesize two possible factors behind BD-5’s suc-
cess: (1) BD-5 collects data of higher quality during the
training stage; (2) Given the same expert demonstration
dataset, BD-5 returns a better policy via ensemble averag-
ing, similar to the benefit of Bagging in supervised learn-
ing (Breiman, 1996).

To test these, we evaluate two additional approaches: (a)
naive supervised learning (abbreviated as SL) on data col-
lected by BD-5; (b) Bagging (bootstrap and return 5-
ensemble average) on data collected by DAgger. As shown
in Figure 3, switching the final policy training between
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Figure 2: Results on continuous control tasks with realizable and non-realizable experts. Remarkably, MP-25(15) (ma-
genta), BD-25 (blue-green) and BD-5 (green) surpass baselines under both settings, with distinct performance gaps par-
ticularly evident in the non-realizable setting between MP-25(15), BD-25, BD-5, and the baselines.
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Figure 3: Results on comparing BD-5 and DAGGER, along
with the two additional approaches in Section 5.4, over Ant
and Hopper. Bagging on data collected by DAGGER yields
pink learning curves that align closely with DAGGER’s per-
formance (red). Meanwhile, naive supervised learning on
data collected by BD-5 produce lime green learning curves
that match the performance of BD-5 (green). Overall the
two methods (red and pink) that uses ensembles to perform
data collection has better performance than those two that
does not (green and lime green). This suggests that BD-5
improves over DAGGER by collecting better data.

Bagging and naive supervised learning does not change the
policy performance significantly. In contrast, using ensem-
ble for data collection significantly increases the trained
policy’s performance. This verifies hypothesis (1) and in-
validates hypothesis (2). We further visualize states queried
by different algorithms in Appendix C.5, which implies
more efficient exploration by ensembles.

6. Conclusion
We propose and evaluate MFTPL-P, a computation-
ally and statistically efficient IL algorithm for general
policy classes. We also propose a practical variant,
BOOTSTRAP-DAGGER that we recommend for practical
applications.

Our work is built on the online imitation learning reduc-
tion framework (Ross et al., 2011; Ross and Bagnell, 2014).
As we discuss in Appendix A, in the agnostic setting, this
framework has the drawback of only providing runtime-
dependent guarantees, as well as not ensuring global opti-
mality. We leave overcoming these drawbacks as important
open problems.
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not aware of negative social impacts by our work.

Acknowledgements
We thank the anonymous reviewers for their constructive
feedback, and thank Yao Qin for helpful discussions on vi-
sualizing the observation distributions encountered in im-
itation learning data collection. This research is partially
supported by the University of Arizona FY23 Eighteenth
Mile TRIF Funding.

9



Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms

References
Jacob Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj

Tewari. Online linear optimization via smoothing. In
Conference on Learning Theory, pages 807–823. PMLR,
2014.

J Andrew Bagnell. An invitation to imitation. Robotics
Inst., Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep, 2015.

Normand J Beaudry and Renato Renner. An intuitive
proof of the data processing inequality. arXiv preprint
arXiv:1107.0740, 2011.

Alina Beygelzimer, Daniel J Hsu, John Langford, and Tong
Zhang. Agnostic active learning without constraints.
Advances in neural information processing systems, 23,
2010.

Adam Block, Yuval Dagan, Noah Golowich, and Alexan-
der Rakhlin. Smoothed online learning is as easy as
statistical learning. In Conference on Learning Theory,
pages 1716–1786. PMLR, 2022.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Kiante Brantley, Wen Sun, and Mikael Henaff.
Disagreement-regularized imitation learning. In
International Conference on Learning Representations,
2019.

Leo Breiman. Bagging predictors. Machine learning, 24:
123–140, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Clément Canonne. A short note on poisson tail bounds.
Retrieved from the website: http://www. cs. columbia.
edu/ccanonne, 2017.

Carlos Celemin, Rodrigo Pérez-Dattari, Eugenio Chis-
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Prakash, Zlatan Ajanović, Marta Ferraz, Abhinav Val-
ada, Jens Kober, et al. Interactive imitation learning
in robotics: A survey. Foundations and Trends R© in
Robotics, 10(1-2):1–197, 2022.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas,
Rahul Kidambi, and Wen Sun. Mitigating covariate shift
in imitation learning via offline data with partial cover-
age. Advances in Neural Information Processing Sys-
tems, 34:965–979, 2021.

Jinglin Chen and Nan Jiang. Information-theoretic con-
siderations in batch reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 1042–
1051. PMLR, 2019.

Ching-An Cheng and Byron Boots. Convergence of value
aggregation for imitation learning. In International Con-
ference on Artificial Intelligence and Statistics, pages
1801–1809. PMLR, 2018.

Ching-An Cheng, Xinyan Yan, Nathan Ratliff, and Byron
Boots. Predictor-corrector policy optimization. In Inter-
national Conference on Machine Learning, pages 1151–
1161. PMLR, 2019a.

Ching-An Cheng, Xinyan Yan, Evangelos Theodorou, and
Byron Boots. Accelerating imitation learning with pre-
dictive models. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 3187–3196.
PMLR, 2019b.

Sanjiban Choudhury. Cs 4756 spring 2024 assignment 1,
2024.

Yuchen Cui, David Isele, Scott Niekum, and Kikuo Fu-
jimura. Uncertainty-aware data aggregation for deep im-
itation learning. In 2019 International Conference on
Robotics and Automation (ICRA), pages 761–767. IEEE,
2019.

Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh
Agarwal, John Langford, and Robert E Schapire. On
oracle-efficient pac rl with rich observations. Advances
in neural information processing systems, 31, 2018.
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Supplementary Materials

A. The Online Imitation Learning Reduction Framework
Theorem 5 (Restatement of Theorem 2, originally from (Ross et al., 2011), Theorem 3.2). Suppose (M, πexp) is µ-
recoverable with respect to `. In addition, a sequence of policies {πn}Nn=1 satisfies the following online regret guarantee
with respect to base policy class B:

N∑
n=1

Fn(πn)−min
π∈B

N∑
n=1

Fn(π) ≤ Reg(N).

Then π̂, which is by choosing a policy uniformly at random from {πn}Nn=1 and adhering to it satisfies:

J(π̂)− J(πexp) ≤ µH

min
π∈B

1

N

N∑
n=1

Fn(π) +
Reg(N)

N

 .

Proof. Our proof is similar to Proposition 2 of (Li and Zhang, 2022). Since (M, πexp) and ` satisfies for all s ∈ S and
a ∈ A, Qπexp(s, a)− Vπexp(s) ≤ µ · `(a, πexp(s)), We apply the performance difference lemma (Lemma 6 below) to the
sequence of {πn}Nn=1 and πexp, obtaining

1

N

N∑
n=1

J(πn)− J(πexp) =
H

N

N∑
n=1

Es∼dπnEa∼πn(·|s)
[
Qπexp(s, a)− Vπexp(s)

]
≤µH
N

N∑
n=1

Es∼dπnEa∼πn(·|s)
[
`(a, πexp(s))

]
=
µH

N

N∑
n=1

Fn(πn) ≤ µH

min
π∈B

1

N

N∑
n=1

Fn(π) +
Reg(N)

N

 ,

where the last line comes from the definition of Fn(π) := Es∼dπn ,a∼π(·|s)`(a, π
exp(s)) and Reg(N).

Now, it suffices to show 1
N

∑N
n=1 J(πn) = J(π̂). Since π̂ is executed by choosing a policy uniformly at random from

{πn}Nn=1 and adhering to it, we conclude the proof by

J(π̂) = Es1∼ρ
[
Vπ̂(s1)

]
= Es1∼ρ

 1

N

N∑
n=1

Vπn(s1)

 =
1

N

N∑
n=1

Es1∼ρ
[
Vπn(s1)

]
=

1

N

N∑
n=1

J(πn).

Lemma 6 (Performance Difference Lemma, Lemma 4.3 of (Ross and Bagnell, 2014)). For two stationary policies π and
πexp : S → ∆(A), we have

J(π)− J(πexp) = H · Es∼dπEa∼π(·|s)
[
Qπexp(s, a)− Vπexp(s)

]
.

13
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Limitations of the reduction-based framework. Our positive result relies on the reduction framework of (Ross
et al., 2011), which bounds the learned policy’s suboptimality by the sum of estimation gap and policy class bias
µH minπ∈B

1
N

∑N
n=1 Fn(π) (Theorem 2). Importantly, the latter term is runtime dependent and one usually do not have

a good control unless additional assumptions are imposed (e.g., there exists some π ∈ B that disagrees with πE with low
probability under some covering distribution d0). We believe designing agnostic interactive imitation learning algorithms
with runtime-independent guarantees is an important problem.

Moreover, we show in Proposition 7 below that it is possible in the agnostic setting that any no-regret policy sequence
{πn}Nn=1 with respect to the cost-sensitive classification losses

{
Fn(·)

}N
n=1

converges to a globally suboptimal policy with
respect to the ground truth expected reward function J(·). We leave designing agnostic imitation learning algorithms with
global optimality guarantees as an important question; without further assumption on the expert policy πexp, we believe
this problem may be as hard as policy search-based agnostic reinforcement learning (Jia et al., 2024), where only limited
positive results are currently known.

In the following, suppose we study the setting when the loss function `(s, a) = Aπexp(s, a) := Qπexp(s, a) −
Vπexp(s); this is the setting initially studied by (Ross and Bagnell, 2014). As a result, Fn(π) =
Es∼dπnEa∼π(·|s)

[
Qπexp(s, a)− Vπexp(s)

]
, while Fn(πn) = 1

H (J(πn)− J(πexp)) (by Lemma 6).

Proposition 7. There exists a policy class B of size 2, an MDPM, an expert policy πE , such that any policy sequence
{πn}Nn=1 ⊆ B guaranteeing a sublinear regret

N∑
n=1

Fn(πn)−min
π∈B

N∑
n=1

Fn(π) = o(N)

satisfies that
N∑
n=1

J(πn)−min
π∈Π

J(π) = Ω(N)

Remark 8. The above proposition can be generalized to allow {πn}Nn=1 ⊆ ΠB; the proof will carry over except that we
argue that at least 1− o(1) of the total weights in πn’s representation will be on h2.

Proof. As shown in Figure 4, we define MDPM with:

• State space S = {S0, S1, S2, S3, S4} and action space A = {L,R}.

• Initial state distribution ρ(S0) = 1

• Deterministic Transition dynamics: P1(S1|S0, L) = 1, P1(S2|S0, R) = 1, P2(S3|S2, L) = 1, P2(S4|S0, R) = 1,
while ∀t ∈ [H], ∀a ∈ A, Pt(S1|S1, a) = Pt(S3|S3, a) = Pt(S4|S4, a) = 1, which are self-absorbing before
termination.

• Cost function c(S0, R) = c(S2, L) = c(S3, ·) = 0, c(S0, L) = c(S1, ·) = 1
H , c(S2, R) = c(S4, ·) = 1.

Meanwhile, let:

• Base policy class B = {h1, h2}, where h1(S0) = L and h2(S0) = R, while h1(S2) = h2(S2) = R.

• Deterministic expert πexp such that πexp(S0) = R, πexp(S2) = L.

For this MDP example, it can be seen that J(πexp) = 0, J(h1) = 1, J(h2) = H − 1. Also, Vπ(S0) = J(πexp) = 0,
Qπexp(S0, L) = 1, Qπexp(S0, R) = 0, we have Aπexp(S0, h1(S0)) = 1, Aπexp(S0, h2(S0)) = 0.

Consider any sequence of policy {πn}Nn=1 ⊆ B, inducing loss function
{
Fn(π)

}N
n=1

. First, we observe that for every n,
argminπ∈B Fn(π) = h2. This is because the only difference between h1 and h2 is the action taken at S0, and so for any
πn, Fn(h1)− Fn(h2) = 1

H (Aπexp(S0, h1(S0))−Aπexp(S0, h2(S0))) = 1
H > 0.
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Therefore we conclude that given any any sequence {πn}Nn=1 that guarantees a sublinear regret, we have that at least
1− o(1) fraction of the πn’s must be h2.

Then, for large enough N ,

N∑
n=1

(
J(πn)−min

π∈B
J(π)

)
≥

N∑
n=1

J(h2)− o(N)−
N∑
n=1

min
π∈B

J(π) = N(H − 1)−N − o(N) = Ω(N)

𝑆!

𝑆" 𝑆#

𝑆$ 𝑆%

𝐿 𝑅

𝑅𝐿

Figure 4: Example MDP to show the limit of reduction-based framework.

Remark 9. We thank an anonymous ICML reviewer who originally provided an example (Choudhury, 2024, Problem (3))
on this issue. To put this in a real-world example, we can view this learning to ski from an expert demonstrator. The expert
chooses a fast route S0 → S2 → S3 → .. → S3. Policy h1 takes an “easy route” that deviates from the expert at step 1,
and incurs a small but nonzero cost. Policy h2 tries to mimic the expert by first choosing to take the fast route; however it
fails to mimic the expert from step 2 on and incurs a catastrophically high cost. Although h2 has a smaller imitation loss
than h1, both policies’ inability to keep up with πE subsequently makes h1 actually a better choice.

B. Proofs for Section 4
In the following, we provide detailed proofs for Theorem 3 and Corollary 4 in Section B.2. We first briefly review the
interactive imitation learning for discrete action space setting in Section B.1.

B.1. Notations and algorithm

In this section, we first review some basic notations for interactive imitation learning introduced in Sections 3 and 4 and
then introduce additional notations for our analysis.

Review of notations. The framework proposed by Ross et al.(Ross et al., 2011) reduces finding a policy π̂ with a small
performance gap compared to the expert policy J(π̂)−J(πexp) into minimization of online regret. As shown in Theorem 2,
to find a policy competitive with πexp, it suffices to find a sequence of policies {πn}Nn=1 that optimize the regret defined as
Reg(N) =

∑N
n=1 Fn(πn)−minπ∈B

∑N
n=1 Fn(π), where Fn(π) := Es∼dπnEa∼π(·|s)

[
I(a 6= πexp(s))

]
.

We propose the MFTPL-P algorithm (Algorithm 1) to achieve sublinear regret, assuming sample access to some covering
distribution d0 (Assumption 2) that satisfies that for any π ∈ ΠB and s ∈ S, dπ(s)

d0(s) ≤
1
σ . Meanwhile, we assume access to

an offline classification oracleO (Assumption 1), which, given a (multi)set of classification examples, returns the policy in
the base policy class that has the smallest empirical classification error.

Let B be the base policy class that contains B deterministic policies. For u ∈ ∆(B), define u[h] as
the coordinate of u corresponding to the h ∈ B. Recall the definition of mixed policy class ΠB :=
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πu(a|s) =

∑
h∈B u[h] · I(a = h(s)) : u ∈ ∆(B)

}
.

For completeness, we present Algorithm 3, which integrates the two functions in MFTPL-P for a more straightforward
representation.

Algorithm 3 MFTPL-P (Mixed Following The Perturbed Leader with Poisson Perturbations)

1: Input: MDPM, expert πexp, policy class B, offline classification oracle O, covering distribution d0, sample size per
iteration K, ensemble size E, perturbation budget λ.

2: Initialize D = ∅.
3: for n = 1, 2, . . . , N do
4: for e = 1, 2, . . . , E do
5: Sample Xn,e ∼ Poi(λ).
6: Sample Qn,e ← draw i.i.d. perturbation samples {(s̃n,e,x, ãn,e,x)}Xn,ex=1 from D0 = d0 ⊗Unif(A).
7: Compute hn,e ← O(D ∪Qn,e).
8: end for
9: Set πn(a | s) := 1

E

∑E
e=1 I(hn,e(s) = a).

10: Dn =
{

(sn,k, π
exp(sn,k))

}K
k=1
← sample K states i.i.d. from dπn by rolling out πn inM, and query expert πexp

on these states.
11: Aggregate datasets D ← D ∪Dn.
12: end for
13: Return πn̂(a | s) := 1

E

∑E
e=1 I(πn̂,e(s) = a), where n̂ ∼ Unif[N ].

Additional notations. (Li and Zhang, 2022) provides a framework for designing and analyzing regret-efficient interactive
imitation learning algorithm for discrete action spaces. In a nutshell, the framework views the original classification-based
regret minimization problem over ΠB as an online linear optimization problem over ∆(B). Our design and analysis of
MFTPL-P also adopt this framework, and thus we introduce the necessary notations in the context of MFTPL-P that
facilitate this view.

In the following, we denote Onehot(h) ∈ ∆(B) as the delta mass on a single policy h within the base policy class B. We
use D1:n as a shorthand for ∪ni=1Di.

Using the notations πu and Onehot, in line 7, we can write the policy returned from the oracle in the form of mixed policy,
i.e. hn,e = πun,e , where un,e = Onehot(O(D1:n−1 ∪Qn,e)).

We define Dexp
π as the distribution of (s, πexp(s)), obtained by rolling out π inM and querying the expert πexp. Denote

g∗n :=
(
Es∼dπn

[
I(h(s) 6= πexp(s))

])
h∈B

, which is a B dimensional cost vector. We can rewrite Fn(πu) in the form of

inner product as:

Fn(πu) := Es∼dπnEa∼πu(·|s)
[
I(a 6= πexp(s))

]
= Es∼dπn

∑
h∈B

u[h]
[
I(h(s) 6= πexp(s))

]
= 〈g∗n, u〉 .

Thus, the regret can be rewritten in an inner product form:

Reg(N) =
N∑
n=1

Fn(πn)−min
π∈B

N∑
n=1

Fn(π) =
N∑
n=1

〈g∗n, un〉 − min
u∈∆(B)

N∑
n=1

〈g∗n, u〉 , (2)

An equivalent representation of πn+1 (line 9 ) in the form of mixed policy is πn+1 = πun+1
, where un+1 =

1
E

∑E
e=1 un+1,e. By abusing Dn to denote the uniform distribution over it, we define

gn :=
(
E(s,πexp(s))∼Dn

[
I(h(s) 6= πexp(s))

])
h∈B

, g̃n,e =

 1

K

∑
(s̃,ã)∈Qn,e

(
I(h(s̃) 6= ã)− A− 1

A

)
h∈B

, (3)

which stand for the cost vectors on Dn and Qn,e respectively. With these notations, we can rewrite un as a sample-average
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version of the “Follow-the-Perturbed-Leader” algorithm (Kalai and Vempala, 2005) over E independent trials:

un =
1

E

E∑
e=1

argmin
u∈∆(B)

〈
n−1∑
i=1

gi + g̃n,e, u

〉
. (4)

We give a formal proof of Eq. (4) in Lemma 10.

We define two σ−algebras for data and policies accumulated through the learning procedure of MFTPL-P:

Fn := σ (u1, D1, u2, D2, · · ·un, Dn) , F+
n := σ (u1, D1, u2, D2, · · · , un, Dn, un+1) , (5)

where it can be verified that filtration (Fn)Nn=1 and (F+
n )Nn=1 satisfies F1 ⊂ F+

1 ⊂ F2 ⊂ F+
2 ⊂ · · · .

Following the definition of perturbation sets Qn,e in Algorithm 3, given λ > 0, for any n, n′ ∈ [N ] and any e, e′ ∈ [E],
Qn,e and Qn′,e′ are equal in distribution. With this observation, we introduce a random variable Qn that has the same
distribution as Qn,e and

g̃n =

 1

K

∑
(s̃,ã)∈Qn

(
I(h(s̃) 6= ã)− A− 1

A

)
h∈B

which has the same distribution as g̃n,e. Without loss of generality, ∀n ∈ [N ], e ∈ [E], for any function f of
(Qn,e, D1:n−1),we abbreviate E

[
f(Qn,e, D1:n−1)|Fn−1

]
as EQn

[
f(Qn, D1:n−1)

]
throughout and define

u∗n := E
[
un,e|Fn−1

]
(6)

Similar to Eq. (4) for un, we rewrite

u∗n = EQn
[
Onehot(O(D1:n−1 ∪Qn)

]
= EQn

argmin
u∈∆(B)

〈
n−1∑
i=1

gi + g̃n, u

〉 ,
Meanwhile, given any function f ′ of (Dn, D1:n−1), we abbreviate E

[
f ′(Dn, D1:n−1)|F+

n−1

]
as EDn

[
f ′(Dn, D1:n−1)

]
.

We further define
u∗∗n+1 := E

[
un+1,e | F+

n−1

]
. (7)

By the law of iterated expectation, this can be also written as

u∗∗n+1 = E
[
E
[
un+1,e|Fn

]
|F+
n−1

]
= E

[
u∗n+1 | F+

n−1

]
= EDn

[
u∗n+1

]
= EDnEQn+1,e

[
un+1,e

]
(8)

where the second equality follows from the definition of u∗n+1, and the third equality uses the observation that u∗n+1 is a
function of (Dn, D1:n−1), and the last equality is from that u∗n+1 = EQn+1,e

[
un+1,e

]
.

By this observation, u∗∗n+1 can be rewritten as

u∗∗n+1 = EDnEQn+1

argmin
u∈∆(B)

〈
n−1∑
i=1

gi + gn + g̃n+1, u

〉 .
We remark that the notations un, u∗n, u

∗∗
n , as well as gn, g∗n, g̃n, are introduced solely for analytical purposes.

As a quick recap, we provide a dependency graph of important variables that appear in the analysis in Figure 5, while
summarizing frequently-used notations in Table 2 below.
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Table 2: A review of notations in this paper.

Name Description Name Description

M Markov decision process O Classification oracle
H Episode length ΠB Mixed policy class
t Time step inM u Ensemble policy probability weight
S State space πu Ensemble policy induced by u
S State space size u[h] Ensemble weight for h in u
s State un Ensemble policy weight at round n
A Action space K Sample budget per round
A Action space size k Sample iteration index
a Action D Aggregated dataset
ρ Initial distribution Dn Set of Classification examples at round n
P Transition probability distribution gn Loss vector induced by Dn

C Cost distribution Dexp
π (s, πexp(s)) distribution induced by π,M and πexp

c Cost g∗n Expected loss vector induced by πn,M and πexp

π Stationary policy d0 Covering base distribution
π(·|s) Action distribution of π given state s D0 (s, a) distribution induced by d0 ⊗Unif(A)
dπ State occupancy distribution σ Smooth factor
τ Trajectory E Ensemble size
J(π) Expected cumulative cost e Ensemble index
Qπ Action value function Poi(λ) Poisson distribution
Vπ State value function λ Perturbation budget
πexp Expert policy Xn,e Perturbation set size
` Loss function x Sample index within a perturbation set
µ Recoverability of (πexp,M) for ` Qn,e Perturbation set
N Number of learning rounds g̃n,e Perturbation loss vector in RB induced by Qn,e
n Learning round index Fn,F+

n σ-algebras induced by {ui}ni=1 and {Di}n−1
i=1

Fn(π) Online loss function EDn Expectation w.r.t. Dn ∼ (Dπexp

πn )K

B Deterministic base policy class EQn Expectation w.r.t. Qn ∼ (D0)X , where X ∼ Poi(λ)
B Base policy class size u∗n Expectation of un w.r.t Qn
h Deterministic stationary policy in B u∗∗n Expectation of un w.r.t Qn and Dn−1

Reg(N) Online regret [N ] Set {1, 2, · · · , N}
Unif(E) Uniform distribution over E ∆(E) All probability distributions over E
Pr(U) Probability of event U Onehot(B) Delta mass (one-hot vector) on h ∈ B
δ Failure probability I(·) Indicator function

B.1.1. AUXILIARY LEMMAS

Lemma 10. πn = πun , where

un =
1

E

E∑
e=1

argmin
u∈∆(B)

〈
n−1∑
i=1

gi + g̃n,e, u

〉
.
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Figure 5: Dependency graph of notations that appear in the analysis. Solid and dashed arrows indicate deterministic and
stochastic dependence, respectively. Note that all (Qn+1,e)e∈[E]’s are drawn independently from fixed sample perturbation
distributions and can be treated as fresh iid random examples.

Proof.

un =
1

E

E∑
e=1

un,e =
1

E

E∑
e=1

Onehot(O(D1:n−1 ∪Qn,e))

=
1

E

E∑
e=1

Onehot(argmin
h∈B

E(s,a)∼D1:n−1∪Qn,e
[
I(h(s) 6= a)

]
)

=
1

E

E∑
e=1

Onehot

argmin
h∈B

 1

(n− 1)K +Xn,e

n−1∑
i=1

∑
(s,a)∈Di

(
I(h(s) 6= a)

)
+

∑
(s̃,ã)∈Qn,e

(
I(h(s̃) 6= ã)

)



=
1

E

E∑
e=1

Onehot

argmin
h∈B

n−1∑
i=1

E(s,a)∼Di
[
I(h(s) 6= a)

]
+

1

K

∑
∑

(s̃,ã)∈Qn,e

(
I(h(s̃) 6= ã)

)


=
1

E

E∑
e=1

argmin
u∈∆(B)

〈n−1∑
i=1

E(s,a)∼Di
[
I(h(s) 6= a)

]
+

1

K

∑
∑

(s̃,ã)∈Qn,e

(
I(h(s̃) 6= ã)

)
h∈B

, u

〉

=
1

E

E∑
e=1

argmin
u∈∆(B)

〈n−1∑
i=1

E(s,a)∼Di
[
I(h(s) 6= a)

]
+

1

K

∑
∑

(s̃,ã)∈Qn,e

(
I(h(s̃) 6= ã)− A− 1

A

)
h∈B

, u

〉

=
1

E

E∑
e=1

argmin
u∈∆(B)

〈
n−1∑
i=1

gi + g̃n,e, u

〉
,

(9)

where we apply the invariant property of argmax operator on positive scaling and shifting. Note that Qn,e contains Xn,e

perturbation examples and each Dn contains K examples.

B.2. Proof of Theorem 3

The proofs in this section follows the flowchart in Figure 6, which is divided to three stages:
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• At stage 1, we apply the existing results (Li and Zhang, 2022) to reduce bounding the distribution-dependent on-
line regret Reg(N) =

∑N
n=1 〈g∗n, un〉 − minu∈∆(B)

∑N
n=1 〈g∗n, u〉 to bounding the data-dependent online regret∑N

n=1 〈gn, u∗n〉−minu∈∆(B)

∑N
n=1 〈gn, u〉 using standard martingale concentration inequalities. By the end of stage

1, it remains to bound the regret of the idealized sequence of predictors {u∗n}Nn=1 on the observed linear losses
{gn}Nn=1.

• At stage 2, a bound on the “ideal regret” is established by a standard analysis of an in-expectation version of the
“Follow the perturbed Leader” algorithm. By Lemma 12 and 14, we prove that

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉 ≤ EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
+

N∑
n=1

〈
gn, u

∗
n − u∗n+1

〉
.

The first term on the right hand side can be straightforwardly bounded by Lemma 15. It remains to bound∑N
n=1

〈
gn, u

∗
n − u∗n+1

〉
.

• At stage 3, we aim to control
∑N
n=1

〈
gn, u

∗
n − u∗n+1

〉
. Existing smoothed online learning analysis (Haghtalab et al.,

2022a) (implicitly) provide bounds on E
[∑N

n=1

〈
gn, u

∗
n − u∗n+1

〉]
, which is insufficient for our goal of establishing

high-probability bounds. Furthermore, Haghtalab et al. (2022a) only considers the online learning setting where one
example is given at each round and the action space is binary, which is insufficient for batch mode multiclass online
classification setting for our imitation learning application. To bridge the gap between existing techniques and our
problem, we further decompose

∑N
n=1

〈
gn, u

∗
n − u∗n+1

〉
to three terms: stability term, generalization error, and an

approximation term. Our analysis of stability term and generalization error generalizes the analysis of Haghtalab
et al. (2022a) to multiclass batch setting (Lemmas 18 and 20). For the new approximation term, we observe that it has
martingale structure and thus concentrates well (see proof of Lemma 17). With these, we have all terms bounded and
conclude Theorem 3.

We provide a roadmap of our analysis of the the three stages in Figure 6, highlighting the key quantities and the key
lemmas, as well as their relationships.

Proposition 8

!
𝒏"𝟏

𝑵
𝒈𝒏, 𝒖𝒏∗ −min

𝒖
!

𝒏"𝟏

𝑵
𝒈𝒏, 𝒖

Approximation Terms

Reg(𝑁)

Lemma 9,10

Approximation Term

Lemma 11,12 Lemma 13

Lemma 14

Lemma 16

Lemma 15

Generalization Error

Stability Term!
𝒏"𝟏

𝑵
𝒈𝒏, 𝒖𝒏∗ − 𝒖𝒏'𝟏∗

𝔼𝑸𝟏 max
𝒖

−,𝒈𝟏, 𝒖

Prove
Proof Flow

Bound

Stage 1 Stage 2 Stage 3

Figure 6: Flowchart of the proofs to bound the regret.

B.2.1. PROOF FOR STAGE 1

Following the previous results MFTPL, we guarantee that our algorithm MFTPL-P satisfies:

Proposition 11. For any δ ∈ (0, 1], MFTPL-P outputs policies {πn}Nn=1 such that with probability at least 1− δ/2,

Reg(N) ≤
N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉+O

(√
N ln(B/δ)

K

)
+N

√
2A
(
ln(NS) + ln( 12

δ )
)

E
.
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Proof. By the inner product form of the regret (Eq. (2)), we have the following decomposition

Reg(N) =
N∑
n=1

〈g∗n, un〉 − min
u∈∆(B)

N∑
n=1

〈g∗n, u〉

=
N∑
n=1

〈gn, un〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉+
N∑
n=1

〈g∗n − gn, un〉+ min
u∈∆(B)

N∑
n=1

〈gn, u〉 − min
u∈∆(B)

N∑
n=1

〈g∗n, u〉

≤
N∑
n=1

〈gn, un〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉+

√
2N ln( 12

δ )

K
+

√
2N

ln(B) + ln( 12
δ )

K

=
N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉+
N∑
n=1

〈gn, un − u∗n〉+O

(√
N ln(B/δ)

K

)

≤
N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉+O

(√
N ln(B/δ)

K

)
+N

√
2A
(
ln(NS) + ln( 12

δ )
)

E
,

where the first and second inequalities are from propositions 24 and 25 in Appendix B.3 respectively, which in turn are
from the proposition 6 and the proof of lemma 8 in (Li and Zhang, 2022).

B.2.2. PROOF FOR STAGE 2

In this section, we prove a bound on the regret of the “idealized policy sequence”
{
πu∗n
}N
n=1

, i.e.,
∑N
n=1 〈gn, u∗n〉 −

minu∈∆(B)

∑N
n=1 〈gn, u〉. Such result should be well-known in the context of analysis of the “Follow the Perturbed

Leader” algorithm in online linear optimization (Kalai and Vempala, 2005); we provide full details here since we cannot
find in the literature this exact lemma statement we need. An in-expectation version of a similar bound has been implicitly
shown in Haghtalab et al. (2022a). in the language of admissible relaxations (Rakhlin et al., 2012).
Lemma 12. For gn induced by MFTPL-P, MDPM and expert πexp, the sequence of u∗n defined in equation (6) satisfies

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉 ≤ EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
+

N∑
n=1

〈
gn, u

∗
n − u∗n+1

〉
, (10)

where g̃1 :=

(
1
K

∑
(s̃,ã)∈Q1

(
I(h(s̃) 6= ã)− A−1

A

))
h∈B

, Q1 :=
{
{(s̃1,x, ã1,x)}Xx=1 : X1 ∼ Poi(λ), (s̃x, ãx) ∼ D0

}
.

Remark 13. Intuitively, the right hand side of Eq. (10) exhibits a bias-variance tradeoff: EQ1

[
maxu∈∆(B) 〈−g̃1, u〉

]
and∑N

n=1

〈
gn, u

∗
n − u∗n+1

〉
are the “bias” and “variance” terms that increases and decrease with respect to the amount of

perturbation noise λ, respectively. We bound the first term in Lemma 15 and the second term in Section B.2.3, respectively.

Proof. Notice that
∑N
n=1 〈gn, u∗n〉 appears on both sides of equation (10), by arranging the terms, it suffices to show

N∑
n=1

〈
gn, u

∗
n+1

〉
≤ min
u∈∆(B)

N∑
n=1

〈gn, u〉+ EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
By Lemma 14, we have ∀n ∈ [N ],

〈
gn, u

∗
n+1

〉
≤ EQn

 max
u∈∆(B)

〈
−
n−1∑
i=1

gi − g̃n, u

〉− EQn+1

 max
u∈∆(B)

〈
−

n∑
i=1

gi − g̃n+1, u

〉 .
Summing the above inequality over n ∈ [N ] (and noting that the right hand side is a telescoping sum) gives that

N∑
n=1

〈
gn, u

∗
n+1

〉
≤ EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
− EQN+1

 max
u∈∆(B)

〈
−

N∑
n=1

gn − g̃N+1, u

〉 , (11)
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Meanwhile, we further notice that

EQN+1

 max
u∈∆(B)

〈
−

N∑
n=1

gn − g̃N+1, u

〉 ≥ max
u∈∆(B)

EQN+1

〈− N∑
n=1

gn − g̃N+1, u

〉 = max
u∈∆(B)

〈
−

N∑
n=1

gn, u

〉
,

(12)
where we apply Jensen’s inequality and observe that ∀s ∈ S, h ∈ B, Ey∼Unif(A)

[
I(h(s) 6= y)

]
= (A − 1)/A, meaning

that ∀u ∈ ∆(B),

EQN+1

[
〈−g̃N+1, u〉

]
= EQN+1

〈−
 1

K

∑
(s̃,ã)∈QN+1

(
I(h(s̃) 6= ã)− (A− 1)/A

)
h∈B

, u

〉 = 0.

Therefore, we conclude the proof by plugging equation (12) in (11):

N∑
n=1

〈
gn, u

∗
n+1

〉
≤ EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
− max
u∈∆(B)

〈
−

N∑
n=1

gn, u

〉
= EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
+ min
u∈∆(B)

〈
N∑
n=1

gn, u

〉
.

Lemma 14. For {gn}Nn=1 induced by MFTPL-P and {u∗n}
N
n=1 defined in Eq. (6),

〈
gn, u

∗
n+1

〉
≤ EQn

 max
u∈∆(B)

〈
−
n−1∑
i=1

gi − g̃n, u

〉− EQn+1

 max
u∈∆(B)

〈
−

n∑
i=1

gi − g̃n+1, u

〉 .

Proof. Note that Qn and Qn+1 have identical probability distributions. Therefore, the lemma statement is equivalent to:

〈
gn, u

∗
n+1

〉
≤ EQ

 max
u∈∆(B)

〈
−
n−1∑
i=1

gi − g̃, u

〉− EQ

 max
u∈∆(B)

〈
−

n∑
i=1

gi − g̃, u

〉 ,

where g̃ :=

(
1
K

∑
(s̃,ã)∈Q

(
I(h(s̃) 6= ã)− A−1

A

))
h∈B

.

By the definition of u∗n in equation (6), we have:

u∗n = EQ

argmin
u∈∆(B)

〈
n−1∑
i=1

gi + g̃, u

〉 = EQ

argmax
u∈∆(B)

〈
n−1∑
i=1

−gi − g̃, u

〉 .
22



Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms

By denoting un,Q := argmaxu∈∆(B)

〈
−
∑n−1
i=1 gi − g̃, u

〉
, we notice that EQ

[
un,Q

]
= u∗nand write:

EQ

 max
u∈∆(B)

〈
−
n−1∑
i=1

gi − g̃, u

〉+
〈
−gn, u∗n+1

〉
=EQ

〈− n−1∑
i=1

gi − g̃, un,Q

〉+
〈
−gn, u∗n+1

〉

≥EQ

〈− n−1∑
i=1

gi − g̃, un+1,Q

〉+
〈
−gn, u∗n+1

〉

=EQ

〈− n−1∑
i=1

gi − g̃, un+1,Q

〉+ EQ
[〈
−gn, un+1,Q

〉]

=EQ

〈− n∑
i=1

gi − g̃, un+1,Q

〉
=EQ

 max
u∈∆(B)

〈
−

n∑
i=1

gi − g̃, u

〉
where the inequality is by the optimality of un,Q. We conclude our proof by rearranging the terms.

Lemma 15.

EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
≤
√
λ ln(B)

2K2

Proof. We first recall the definition of g̃1 =

(
1
K

∑
(s̃,ã)∈Q1

(
I(h(s̃) 6= ã)− A−1

A

))
h∈B

in equation (3) and rewrite

EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
=EQ1

max
h∈B

1

K

∑
(s̃,ã)∈Q1

(
A− 1

A
− I(h(s̃) 6= ã)

)
=

1

K
EQ1

max
h∈B

X1
A− 1

A
−

∑
(s̃,ã)∈Q1

I(h(s̃) 6= ã)


 (13)

where the size of Q1 is denoted by X1. When (s̃, ã) ∼ D0, ã ∼ Unif(A), therefore, it is not hard to see ∀h ∈ B,

E(s̃,ã)∼D0

[
I(h(s̃′) 6= ã′)

]
=
A− 1

A
.

Thus, conditioned on X1, for every h ∈ B, X1
A−1
A −

∑
(s̃,ã)∈Q1

I(h(s̃) 6= ã) is a zero-mean, X1

4 -subgaussian random
variable. Therefore, Massart’s Lemma (see Lemma 16 below) implies that

EQ1

max
h∈B

X1
A− 1

A
−

∑
(s̃,ã)∈Q1

I(h(s̃) 6= ã)

 | X1

 ≤√X1 lnB

2
.

By the law of iterated expectation and E [X1] = λ, we have that Eq. (13) can be bounded by

1

K
E

[√
X1 lnB

2

]
≤ 1

K

[√
E [X1] lnB

2

]
=

√
λ lnB

2K2
.

Lemma 16 (Massart’s Lemma (Lemma 26.8 of Shalev-Shwartz and Ben-David (2014))). Suppose X1, . . . , XB is collec-
tion of zero-mean, σ2-subgaussian random variables. Then,

E
[

B
max
i=1

Xi

]
≤ σ

√
2 ln(B).
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B.2.3. PROOF FOR STAGE 3

Lemma 17. For any δ ∈ [0, 1], λ ≥ max
{

2AK2

σ , 8AK ln(KN)
σ

}
, the sequence of {gn} defined in equation (3) and {u∗n}

defined in equation (6) satisfies that with probability at least 1− δ/2,

N∑
n=1

〈
gn, u

∗
n − u∗n+1

〉
≤ N

√
AK2

λσ
+N

√
2A ln(N) ln(BN2)

λσ
+

λσ

4AN ln(N)
+ 4
√

2N ln(4/δ). (14)

Proof. To begin with, we recall that u∗∗n+1 = EDn
[
u∗n+1

]
as shown in Eq. (8) and decompose

∑N
n=1

〈
gn, u

∗
n − u∗n+1

〉
into

three parts as follows:

N∑
n=1

〈
gn, u

∗
n − u∗n+1

〉
=

N∑
n=1

〈
gn, u

∗
n − u∗∗n+1

〉
+

N∑
n=1

〈
gn, u

∗∗
n+1 − u∗n+1

〉
=

N∑
n=1

〈
gn, u

∗
n − u∗∗n+1

〉
︸ ︷︷ ︸

Stability Term

+
N∑
n=1

EDn
[〈
g∗n − gn, u∗n+1

〉]
︸ ︷︷ ︸

Generalization Error

+
N∑
n=1

〈
gn, u

∗∗
n+1 − u∗n+1

〉
−

N∑
n=1

EDn
[〈
g∗n − gn, u∗n+1

〉]
︸ ︷︷ ︸

Approximation Term

.

(15)

As shown in equation (15), we apply a decomposition similar to Lemma 4.4 of Haghtalab et al. (2022a), which also involves
a stability term and a generalization error term. Our decomposition uniquely introduces a new approximation term due to
the need in establishing high probability regret bounds. We generalize Haghtalab et al. (2022a) to multi-class classification.
By Lemma 18 (deferred after this proof), the stability term satisfies

N∑
n=1

〈
gn, u

∗
n − u∗∗n+1

〉
≤ N

√
AK2

λσ
.

Similarly, we follow the proof idea of Lemma 4.6 of Haghtalab et al. (2022a) and bound the generalization error by
Lemma 20 (deferred after this proof):

N∑
n=1

EDn
[〈
g∗n − gn, u∗n+1

〉]
≤ N

√
2A ln(N) ln(BN2)

λσ
+

λσ

4AN ln(N)
+NKe−

λ
8K

by our assumption that λ ≥ 8AK ln(KN)
σ , the last term NKe−

λ
8K ≤ 1.

In the following, we bound the approximation term. Before going into details, we first show that g∗n, u
∗∗
n+1 are functions of

(un, D1:n−1) and is thus is F+
n−1-measurable. Indeed,

g∗n =
(
Es∼dπn

[
I(h(s) 6= πexp(s))

])
h∈B

= EDn
[(

Es∼Dn
[
I(h(s) 6= πexp(s))

])
h∈B

]
= EDn [gn] ,

which is a function of un . Similarly,

u∗∗n+1 = EDn
[
u∗n+1

]
= EDnEQn+1

[
Onehot(O(D1:n−1 ∪Dn ∪Qn+1)

]
which is a function of un and D1:n−1 .

Approximation Term: Define Yn :=
〈
gn, u

∗∗
n+1 − u∗n+1

〉
− EDn

[〈
g∗n − gn, u∗n+1

〉]
. In the following, we show that

{Yn}Nn=1 is a martingle difference sequence with respect to filtration
{
F+
n−1

}N
n=1

, i.e., ∀n ∈ N, E
[
Yn|F+

n−1

]
= 0. First,

E
[〈
gn, u

∗∗
n+1

〉
| F+

n−1

]
=

〈
E
[
gn | F+

n−1

]
, u∗∗n+1

〉
=
〈
g∗n, u

∗∗
n+1

〉
=
〈
g∗n,EDn [u∗n+1]

〉
= EDn

[〈
g∗n, u

∗
n+1

〉]
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where the first equality is from that u∗∗n+1 is F+
n−1-measurable and linearity of expectation. Second,

E
[〈
gn, u

∗
n+1

〉
| F+

n−1

]
= EDn

[〈
gn, u

∗
n+1

〉]
,

since conditioned on F+
n−1 = σ(u1, D1, . . . , un−1, Dn−1, un), the only randomness in the expression

〈
gn, u

∗
n+1

〉
comes

from their dependence on Dn.

Together we have,

E
[
Yn|F+

n−1

]
=EDn

[〈
g∗n, u

∗
n+1

〉]
− EDn

[〈
gn, u

∗
n+1

〉]
− E

[
EDn

[〈
g∗n − gn, u∗n+1

〉]
|F+
n−1

]
=EDn

[〈
gn, u

∗∗
n+1

〉]
− EDn

[〈
gn, u

∗
n+1

〉]
− EDn

[〈
g∗n, u

∗
n+1

〉]
+ EDn

[〈
gn, u

∗
n+1

〉]
=0.

Meanwhile, since each entry of gn and g∗n are upper-bounded by 1 and lower-bounded by 0, we have

|Yn| ≤ ‖gn‖∞ · ‖u∗∗n+1 − u∗n+1‖1 + EDn
[
‖gn − g∗n‖∞ · ‖u∗n+1‖1

]
≤ 2 + 1 = 3.

With the martingale difference sequence conditions satisfied, by Azuma-Hoeffding’s inequality, for any δ ∈ (0, 1], with
probability 1− δ/2,∣∣∣∣∣∣

N∑
n=1

(〈
gn, u

∗∗
n+1 − u∗n+1

〉
− EDn

[〈
g∗n − gn, u∗n+1

〉])∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
n=1

Yn

∣∣∣∣∣∣ ≤ 3
√

2N ln(4/δ).

Combining bounds for three terms in equation (15), we conclude the proof.

Lemma 18. Under the notation of MFTPL-P, when λ ≥ 2AK2

σ , ∀n ∈ N, gn,u∗n,u∗∗n+1 defined in equation (3), (6), and (7)
satisfies 〈

gn, u
∗
n − u∗∗n+1

〉
≤ 2

√
AK2

λσ
.

Proof. Since ‖gn‖∞ ≤ 1, it is straightforward to see that〈
gn, u

∗
n − u∗∗n+1

〉
≤ ‖gn‖∞ · ‖u∗n − u∗∗n+1‖1 ≤ ‖u∗n − u∗∗n+1‖1.

Our proof structure is similar to Lemma 4.4 and Lemma 4.5 of Haghtalab et al. (2022a), where we bound ‖u∗n − u∗∗n+1‖1
by the discrepancy of distributions of two datasets. We generalize the results of Haghtalab et al. (2022a) to multiclass
classification and online learning with batches of K samples at each round to keep track of the number of copies of each
(s, a) ∈ S ×A.

The main technical challenge here lies in using batches of examples. While in the batch size 1 case, Haghtalab et al. (2022a)
reduced bounding ‖u∗n−u∗∗n+1‖ to bounding the discrepancy between an SA-dimensional product Poisson distribution and
its one-sample shifted version, the same approach becomes difficult to compute when dealing with batches of more than one
examples. Specifically, a straightforward calculation leads to the total variation (TV) distance between an SA-dimensional
product Poisson distribution and a mixture of product shifted Poisson distributions, where the shifts are drawn from a
multinomial distribution. This mixture significantly complicates the computation, making it a much harder to solve and
present. ‡

‡Concretely, we can define pn,e to be a SA dimensional random variable that represents the “histogram” of all examples in∪n−1
i=1 Di∪

Qn,e; specifically, pn,e(s, a) =
∑n−1

i=1

∑
(s′,a′)∈Di I(s = s′, a = a′) +

∑
(s′,a′)∈Qn,e I(s = s′, a = a′). By the data-processing

inequality, ‖u∗n − u∗∗n+1‖1 is upper bounded by the TV distance between (pn,e(s, a))s∈S,a∈A | Fn−1 and (pn+1,e(s, a))s∈S,a∈A |
F+

n−1, which is equal to the TV distance between a product Poisson and a mixture of product shifted Poisson distribution.
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We work around this challenge by further dividing dataset D into K groups by the arrival index k ∈ [K] within batch.
We denote the (singleton) dataset that contains the kth draw in Dn by Dn,k and the union of Di,k for i = {1, 2, · · · , n} as
∪ni=1Di,k. The perturbation samples are treated similarly: we partition Qn,e to K groups, associating a group index (an
auxiliary random variable) k̃n,e,x ∼ Unif([K]) to each perturbation example (s̃n,e,x, ãn,e,x).

Specifically, for n ∈ [N ], we define a S ·A ·K-dimensional random variable pn,e. The role of pn,e(s, a, k) is to count the
occurrences (s, a) within ∪ni=1Di,k as well as the k-th subgroup of Qn,e. Its formal definition is as follows:

pn,e(s, a, k) :=
n−1∑
i=1

I(s = si,k, a = πexp(si,k)) +

Xn,e∑
x=1

I(s = s̃n,e,x, a = ãn,e,x, k = k̃n,e,x). (16)

By recalling the definition un,e in MFTPL-P, we rewrite un,e as a function of pn,e:

un,e = Onehot(O(D1:n−1 ∪Qn,e))
= Onehot(argmin

h∈B
E(s,a)∼D1:n−1∪Qn,e

[
I(h(s) 6= a)

]
)

= Onehot(argmin
h∈B

∑
(s,a)∈D1:n−1∪Qn,e

[
I(h(s) 6= a)

]
)

= Onehot(argmin
h∈B

∑
(s,a,k)∈S×A×[K]

pn,e(s, a, k)
[
I(h(s) 6= a)

]
).

Observe that u∗n = EQn,e
[
un,e

]
and u∗∗n+1 = EDnEQn+1,e

[
un+1,e

]
can also be viewed as the conditional distributions

of hn,e | Fn−1 and hn+1,e | F+
n−1, respectively. We define Pn(·|Fn−1) as the conditional distribution of pn,e | Fn−1

and define Pn+1(·|F+
n−1) represent the conditional distribution of pn+1,e | F+

n−1. By applying data-processing inequal-
ity (Beaudry and Renner, 2011), we obtain

‖u∗n − u∗∗n+1‖1 = 2TV(u∗n, u
∗∗
n+1) ≤ 2TV(Pn(·|Fn−1),Pn+1(·|F+

n−1)).

Note that Pn(·|Fn−1) and Pn+1(·|F+
n−1) depend on the same historical dataset D1:n−1, we further define

qn,e(s, a, k) :=
X∑
x=1

I(s = s̃n,e,x, a = ãn,e,x, k = k̃n,e,x), (17)

rn,e(s, a, k) := I(s = sn−1,k, a = πexp(sn−1,k)) +
X∑
x=1

I(s = s̃n,e,x, a = ãn,e,x, k = k̃n,e,x), (18)

It is not hard to see that following the definition in equation (16),

pn,e =qn,e +

n−1∑
i=1

I
(
s = si,k, a = πexp(si,k)

)
(s,a,k)∈S×A×[K]

,

pn+1,e =rn+1,e +

n−1∑
i=1

I
(
s = si,k, a = πexp(si,k)

)
(s,a,k)∈S×A×[K]

Notice that the distribution of qn,e | Fn−1 is independent of both n and e. Indeed, qn,e is a function of Qn,e and random
variables (k̃n,e,x)

Xn,e
x=1 . By the subsampling property of Poisson distribution, we can view each entry of qn,e as a inde-

pendent Poisson random variable, following qn,e(s, a, k) ∼ Poi(λ̃(s)), where λ̃(s) := λd0(s)
AK . Therefore, qn,e | Fn−1 is

drawn from a product of Poisson distributions:∏
s∈S

∏
a∈A

∏
k∈[K]

Poi(q(s, a, k); λ̃(s)) =: Q(q),

where Poi(q, λ) = e−λ λ
q

q! I(q ∈ N) denotes the probability mass function for Poisson distribution.
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Therefore, in subsequent proofs, we denote the distribution of qn,e | Fn−1 by Q for simplicity. Meanwhile, since the
conditional distribution of rn+1,e | F+

n−1 is constant over all e , we denote the conditional distribution of rn+1,e | F+
n−1 by

Rn+1,e(·|F+
n−1), and use the notationRn+1 for simplicity when it is clear from the context. Here, we apply the translation

invariance property of TV distance and obtain

TV(Pn(·|Fn−1),Pn+1(·|F+
n−1)) = TV(Q(·),Rn+1,e(·|F+

n−1)) = TV(Q,Rn+1).

Next, we rewriteRn+1 by the tower property:

Rn+1,e(r|F+
n−1) =P(rn+1,e = r | F+

n−1)

=E
[
P(rn+1,e = r | Dn,F+

n−1) | F+
n−1

]
=E

[
Rn+1(r|Dn,F+

n−1) | F+
n−1

]
= EDn

[
Rn+1(r | Dn,F+

n−1)
]
.

Now, it suffices to bound TV(Q,EDn
[
Rn+1(·|Dn,F+

n−1)
]
) , which we bound in a way similar to bounding TV(P,Q) in

Section 4.2.1 of (Haghtalab et al., 2022a). By this observation, we have

〈
gn, u

∗
n − u∗∗n+1

〉
≤2TV(Q,EDn

[
Rn+1(·|Dn,F+

n−1)
]
)

≤

√
2χ2

(
EDn

[
Rn+1(·|Dn,F+

n−1)
]
,Q
)

=

√√√√√√2

EDn,D′n

Eq∼Q [Rn+1(q|Dn,F+
n−1) · Rn+1(q|D′n,F+

n−1)

Q(q)2

]− 1

,
(19)

where we apply similar technique in Section 4.2.1 of Haghtalab et al. (2022a) by using χ2 distance (Lemma E.1
of Haghtalab et al. (2022a)) and Ingster’s method (Lemma E.2 of Haghtalab et al. (2022a)). Note that all examples in

Dn =
{

(sn,k, π
exp(sn,k))

}K
k=1

, D′n =
{

(s′n,k, π
exp(s′n,k))

}K
k=1

are i.i.d. drawn from Dexp
πn .

Recall that Qn,e
d
= Qn+1,e, meaning the difference between the distributions of qn,e and rn+1,e is induced by the K

examples from Dn. Conditioned on Dn =
{

(sn,k, π
exp(sn,k))

}K
k=1

, we have

qn,e
d
= rn+1,e −

(
I(s = sn,k, a = πexp(sn,k))

)
(s,a,k)∈S×A×[K]

.

This allows us to write the probability mass function ofRn+1(·|Dn,F+
n−1) as:

Rn+1(r|Dn,F+
n−1) =

∏
s∈S

∏
a∈A

∏
k∈[K]

Poi
(
r(s, a, k)− I

(
s = sn,k, a = πexp(sn,k)

)
; λ̃(s)

)
.

Let Dn, D
′
n be the pair of datasets of size K in equation (19), some algebraic calculations yield that

Rn+1(q|Dn,F+
n−1) · Rn+1(q|D′n,F+

n−1)

Q(q)2
=
∏
k∈[K]

q
(
sn,k, π

exp(sn,k), k
)

λ̃(sn,k)
·
q
(
s′n,k, π

exp(s′n,k), k′
)

λ̃(s′n,k)
.

By taking expectation over q ∼ Q we have

Eq∼Q

[
Rn+1(q|Dn,F+

n−1) · Rn+1(q|D′n,F+
n−1)

Q(q)2

]
=
∏
k∈[K]

(
1 +

I(sn,k = s′n,k)

λ̃(sn,k)

)
.
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Furthermore, we take conditional expectation with respect to Dn, D
′
n and obtain

EDn,D′n

Eq∼Q [Rn+1(q|Dn,F+
n−1) · Rn+1(q|D′n,F+

n−1)

Q(q)2

] =
∏
k∈[K]

1 +
AK

λ

∑
s∈S

dπn(s)2

d0(s)


≤

1 +
AK

λ

∑
s∈S

dπn(s)

σ

K

=

(
1 +

AK

λσ

)K
,

(20)

where in the above derivation, we recall that λ̃(s) := λd0(s)
AK , EDn,D′n

[
I(sn,k=s′n,k)

d0(sn,k)

]
=
∑
s∈S

dπn (s)2

d0(s) , and dπ(s)
d0(s) ≤

1
σ .

Finally, we conclude the proof by plugging equation (20) into equation (19) and setting λ ≥ 2AK2

σ :

〈
gn, u

∗
n − u∗∗n+1

〉
≤

√√√√2

((
1 +

AK

λσ

)K
− 1

)
≤ 2K

√
A

λσ
,

which is due to ∀x ∈ [0, 1
2 ], 1 + x ≤ ex ≤ 1 + 2x, meaning when AK

λσ ≤
AK2

λσ ≤
1
2 ,

(
1 +

AK

λσ

)K
≤

(
exp

(
AK

λσ

))K
= exp

(
AK2

λσ

)
≤ 1 +

2AK2

λσ
.

To simplify the expression in the following proofs, we introduce shorthand zn,k := (sn,k, π
exp(sn,k)) and z̃n,e,x :=

(s̃n,e,x, ãn,e,x)). By definitions in MFTPL-P, zn,k ∼ Dexp
πn , z̃n,e,x ∼ D0. We provide a generalized coupling lemma

similar to (Haghtalab et al., 2022a;b), showing that multiple draws from the covering distribution can be seen as containing
a batch of examples from a covering distribution with high probability.

Lemma 19 (Generalized coupling). LetG ∈ N and z̃1, · · · , z̃G ∼ D0. For all π that satisfies ∀s ∈ S, dπ(s)
d0(s) ≤

1
σ . By some

external randomness R, there exists an index I = I (z̃1, · · · , z̃G, R) ∈ [G] and a success event U = U (z̃1, · · · , z̃G, R)
such that Pr [U c] ≤ (1− σ/A)G, and (

z̃I | U, z̃\I
)
∼ Dexp

π ,

where z̃\I denotes {z̃1, · · · , z̃G} \ {z̃I}.

Proof. For all π that satisfies ∀s ∈ S, dπ(s)
d0(s) ≤

1
σ and its correspondingDexp

π , we have z =
(
s, πexp(s)

)
∼ Dexp

π , following
s ∼ dπ , a = πexp(s). Since z̃ = (s̃, ã) ∼ D0 follows s̃ ∼ d0, ã ∼ Unif(A). By their definition It is straight forward to see

Dexp
π (z)

D0(z)
=
dπ(s)

d0(s)
· 1

Unif(a;A)
≤ A

σ
.

We conclude the proof by letting X = Dexp
π and Y = D0 in Lemma 4.7 of Haghtalab et al. (2022a).

Lemma 20. ∀n ∈ {1, · · · , N}, MFTPL-P with λ ≥ 4AK ln(N)
σ achieves

EDn
[〈
g∗n − gn, u∗n+1

〉]
≤
√

2A ln(N) ln(BN2)

λσ
+

λσ

4AN2 ln(N)
+Ke−

λ
8K .

Remark 21. When applying this lemma downstream, we will treat the last two terms as lower order terms: First, our final
setting of λ will be such that λ = O(N), in which case λσ

4AN2 ln(N) ≤ O( 1
N ) ; Second, we will focus on the regime that

λ ≥ 8AK ln(N)
σ ≥ 8K lnN , in which case Ke−

λ
8K = O(KN ).
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Proof. To begin with, we first rewrite

EDn
[〈
g∗n − gn, u∗n+1

〉]
= EDnEQn+1,e

[〈
g∗n − gn, un+1,e

〉]
.

Following the same method in Lemma 18, for the eth perturbation set Qn+1,e at round n, we divide it to K subsets
(Qn+1,e,k)Kk=1 by randomly assigning k̃n+1,e,x ∼ Unif([K]) to each example (s̃n+1,e,x, ãn+1,e,x) in Qn+1,e for x ∈
Xn+1,e. Note that the divisions in this proof is only for analytical use.

By the subsampling property of Poisson distribution, we have the size of each Qn+1,e,k denoted by Xn+1,e,k follows
Poi(λ/K). For notational simplicity, we use Xk to denote Xn+1,e,k, Qk = (s̃x, ãx)Xkx=1 = (z̃x)Xkx=1 to denote Qn+1,e,k,
and zk = (sk, π

exp(sk)) to denote zn+1,k in the following proof.

By our assumption that λ ≥ 4AK ln(N)
σ , without loss of generality, for now we assume λ

2K to be integral multiple of

G := d 2A ln(N)
σ e, meaning λ

2K = MG for some M ∈ N. By defining event Ũk :=
{
Xk ≥ λ

2K

}
and Ũ := ∩k∈[K]Ũk, we

have

Pr(Ũ ck) = Pr(Xk <
λ

2K
) ≤ exp(− λ

8K
), Pr(Ũ c) ≤

K∑
k=1

Pr(Ũ ck) ≤ Ke− λ
8K ,

where we use the fact that for X ∼ Poi(λ′ = λ/K), Pr(X < λ′/2) ≤ exp(−λ′/8), and apply union bound for Ũ c.

At round n, conditioned on the favorable event Ũ happening, we further divide Qk into M groups denoted by Qk,m for
m ∈ [M ], where each group has size greater or equal to G.

Conditioned on Ũ , we apply Lemma 19 to each Qk,m with distribution Dexp
πn (induced by πn), obtaining M independent

events Uk,m for m ∈ [M ], where

Pr(U ck,m|Ũ) ≤ (1− σ/A)G = (1− σ

A
)
A
σ ·2 ln(N) ≤ e−2 ln(N) = N−2.

Conditioned on Uk,m, there exist an element ζk,m ∈ Qk,m such that

(ζk,m|Uk,m, Qk,m\
{
ζk,m

}
) ∼ Dexp

πn .

Define event U := ∩k∈[K],m∈[M ]Uk,m to be the intersection of those independent events (at round n), where by union
bound and the definition of M we have

Pr(U c|Ũ) ≤ KM

N2
≤ K

N2
· λ

2Kd 2A ln(N)
σ e

≤ λσ

4AN2 ln(N)
.

Now we introduce shorthand ξk,m := Qk,m\
{
ζk,m

}
, ξ := ∪k∈[K],m∈[M ]ξk,m and write

(zn,1, · · · , zn,K , ζ1,1, · · · , ζ1,M , ζ2,1, · · · , ζK,M |ξ, U, Ũ ,F+
n−1)

i.i.d.∼ Dexp
πn ,

which is by the independence between each group as well as the samples from Dexp
πn .

Now, we can split the generalization error into three terms by the law of total expectation:

EDn,Qn+1,e

[〈
g∗n − gn, un+1,e

〉]
=Pr(U ∩ Ũ) · EDn,Qn+1,e

[〈
g∗n − gn, un+1,e

〉
|U, Ũ

]
+ Pr(U c ∪ Ũ c)

≤EDn,Qn+1,e

[〈
g∗n − gn, un+1,e

〉
|U, Ũ

]
+ Pr(U c ∩ Ũ) + Pr(Ũ c)

≤EDn,Qn+1,e

[〈
g∗n − gn, un+1,e

〉
|U, Ũ

]
+

λσ

4AN2 ln(N)
+Ke−

λ
8K ,

(21)

where we apply the fact that
〈
g∗n − gn, u∗n+1

〉
≤ ‖g∗n − gn‖∞ · ‖u∗n+1‖1 ≤ 1, and bring in the bounds for Pr(Ũ c) and

Pr(U c|Ũ) shown above.

29



Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms

For the remaining term EDn,Qn+1,e

[〈
g∗n − gn, un+1,e

〉
|U, Ũ

]
, we abbreviate it as EDn,Qn+1,e|U,Ũ

[〈
g∗n − gn, un+1,e

〉]
and split it by the linearity of expectation

EDn,Qn+1,e|U,Ũ

[〈
g∗n − gn, un+1,e

〉]
= EDn,Qn+1,e|U,Ũ

[〈
g∗n, un+1,e

〉]
︸ ︷︷ ︸

I

−EDn,Qn+1,e|U,Ũ

[〈
gn, un+1,e

〉]
︸ ︷︷ ︸

II

.

We first focus on term II. For now, we abbreviate Qn+1,e as Qn+1 when it is clear from the context. By introduc-
ing shorthand of hn+1 = O(∪ni=1Di ∪ Qn+1) corresponding to the only policy in the support of un+1,e, and denote
`(hn+1, (s, a)) := I(hn+1(s) 6= a), we rewrite II as

EDn,Qn+1|U,Ũ

[〈
gn, un+1,e

〉]
=EDn,Qn+1|U,Ũ

 1

K

K∑
k=1

I(hn+1(zn,k) 6= πexp(zn,k))


=

1

K

K∑
k=1

EDn,Qn+1|U,Ũ
[
`(hn+1, zn,k)

]
.

Here we further denote ζ = {ζk,m}k∈[K],m∈[M ]. With this notation, Qn+1 = ζ ∪ ξ. The following holds for all m ∈ [M ]:

II =
1

K

K∑
k=1

Eξ|U,Ũ,F+
n−1

E
[
`(hn+1, zn,k)|ξ, U, Ũ ,F+

n−1

]
=

1

K

K∑
k=1

Eξ|U,Ũ,F+
n−1

E
[
`(O(∪n−1

i=1 Di ∪Dn ∪Qn+1)), zn,k)|ξ, U, Ũ ,F+
n−1

]
=

1

K

K∑
k=1

Eξ|U,Ũ,F+
n−1

E
[
`(O(∪n−1

i=1 Di ∪ (Dn\
{
zn,k

}
) ∪ (Qn+1\

{
ζk,m

}
) ∪ {zn,k} ∪ {ζk,m})), zn,k)|ξ, U, Ũ ,F+

n−1

]
=

1

K

K∑
k=1

Eξ|U,Ũ,F+
n−1

E
[
`(O(∪n−1

i=1 Di ∪ (Dn\
{
zn,k

}
) ∪ (Qn+1 \

{
ζk,m

}
) ∪ {zn,k} ∪ {ζk,m})), ζk,m)|ξ, U, Ũ ,F+

n−1

]
=

1

K

K∑
k=1

EDn,Qn+1|U,Ũ
[
`(hn+1, ζk,m)

]
,

(22)
where in the fourth equality we apply the independence between samples and exchangeability between zn,k and ζk,m
conditioned on U , Ũ , F+

n−1 and ξ. By slightly abusing notations and denoting zn,k as ζk,0, this implies:

II =
1

M + 1

M∑
m=0

 1

K

K∑
k=1

EDn,Qn+1|U,Ũ
[
`(hn+1, ζk,m)

] = EDn,Qn+1|U,Ũ

 1

K(M + 1)

K∑
k=1

M∑
m=0

`(hn+1, ζk,m)

 .

Meanwhile, we denote z ∼ Dexp
πn and rewrite I with the same hn+1 notation:

I = EDn,Qn+1|U,Ũ

[
Ez∼Dexp

πn

[
`(hn+1, z)

]]
.
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Combining what we have, we finally conclude that I− II is bounded by

I− II =EDn,Qn+1|U,Ũ

Ez∼Dexp
πn

[
`(hn+1, z)

]
− 1

K(M + 1)

K∑
k=1

M∑
m=0

`(hn+1, ζk,m)


=Eξ|U,Ũ,F+

n−1
E

Ez∼Dexp
πn

[
`(hn+1, z)

]
− 1

K(M + 1)

K∑
k=1

M∑
m=0

`(hn+1, ζk,m) | ξ, U, Ũ ,F+
n−1


≤Eξ|U,Ũ,F+

n−1
E

sup
h∈B

Ez∼Dexp
πn

[
`(h, z)

]
− 1

K(M + 1)

K∑
k=1

M∑
m=0

`(h, ζk,m)

 | ξ, U, Ũ ,F+
n−1


≤

√
ln(B)

2K(M + 1)
≤
√

2A ln(N) ln(B)

λσ
,

(23)

where in the second equality, we use the law of iterated expectations; in the first inequality, we upper bound the random
variable of interest by the supremum over the policy class, since hn+1 ∈ B. The second inequality is from Massart’s
Lemma (Lemma 16).

We finish the proof by bringing equation (23) into equation (21).

Theorem 22. For any δ ∈ (0, 1], MFTPL-P with any λ ≥ max
{

2AK2

σ , 8AK ln(KN)
σ

}
and E = NA ln(NS) outputs

{πn}Nn=1 that satisfies that with probability at least 1− δ,

Reg(N) ≤ Õ

(√
λ lnB

K2
+N

√
AK2

λσ
+N

√
A lnB

λσ
+

λσ

AN
+

√
N ln

1

δ

)
. (24)

Specifically, if N ≥ Õ
(√

A
σ

√
min(lnB,K2) ∨ K2

A ∨
K4

A lnB

)
, setting λ = Θ

(
NK

√
A
σ +NK2

√
A

σ lnB

)
gives

Reg(N) ≤ Õ

√N (A(lnB)2

σK2

) 1
4

+
√
N

(
A lnB

σ

) 1
4

+
√
N ln(1/δ)

 . (25)

Proof. Fix δ ∈ (0, 1). By combining Lemmas 12, 15, and 17, when λ ≥ max
{

2AK2

σ , 8AK ln(KN)
σ

}
, we have that , with

probability at least 1− δ/2,

N∑
n=1

〈gn, u∗n〉 − min
u∈∆(B)

N∑
n=1

〈gn, u〉

≤EQ1

[
max
u∈∆(B)

〈−g̃1, u〉

]
+

N∑
n=1

〈
gn, u

∗
n − u∗n+1

〉
≤
√
λ ln(B)

2K2
+N

√
AK2

λσ
+N

√
2A ln(N) ln(BN2)

λσ
+

λσ

4AN ln(N)
+ 4
√

2N ln(4/δ).

(26)

We now apply Proposition 11, which, by the choice of E, gives that with probability 1− δ/2,

N∑
n=1

〈gn, un − u∗n〉 ≤ N

√
2A
(
ln(NS) + ln( 12

δ )
)

E
≤ O

(√
N ln

1

δ

)
.

Therefore, combining the two inequalities and using the union bound, with probability at least 1− δ, Eq. (24) holds.
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Now, for proving Eq. (25), we first note that by the assumption that N ≥ Õ

(√
A
σ

√
min(lnB,K2)

)
, the choice of

λ = Θ

(
NK

√
A
σ +NK2

√
A

σ lnB

)
satisfies that λ ≥ max

{
2AK2

σ , 8AK ln(KN)
σ

}
; so Eq. (24) applies. It can be checked

by algebra that the first three terms in Eq. (24) evaluates to Õ

(
√
N
(
A(lnB)2

σK2

) 1
4

+
√
N
(
A lnB
σ

) 1
4

)
.

Furthermore, our choice of λ and the assumption that N ≥ Õ
(
K2

A ∨
K4

A lnB

)
implies that

λσ

AN
≤ O

(
K√
A

+
K2

√
A lnB

)
≤ O

(√
N
)

;

therefore, the last two terms in Eq. (24) is at most O(
√
N ln 1

δ ). This concludes the proof of Eq. (25).

Theorem 22 immediately implies the following corollary:

Corollary 23. For α > 0 small enough, MFTPL-P with

N ≥ Õ

(
1

α2

√
A lnB

σ

)
, and NK ≥ Õ

(
1

α2

√
A(lnB)2

σ

)
, (27)

is such that, with the choices of parameters λ = Θ

(
NK

√
A
σ +NK2

√
A

σ lnB

)
and E = NA ln(NS), achieves

Reg(N)
N ≤ α with probability 1− δ; its number of calls to the offline oracle is NE = Õ(N2A).

Corollary 23 implies Corollary 4 in the main text, as we show below:

Proof of Corollary 4. By the choices of N and K, Eq. (27) is satisfied with α = ε
µH . Therefore, with the choices of

parameters given by Corollary 23, Reg(N)
N ≤ α =⇒ µHReg(N)

N ≤ ε.

The total number of demonstrations requested isNK = µ2H2

ε2

√
A(lnB)2

σ , and the total number of calls to the offline oracle

is O(N2A) = Õ
(
µ4H4A2(lnB)2

ε2σ

)
.

B.3. Deferred proofs from Section B.2

The proposition below is used in the analysis of stage 1; its proof is straightforward and largely follows the proof of
Proposition 6 in (Li and Zhang, 2022).

Proposition 24. For any δ ∈ (0, 1], the sequence of {un}, {gn}, {g∗n} induced by MFTPL-P, MDPM and expert πexp,
satisfies that with probability at least 1− δ/3, it holds simultaneously that:

N∑
n=1

〈g∗n − gn, un〉 ≤

√
2N ln( 12

δ )

K
,

min
u∈∆(B)

N∑
n=1

〈gn, u〉 − min
u∈∆(B)

N∑
n=1

〈g∗n, u〉 ≤

√
2N

ln(B) + ln( 12
δ )

K
.

Proof. It suffices to show for any δ ∈ (0, 1], (1).
∑N
n=1 〈g∗n − gn, un〉 ≤

√
2N ln( 12

δ )

K with probability at least 1− δ/6, (2).

minu∈∆(B)

∑N
n=1 〈gn, u〉 −minu∈∆(B)

∑N
n=1 〈g∗n, u〉 ≤

√
2N

ln(B)+ln( 12
δ )

K with probability at least 1− δ/6.
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For (1), we define Yn,k = Fn(πn)− Ea∼πn(·|sn,k)

[
I(a 6= πexp(sn,k))

]
, which satisfies

〈g∗n − gn, un〉 =Fn(πn)− E(s,πexp(s))∼DnEa∼πn(·|s)
[
I(a 6= πexp(s))

]
=

1

K

K∑
k=1

(
Fn(πn)− Ea∼πn(·|sn,k)

[
I(a 6= πexp(sn,k))

])
=

1

K

K∑
k=1

Yn,k,

where we apply 〈g∗n, un〉 = Fn(πn) and Dn = (sn,k, π
exp(sn,k))Kk=1.

Now, it suffices to bound
∑N
n=1

∑K
k=1 Yn,k, which can be verified to be a martingale difference sequence. By the definition

of Fn(π) := Es∼dπnEa∼π(·|s)
[
I(a 6= πexp(s))

]
, it can be shown that E

[
Yn,k|Y1,1, Y1,2, · · · , Y1,K , Y2,1, · · · , Yn,k−1

]
=

0, while |Yn,k| ≤ 1. By applying Azuma-Hoeffding’s inequality, with probability at least 1− δ/6,∣∣∣∣∣∣
N∑
n=1

〈g∗n − gn, un〉

∣∣∣∣∣∣ =
1

K

∣∣∣∣∣∣
N∑
n=1

K∑
k=1

Yn,k

∣∣∣∣∣∣ ≤
√

2N ln( 12
δ )

K
.

For (2), we define Ŷn,k(h) = Fn(h)−I
(
h(sn,k) 6= πexp(sn,k)

)
, where h ∈ B, sn,k ∼ dπn . Following similar proof as (1),

it can be verified that E
[
Ŷn,k(h)|Ŷ1,1(h), · · · , Ŷn,k−1(h)

]
= 0 and |Ŷn,k(h)| ≤ 1. Again we apply Azuma-Hoeffding’s

inequality and show that given any δ ∈ (0, 1] and h ∈ B, with probability at least 1− δ
6B ,∣∣∣∣∣∣

N∑
n=1

Fn(h)− 1

K

K∑
k=1

I
(
h(sn,k) 6= πexp(sn,k)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

K

N∑
n=1

K∑
k=1

Ŷn,k(h)

∣∣∣∣∣∣ ≤
√

2N
ln(B) + ln( 12

δ )

K
.

By applying union bound over all policies in B, we have for all h ∈ B, given any δ ∈ (0, 1], with probability at least 1− δ
6 ,

it satisfies that

1

K

K∑
k=1

I
(
h(sn,k) 6= πexp(sn,k)

)
−

N∑
n=1

Fn(h) ≤

√
2N

ln(B) + ln( 12
δ )

K
.

Since minu∈∆(B)

∑N
n=1 〈g∗n, u〉 = minh∈B

∑N
n=1 Fn(h), while minu∈∆(B)

∑N
n=1 〈gn, u〉 =

minh∈B
1
K

∑N
n=1

∑K
k=1 I

(
h(sn,k) 6= πexp(sn,k)

)
, we denote h∗ = argminh∈B

∑N
n=1 Fn(h) and conclude the

proof for (2) by

min
u∈∆(B)

N∑
n=1

〈gn, u〉 − min
u∈∆(B)

N∑
n=1

〈g∗n, u〉 = min
h∈B

1

K

N∑
n=1

K∑
k=1

I
(
h(sn,k) 6= πexp(sn,k)

)
−

N∑
n=1

Fn(h∗)

= min
h∈B

1

K

N∑
n=1

K∑
k=1

I
(
h(sn,k) 6= πexp(sn,k)

)
− 1

K

N∑
n=1

K∑
k=1

I
(
h∗(sn,k) 6= πexp(sn,k)

)
+

1

K

N∑
n=1

K∑
k=1

I
(
h∗(sn,k) 6= πexp(sn,k)

)
−

N∑
n=1

Fn(h∗)

≤

√
2N

ln(B) + ln( 12
δ )

K
.

Finally, by applying union bound on (1) and (2) we conclude the proof.

The proposition below is used in the analysis of stage 1; its proof is straightforward and largely follows from Lemma 7 and
8 of (Li and Zhang, 2022).
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Proposition 25. For any δ ∈ (0, 1], the sequence of {un}, {gn}, {u∗n} induced by MFTPL-P, MDPM and expert πexp,
satisfies that with probability at least 1− δ/6,

N∑
n=1

〈gn, un − u∗n〉 ≤ N

√
2A
(
ln(NS) + ln( 12

δ )
)

E
.

Proof. To begin with, we first denote π∗n := πu∗n and π∗n(·|s) the action distribution of π∗n on state s. Given the expert
annotation πexp(s) on state s, we denote theA dimensional classification loss vector by

→
c (πexp(s)), whose entries are all 1

except that it takes 0 in the πexp(s)-th coordinate. With the newly introduced notions, we rewrite and bound 〈gn, un − u∗n〉
as follows:

〈gn, un − u∗n〉 =
∑
h∈B

un[h]
(
E(s,πexp(s))∼Dn

[
I(h(s) 6= πexp(s))

])
h∈B

−
∑
h∈B

u∗n[h]
(
E(s,πexp(s))∼Dn

[
I(h(s) 6= πexp(s))

])
h∈B

=E(s,πexp(s))∼DnEa∼πn(·|s)
[
I(a 6= πexp(s))

]
− E(s,πexp(s))∼DnEa∼π∗n(·|s)

[
I(a 6= πexp(s))

]
=E(s,πexp(s))∼Dn

[
〈πn(·|s),→c (πexp(s))〉

]
− E(s,πexp(s))∼Dn

[
〈π∗n(·|s),→c (πexp(s))〉

]
=E(s,πexp(s))∼Dn

[
〈πn(·|s)− π∗n(·|s),→c (πexp(s))〉

]
≤E(s,πexp(s))∼Dn

[
‖πn(·|s)− π∗n(·|s)‖1‖

→
c (πexp(s))‖∞

]
=E(s,πexp(s))∼Dn

[
‖πn(·|s)− π∗n(·|s)‖1

]
.

(28)

Now, it suffices to bound ‖πn(·|s) − π∗n(·|s)‖1, which follows Lemma 7 of (Li and Zhang, 2022). First notice that
EQn

[
un,e

]
= u∗n, which is by the definition of u∗n in equation (6). Since hn,e corresponds to un,e in MFTPL-P, this

implies EQn
[
hn,e(·|s)

]
= π∗n(·|s). Now that each hn,e(·|s) can be viewed as Multinoulli random variable on ∆(A) with

expectation π∗n(·|s), while πn(· | s) := 1
E

∑E
e=1 hn,e(·|s), we apply the concentration inequality for Multinoulli random

variables (Qian et al., 2020; Weissman et al., 2003) and conclude given n ∈ [N ] and s ∈ S, for any δ0 ∈ (0, 1], un, u∗n, gn,
satisfies that with probability at least 1− δ0

NS ,

‖πn(·|s)− π∗n(·|s)‖1 ≤

√√√√2A
(

ln(NS) + ln( 2
δ0

)
)

E
.

By applying union bound over all n ∈ [N ] and all s ∈ S, we conclude that for any δ ∈ (0, 1], the sequence of {un}, {u∗n},
{gn}, satisfies that with probability at least 1− δ/6,

N∑
n=1

〈gn, un − u∗n〉 ≤
N∑
n=1

E(s,πexp(s))∼Dn
[
‖πn(·|s)− π∗n(·|s)‖1

]
≤

N∑
n=1

E(s,πexp(s))∼Dn

√
2A
(
ln(NS) + ln( 12

δ )
)

E

=N

√
2A
(
ln(NS) + ln( 12

δ )
)

E
.

(29)
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Algorithm 4 BOOTSTRAP-DAGGER

Input: MDPM, expert πexp, policy class B, oracle O, sample size per round K, ensemble size E.
Initialize D = ∅.
for n = 1, 2, . . . , N do

for e = 1, 2, . . . , E do
πn,e ← TRAIN-BASE(D)

end for
Set πn(a | s) := 1

E

∑E
e=1 I(πn,e(s) = a).

Dn =
{

(sn,k, π
exp(sn,k))

}K
k=1
← sample K states i.i.d. from dπn by rolling out πn inM, and query expert πexp on

these states.
Aggregate datasets D ← D ∪Dn.

end for
Return π̂ ← AGGREGATE-POLICIES(

{
πn,e

}N+1,E

n=1,e=1
)

function TRAIN-BASE (D):
D̃← Sample |D| i.i.d. samples ∼ Unif(D) with replacement.
Return h← O(D̃).

Return h← O(D ∪Q).
function AGGREGATE-POLICIES (

{
πn,e

}N+1,E

n=1,e=1
):

Sample n̂ ∼ Unif([N ])

Return πn̂(a | s) := 1
E

∑E
e=1 I(πn̂,e(s) = a).

C. Experimental details
C.1. Full version of BOOTSTRAP-DAGGER

We present the full version of BOOTSTRAP-DAGGER in Algorithm 4.

C.2. Additional Implementation Details

All experiments were conducted on an Ubuntu machine equipped with a 3.3 GHz Intel Core i9 CPU and 4 NVIDIA
GeForce RTX 2080 Ti GPUs. Our project is built upon the source code of Disagreement-Regularized Imitation Learn-
ing (https://github.com/xkianteb/dril) and shares the same environment dependencies. We have inherited some basic
functions and implemented a new online learning pipeline that supports parallelized ensemble policies, in which we
instantiate DAGGER, MFTPL-P, and BOOTSTRAP-DAGGER. For each algorithm and experimental setting, we exe-
cuted ten runs using random seeds ranging from 1 to 10. The detailed control task names are “HalfCheetahBulletEnv-
v0”, “AntBulletEnv-v0”, “Walker2DBulletEnv-v0”, and “HopperBulletEnv-v0”. For code and more information see
https://github.com/liyichen1998/BootstrapDagger-MFTPLP

Table 3: Hyperparameters for Continuous Control Experiment

Hyperparameter Values Considered Choosen Value

Ensemble Size [1,5,25] [1,5,25]
Perturbation Size X for MFTPL-P [7,15,31,62,125,250,500] [0,7,15,31,62,125]
Hidden Layer Size (non-realizable) [2,4,8,12,16,24,32,64] 4 (Ant), 8 (Hopper), 12 (Half-Chettah), 24 (Walker)
Learning Rounds (realizable) [10,20,50,100] 20 (Ant & Hopper), 50 (Half-Cheetah & Walker)
Learning Rounds (non-realizable) [10,20,40,50,80,100,200] 40 (Ant & Hopper), 50 (Half-Cheetah & Walker)
Data Per Round [10,20,50,100,200,1000] 50
Learning Rate 2.5× 10−4 2.5× 10−4

Batch Size [50,100,200,500,1000] 200
Train Epoch [500,1000,2000,10000] 2000
Parallel Environments [5,16,25] 25
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As shown in Table 3, we present the considered hyperparameters along with their chosen values. Overall, hyperparameters
related to environment interactions, like learning rounds and data per round, are selected to generate a ’favorable’ learning
curve for DAGGER, enabling it to learn relatively fast but not converge within just a few rounds. The perturbation sizes for
MFTPL-P are chosen by the ratio of the perturbation dataset size to 1000 (the maximum size of the cumulative dataset
for realizable Ant, Hopper), following the sequence of

{
b1000/2ic|1 ≤ i ≤ 7

}
. For hyperparameters related to neural

network training, such as batch size, training epoch, etc., those are selected to ensure a faithful implementation of a offline
learning oracle without imposing heavy computational overhead.

For the justification of using 2000 SGD iterations without validation set, we provide the following reasoning:

1. On the performance of the oracle, 2000 SGD iterations suffices to support a comprehensive comparison over different
algorithms, as shown in Figure 7.

2. On the faithfulness of implementing a offline learning oracle, the returned policy should be the best policy on the input
data, where the generalization error is not considered. In this case, splitting out a portion of input data for validation may
deviate from the definition of the computational oracle.

3. On the reproducibility of the experiment, the implementation of validation set may vary and provide additional noises,
i.e. whether the validation set is resampled for each input dataset or gathered incrementally through N rounds and kept
unseen from the learner. Though it would be interesting to compare the difference between these and our oracle.

Running Time and Memory Comparison.

We present the running time and memory comparisons in the realizable setting from Section 5.3. As shown in Figure 8,
BC, DAGGER, and BD-1 have similar running times across different tasks. Benefiting from the parallel implementation
of ensemble models, BD-5 only takes twice as long as the baselines, while those with an ensemble size of 25 require
approximately 5 times longer. Considering overall performance and running time, BD-5 is more favorable for practical
applications.

Figure 8: Comparison of running time and memory for different algorithms under the realizable setting.

Comparison of Alternative AGGREGATE-POLICIES Functions for BOOTSTRAP-DAGGER

Additionally, we compare the performance of our BOOTSTRAP-DAGGER algorithm with the AGGREGATE-POLICIES part
changed to randomization over the ensemble trained. Our results are shown in Figure 9, where BD-5 and BD-25 represent
our BOOTSTRAP-DAGGER algorithm with ensemble sizes 5 and 25 respectively, and “BD-5 random” and “BD-25 random”
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are modifications of BOOTSTRAP-DAGGER with the AGGREGATE-POLICIES part changed to returning π̄N+1(a | s) =
1
E

∑E
e=1 πN+1,e(a | s).

Ant Half Cheetah Hopper Walker

Te
st

 R
ew

ar
d

Number of Expert Annotations Number of Expert Annotations Number of Expert AnnotationsNumber of Expert Annotations

Figure 9: Comparison of the original BOOTSTRAP-DAGGER algorithm with its variant with AGGREGATE-POLICIES
changed to returning a policy that is a uniform randomization over the ensemble.

Overall, using bootstrap mean (Bagging) proves marginally better than using bootstrap with randomization for final pol-
icy evaluation. This justifies the choice of using the ensemble mean instead of the original AGGREGATE-POLICIES for
continuous control.

C.3. Full Results from Section 5.2

In this section, we present all result plots from Section 5.2, including those omitted due to space constraints. As shown
in Figure 10, we include the performance of BOOTSTRAP-DAGGER and BC for the linear nonrealizable experiment in
Ant and Hopper. Evidently, the performance of BD improves with increasing ensemble size, with BD-25 achieving
comparable performance to MFTPL-P. Notice that the performance of BC varies significantly across tasks in the linear
model setting, which we leave for further investigation.

C.4. Full results from Section 5.3

In this section, we present all result plots from Section 5.3, including those omitted due to space constraints. Additionally,
since imitation learning agents do not usually have access to the ground truth reward, we also evaluate π using a more
“objective” performance measure, i.e, its average imitation loss:

Imitation Loss(π) =
1

T

T∑
i=1

1

|τπi |
∑
s∈τπi

˜̀(π(s), π̄exp(s)),

this measures the policy’s deviation from the mean action of the expert policy π̄exp(s). Its expectation, L(π) :=
Es∼dπ,a∼π(·|s)`(a, π

exp(s)), has been a central optimization objective in imitation learning works such as DAGGER (Ross
et al., 2011, Eq. (1)) and subsequent works (Ross and Bagnell, 2014; Sun et al., 2017; Cheng et al., 2019a) including ours.

In the following, Figures 11 and 12 present the results of experiments with realizable and non-realizable experts using MLP
as the base class. These include the performance of MP-25(X) with varying perturbation sizes and the imitation loss of
different algorithms as a function of expert annotation size. Although the advantages of sample-based perturbation are less
apparent in the MLP-based experiments, MP-25(15) still noticeably outperforms MP-25(0) in realizable Ant.

By examining the correlations between test rewards and imitation losses, a discrepancy in imitation loss usually correlates
with a gap in test reward, which shows the practical relevance of minimizing a policy’s imitation loss – it is a reasonable
proxy of policy’s expected performance.
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Figure 7: Comparison of 500, 2000, and 10000 iteration steps on continuous control tasks with realizable expert.

38



Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms

Figure 10: Continuous control experiments with linear model and nonrealizable noisy expert.
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Figure 11: Continuous control experiments with realizable noisy expert.

40



Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms

Figure 12: Comparison between algorithms with non-realizable noisy expert.
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C.5. Full results from Section 5.4 and Data Visualization via t-SNE (Van der Maaten and Hinton, 2008).

In this section, we present all result plots from Section 5.4, including those omitted due to space constraints, as shown in
Figure 13.
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Figure 13: Full results on comparing BD-5 and DAGGER, along with the two additional approaches in Section 5.4.

To further understand how the data quality collected by BD-5 improves over DAGGER, we visualize the states collected
and queried by different algorithms in Section 5.3 via t-SNE. As motivation, Figure 14 shows a comparison between
states of offline expert demonstration and states queried by DAGGER in Hopper. It can be seen that with the same expert
annotation budget, DAGGER collects a dataset that encompasses a broader support compared to the expert, while the policy
trained over it achieves a higher average reward.

Figure 14: Two-dimensional t-SNE visualization of states collected by expert and DAGGER in continuous control task
Hopper, using the same mapping. It can be observed that the support of state distribution by DAGGER contains regions
(top and middle) that are not supported by the expert’s state distribution. Over 10 repeated trials, supervised learning over
the datasets collected by expert and DAGGER have average reward of 1320 and 2470, respectively.

Figure 15,16,17,18 showcase the t-SNE visualization of states obtained by different algorithms across four environments
under the realizable expert setting, using the same mapping for the same environment. State points are color-mapped
from blue to red based on their arrival rounds. As presented in these figures, the observations reaffirm the findings of
Section 5.4. For example, in the state visualization of Ant (Figure 15), we notice similar state coverage among DAGGER-
style algorithms, which is distinct from the expert’s distribution. This suggests that BD-5 may not collect annotations over
different state distributions than DAGGER. Meanwhile, the color of points within the zoomed-in area for BD-5, BD-25,
and MP-25(15) appears bluer than DAGGER, indicating a more efficient exploration by ensembles in regions beyond the
support of the expert’s state distribution. From these results, we can see that BD actively explores the state space, swiftly
adapting to and rectifying its errors, ensuring a more rapid and efficient learning process compared to DAGGER.
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Figure 15: Two-dimensional t-SNE visualizations of Ant environment ss collected by different algorithms.
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Figure 16: Two-dimensional t-SNE visualizations of Half-Cheetah environment states collected by different algorithms.
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Figure 17: Two-dimensional t-SNE visualizations of Hopper environment states collected by different algorithms.
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Figure 18: Two-dimensional t-SNE visualizations of Walker environment states collected by different algorithms.
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