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Abstract

Registering Hematoxylin and Eosin (H&E)-stained tissue images with Immunohis-
tochemistry (IHC)-stained counterparts is a critical step for accurate pathological
interpretation. Existing registration methods in digital pathology have primarily
focused on aligning corresponding cells at the same pixel coordinates. While this
approach achieves low quantitative registration error, nonlinear transformations
often distort cellular morphology and tissue architecture, limiting the applicability
of such methods in clinical practice. To address this issue, we propose a tile-based
local registration method that minimizes image distortion. Our approach relies
solely on translation, rotation, and uniform scaling, thereby preserving structural in-
tegrity during registration. Experimental results on the ACROBAT 2023 challenge
datasets demonstrate that the proposed method achieves lower registration errors
compared to conventional rigid registration algorithms, with a 34.99% reduction in
error.

1 Introduction

Hematoxylin and Eosin (H&E)-stained tissue images provide structural information such as nuclei
and cytoplasm, whereas Immunohistochemistry (IHC)-stained images reveal biomarker or protein
expression patterns targeted by specific antibodies. Since these two staining techniques provide com-
plementary pathological information, accurate registration between H&E and IHC images is essential
for reliable interpretation. Local feature matching algorithms such as SuperGlue[7] and LightGlue[5]
have recently been introduced for this purpose. These methods establish correspondences between
keypoints across images by leveraging learned feature descriptors and attention-based matching.

Image registration can be broadly classified into rigid and non-rigid approaches depending on
the type of transformation and the criteria applied to target images. Deep learning-based studies
have predominantly focused on non-rigid registration, which estimates deformation fields to align
corresponding cells at the same coordinates[13, 12, 4, 6]. While such approaches are advantageous
for downstream analyses requiring cell-level correspondence, they often distort the original cellular
morphology—particularly under substantial inter-modality appearance differences. As illustrated
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Figure 1: Distortion of cellular morphology introduced by non-rigid registration under substantial
inter-modality differences.

in Figure 1, non-rigid registration can introduce unnatural deformation of cellular structures, which
may alter pathological characteristics such as tumor size, location, and growth patterns, thereby
compromising diagnostic accuracy in clinical practice.

To address this issue, VALIS[4] allows micro rigid registration on high-resolution tiles. However, this
approach incurs excessive computational cost while offering only limited improvements in accuracy.
In this study, we propose a tiling-based local registration method that overcomes these limitations.
The proposed method significantly improves registration accuracy while maintaining computational
efficiency and ensures reliable alignment across all regions of high-resolution images used in clinical
diagnosis.

The main contributions of this work are as follows:

• We propose a rigid registration method based on local feature matching, which is practically
applicable in clinical settings.

• Without additional training, we adapt and refine existing local feature matching algorithms
to the characteristics of digital pathology images.

• By employing tile-based local registration, our method consistently provides optimal align-
ment across diverse regions, with benchmark experiments demonstrating high performance
using rigid registration alone.

2 Related Works

Local Feature Matching Local feature matching algorithms can be categorized into dense feature
matching[8, 2], which directly compares pixel intensities across the entire image, and sparse feature
matching[7, 5], which extracts keypoints[1, 9] from images and utilizes only those corresponding
features. Given the extremely large size of pathology images, sparse feature matching methods are
generally preferred for their computational efficiency. In this context, LightGlue[5] has emerged as a
state-of-the-art sparse feature matcher, offering high efficiency in memory and computation while
maintaining strong accuracy and adaptability to task difficulty.

WSIs Registration VALIS[4] is a widely used open-source software library for pathology image
registration. It provides preprocessing modules tailored to pathology images, along with both rigid and
non-rigid registration pipelines. While the non-rigid option can achieve higher alignment accuracy, it
often introduces structural distortions that may limit clinical applicability. In addition, the optional
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Figure 2: Overall architecture of the proposed pipeline.

micro-registration mode requires substantial computational resources, and the accuracy of the rigid
registration remains relatively limited compared to non-rigid approaches.

3 Method

3.1 Overview

The proposed method consists of three stages: (i) preprocessing, (ii) coarse matching, and (iii) tiling
matching(i.e., our tile-based local registration stage). In the first stage, preprocessing addresses the
limitations of local feature matching algorithms[5, 7, 8, 2] that were originally trained on natural
images. In the second stage, coarse matching is performed to obtain an initial alignment between
H&E and IHC images. Finally, tiling matching refines the alignment at the local level to improve
registration accuracy. An overview of the entire pipeline is shown in Figure 2.

3.2 Preprocessing

To address the computational burden caused by the large number of pixels in whole slide images
(WSIs), each image is downscaled while maintaining the aspect ratio so that the longer side is 1024
pixels, and then converted to grayscale to reduce variations in keypoint extraction caused by staining
differences. Since the downscaling ratio may differ between H&E and IHC images, the original
resolution is later restored through the transformation matrix.

3.3 Coarse Matching

Coarse matching establishes an initial global alignment. From the preprocessed images, keypoints
and descriptors are extracted using SuperPoint[1], and corresponding keypoints are identified with
LightGlue[5]. The random sample consensus (RANSAC) algorithm[3] is applied to estimate inliers
(correspondences that consistently support a single geometric transformation). Since local feature
matching algorithms are typically trained on natural images, they are generally robust only to rotations
within approximately 30◦. When the IHC image undergoes larger rotations (e.g., 90◦ or more), the
number of valid correspondences decreases significantly. To compensate, the IHC image is rotated
by 0◦, 90◦, 180◦, and 270◦. For each rotation, matching is performed, and the case with the highest
inlier count is selected. Finally, a similarity transformation matrix (translation, rotation, uniform
scaling) is estimated and applied to the IHC image.

3.4 Tiling Matching

To address the local misalignment in high resolution after coarse matching, tile-based local registration
is introduced. The downscaled image is divided into square tiles with 50% overlap. For each tile, a
similarity transformation matrix is estimated using the keypoints extracted in the coarse stage. Tiles
containing fewer than three corresponding keypoints are excluded, as matrix estimation is not feasible
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Table 1: Comparison of TRE (µm) on the ACROBAT 2023 validation sets and HyReCo. Registration
performance is reported as the median of 90th percentile landmark errors (medianp90s), together
with twice the standard deviation (twostdp90s) to indicate variability across cases.

Method ACROBAT HyReCo

Baseline (SuperPoint + LightGlue) 798.3 ± 19,610.9 45.7 ± 73.3
VALIS (rigid only) 425.8 ± 4,853.4 78.1 ± 84.7
VALIS (non-rigid) 176.7 ± 6,986.9 14.9 ± 55.4
Coarse Matching (ours) 464.5 ± 5,315.8 45.7 ± 73.3
Tiling Matching (ours) 276.8 ± 1,287.9 38.7 ± 62.7

Table 2: Comparison of Runtime (sec) on the ACROBAT 2023 validation sets and HyReCo. Registra-
tion performance is reported as the mean inference time in seconds (sec), together with the standard
deviation to indicate variability across cases.

Method ACROBAT HyReCo

Baseline (SuperPoint + LightGlue) 0.052 ± 0.049 0.114 ± 0.496
VALIS (rigid only) 2.486 ± 0.645 2.947 ± 0.698
VALIS (non-rigid) 39.007 ± 17.545 11.068 ± 0.776
Coarse Matching (ours) 0.174 ± 0.046 0.167 ± 0.206
Tiling Matching (ours) 0.215 ± 0.230 0.317 ± 0.642

in such cases. This procedure enables accurate local refinement for high-resolution images, without
requiring additional feature extraction.

4 Experiments

We evaluated the proposed method on the ACROBAT[11] (Automatic Registration of Breast Cancer
Tissue) 2023 challenge dataset and the HyReCo[10] (Hybrid Re-stained and Consecutive) dataset.
The ACROBAT 2023 dataset contains H&E–IHC image pairs with expert-annotated landmarks.
Since the challenge has officially concluded, evaluations were conducted only on the 100 validation
pairs available. The HyReCo dataset further evaluates the method using 9 slides, each containing
5 consecutively stained sections, thus providing multi-stain registration scenarios. Registration
accuracy was assessed using Target Registration Error (TRE), defined as the Euclidean distance
between annotated landmarks and their corresponding coordinates after registration.

For comparison, we included the following baselines: Baseline (direct application of SuperPoint[1]
and LightGlue[5]), VALIS[4] library (rigid and non-rigid), Coarse Matching (ours), and Tiling
Matching (ours). In our implementation, the maximum number of keypoints for SuperPoint[1]
was set to 1,024, and we used the publicly released pretrained models for both SuperPoint[1]
and LightGlue[5].AMD EPYC 7763 CPU, an NVIDIA RTX A6000 GPU, and 512 GB of RAM.
Nevertheless, the pipeline was designed for general computing environments and can be executed
efficiently even with limited computational resources.

5 Results

Compared with the baseline, both coarse and tiling matching progressively reduced registration errors.
The proposed tiling strategy achieved the most accurate and stable alignment, outperforming rigid
VALIS[4] while avoiding the instability observed in non-rigid registration, as summarized in Table 1.

Significantly, the improved alignment accuracy did not come at the expense of speed. As detailed in
Table 2, our tiling matching method maintains a fast average runtime, substantially outperforming
non-rigid registration techniques.

To further illustrate the effectiveness of the proposed method, Figure 3 shows qualitative examples
of registration. In the coarse matching result (top right), the green box highlights a well-aligned
region, whereas the red box reveals local misalignment. After applying tiling matching (bottom), the
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Figure 3: Qualitative examples of registration results. (Top) Coarse matching of an IHC image against
an H&E reference. The green box shows a well-aligned region, whereas the red box highlights a
misaligned region. (Bottom) Tiling matching corrects the local misalignment. Note: “num kpts”
denotes the number of matched keypoints, and “euc dist” refers to the Euclidean distance between
corresponding landmarks.

previously misaligned region is correctly aligned, demonstrating the advantage of local refinement.
These examples confirm that tile-based local registration is essential for maintaining accuracy in
high-resolution pathology images while preserving computational efficiency.

6 Conclusion

In this study, we proposed a distortion-free registration method for H&E- and IHC-stained pathology
images to address cellular morphology distortion commonly observed in conventional non-rigid
registration. The proposed approach combines global coarse matching with tile-level local refinement,
while relying solely on rigid transformations to preserve structural integrity. Evaluations on the
ACROBAT 2023 challenge dataset demonstrated that our method achieved significantly lower TRE
(34.99% reduction in error) compared with direct feature matching and global rigid alignment.
Additionally, applying our method to the HyReCo dataset resulted in a 15.32% reduction in TRE
compared to the benchmark. Our approach delivers performance comparable to non-rigid registration
without introducing deformation. Both quantitative and qualitative analyses confirmed that the
proposed method enables accurate and stable registration of high-resolution pathology images,
providing an important foundation for practical use in clinical diagnosis.
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A Additional Experimental Results

Table 3 presents the per-sample TRE(µm) errors on the ACROBAT 2023 validation set (100 cases),
and Table 4 shows the per-sample TRE(µm) errors on the 36 cases from the HyReCo dataset.

Table 3: Comparison of registration performance on the ACROBAT 2023 validation set (measured in
TRE(µm), lower is better).

Slide ID Baseline VALIS
(Rigid)

VALIS
(Non-rigid)

Coarse Matching
(ours)

Tiling Matching
(ours)

0 436.75 830.13 75.13 849.83 87.16
1 23699.03 244.76 115.74 618.71 189.42
2 19496.61 238.81 262.97 295.42 544.38
3 22825.41 514.40 109.85 935.95 1246.15
4 346.96 375.63 312.51 342.12 304.71
5 194.68 123.00 112.29 153.57 161.89
6 523.97 137.41 72.40 140.14 85.44
7 1279.43 99.24 62.65 145.68 245.81
8 1217.98 623.96 418.00 682.42 373.03
9 20908.68 2337.04 3181.90 2674.34 3892.67
10 17031.94 496.87 263.94 1407.31 458.37
11 36419.78 663.74 503.67 683.57 582.09
12 370.37 233.51 156.95 253.83 318.94
13 22136.21 121.22 40.24 239.75 138.65
14 1081.70 933.51 176.18 1075.37 271.79
15 590.25 433.11 25.45 298.46 217.85
16 2350.97 1355.11 5065.65 3015.67 2199.12
17 426.35 241.62 60.52 266.61 83.90
18 232.74 122.53 84.60 128.52 184.81
19 14424.06 251.70 82.14 280.04 115.90
20 12139.51 768.54 790.95 854.16 947.08
21 1356.59 631.23 222.56 758.98 360.28
22 21583.35 1221.65 1030.54 1204.81 2112.39
23 95.75 85.12 27.44 82.44 72.86
24 127.00 130.00 58.71 151.35 87.87
25 19962.14 927.45 333.83 1968.96 783.72
26 930.62 1040.11 231.26 1992.83 281.90
27 22852.87 411.04 198.15 1056.14 456.41
28 289.91 202.89 88.83 343.71 173.19
29 1609.73 1145.73 705.33 2525.01 1120.20
30 251.40 209.12 164.94 396.32 170.95
31 394.51 301.61 225.83 545.56 302.17
32 672.05 544.60 72.96 790.35 291.52
33 150.45 106.11 23.61 106.23 53.80
34 221.90 145.90 36.21 164.52 98.30
35 232.05 231.42 39.91 266.64 220.53
36 20589.09 1563.23 194.36 26621.43 740.01
37 15823.47 1501.03 1501.03 984.22 1501.03
38 801.73 238.10 48.14 321.49 140.87
39 163.55 143.33 41.26 152.83 97.75
40 622.65 223.43 160.52 198.07 197.29
41 350.34 353.97 96.21 405.07 176.43
42 1284.18 1147.06 471.58 1454.82 560.29
43 221.89 165.34 41.24 175.51 113.83
44 18120.02 1338.60 921.27 788.24 1063.58
45 577.60 415.42 278.64 644.67 671.00

Continued on next page
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Slide ID Baseline VALIS
(Rigid)

VALIS
(Non-rigid)

Coarse Matching
(ours)

Tiling Matching
(ours)

46 485.84 218.35 211.00 385.16 160.93
47 14286.10 1541.70 792.20 1425.70 2327.85
48 19218.13 778.36 907.10 896.83 636.37
49 794.79 204.09 120.72 258.15 249.06
50 27208.02 1083.12 177.23 1570.53 789.12
51 450.61 314.72 172.68 325.89 216.85
52 31026.47 449.99 92.41 654.65 144.62
53 346.79 262.66 67.74 220.49 199.09
54 334.10 301.45 52.66 412.19 243.48
55 23213.94 291.16 163.59 286.33 265.08
56 1584.62 1857.06 87.10 1558.70 743.48
57 19168.92 208.67 55.13 235.98 148.07
58 570.19 543.56 100.44 732.05 186.29
59 86.72 66.68 42.28 96.88 111.17
60 520.54 334.69 126.51 428.30 179.39
61 16583.92 13474.61 16302.55 321.14 331.15
62 1374.97 15000.16 24234.44 1580.81 1531.37
63 218.65 189.38 92.49 203.18 268.10
64 24056.43 1421.70 851.19 1620.89 1794.26
65 905.74 638.20 203.10 805.61 668.94
66 20357.93 840.09 568.73 861.99 392.19
67 287.56 324.80 136.26 281.82 160.52
68 23188.87 580.86 260.72 1012.14 467.79
69 140.09 74.91 44.47 65.67 161.64
70 363.47 231.87 201.13 255.69 229.80
71 1470.83 918.98 836.91 967.16 728.93
72 719.79 1738.88 324.53 747.53 701.63
73 1319.86 1271.25 274.36 1697.45 462.02
74 726.02 552.72 600.81 561.21 677.80
75 892.65 689.46 551.49 706.35 740.74
76 206.36 123.99 39.79 127.99 168.58
77 127.21 86.10 61.09 103.06 56.06
78 546.08 504.36 413.72 741.89 554.36
79 5724.90 554.38 637.43 445.08 411.80
80 991.56 1224.79 365.64 1044.99 456.06
81 1861.11 15047.35 20141.03 1326.24 1374.39
82 510.47 401.68 180.36 462.41 268.01
83 658.07 903.65 327.54 768.88 647.53
84 1109.99 532.78 216.64 723.23 333.69
85 1389.43 1489.35 1566.27 1524.62 1650.42
86 234.42 235.64 96.59 225.35 121.95
87 23417.06 202.11 82.17 203.04 475.51
88 30740.11 1318.46 1197.98 3316.04 3206.78
89 350.46 429.76 143.06 429.10 370.78
90 1038.29 736.82 531.55 698.30 362.56
91 318.30 291.67 76.34 276.14 191.83
92 200.33 157.18 32.92 146.07 91.09
93 682.22 456.21 107.63 466.58 251.13
94 215.58 193.62 141.93 162.88 159.75
95 21097.17 539.91 201.23 647.90 256.74
96 658.65 421.80 199.30 590.78 246.61
97 410.13 381.00 272.38 389.96 220.95
98 156.43 155.48 57.23 157.05 111.21
99 18992.75 512.19 343.99 451.63 515.01

8



Table 4: Comparison of registration performance on the HyReCo dataset (measured in TRE(µm),
lower is better).

Slide ID Stain Baseline VALIS
(Rigid)

VALIS
(Non-rigid)

Coarse Matching
(ours)

Tiling Matching
(ours)

29 CD8 51.93 114.42 14.78 51.93 33.89
29 CD45 59.46 57.67 14.95 59.46 52.87
29 KI67 72.46 104.08 5.99 72.46 38.30
29 PHH3 15.98 31.32 6.47 15.98 17.61
108 CD8 49.33 71.83 16.29 49.33 50.11
108 CD45 133.56 144.40 70.07 133.56 115.58
108 KI67 41.25 66.52 16.19 41.25 30.92
108 PHH3 11.07 17.44 7.37 11.07 16.42
361 CD8 43.33 114.08 10.66 43.33 28.10
361 CD45 45.41 119.11 14.20 45.41 39.12
361 KI67 60.43 129.93 10.50 60.43 30.70
361 PHH3 160.55 178.37 157.99 160.55 176.36
464 CD8 27.42 36.46 13.04 27.42 30.74
464 CD45 148.92 136.75 20.01 148.92 41.54
464 KI67 43.76 60.67 9.83 43.76 26.56
464 PHH3 13.10 19.49 8.81 13.10 22.75
533 CD8 65.27 62.36 21.92 65.27 40.25
533 CD45 64.85 74.38 26.22 64.85 48.46
533 KI67 22.39 30.83 17.14 22.39 31.18
533 PHH3 12.68 16.08 9.67 12.68 15.56
611 CD8 56.80 105.66 13.93 56.80 39.11
611 CD45 48.37 81.71 22.37 48.37 46.17
611 KI67 33.32 63.59 11.91 33.32 26.60
611 PHH3 25.73 12.37 11.19 25.73 31.10
628 CD8 27.22 110.31 12.81 27.22 24.64
628 CD45 106.82 95.94 20.27 106.82 42.47
628 KI67 37.28 42.98 9.45 37.28 29.99
628 PHH3 26.73 71.93 28.53 26.73 29.17
644 CD8 45.96 147.07 24.25 45.96 48.16
644 CD45 90.11 131.23 27.14 90.11 58.14
644 KI67 41.75 43.89 31.63 41.75 49.39
644 PHH3 36.18 96.30 12.30 36.18 45.19
679 CD8 54.83 85.34 30.16 54.83 58.24
679 CD45 60.47 127.68 35.93 60.47 106.97
679 KI67 113.18 104.78 85.80 113.18 96.83
679 PHH3 22.38 45.50 14.45 22.38 32.14
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